MACHINE LEARNING APPLICATIONS FOR IMMUNOPEPTIDOMICS ANALYSIS

Wout Bittremieux — HUPO 2023 Bioinformatics Hub

@wout@sigmoid.social

wout.bittremieux@uantwerpen.be

IMMUNOPEPTIDOMICS

CHALLENGES IN IMMUNOPEPTIDOMICS ANALYSIS

- Massive search space: all protein subsequences have to be considered
- Non-tryptic peptides
 - Often singly charged: poor ionization and fragmentation coverage
- Present at low abundances

PEPTIDE-SPECTRUM-MATCH RESCORING

Before Rescoring

Adams, C., et al. ChemRxiv (2023).

FEATURE TYPES FOR (IMMUNOPEPTIDE) RESCORING

- 😂 Spectral similarity features
 - Cosine similarity, spectral contrast angle, spectral entropy, ...
- 🤩 Retention time features: ΔRT
- 🥴 Ion mobility features
- A Binding affinity features

TOOLS FOR (IMMUNOPEPTIDE) RESCORING

Rescoring pipeline	RT	MS/MS	ccs	BA	Search engine
AlphaPeptDeep	integrated	integrated	integrated	N/A	AlphaPept, MaxQuant, DIA-NN
DeepRescore	AutoRT	pDeep2	N/A	N/A	Comet, MaxQuant, MS-GF+, X!Tandem
INFERYS	N/A	integrated	N/A	N/A	Sequest HT
inSPIRE	Prosit / pyteomics	Prosit / MS ² PIP	N/A	netMHCpan	Mascot, MaxQuant, PEAKS
MHCquant	N/A	N/A	N/A	MHCFlurry	Comet (Integrated)
MS ² Rescore	DeepLC	MS ² PIP	N/A	N/A	MaxQuant, MS-GF+, PEAKS, PeptideShaker, X!Tandem
MSBooster	DIA-NN	DIA-NN	DIA-NN	N/A	MSFragger, MSFragger-DIA
Oktoberfest	Prosit	Prosit	N/A	N/A	MaxQuant, MSFragger, custom

>2-FOLD PEPTIDE INCREASE AFTER RESCORING

Charlotte Adams

timsTOF – Prosit 2023 TOF

EMERGING SOLUTIONS: DE NOVO SEQUENCING

Casanovo is a transformer de novo peptide sequencing tool

- **Encoder**: Learns contextualized representations for peaks
- **Decoder**: Predicts the *de novo* sequence one amino acid at a time
- Beam search decoding finds the highest-scoring peptide

CASANOVO OUTPERFORMS OTHER METHODS

- With same training data, Casanovo outperforms traditional and deep learning-based de novo sequencing tools
- Large training data significantly improves performance

NON-ENZYMATIC FINE-TUNING AVOIDS TRYPTIC BIAS

 Casanovo is trained on bottom-up proteomics data, exhibiting a tryptic bias

Yilmaz, M. et al. biorXiv (2023).

NON-ENZYMATIC FINE-TUNING AVOIDS TRYPTIC BIAS

 Casanovo is trained on bottom-up proteomics data, exhibiting a tryptic bias

• Fine-tuning on non-enzymatic data mitigates the tryptic bias and improves performance

Yilmaz, M. et al. biorXiv (2023).

TO DE NOVO OR NOT TO DE NOVO?

Opportunities for de novo

- Discovery of novel peptides (neoantigens, viral peptides, ...)
- No need for reference sequence database
- Outperform sequence database searching (?)

Challenges of *de novo*

- No approach for FDR estimation
- Requires higher-quality MS/MS data
- Underperform sequence database searching (?)