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Global Loss
of Coastal Habitats

Rates, Causes and
Consequences

Carlos M. Duarte (Ed.)

Fundacion BOVA csic

[...] anthropogenic pressures on coastal habitats
have led to a sustained global loss of coral reefs,
mangrove forests, salt marshes, and seagrass
meadows over the past five decades.

(Carlos Duarte, 2009)
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Global loss of coastal habitats

Just 26

per cent

of recorded
seagrass
meadows fall
within marine
protected areas
compared with
40 per cent of
coral reefs and
43 per cent of
mangrove
forests.

At ®

present

no global legal or
policy instrument
focuses explicitly
on kelp.

61 per ®

cent of

data sets
spanning over 20
years show
significant
declines in kelp
abundance, with
only 5 per cent
showing
increases.

https://www.unep.org/interactives/why-blue-ecosystems-matter/

(UNEP: UN Environment Program 2023)
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Expanding monitoring scales

J Distribution of MPAs in Europe's seas is skewed towards coastal waters

R \V European The “white ribbon”
Distribution of protected area coverage per zone}) Environment
&
/ Agency
Term coined by the British Geological Survey to designate the
‘ nearshore area characterized by the lack of data:
- Too shallow and dangerous for most traditional survey vessels
Near shore (0-1 NM)  Territorial (1-12NM)  Offshore (12 NM-END) - Too deep for land-based survey methods.
443 % 86% 12 % - Traditionally surveyed by SCUBA diving
(165 301 km?) (856 125 km?) (4 769 289 km?)

Spatial Analysis of Marine Protected Area Networks in
Europe's Seas I, Volume A, 2017. Data from Table 3.6, p. 34.
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J Distribution of MPAs in Europe's seas is skewed towards coastal waters
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Spatial Analysis of Marine Protected Area Networks in
Europe's Seas I, Volume A, 2017. Data from Table 3.6, p. 34.




Essential Variables

Essential Variables (EV) are variables known to be critical for observing and monitoring a
given facet of the Earth system.
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Essential Variables

Essential Variables (EV) are variables known to be critical for observing and monitoring a
given facet of the Earth system.
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Essential Variables

Essential Variables (EV) are variables known to be critical for observing and monitoring a
given facet of the Earth system.

Seagrass cover

Macroalgal canopy cover

How well can be monitored from space?
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“Freus d'Eivissa i Formentera” MPA

Sentinel-2 image 215 July 2022




“Freus d'Eivissa i Formentera” MPA

* 6 field campaings
e 2000 -2004

e 1450 points

* Oto60m

* 28classes



“Freus d'Eivissa i Formentera” MPA

Final validation dataset

O0to20m
Core habitat
530 points
4 classes

[ ] Posidonia oceanica
(EUNIS MB252)

| ] Sand
(EUNIS MB55)

| Photophilic algae
(EUNIS MB151)

I Cymodocea nodosa
(EUNIS MB5521)
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PREPROCESSING TRAINING AND CLASSIFICATION
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PREPROCESSING
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TRAINING AND CLASSIFICATION
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PREPROCESSING TRAINING AND CLASSIFICATION
RANDOM
ACOLITE FOREST
ATMOSPHERIC CLASSIFIER
CORRECTION
+ DEGLINT
LAND MASK
Z MASK ECOSYSTEM MAP
WATER COLUMN 7] Posidonia oceanica
CORRECTION (EUNIS MB252)

Sand
(EUNIS MB55)

7] Photophilic algae
(EUNIS MB151)

m Il Cymodocea nodosa
(EUNIS MB5521)
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PREPROCESSING TRAINING AND CLASSIFICATION VALIDATION
RANDOM
ACOLITE FOREST
ATMOSPHERIC CLASSIFIER
CORRECTION ACCURACY
+ DEGLINT ASSESSMENT
LAND MASK
Z MASK ECOSYSTEM MAP
WATER COLUMN 7] Posidonia oceanica
CORRECTION (EUNIS MB252)
Sand
(EUNIS MB55)

7] Photophilic algae
(EUNIS MB151)

m I Cymodocea nodosa
(EUNIS MB5521)
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Sand
(EUNIS MB55)

PREPROCESSING TRAINING AND CLASSIFICATION VALIDATION
RANDOM
ACOLITE FOREST
ATMOSPHERIC CLASSIFIER
CORRECTION ACCURACY
+ DEGLINT ASSESSMENT
LAND MASK \
\ 27220 9 9 4
Z MASK ECOSYSTEM MAP \ 8 94 3 11
WATER COLUMN 7] Posidonia oceanica “‘ 49 15 38 1
CORRECTION (EUNIS MB252) . s 1 5 0

7] Photophilic algae
(EUNIS MB151)
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(EUNIS MB5521) /

Overall accuracy: 78%



Posidonia oceanica
-Recall (accuracy): 93%
-Precision: 82%

Sand
-Recall (accuracy): 81%
-Precision: 76%

Machine Learning model handles this
2 classes quite well.

Results




Results

Machine Learning model barely detects this
class but when it does the outcome is quite
reliable (underestimation of coverage)




Results

Machine learning model is able to detect this class but it
also mixes it with other classes, particularly sand
(overestimation of coverage or “potential distribution”).
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Essential Ocean Variables Estimation
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Conclusions and future directions

CONCLUSIONS

- RF has been able to extrapolate from a
small training area in the corner of the
MPA to the full MPA extent

- This is might be a reliable (enough) and
scalable methodology (that can be
further improved)

- The methodology allows the upscaling
of in situ observations from local to
more global frameworks
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between the RS and Marine Ecology
communities



Missing link?

One More Way Al Can Help Us

Harness One Of The Most

Underutilized Datasets In The OPENaACCESS Freely available online

@'PLOS ‘ ONE

World

@ Kevin Weil | March 21, 2023
=

How we tracked the Chinese balloon in satellite data

Satellite data may be one of the most underutilized datasets in the world.

Noé U. de la Sancha®

At Planet alone, we have six years of documented history — which means we have over 2,000

High-Resolution Satellite Imagery Is an Important yet
Underutilized Resource in Conservation Biology

Sarah A. Boyle'*, Christina M. Kennedy?, Julio Torres? Karen Colman®, Pastor E. Pérez-Estigarribia®,

images on average for every point on earth’s landmass. This dataset at high resolution never
existed before Planet came along and created it.

[...] Generally, the collection of field data
for the classification of remote sensing of aquatic habitats is expensive, time-consuming, and
sparse today. More efforts should be driven towards allocating funding for accurate and high
resolution in situ data and/or advocating the sharing of open datasets that would permit regional
to global projects. The search for open access data on seagrass from relevant data repositories
reveals a high number, however a fraction of these are potentially suitable for use in the remote
sensing domain. Therefore, it is mandatory to urge a collaborative action between seagrass and
remote sensing scientists, which will galvanize the development of a protocol that could be easily
adapted in any seagrass bioregion for the designation of accurate and well documented with
metadata, in situ data for seagrass mapping using the present workflow.

Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-
Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the
Aegean and lonian Seas. Remote Sens. 2018, 10, 1227

MISSING LINK

Why have researchers been unable to define
a standard set of biodiversity variables to
monitor from satellites? Because of inade-
quate access to satellite data; uncertainties in
the continuity of observations; and temporal
and spatial limitations of satellite imagery.
The problem is exacerbated by a lack of
communication between the ecology and
remote-sensing communities.

Skidmore, A., Pettorelli, N., Coops, N. et al. Environmental
science: Agree on biodiversity metrics to track from
space. Nature 523, 403-405 (2015)
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-Accuracy: 54%
-Precision: 30%
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Cymodocea nodosa
-Accuracy: 54%
-Precision: 30%

Marine Strategies Seagrass Campaing
Camara trawl transects
7th July 2022 (3 weeks prior to S2 image)
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“Potential distribution”
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Results

Posidonia oceanica
-Recall (accuracy): 93%
-Precision: 82%

Machine Learning model handles well this 2 classes quite

well.
Sand
-Recall (accuracy): 81%
-Precision: 76%

Machine Learning model barely detects this class but
when it does the outcome is quite reliable
(underestimation of coverage)

Machine learning model is able to detect this class but it
also mixes it with other classes, particularly sand
(overestimation of coverage or "potential distribution”).




Fieldwork
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Photophilic algae
-Accuracy: 37%
-Precision: 76%
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Posidonia oceanica
-Accuracy: 93%
-Precision: 82%
Sand
-Accuracy: 81%
-Precision: 76%

Cymodocea nodosa
-Accuracy: 54%
-Precision: 30%
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