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In this paper, a family of ruled surfaces generated by some special curves using a Frenet
frame of that curves in Euclidean 3-space is investigated. Some important results are obtained in the
case of general helices as well as slant helices. Moreover, as an application, circular general helices,
spherical general helices, Salkowski curves and circular slant helices, which illustrate the results, are
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1. Introduction

The study of some classes of surfaces with special properties in
E> such as developable, minimal, II-minimal, and II-flat is one
of the principal aims of the classical differential geometry.
There are many important kinds of surfaces such as cyclic, rev-
olution, helicoid, rotational, canal, ruled surfaces and so on.
This kind of surfaces has an important role and many applica-
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tions in different fields, such as Physics, Computer Aided Geo-
metric Design and the study of design problems in spatial
mechanism, etc [1,2]. There are many studies that interested
with many properties of these surfaces in Euclidean space
and some characterizations [3,4]. Furthermore, many geome-
ters have studied some of the differential geometric concepts
of the ruled surfaces in Minkowski space [5-8].

A helix (circular helix) is a geometric curve with non-van-
ishing constant curvature x and non-vanishing constant tor-
sion 7. It is a special case of a general helix [9-11]. The
general helix is the curve such that the tangent makes a con-
stant angle with a fixed straight line which is called the axis
of the general helix. A classical result stated by Lancret in
1802 and first proved by de Saint Venant in 1845 says that:
A necessary and sufficient condition that a curve be a general
helix is that the ratio
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is constant along the curve, where k and 1 denote the curvature
and the torsion, respectively [12].

The slant helix is the curve such that the normal line makes
a constant angle with a fixed straight line which is called the
axis of the slant helix [13]. Izumiya and Takeuchi [13] proved
that: A curve is a slant helix if and only if the geodesic curvature
of the principal image of the principal normal indicatrix

K2

T !
(x* 4+ 12)3/2 <;>

is constant along the curve.

The determining of the position vector of some different
curves according to the intrinsic equations x = k(s) and
T = 1(s) (where k and t are the curvature and torsion of the
curve) is considered as a one of important subjects. Recently,
the parametric representation of general helices and slant heli-
ces as an important special curves in Euclidean space E* are
deduced by Ali [14,15].

Ruled surfaces are surfaces which are generated by moving
a straight line continuously in the space and are one of the
most important topics of differential geometry [16]. In this pa-
per, we investigate a family of ruled surfaces generated by
some special curves in Euclidean 3-space E* and we obtained
some important results in the case of general helices and slant
helices as a base curve of this ruled surfaces.

2. Basic concepts

Let E* be a 3-dimensional Euclidean space provided with the
metric given by

(,) = dxj + dx; + dx;,

where (x1, x5, x3) is a rectangular coordinate system of E>.
Let ¢ =c(s) : / C R — E? is an arbitrary curve of arc-length
parameter s. Let {ei(s), es(s), e3(s)} be the moving
Frenet frame along c¢, then the Frenet formulae is given
y [12]

e\ (s) 0 k(s) 0 e(s)
ey(s) | = | —x(s) 0 () | | eals) |- (1)
€5 (s) 0 —1(s) 0 es(s)

where the functions «(s) and 1(s) are the curvature and the tor-
sion of the curve ¢, respectively.

A ruled surface is generated by a one-parameter family of
straight lines and it possesses a parametric representation

Y(s,v) =c(s) + v X(s), (2)

where ¢(s) is called the base curve and X(s) is the unit repre-
sents a space curve which representing the direction of straight
line [17].

If there exists a common perpendicular to two constructive
rulings in the ruled surface, then the foot of the common per-
pendicular on the main rulings is called a central point. The lo-
cus of the central point is called striction curve [4]. The
parametrization of the striction curve on the ruled surface
(2) is given by

22200 (). (3)

If | X'(s)|| = 0, then the ruled surface does not have any
striction curve. In this case the ruled surface is cylindrical.
Thus the base curve can take as a striction curve.

The standard unit normal vector field U on a surface ¥ can
be defined by:

Y AP

U=—_—*>"_"" 4
Taxzi @

where ¥, = W()j‘ nd ¥, = . The first I and second II

fundamental forms of the surface ‘P are given by, respectively

I = Eds* + 2Fdsdv+ Gdv*, (5)
Il = eds” + 2f dsdv + gdv*, (6)
where
E= (P, ¥,), F=(P, V), G=(¥, V) e

= (¥, U), f=(¥nU), g=(¥sU).

On the other hand, the Gaussian curvature K, the mean

curvature H and the distribution parameter /. are given by,
respectively [18]

_eg—f

TG R (7)
_ Eg+ Ge - 2Ff ()
- 2(EG-PF)
det(¢/, X, X')
=T0ns), ©)
I1X'|1°

From Brioschi’s formula in a Euclidean 3-space, we are
able to compute Kj; of a surface by replacing the components
of the first fundamental form E, F and G by the components of
the second fundamental form e, f and g respectively. Conse-
quently, the second Gaussian curvature Kj; of a surface is de-
fined by [19]:

1 —Lley+fi—1ig, e, fi—le,| |0 le Lg
K11=m f;,—%gl\, e f f%e‘, e f
38, fooe 8 f ¢

(10)

Having in mind the usual technique for computing the sec-
ond mean curvature H;; by using the normal variation of the
area functional for the surfaces in E* one gets [20]:

1
H” = H+ZA”1H(K)

where H and K denote the mean, respectively Gaussian curva-
tures of surface and A4y is the Laplacian for functions com-
puted with respect to the second fundamental form I7 as
metric. The second mean curvature H;; can be equivalently ex-
pressed as

H, dt[]/’l" 1 11
= H e S e |V S Y

where (h;;) denotes the associated matrix with its inverse (h),
the indices 7, j belong to {1,2} and the parameters u', u* are
s, v respectively.

The geodesic curvature, the normal curvature and the geo-
desic torsion which associate the curve c(s) on the surface ¥

can be computed as follows:

ke =(UAepe), «,={"U), 1,=(UAU,¢). (12)
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Now, we can write the following important definitions:

Definition 2.1 [21]. For a curve ¢(s) lying on a surface, the
following are well-known:

(1) c(s) is a geodesic curve if and only if the geodesic curva-
ture x, vanishes.

(2) c(s) is an asymptotic line if and only if the normal curva-
ture k, vanishes.

(3) c(s) is a principal line if and only if the geodesic torsion
7, vanishes.

Definition 2.2 [22].

(1) A regular surface is flat (developable) if and only if its
Gaussian curvature vanishes identically.

(2) A regular surface for which the mean curvature vanishes
identically is called a minimal surface.

(3) A surface is called II-flat if the second Gaussian curva-
ture vanishes identically.

(4) A surface is called II-minimal if the second mean curva-
ture vanishes identically.

It is worth noting that the ruled surfaces (2) is developable
if and only if the distribution parameter / of the surface ¥ van-
ishes identically [23].

3. Some characterizations of ruled surfaces in general form

For our study, we consider the following generated surface
using a curve c¢(s) as a base curve:

S:¥(s,v) =c(s) +v X(s), X(s5)#0, veR, (13)
where
X(s) = i:x,- e(s), (14)

is a unit vector with fixed components, i.e., X3 +x3 + x3 = 1.

The natural frame {¥,, ¥,} of (13)is given by:

{ Y, = (1 —vxai)e; + v(xix — x37)ex + (vxp1)es, (15)
¥, = x1e; + x2e; + X3€5.

From the above equation, we can obtain the components of
the first and second fundamental forms of ¥, respectively, as
the following:

E = (1 —vxk)” + 2 (x16 — x37)° 4 (vx21)%,

F= X1, (16)

G=1,

e=21[[x2(t' —x7') —x1 (B +x3)7* —x3(1 = 3x})rr? — x1 (1 = 3x3) e
—x3 (¥ +x3) ] + [2)c2(.x‘3;< +x17)1c — Xy 3035 + (X, +x3)zr’} v— .\‘3K] ,

=103+ e —xixand,
g=0,
(17)
where
A? = [(x] +x3) K% = 2x1263KT + (o3 4+ x3)T°v* — 23060 + X3

2
+ x3.

Making use of the data described above, the Gaussian cur-
vature K, the mean curvature H and the distribution parame-
ter A are given respectively, by

fZ

K=" wm %)
_ e
H’z(E—FZ)’ (19)

t(x3 +x3) — Kkxix3

R+ 1) + (K —x1)°

(20)

Also, from (10) the second Gaussian curvature of ¥ is gi-
ven as follows:

flew =2f) —(es =2)fv _ 1 0 (e, —2f;
2f3 2f Qv f '
From (18)—(21) and (11), at the point (s, 0), we have the fol-
lowing results respectively

KII =

(21)

2
X1X3

K=— LI »
[<x5+x§>K T} ’ -
He x3(1 = 2x3)K + 2x135;v§ + x§)r’ 23)

2(x3 +x3)

1
Hl[ =

2m[x1x3x — (3 + x%)zrr

x [2x1 (x5 + x3) [Bxixvsk — (33 + x3)t] % + &

x (x[B(3 +2)" = ¥ (3 - 299) |«
(8 +8) (5) ) + (3 43) 2w [ 3 - 3d)
+ x5 (22 + X3)] K — 32 (x5 + x3)K )T

+ x10x3 (x5 + x3) ki ], (24)

1
KI[ = 2

23 +2)° {Xlxﬂ(f —(x3 +x§)2r]

X [xfx; (x% + x%) K[x2K" — 4x;3K71]

+x1x3 (25 —x3) 1 —x1 (x5 +x§)2 (207 +2x31(7 —«?)
—xpxski’) = x7 (x5 + x%)x(,m [(in +x3)K* = 5(x3+ xg)rz]
+x2 (5 +x3)7) — (x5 + x%)zx(xg [¥T + x5 (1 +17%)]

+32 (3 +3) )] (25)

Furthermore, we will use (12) to get the geodesic curvature,
the normal curvature and the geodesic torsion which associate
the curve c¢(s) on the surface ¥ as the following forms,
respectively:

Kg = % [x2 = [(x] + x3) K — x1x37)v], (26)
Ky = % [x5 — x2(x3K + x17)], (27)

1
Tg 4 [szﬂcz - v(x3(xf +2x3)K° + (x% - 2x§>KZT

+x3 (3 4 x3) kT + X2 (x5 + x3) K7 (%)l
+x2[(x3 + x3) T — X103k ') + X207 (X3 + X1 7)

X K {xﬁ(;cz + 1) 4 (K — x;‘c)z] + X1 (%)lﬂ . (28)
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At the point (s; 0), above equations take the simple form:

XoK X3K X2X3K2
K =—m——, =—5— =7, 3 (29)
/X3 + x3 VX3 +x3 X3+ x5

Then we have the following properties:
KgKy = Tg, K; + 12 =i’ (30)

From (14) and (1), it is easy to see that the parametrization
of the striction curve on the ruled surface (13) is defined by:
~ XoK
c(s) = c(s) + ——5 X(s). (31)

11X ()]

From the above study, one can formulate the following
corollaries:

Corollary 3.1. At the point (s, 0), the ruled surface (13) is a flat
sg;face if and only if the curve c(s) is a general helix with
) = 2

Corollary 3.2. At the point (s,0), the ruled surface (13) is a

minimal surface if and only if the curve c(s) is a general helix
cpot(s) x;(fo—l)
with ) = Zn (3r2)

In the following we will compute the Gaussian curvature K,
the mean curvature H, the second Gaussian curvature K;;, the
second mean curvature Hj; as well as the geodesic curvature
kg, the normal curvature k,, and the geodesic torsion 7, in a
special cases, respectively.

Case 3.1. At x; = 0, the ruled surface (13) has the following:

X3K

K=-7v, H=-

T ) 2 )

K
Ky — — T (212 4 2) + oot
I 1212 [x3 (57 +77) + X7, 32)

Hy= 33 [2x2 (21 — kT') — x3K(2x3K° 4 377)]

T
Kg = XoK, K, = X3K, Tg = X2X3K2.

Corollary 3.3. At the point (s,0), the ruled surface (13) with
x; = 0is:

(1) Flat surface if the base curve is a plane curve.

(2) Minimal surface if the base curve is straight line.

(3) II-minimal surface if the base curve has the following
characterization

2% (2t — k7') — x3x(2x36% + 37°) = 0.

(4) II-Flat surface if the base curve has the following
characterization

r_ X3 00, 2
T 7x2(x21< + 7).

Case 3.2. At x, = 0, the ruled surface (13) has the following:

2
] X
K:,<M,r), H:K,,:,@,l),c,(n)f,
X3 2 \x X3
x p—

W=t

Corollary 3.4. At the point (s, 0), in the ruled surface (13) with
x> = 0 the following are satisfied:

(1) The ruled surface is a flat surface if the base curve is gen-
eral helix with (s) = <§>K(S)

3
(2) The ruled surface is II-minimal surface if the base curve is

—H(E4+2)x(s).

general helix with t(s) =

Corollary 3.5. At the point (s,0), in the ruled surface (13) with
x> = 0 the following statements are equivalent:

(1) The ruled surface is a minimal surface.
(2) The ruled surface is II-flat surface.
(3) The base curve is general helix with ©(s) =1 ( -8

5 |
iz
N———
S
2
1)
)

Case 3.3. At x3 = 0, the ruled surface (13) has the following:

K= —‘52, H:—(XIT)7
X7

2x1 %7 + K7’ X (2K — k') — x) (212 + x31)T
Ky=— e ) Hy= 3
X3

2
3T
Ke=1k, K, =0, 1,=0.

)
X

(34)

Corollary 3.6. At the point (s,0), the ruled surface (13) with
x3 = 0 is:

(1) Flat surface if the base curve is a plane curve.
(2) Minimal surface if the base curve is a plane curve.
(3) Il-flat surface if the base curve has the intrinsic equations

1

JJer —4xix; fx‘f—i)

where c; is an arbitrary constant.
(4) Il-minimal surface if the base curve has the intrinsic
equations

k=x(s) and 1=

KZ(S) eiz“;zl K(s)ds

i ‘»c(v)dv ’
€+ 2x1x; [13(s) e 2 g

k=ux(s) and 7=

where ¢, is an arbitrary constant.

Case 3.4. Atx; = x, = 0and x3 = 1, the ruled surface (13) at
the point (s,0), has the following:

3
K:—’L'z, H11:3H:3K11:—(—K),

2 (35)

Kg =0, K,=x, 71,=0.
Corollary 3.7. At the point (s,0), the ruled surface (13) with
x; = X = 0and x; = 1is flat if the base curve is a plane curve.

Corollary 3.8. At the point (s,0), the ruled surface (13) with
x;=x,=0 and x3 =1, the following statements are
equivalent:
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(1) The ruled surface is minimal surface.
(2) The ruled surface is II-minimal surface.
(3) The ruled surface is Il-flat surface.

(4) The base curve is a straight line.

Case 3.5. At x; = x3 = 0 and x, = 1, the ruled surface (13)
has the following:

K=-— H=0,

KT 2tk — k7’
Ky=- (27_52), Hy = T7 (36)
Ke =K, K,=0, 1,=0

Corollary 3.9. At the point (s,0), the ruled surface (13) with
x; = x3 = 0and x, = 1 is flat if the base curve is a plane curve.

Corollary 3.10. At the point (s,0), the ruled surface (13) with
x; = x3 = 0 and x, = 1 is minimal surface.

Corollary 3.11. At the point (s,0), the ruled surface (13) with
x; = x3 = 0and x, = 1 is II-flat surface if the base curve has a
constant torsion.

Corollary 3.12. At the point (s,0), the ruled surface (13) with
x; = x3 =0 and x, = 1 is II-minimal surface if the intrinsic
equations of the base curve are:

k=1x(s) and 1=¢; K (s),

where c3 is an arbitrary constant.

Case 3.6. At x, = x3 = 0 and x; =
has the following:

Kg = —K, K, =0,

1, the ruled surface (13)

(37)
7, = 0.

Corollary 3.13. The ruled surface (13) with x,
x; = 1 is a flat (developable) surface.

x3 = 0 and

Corollary 3.14. The ruled surface (13) with x, = x3 = 0 and
x; = 1 is minimal if the base curve is a plane curve.

It is worth noting that the second mean curvature and sec-
ond Gaussian curvature are defined only on the non-develop-
able surfaces.

Remark 3.15. On the ruled surface (13) with x, = x3 = 0 and
x; = 1 we have Y, A ¥, = —vikes. The normal vector on this
surface is U = e3. While, at the point (s, 0), the normal vector
is not defined because ¥, A ¥, = 0. Therefore, all curvatures
K, H, Hy, Ky, x,, Kk, and 1, are not defined at the point (s, 0).

4. Ruled surfaces generated by some special curves

In this section, we consider ruled surfaces generated by some
important special curves such as general helices and slant
helices.

4.1. Ruled surfaces generated by general helices

Theorem 4.1. [14]:The position vector ¢ of general helix is
expressed in the natural representation form as follows:

c(s)=V1—-n?
(38)
where m = = n = cos|[p] and ¢ is the angle between the

X 1-n2’ . .
fixed straight line e; (axis of a general helix) and the tangent
vector of the curve c.

From the above theorem we have

ei(s) =V1—n*(cos [VI+m? [K(s)ds],sin [VT+m? [i(s)ds],m),
ex(s) = (—sin [v/T+m? [x(s)ds],cos [v/1+m? [x(s)ds],0),

e3(s) =( ncos [vV1+n2 [x(s)ds|,—nsin [v/T+m? [x(s)ds], \/l—nl).
(39)

Then the position vector ¥(s, v) = (¥, ¥, ¥3) of the ruled
surfaces (13) generated by the general helix takes the following
form:

Y, =—A . [fcos[@}ds-&-v[(xl — mx3)cos[@] — V1 +nx,sin[0]]],
[fsm 1ds+ v[(x) —mx;)sin[@] + V1 +m2x, cos[0]] ],
= \/m[im +v(mxy +x3)],
(40)
where @ = V1 +m? [k(s)ds

Here, we introduced the position vector of ruled surfaces
generated by some special cases of general helices:

Case (1) In this case we take a circular helix (the curvature
and torsion are constants) with the intrinsic
equations

k(s)=x and 1(s)=m k.

Then the components of the position vector of the ruled
surfaces generated by circular helix are:

V1 = i (11— (1 +m)xa] sin [T+ mks]
+V1+m2(x; — mx3)xvcos [V1 + mPks|],

y, = m [[(1 + m?)xarv — 1] cos [V1 + m2ks] (41)
+V1 4 m2(x; — mx3)kvsin [V1 + m?ks] |,

Y, = \/ILT[ms + v(mx; + x3)].

Case (2) In this case we take a general helix with the intrinsic
equations given by

K(s) :g and 1(s) = —,

where «a is an arbitrary constant. Then the components of the
position vector of the ruled surface take the form:
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W=l [(5+ (ri = mx)v) cos[6] + (12— xov) sine]], ¥y =2 [ [ (s)cos[@]ds]ds +v((x2 ~ x10 — mx; /T = %) cos[]
v, :ﬁ [(ﬁJr (x1— mxg)v) sin[@] — (11;72 - xzv) cos[@]] , +\/m<‘61 V-6~ x;@) sin[d’})] )
Y= [ms+ v(mx +x3)], [f [[x(s) sin[®P]ds|ds +v<(x2 —mx,0 —mx;V1 — @) sin[®]

(42)

where b = av/1 + m? and @ = bLog]s].

Case (3) In this case we take a spherical general helix with the
intrinsic equations are [24,25]:

K(s) = ——2 and 1(s) = L
= ¢ T = ,
V1 —m2s? V1 — m2s?

where « is an arbitrary constant. The components of the posi-
tion vector of the ruled surface can be written as:

Y =2 [(Yl —mx3)y

V= m [(’cl nxs)v — nz(l+m mz] sm[@] [azﬂllmm) vm — X2 v] cos[@]
V3 =2ms+v(mx; +x3)],

m] cos[O] + [@ — X v] sin[@],

a2 (14+m?)

(43)

where @ = ¢ sin”" [ms).

4.2. Ruled surfaces generated by slant helices

Theorem 4.2. [15]:The position vector ¢ = (c;(s), c2(s), ¢3(s))
of a slant helix is computed in the natural representation form:

ai(s) =2 [[[x(s)cos [Larcsin (m [ i(s)ds)] ds] ds,
c2(s) =2 [[[x(s)sin [} arcsin (m [ K(s)ds)] ds] ds, (44)
=n [ [[x(s)ds|ds,

where m = L, 1= cos[¢p] and ¢ is the angle between the
fixed straight line (axis of a slant helix) and the principal nor-
mal vector of the curve c.

From the above theorem we can compute the tangent
e; = (e11(s), e1n(s), e13(s)), the normal e; = (e2(s), exa(s),
e»3(s)) and the binormal e; = (e31(s), €32(5), e33(s)) as the

following:
e (s) =2 [x(s)cos [} arcsin(m [ «(s)ds)] ds,
enn(s) =2 [x(s)sin [} arcsin(m [ x(s)ds)] ds, (45)

ei3(s) = n[[ x(s) ds],

e (s) = £ cos [} arcsin(m [ k(s)ds)],

ex(s) = £ sin [ arcsin(m [ k(s) ds)], (46)
€73 (S) =n,

) d
—([x(s)ds) sin [L arcsin (m [x(s)ds)]],
Jx(s)ds) cos [L arcsin (m [ k(s)ds)] (47)
5) cos [L arcsin(m [ «(s) ds)] ds]
1 —m2([ k(s)ds)”.

Then the position vector (s, v) = (¥, ¥,, ¥3) of the ruled
surface (13) generated by the slant helix takes the following
form:

exn(s) = [

\
—
=
~

€73 (S) = -

*m(xlwfm@) cos[@])],
=1 [f@dv+ v(x1 0+ mx, + mm)],

(48)

where © = m [ k(s)ds and & =1 arcsin[©)].

In what follows we presented the position vector of some
important slant helices such as Salkowski, antiSalkowski,
spherical slant helix.

Case (1) In this case, we take a Salkowski curve [26,27] whose
intrinsic equations are:
ms
k=1 1=—. 49
V1 —m? s? (“9)

The explicit parametric representation of such curve can be
written as follows:

() =1L [W cos[(2n + 1)1] + £tk cos[(2 nfl)l]fZCosH]
V(1) = 5 [ sinl(2n+ 1)) = 22 sinl(2n = 1)7] - 2sin[d]]
W3(1)

— gty cos[2nt],

(50)

where ¢ =L arcsin(ms).

Case (2) In this case, we take an anti-Salkowski curve [26,27]
with its intrinsic equations are:

. ms 1 (51)
=—, 1=1L
V1—m? s
This curve has the following explicit parametric
representation:
(=24 [2n+1 sin[(2n+ 1)¢) + £ sin[(2n — 1)1] — 2nsin[z}] ,

Uo(t) = 2 [1 n cos[(1+2n)t]fllj;cos[(l72n)t]+2ncos[t]],

4m [ 14-2n
W3(1) = 3% (2nt —sin[2n1)),

(52)
V1-—m2s?

m

where ¢ = 1 arcsin(m0) and 0 =

Case (3) In this case, we take a circular slant helix [24] which
has intrinsic equations are:

_HK —Hntu s
K—mCOS[# sl, 7 msm[u s], (53)

The natural representation of such curve is in the following
form:

=
=
\:’/

|§

~ (1 + n?) cosu ] cos[-4] + 2nsin[u s sin[~7]],

l

§ 3

¥y(s) = n
Vs(s) = — 5 coslu s].

~[(1+ n?) cos[u s] sin[-] — 2nsin[u s] cos[-Y]],

(54)
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Figure 1

Some ruled surfaces generated by circular helices.
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Figure 2 Some ruled surfaces generated by circular helices.

The above curve is a geodesic of the tangent developable of
a general helix [13].

In the following remarks, we will illustrate in what values
the graph plotted.

Remark 4.3. It is worth noting that:

(1) The ruled surfaces generated by circular general helices
are illustrated by graph in Figs. 1 and 2.

(2) The ruled surfaces generated by spherical general helices
are illustrated by graph in Figs. 3 and 4.

(3) The ruled surfaces generated by Salkowski curves are
illustrated by graph in Figs. 5 and 6.

(4) The ruled surfaces generated by circular slant helix is
illustrated by graph in Figs. 7 and 8.

Remark 4.4. We will take the symbols (L, M and R) that
means (Left, Middle and Right) in the graph, respectively.
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Figure 4 Some ruled surfaces generated by spherical general helices.

Figure 5 Some ruled surfaces generated by Salkowski curves.
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Figure 6 Some ruled surfaces generated by Salkowski curves.

50
200
=20
50
=
50
Figure 7
0‘1
” P >o % °
20
2 4()‘ 2
Figure 8 Some ruled surfaces generated by circular slant helices.
Fig. . L: (k=m=1,x, = x, =0,x3 = 1), M: (x = 1, Fig. 20 L: (K=%,m=2,x1:x2=x3:%), M:
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X3 = O,x1 = 1) 1 1

_ 1 _
2= 0 775)-
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