ResearchGate

See discussions, stats, and author profiles for this publication at:

Towards State-Based RT Analysis of FSM-
SADFGs on MPSoCs with Shared Memory
Communication

Conference Paper - January 2017

DOI: 10.1145/3023973.3023979

CITATIONS READS
0 22

4 authors, including:

@ OFFIS e.V. 4%L OFFIS e.V.

15 PUBLICATIONS 22 CITATIONS 81 PUBLICATIONS 217 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project 3Ccar - Integrated Components for Complexity Control in affordable electrified cars
Project SAFEPOWER - Safe and secure mixed-criticality systems with low power requirements
All content following this page was uploaded by on 17 January 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/312471034_Towards_State-Based_RT_Analysis_of_FSM-SADFGs_on_MPSoCs_with_Shared_Memory_Communication?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/312471034_Towards_State-Based_RT_Analysis_of_FSM-SADFGs_on_MPSoCs_with_Shared_Memory_Communication?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/3Ccar-Integrated-Components-for-Complexity-Control-in-affordable-electrified-cars?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SAFEPOWER-Safe-and-secure-mixed-criticality-systems-with-low-power-requirements?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maher_Fakih?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maher_Fakih?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/OFFIS_eV?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maher_Fakih?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kim_Gruettner?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kim_Gruettner?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/OFFIS_eV?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kim_Gruettner?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maher_Fakih?enrichId=rgreq-092b7271bc7c364b29702fe1585ac1f2-XXX&enrichSource=Y292ZXJQYWdlOzMxMjQ3MTAzNDtBUzo0NTE0MjEzOTM5NTI3NjlAMTQ4NDYzODY1NTc1Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Towards State-Based RT Analysis of FSM-SADFGs on
MPSoCs with Shared Memory Communication

Ralf Stemmer
University of Oldenburg
ralf.stemmer@uol.de

Maher Fakih
OFFIS—Institute for
Information Technology

maher.fakih@offis.de

Kim Grattner
OFFIS—Institute for
Information Technology

kim.gruettner@offis.de

Wolfgang Nebel
University of Oldenburg

wolfgang.nebel@uol.de

ABSTRACT

Scenario-Aware Data-Flow Graphs (SADFGs) were intro-
duced to capture the behavior of embedded applications
achieving a good trade-off between expressiveness and an-
alyzability. On the one side, they support the timing anal-
ysis of real-time applications, especially those running on
MPSoCs, due to the clean separation of computation and
communication phases in their executing nodes. On the
other side, SADFGs allow the expression of a more dynamic
behaviors than Synchronous dataflow graphs by allowing dy-
namic token-rates of single nodes depending on pre-defined
typical scenarios. The fact which leads to more efficiency
and better throughput.

In this paper, we describe the extension of a previous
model-checking based real-time analysis approach to allow
the analysis of timing bounds for FSM-SADFGs mapped on
a shared memory multiprocessor architecture. We demon-
strate our approach on an MPEG decoder application being
viable to obtain the worst-case end-to-end latency of its im-
plementation under different scenarios on a 2-tiles MPSoC.

CCS Concepts

eComputer systems organization — System on a chip;
Embedded systems;

Keywords

Scenario-aware dataflow graphs; Real-time analysis; SDF;
FSM-SADF; MPSoCs; Model-checking

1. INTRODUCTION

In the last decade, video processing applications are mov-
ing from merely being utilized in the infotainment domain to
become a major topic in the embedded systems domain. For
example video processing applications are nowadays used in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

RAPIDO ’17, January 23 - 25, 2017, Stockholm, Sweden

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4840-9/17/01. .. $15.00

DOIL: http://dx.doi.org/10.1145/3023973.3023979

safety-critical automotive applications to detect pedestrians
crossing the street or to recognize traffic signs. To guarantee
the safety of such systems, real-time analysis methods must
be utilized to validate the fulfillment of their hard real-time
requirements. The behavior of such data-driven applica-
tions like video processing can be captured in the form of
Synchronous Dataflow Graphs (SDFGs) introduced by Lee
[10]. The advantage of SDFGs lies in the simplicity of the
model which makes them easy to analyze. Yet, due to their
simplicity and static behavior, capturing applications with
behaviors of high dynamism is not supported by SDFGs.

Scenario-Aware Data-Flow graphs (SADFGs), first intro-
duced in [15], achieve a good trade-off between expressive-
ness (allowing the expression of more dynamic behaviors
than SDFGs) and analyzability. They extend SDF by the
possibility of a dynamic data rate.

Finite-State-Machine Scenario-Aware Data-Flow (FSM-
SADF) [14] graphs are a simplification of the general SADF
graphs. Both extend SDFGs with scenarios. In an FSM-
SADF Model of Computation (MoC) a set of typical scenar-
ios is predefined through a finite state machine for a specific
SDF application. The SDF application reacts to every sce-
nario in a different manner leading to more efficiency and
better throughput.

Fig. 1 shows an example FSM-SADFG of an MPEG de-
coder as introduced by [15]. The vertices of the graph can
be either kernels (VLD, MC, IDCT and RC) or detectors (FD).
The solid edges are called data channels while the dashed
edges are called control channels. Every input port of the
kernels/detector in an FSM-SADF has a consumption rate
and likewise each output port has a production rate. In
each scenario, kernels can have different production and con-
sumption rates. Those ports with different varying rates are
denoted by variables while ports with a fix rate over all sce-
narios are denoted by the rate itself. While general SADFGs
enable multiple scenario changes during one iteration' by al-
lowing multiple scenario detectors, FSM-SADFGs support
only one detector per graph. This simplifies the analysis of
such models. Initial tokens are visualized by dots on the
edges. For example the data channel from the kernel RC to
the detector FD is initialized by three tokens, so that the
detector can be executed three times before the kernel RC

!An idteration is the minimum non-zero execution (i.e. at
least one kernel has been executed) such that the initial
state of the graph is obtained [5].

Control channel - —-— Kernel
. I B T

Data channel

Parameterized ~ -
rate o ——

Scenario-FSM —» ‘0@@
\@O

- Fixed rate

1
: Tile 2
1
:
1
<N
4

f)
Communication Communication
Driver Driver

1
\ Shared
Memory

PN
"4

Figure 1: FSM-SADF graph of a MPEG-4 decoder
inspired by [14] mapped on a MPSoC.

must be executed again to generate new tokens.

In this work, a mathematical (static) analysis is performed
on a formal but abstract representation of both the software
application and the hardware platform. This analysis takes
into consideration all possible inputs and combinations of
the running applications (i.e. abstracted as FSM-SADF ac-
tor activation, computation and communication) with all
different hardware states (i.e. abstracted as resource access
patterns) of the platform. We use timed automata (TA)
and the UPPAAL model-checker [3] to capture and verify
the behavior of the considered MPSoC system.

We claim the following contributions:

1. We enable a state-based real-time analysis (based on
[5]) of multiple FSM-SADF applications mapped to
an MPSoC platform with shared communication re-
sources. State-based RT analysis methods, deliver very
accurate results especially when handling heavy state-

depended properties (e.g. First-Come-First-Serve (FCFS)

arbitration protocol).

2. We will also present a technique which simplifies the
finite state machine representing the scenarios by lim-
iting the nondeterminism. This technique allows to
reduce the state space of the resulting model under
analysis.

2. RELATED WORK

Utilizing purely analytical approaches to obtain upper and
lower timing bound of dataflow applications execution time
is a wide spread research topic. Closest to our research are

[12, 9, 11, 2]. While such approaches are fast and able to
handle large systems, unfortunately they deliver pessimistic
results especially when handling state-based bus arbitration
protocols typically used in Multi-Processor Systems on a
Chip (MPSoCs). In previous work [5] it was shown how far
state-based RT analysis of SDFGs on MPSoCs can tighten
the results compared to an analytical approach [12].

In the following, we give an excerpt of the main research
related to our work mainly using state-based methods to an-
alyze the performance of dataflow applications on MPSoCs.

Some previous work [6, 8] used model-checking to optimize
buffer sizes in SDF applications. Yang et al. [16] introduce a
state-space exploration approach to verify the hard real-time
performance of applications modeled with SDFGs that are
mapped to a platform with shared resources. Nevertheless,
it does not consider a shared communication resource. A
more recent work [1] followed the same path of our work,
presenting a translation of single SDFGs to timed automata
templates in order to analyze their behavior using model-
checking. In contrast to our work, they focused on finding
a maximal throughput on a given number of processors.

In [17, 18] the authors (similar to the work in [5]) trans-
form a system model which includes an SDFG and a mul-
tiprocessor platform to a (priced) timed automata network
and utilize an extended model-checker (UPPAAL CORA) to
obtain optimal schedules combining optimization goals with
optimal throughput and energy consumption.

In this work, we extend a previous model-checking based
real-time analysis approach [5] for the analysis of timing
bounds for FSM-SADFGs mapped on a shared memory multi-
core architecture. In [5] only analysis of SDFGs was sup-
ported. We utilize timed automata (TA) as a common se-
mantic model to represent worst-case execution times (WCET)
of kernels, detectors and shared communication resource.
The analysis model furthermore supports analysis of ac-
cess protocols for buses, DMA, private (local) and shared
memories of the MPSoC. For a given FSM-SADFGs and
an MPSoC architecture different mappings and scheduling
strategies can be examined by analyzing the resulting net-
work of TA. Using the UPPA AL model-checker, safe timing
bounds of the FSM-SADFG implemented on a MPSoC can
be provided. The closest work to ours was published re-
cently in [13] where a translation from FSM-SADF graphs
to TA was presented. In difference to our approach, the au-
thors concentrated in their translation and analysis only on
the FSM-SADF MoC and did not consider MPSoC mapping
and their resulting resource sharing aspects (i.e. contention
on communication resources).

To the best of our knowledge, no other approach uses
model-checking for the timing validation of hard real-time
FSM-SADFGs on a MPSoC platform, considering the con-
tention on shared on-chip components.

3. SYSTEM MODEL

Fig. 2 shows the models used in this paper in the context
of the synthesis process (as defined by [7]) which will be
described in the following sections.

3.1 Model of Computation (MoC)

The formal syntax of a FSM-SADF graph (such as in
Fig. 1) are defined as follows (inspired by [14, 13]). Details
of the semantic are described in [14].

(Constraints \

\ MoA: MPSoC)
’ Timed Automata \

\Model checker: UPPAAI;)

Figure 2: Synthesis process showing utilized models

actor execution
A

I

uhvdu\«| read | compute | write |schedu[e| read

Figure 3: Execution phases of an FSM-SADF actor

DEFINITION 1. (FSM-SADF graph). An FSM-SADFG is
a tuple G = (S, A, P, D, S,T,.,®), where

1. S is the nonempty finite set of scenarios,

2. An actor is a tuple A = (P, F) consisting of a finite set
P CP, and F a label, representing the functionality of
the actor. If IC is the nonempty finite set of kernels and
d ¢ K denotes the unique detector then A = KU{d} is
the total set of actors. The different execution phases
of an SADF actor are shown in Fig. 3.

3. P is the set of ports of all actors. A Port P € P
is defined as a tuple P = (Dir, Rate) where Dir €
{I,0} defines whether P is an input or output port,
and Rate = [r1,r2,...75] is an array of rates for each
scenario s € S. The rate r; € No of a port specifies
the number of tokens consumed (Rate.) or produced
(Rate,) by the corresponding port when the corre-
sponding actor a € A fires. If P, is the set of all
input ports (consumer) where ¥p € P. : p.Dir = 1
and Pp the set of all output ports (producer) where
Vp € Pp : p.Dir = O, then P =P. U Py,

4. D C K x A is the set of edges (called channels in
context of FSM-SADF). If Detrr is the set of control
channels in the FSM-SADF and Dgyata s the set of
data channels then D is defined as D = Deiri U Daata-
A channel D € D is a triple D = (Pp, P.,i) where
P, € Py is the port of the producer and P. € P. is the
port of a consumer and i € Ny is the number of ini-
tial tokens on an channel. All ports of all actors are
connected to exactly one channel, and all channels are
connected to ports,

5. (S, T,¢,®) is the FSM of the detector, where S is the
nonempty set of states, T : S — 25 is the transition
function, + € S is the initial state, and & : S — S
associates each state with a scenario,

3.2 Model of Architecture (MoA)

Fig. 1 (bottom) depicts an example of our proposed ar-
chitecture. A tile is made up of a processing element (PE)

which has a configurable bus connection. In addition, every
PE has a private memory. A bus is used to connect the tiles
to shared memory. This enables actors mapped to different
tiles to communicate via buffers mapped to shared mem-
ory using non-preemptive arbitration protocols. Only ex-
plicit communication (message passing) between actors will
be visible on the interconnect and the shared memory.

DEFINITION 2. (Tile) A tile is a tuple T = (PE, Mp) with
processing element PE = (PEiype, f) where PEiype is the
type of the processor and f is its clock frequency, and My is
the size of memory.

DEFINITION 3. (Ezecution Platform) An ezecution plat-
form is defined as EP = (T,Z, Ms) consisting of

1. a finite set T of tiles T,

2. a finite set T of shared interconnects with I € T and

I = (B;, AP, CS) with B; being the bandwidth in bits/cycle,

AP is the arbitration protocol (FCFS, Fized-Priority,
Round-Robin, TDMA) and CS is the communication
style supported by the interconnect,

3. a finite set Ms of shared storage resources (such as
memories) Ms = (Bs,ms), each of them having spe-
cific size ms in bits and a bandwidth Bs in bits/cycle.

3.3 Synthesis

The system synthesis (see Fig. 2) includes the processes
of binding and scheduling the behavioral model onto the
defined architecture. Mapping the FSM-SADFG onto our
MoA is defined as follows:

DEFINITION 4. (Mapping) If A is the set of actors of all
FSM-SADFGs, D the set of all channels, T the set of all tiles
of the platform configuration, T the set of all interconnects,
Ms the set of all shared storage resources, Mp the set of
all private memories, then a mapping can be defined as a
tuple M = («, 3,0, ¢) with

1. the function a: A — T maps every actor to a unique
tile (multiple actors can be assigned to one tile).

2. the function B : D — (Mp U (Z x Ms)), where: Mp:
mapping to private memory and (Z X Ms): mapping
to shared storage resource that can be accessed using
an interconnect (i € I)

8. the function § : D — No which assigns for every chan-
nel (d € D) the mazimum number of tokens it can
hold (buffer-size). In the case of FSM-SADF, the size
of the buffer of a specific channel is equal to the highest
number of tokens on this channel among all scenarios.

4. the function ¢ : D — Ny which assigns for every chan-
nel (d € D) the token size attribute Ts (in bits).

The channel mapped to a private or to a shared storage
resource represents a consumer-producer FIFO buffer in an
actual implementation.

The following definitions allow us to express the schedul-
ing behavior of each SADFG of a scenario mapped to tiles
on the platform:

DEFINITION 5. (Self-timed (static-order) schedule) For an
FSM-SADFG with a repetition vector v for each scenario, a
static-order schedule SO is an ordered list of the actors (to
be executed on some tile), where every actor a is included
~(a) times.

A repetition vector of an FSM-SADFG is defined as the
vector that specifies the number of times every actor has to
be executed in a specific scenario such that the initial state
of the graph is obtained.

Because the number of executions of an actor depends on
the scenario, each scenario may have a different scheduling.
Self-timed means that FSM-SADFGs are executed in a static
cyclic order as soon as the input data is available.

DEFINITION 6. (Scheduling Assignment) Let SO be the
set of all SO schedules for all FSM-SADFGs as result of a
scenario. A scheduling assignment is a function S : T — so,
which assigns to every tile t € T a subset so C SO.

3.4 Model of Performance (MoP) Extraction

In order to verify that the performance of the FSM-SADFG
stays within the required bounds, we must keep track of all
possible timing delays in all scenarios of all mapped FSM-
SADFGs to the MPSoC platform. To achieve this, a MoP is
extracted from the synthesis process which includes all the
SW/HW components with their properties influencing the
timing in the considered system.

From the hardware abstraction point of view, we consider
a Time-accurate Bus-Functional-Model (BFM) [4] abstrac-
tion. In this model, the application layer issues read/write
transactions on the interconnect (see for example the FCFS-
arbitrated bus in Fig. 1) and upper/lower latency bounds are
calculated, abstracting details of the communication proto-
col. This model is appropriate in case no accurate (constant)
timings can be obtained when transferring data of specific
size through an interconnect with a specific communication
protocol.

After synthesis, the following system components are an-
notated with execution times and delays: communication
drivers, schedulers, actors, interconnects, private and shared
memory.

DEFINITION 7. (Delay annotations) If FSM — SADFG
is the set of FSM-SADFGs, A is the set of actors, H the set
of schedulers, D the set of edges, C the set of communication
drivers, I is the set of interconnects, Ms the set of shared
storage resources, and Mp the set of private memories, the
following delay functions are defined:

e Aa: AX S XT — Nso x Nsg which provides an ex-
ecution time interval [BCET,WCET)] for each actor
representing the cycles needed to execute the actor be-
havior (compute phase) for every scenario on the cor-
responding tile. We assume this delay can be obtained
through static timing analysis or an appropriate mea-
surement approach.

.AH:HXT%N>0XN>Q, Ac:CXT—)N>0X
Nso assigns (in analogy to Aa) to every scheduler and
communication driver a delay interval, which can be
estimated in the same way as A 4.

e Ap : DX (MpU(Z,Ms)) = Nxo x N assigns to
each communicating edge d € D mapped to a commu-
nication primitive a delay Ap which depends on:

Arbitrate
(FCFS, TDMA);
Transfer
(SB, Burst)

'
'
Scenario
update

Figure 4:
templates (blue) capturing the temporal behavior
of different components of the MoP.

Abstract representation of the TA-

1. the number and size of the tokens being trans-
ported,

2. the type of transaction (read or write),

8. Ar: latency of the communication interconnect to
transport current transaction and

4. Anr: latency of the target storage resource (Apg
or Amp)

e Ap : AX T — Nso x Nyg which provides a polling
delay that should be waited by an actor when blocking
on a shared storage resource.

Regardless of whether the channel is a control- or data
channel, the buffer size is fixed to the maximum size required
among all scenarios by an actor within an iteration.

4. CAPTURING MOPS AS TA

In this chapter we present the steps that are necessary to
get a representation of an FSM-SADF application mapped
and scheduled on a MPSoC platform. Furthermore we present
a technique to abstract the scenario state machine to get
a deterministic scenario sequence to avoid state explosion
when applying model checking techniques.

4.1 Actors and Channels on MPSoC

Figure 4 shows an abstract representation of the timed-
automata templates used to capture the model of perfor-
mance (MoP). It shows one actor of an FSM-SADFG run-
ning on one tile (compared to Fig. 1 where 5 actors are
mapped on 2 tiles) The actor’s channels are mapped to a
shared memory. An actor can be either a kernel or a de-
tector, as defined in section 3.1 and the shared memory is
connected via an interconnect to the tile.

For every actor, an actor-TA-template is instantiated cap-
turing its three phases of execution (see in Fig. 3). The first
phase is the Read phase in which all tokens are read from
all channels. Next the Computation phase in which the read
data gets processed. At the end of this phase, if the current
actor is of the type Detector, it triggers a scenario change
(see Fig. 4). And finally the Write phase is executed in
which new tokens are written to the output ports.

The scenario-state-machine TA is modeled as a part of the
detector and therefore implicitly mapped to the tile where

the detector is running. Additionally to the FSM-SADFG
actors, a scheduler and an interconnect-driver are modeled
as TA for each tile. The scheduler signals an actor to fire.
The interconnect-driver models the behavior of the commu-
nication to shared memory using arbitration protocols. In
addition, an interconnect-TA-template models the intercon-
nect temporal behavior, the number of transfered tokens, the
interconnect latency and the arbitration strategy used. The
memory latency is captured by the channels (FIFO buffers)
timed automata, where for every channel a dedicated TA is
instantiated. For more details about the implementation of
the different TA templates please refer to [5].

A scenario update can take place at every detector firing.
The detector signalizes the scenario update for dependent
actors through the control channels. During the Compute
phase (see Fig. 4) of the detector, the scenario-FSM can be
triggered to change to a successor scenario. The scenario is
valid for other actors after the Write phase of the detector
is completed where the control tokens are written to the
corresponding control channels. When a kernel actor fires it
should read the control token in the control channel first in
order to detect the scenario. This requires a prioritization
of the channels leading to read the control channel before all
other channels.

Since the change of scenarios takes place in the FSM which
is activated in the Compute phase of the detector, the sce-
nario change timing delay is considered to be a part of the
[BCET; WCET] interval of the Compute phase.

Kernels of the FSM-SADF that can work in different sce-
narios get notified of their scenario by control tokens pro-
duced by the detector.

Control tokens are propagated from the detector to other
kernels using the same shared resources that data tokens
use. Therefore control channels are modeled just like data
channels.

4.2 Simplification of the Scenario-FSM

To handle non-determinism in the scenario-FSM of an
FSM-SADF graph, multiple possible successor states of an
initial state must be abstracted to a single state. The method
to do this simplification is shown in Fig. 5.

First all scenarios need to be analysed separately to get
their worst case and best case execution times. These times
will be the WCET- and BCET-cost of the nodes of the graph
that shall be simplified. To get a worst case scenario se-
quence, the path between two scenarios with the highest
WCET-cost must be determined. The best case scenario
sequence is the path with the lowest BCET-cost. The new
state sequence is not necessarily the longest path of the origi-
nal graph for the worst case scenario sequence, or the short-
est path for the best case sequence since the WCET and
BCET of each node gets considered.

The simplification for our MPEG-example shown in Fig. 5
was done for the path from node I to node I of the next
iteration. With the highest cost for the path I, Pso, Pog and
the lowest for I, Py, Pso.

This abstraction is valid since we are interested in getting
the worst-case value of some timing constraint (such as end-
to-end latency). That is why a complex state machine can be
simplified into a deterministic sequence of states. The same
procedure can be done for the best-case scenario sequence.
This leads to new deterministic FSMs which describe the
token rates in a more coarse way.

Original FSM I vy P .

5

D
s
X
o

-

A [

«'/l\‘

80

Deterministic FSM | ;
‘ ‘POIBO ‘me/gg

Figure 5: Top: original scenario-FSM [13], Bottom:
Simplified FSM

1 PO/80 P30/99
® updateScenario? _ ™\ updateScenario? O
scenario=1 _/ scenario=2
updateScenario? J
scenario=0

Figure 6: The deterministic scenario FSM as TA

S. EVALUATION

Table 1: The token rates in each scenario.
Rate Nondet. Scenarios | Det. Scenarios (BC/WC)

I |R| P I | Poso | Psosoo

a 0 0 1 00/1 1/1

b 0 0 X 0|0/80 30 /99

c 99 | 1 X 99 | 1 /80 30 /99

d 1 0 1 110/1 1/1

e 9| 0 X 99 | 0/ 80 30 /99

For the evaluation, we analyze the worst-case end-to-end
latency of an MPEG decoder from [14] running on a 2-tiles
MPSoC with a shared memory accessible via a FCFS arbi-
trated bus (Fig. 1). The kernels MC and RC and the detector
FD are mapped to Tile 1, the kernels VLD and IDCT to Tile
2. For the interprocess communication of actors running on
the same tile, the private memory is used. Channels between
actors on different tiles are mapped to shared memory.

The port rates of the worst-case-scenario and the best-
case-scenario are shown in the right part of Tab. 1. For
example the port rate b (input of kernel MC) can be either 0
or 80 depending if worst-case or best-case analysis gets ap-
plied. Before the abstraction it had multiple rates ranging
between 0, 40, 60 and 80 (see Fig. 5). All of them would have
been considered for the analysis in a non-deterministic way.
So a previous analysis of each of the possible scenarios (see
Tab. 2) showed that the WCET and BCET for the rates of
scenario Py and Pgg are between the BCET of scenario Py
and the WCET of scenario Pgg. For this reason in Fig. 5 the
state Py,go is equivalent to the original state Pgo in the worst
case (see Tab. 1) since in this scenario, the kernels RC and
MC (see Fig. 1) are executed most frequently and the highest
number of data tokens needs to be transferred between ker-
nels. For the best-case scenario, FPy/s0 becomes equivalent
to the original state Py (Tab. 1) where most data channels
transfers holding zero rates and kernels are activated at most
once per iteration.

The separate analysis of each of the possible scenarios
(Tab. 2) confirmed this. This abstracted deterministic FSM
constructed in Fig. 5 was implemented as a TA as shown in

Table 2: Results of the separate end-to-end latency
analysis. To determine the latency of Py the Convex
Hull over-approximation optimisation was used.
Property | Po Pso Pao Pso Pso Pro Pso Poo
latency 1109 3002 3845 4680 5566 6443 7305 9618
RAM in MB |312 439 815 1149 1672 2397 3232 28
CPU time 1lh 2h 5h 8h 15h 26h 43h 0.5h
state explored|10e6 15e6 29e6 41e6 62e6 89e6 122e6 986

Fig. 6. Each time the detector FD is executed, the FSM gets
triggered by the updateScenario sync.-channel inside the
TA model to change the scenario (see scenario in Fig. 6).
For the implementation of the TA model, we used the
UPPAAL model checker [3]. In our experiments we used
the UPPAAL 64 Bit version 4.1.19 for Linux. The hardware
was a system with a 2.5 GHz AMD Opteron™™Processor
6282 SE and 512 GB of RAM. All experiments took about
two weeks, consumed less than 29 GB of RAM. In addition,
the largest number of states explored was about 656 million
states. The results of our state-based RT analysis are shown
in Tab. 3. The latency of the worst-case scenario sequence
using the worst-case rates for the scenarios Py s0 and Psg /99
(see in Tab. 1) ranges between 8928 and 8969 cycles. For
the best-case scenario sequence using the best-case rates (see
rates in Tab. 1) the latency ranged between 2770 and 6758.

Table 3: Worst-case and best-case latency and re-
sources needed for analysis
Scenario Latency States Mem. Time

WC scenario seq. WC lat. 8969 656e6 28GB 370h
WC scenario seq. BC lat. 8928 3726 16GB 223h
BC scenario seq. WC lat. 6758 656e6 28GB 414h
BC scenario seq. BC lat. 2770 372e6 16GB 219h

6. CONCLUSION

In this work, we presented a state-based real-time analy-
sis method which enables the real-time verification of FSM-
SADF applications mapped to MPSoCs with shared com-
munication resources. We showed that our method was able
to analyze the worst-case latency and the best-case-latency
of both the worst-case and the best-case scenario sequence
of a MPEG4 decoder captured in the FSM-SADF MoC and
run on an MPSoC of two tiles with shared memory. To avoid
an unmanageable state space of the already complex model,
we avoided nondeterminism by reducing the scenario state
machine to a deterministic worst-case or best-case version
of the original one.

To manage more complex applications executed on more
complex MPSoCs, we will consider other methods, for in-
stance the promising probabilistic RT approaches, in future
work.

Acknowledgement

This work has been partially supported by the SAFEPOWER project with fund-
ing from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 646531.

7. REFERENCES
[1] W. Ahmad, E. de Groote, P. K. Holzenspies, M. I. A. Stoelinga,
and J. C. van de Pol. Resource-constrained optimal scheduling

(2]

(3]

4]

5]

6]

(7]

8]

19l

(10]

(11]

(12]

(13]

(14]

(15]

16]

(17]

(18]

of synchronous dataflow graphs via timed automata. In
Proceedings of 14th IEEE International Conference on
Application of Concurrency to System Design (ACSD). IEEE,
2014.

J. Bastos, S. Stuijk, J. Voeten, R. Schiffelers, J. Jacobs, and

H. Corporaal. Modeling resource sharing using fsm-sadf. In
Formal Methods and Models for Codesign (MEMOCODE),
2015 ACM/IEEE International Conference on, pages 96-101,
Sept 2015.

J. Bengtsson and W. Yi. Timed Automata: Semantics,
Algorithms and Tools. In In Lecture Notes on Concurrency
and Petri Nets. LNCS 3098, pages 87—124. Springer-Verlag,
2004.

L. Cai and D. Gajski. Transaction Level Modeling: an
Overview. In First IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System
Synthesis, 2003, pages 19-24, Oct. 2003.

M. Fakih, K. Griittner, M. Frinzle, and A. Rettberg.
State-based real-time analysis of SDF applications on mpsocs
with shared communication resources. Journal of Systems
Architecture - Embedded Systems Design, 61(9):486-509, 2015.
M. Geilen, T. Basten, and S. Stuijk. Minimising buffer
requirements of synchronous dataflow graphs with model
checking. In Proceedings of the 42nd annual Design
Automation Conference, pages 819-824, 2005.

A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski,
and J. Teich. Electronic System-Level Synthesis Methodologies.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(10):1517 —1530, Oct. 2009.

Z. Gu, M. Yuan, N. Guan, M. Lv, X. He, Q. Deng, and G. Yu.
Static scheduling and software synthesis for dataflow graphs
with symbolic model-checking. pages 353—-364. IEEE, Dec. 2007.
J. P. H. M. Hausmans, M. H. Wiggers, S. J. Geuns, and

M. J. G. Bekooij. Dataflow analysis for multiprocessor systems
with non-starvation-free schedulers. In Proceedings of the 16th
International Workshop on Software and Compilers for
Embedded Systems, M-SCOPES ’13, pages 13-22, New York,
NY, USA, 2013. ACM.

E. Lee and D. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235-1245, 1987.

A. Lele, O. Moreira, J. Bastos, R. Almeida, P. Pedreiras, and
K. van Berkel. Analyzing preemptive fixed priority scheduling
of data flow graphs. In Embedded Systems for Real-time
Multimedia (ESTIMedia), 2014 IEEE 12th Symposium on,
pages 50-59. IEEE, 2014.

A. Shabbir, A. Kumar, S. Stuijk, B. Mesman, and H. Corporaal.
CA-MPSoC: An Automated Design Flow for Predictable
Multi-processor Architectures for Multiple Applications.
Journal of Systems Architecture, 56(7):265-277, 2010.

M. Skelin, E. R. Wognsen, M. C. Olesen, R. R. Hansen, and

K. G. Larsen. Model checking of finite-state machine-based
scenario-aware dataflow using timed automata. In Industrial
Embedded Systems (SIES), 2015 10th IEEE International
Symposium on, pages 1-10. IEEE, 2015.

S. Stuijk, A. H. Ghamarian, B. D. Theelen, M. C. W. Geilen,
and T. Basten. FSM-based SADF. Technical report, Eindhoven
University of Technology, Department of Electrical Engineering,
2008.

B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten,
S. V. Gheorghita, and S. Stuijk. A scenario-aware data flow
model for combined long-run average and worst-case
performance analysis. In Proceedings of the Fourth ACM and
IEEE International Conference on Formal Methods and
Models for Co-Design, 2006. MEMOCODE ’06. Proceedings.,
MEMOCODE 06, pages 185-194, Washington, DC, USA, 2006.
IEEE Computer Society.

Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal.
Automated bottleneck-driven design-space exploration of media
processing systems. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’10, pages
1041-1046, 3001 Leuven, Belgium, Belgium, 2010. European
Design and Automation Association.

X.-Y. Zhu, R. Yan, Y.-L. Gu, and G. Zhang. Static Optimal
Scheduling and Mapping of Synchronous Dataflow Graphs on a
Heterogeneous Multiprocessor Platform with Model Checking.
2014.

X.-Y. Zhu, R. Yan, Y.-L. Gu, J. Zhang, W. Zhang, and

G. Zhang. Static Optimal Scheduling for Synchronous Data
Flow Graphs with Model Checking. In FM 2015: Formal
Methods, pages 551-569. Springer, 2015.

https://www.researchgate.net/publication/312471034

