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Abstract

Let Nn = 2 · 3 · · · pn be the primorial of order n and Ψ the Dedekind Psi function.

Solé and Planat (2011) proved that the Riemann Hypothesis is true if and only

if Ψ(Nn)/(Nn log logNn) > eγ/ζ(2) for all n ≥ 3. We investigate the possibility

of a reformulation of this criterion, where the term logNn is replaced by the nth

prime pn. Actually, we prove that if Ψ(Nn)/(Nn log pn) > eγ/ζ(2) for all n ≥ 3,

then the Riemann Hypothesis is true. Let ϕ denote the Euler totient function. As

a consequence of the previous result, we obtain that if Nn/ϕ(Nn) > eγ log pn for all

n ≥ 3, then the Riemann Hypothesis is true.

1. Introduction

The Riemann Hypothesis, stated in 1859 [10], concerns the complex zeros of the

Riemann zeta function. This function is defined by the Dirichlet series

ζ(s) =

∞∑
n=1

1

ns
,

which converges for <(s) > 1 and has an analytic continuation to the complex

plane with one singularity, a simple pole with residue 1 at s = 1. The Riemann

Hypothesis, RH for short, states that all the nonreal zeros of the Riemann zeta

function ζ(s) lie on the line <(s) = 1/2. This problem is of great interest due to its

connection with the distribution of prime numbers.
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The connection of the Riemann Hypothesis with prime numbers was considered

by Gauss. Let π(x) count the number of primes p with 1 < p ≤ x. It is known that

the Riemann Hypothesis is equivalent to the assertion that

|π(x)− Li(x)| ≤ Cεx
1
2 +ε

for all x ≥ 2 and for all ε > 0, where

Li(x) =

∫ x

2

dt

log t

is a logarithmic integral and Cε is a positive constant (see for instance [5]). There

are many other equivalent elementary formulations.

G. Robin, in [11], proved the following criterion connected with the sum of divi-

sors function σ(n) =
∑
d|n d.

Theorem 1 (Robin Criterion). The Riemann Hypothesis is true if and only if

σ(n) < eγn log log n,

for all n ≥ 5041, where γ = limn→∞(
∑n
k=1 1/k − log n) ≈ 0.57721 . . . is the Euler-

Mascheroni constant.

The above inequality was checked for many infinite families of integers (see for

instance [1, 2, 8, 14]). Let Nn be the primorial number of index n, i.e., the product

of the first n primes

Nn =

n∏
k=1

pk.

Thus N1 = 2, N2 = 6, and so on. Consider the ratio

S(n) =
n

ϕ(n) log log n
,

where ϕ(n) is the Euler totient function. In [9], J.L. Nicolas proved the following

criterion.

Theorem 2 (Nicolas Criterion). The Riemann Hypothesis is true if and only if

S(Nn) > eγ

for all n ≥ 3.

In [13], P. Solé and M. Planat provide a new formulation where the Euler function

ϕ is replaced by the Dedekind Psi function Ψ. Let

R(n) =
Ψ(n)

n log log n
.

The following theorem holds.
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Theorem 3 (Solé and Planat Criterion). The Riemann Hypothesis is true if and

only if

R(Nn) >
eγ

ζ(2)

for all n ≥ 3.

Notice that one has

S(Nn) =
Nn

ϕ(Nn) log θ(pn)
and R(Nn) =

Ψ(Nn)

Nn log θ(pn)
,

where θ(x) =
∑
p≤x log p is Chebyshev’s first summatory function. The aim of

this paper is to study the functions obtained replacing θ(pn) by pn in the above

expressions. In particular, we investigate whether properties similar to those stated

in Theorems 2 and 3 still hold with these modified expressions.

More precisely, let

D(n) =
Ψ(Nn)

Nn log pn
=

∏n
i=1

(
1 +

1

pi

)
log pn

and

E(n) =
Nn

ϕ(Nn) log pn
=

1

log pn
∏n
i=1

(
1− 1

pi

) .
We prove the following result.

Theorem 4. If

D(n) >
eγ

ζ(2)
(1)

for all n ≥ 3, then the Riemann Hypothesis is true.

Moreover, as a consequence of the previous theorem, we obtain the following

theorem.

Theorem 5. If

E(n) > eγ (2)

for all n ≥ 3, then the Riemann Hypothesis is true.

Thus, each of the two Inequalities (1) and (2) is a sufficient condition for the truth

of the Riemann Hypothesis. One may ask whether, in the case that the Riemann

Hypothesis is true, Inequalities (1) and (2) are verified. On this question, we give

partial answers. Indeed, we prove the following result.
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Proposition 1. If the Riemann Hypothesis is true and θ(pn) ≥ pn, then

D(n) >
eγ

ζ(2)
and E(n) > eγ .

The main tool for establishing these results is a study of the monotonicity of the

sequences R(Nn) and S(Nn). Indeed, we show that when pn < θ(pn−1) one has

R(Nn) > R(Nn−1) and S(Nn) > S(Nn−1), while when pn > θ(pn) one has R(Nn) <

R(Nn−1) and S(Nn) < S(Nn−1). The paper is organized as follows. Section 2

contains the notions necessary for our work and some preliminary lemmata. In

Section 3 we study the behavior of the functions R and S. In Section 4 we prove

the main results of the paper. Some further results are presented is Section 5. In

particular, we prove that Inequalities (1) and (2) considered in Theorems 4 and 5

are satisfied for infinitely many integers n.

2. Notation and Preliminary Results

In this section we recall some definitions and results useful for our work. More-

over, we establish a result (see Lemma 2) related to the Solé and Planat Criterion,

concerning the case that the Riemann Hypothesis is not true.

The Dedekind function Ψ is an arithmetic multiplicative function defined for

every integer n > 0 by

Ψ(n) = n
∏
p|n

(
1 +

1

p

)
.

The Euler totient function ϕ is an arithmetic multiplicative function defined for

every integer n > 0 by

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

In these equations, as usual, the notation
∏
p|n means that the product is extended

to all prime divisors p of n.

We recall that θ(x) =
∑
p≤x log p is Chebyshev’s first summatory function [6].

In particular, for all integer n, θ(pn) =
∑n
k=1 log pk = logNn.

Consider the functions R and S introduced in the previous section. One easily

verifies that

R(Nn) =

∏n
k=1

(
1 +

1

pk

)
log θ(pn)

and S(Nn) =
1

log θ(pn)
∏n
k=1

(
1− 1

pk

) . (3)

The following technical lemmata will be useful to prove our main results.
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Lemma 1. For all x ≥ 3, one has∑
p>x

log

(
1− 1

p2

)
≥ − 2

x
.

Proof. See [2, Lemma 6.4], with t = 2.

Consider the function

f(x) = eγ log θ(x)
∏
p≤x

(
1− 1

p

)
. (4)

The following useful result was established in the proof of [9, Proposition 3].

Lemma 2. Suppose that RH is false and denote by Θ the upper bound of the real

parts of the zeros of the Riemann zeta function. For all b ∈ [1−Θ, 1/2] there exist

positive constants C, D+ and D− such that

1. there are arbitrarily large x such that log f(x) > C/xb and θ(x) − x <

−D−x(Θ+1−b)/2,

2. there are arbitrarily large x such that log f(x) > C/xb, and θ(x) − x >

D+x
(Θ+1−b)/2.

Now, we study the behavior of R(Nn) in the case that the Riemann Hypothesis

is false.

Lemma 3. If RH is false, there are infinitely many n such that

R(Nn−1) <
eγ

ζ(2)
and θ(pn) < pn, (5)

and infinitely many n such that

R(Nn) <
eγ

ζ(2)
and θ(pn) > pn. (6)

Proof. Let f be the function defined by (4) and set

g(x) =
eγ

ζ(2)
log θ(x)

∏
p≤x

(
1 +

1

p

)−1

. (7)

Taking into account that ζ(2) =
∏
p 1/(1− p−2), one easily finds that

g(x)

f(x)
=

1

ζ(2)
∏
p≤x

(
1− 1

p2

) =
∏
p>x

(
1− 1

p2

)
.
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Thus, in view of Lemma 1,

log g(x)− log f(x) =
∑
p>x

log

(
1− 1

p2

)
≥ − 2

x
. (8)

Now we suppose that RH is false and show that there are infinitely many n

satisfying (5).

From Lemma 2, one easily derives that there are arbitrarily large x such that

log f(x) > 2/x and θ(x)− x < − log(2x). (9)

In view of (8), for such x’s one has log g(x) > 0, that is, g(x) > 1. Denote by

pn the least prime larger than x. Then, the right-hand side of (7) is equal to

eγ/(ζ(2)R(Nn−1)), so that eγ/(ζ(2)R(Nn−1)) > 1, that is,

R(Nn−1) < eγ/ζ(2).

Moreover, in view of the so-called Bertrand’s postulate (see, e.g., [6]), one has

bxc < pn < 2bxc and, therefore, pn−1 ≤ x < pn < 2x. Consequently, in view of (9),

θ(pn) = θ(pn−1) + log(pn) < θ(x) + log(2x) < x.

This proves that there are infinitely many n satisfying (5).

Now we show that, assuming RH false, there are infinitely many n satisfying (6).

From Lemma 2, one easily derives that there are arbitrarily large x such that

log f(x) > 2/x and θ(x)− x > 0.

Denote by pn the least prime not larger than x. By an argument similar to that

used for the condition (5), one obtains that R(Nn) < eγ/ζ(2). Moreover, θ(pn) =

θ(x) > x ≥ pn. This completes the proof.

3. Monotonic Properties of the Functions R and S

In [13] and [9], respectively, it is proved that

lim
n→+∞

R(Nn) =
eγ

ζ(2)
.

and

lim
n→+∞

S(Nn) = eγ .

Unfortunately, the functions R and S are not ultimately decreasing. Actually, also

the sequences R(Nn) and S(Nn) are not ultimately monotonic [3].

Below we prove some conditions ensuring that the sequences R(Nn) and S(Nn)

increase or decrease at some point.
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Proposition 2. For all n ≥ 2 such that θ(pn) < pn, one has R(Nn) < R(Nn−1).

Proof. By (3), one has

R(Nn)

R(Nn−1)
=

(
1 +

1

pn

)
log θ(pn−1)

log θ(pn)
.

Thus, we are reduced to proving that the right-hand side of the equation above is

smaller than 1, or, equivalently,

log θ(pn−1)

pn
< log θ(pn)− log θ(pn−1). (10)

Recalling that for b > a > 0, one has log b− log a > (b− a)/b, one obtains

log θ(pn)− log θ(pn−1) >
θ(pn)− θ(pn−1)

θ(pn)
=

log pn
θ(pn)

.

Moreover, since in our hypotheses pn > θ(pn) > θ(pn−1), one has

log pn
θ(pn)

>
log θ(pn−1)

pn
.

Equation (10) is a straightforward consequence of the last two inequalities. This

concludes the proof.

Proposition 3. For all n ≥ 2 such that θ(pn) ≥ pn + log pn, one has R(Nn) >

R(Nn−1).

Proof. Proceeding similarly to the proof of the previous proposition one is reduced

to verifying that
log θ(pn−1)

pn
> log θ(pn)− log θ(pn−1).

Recalling that for b > a > 0, one has log b − log a < (b − a)/a and that in our

hypotheses pn ≤ θ(pn)− log pn = θ(pn−1), one obtains

log θ(pn)− log θ(pn−1) <
θ(pn)− θ(pn−1)

θ(pn−1)
=

log pn
θ(pn−1)

≤ log θ(pn−1)

pn
.

This concludes the proof.

Proposition 4. For all n ≥ 2 such that θ(pn) < pn, one has S(Nn) < S(Nn−1).

Proof. By (3), one has

S(Nn−1)

S(Nn)
=

(
1− 1

pn

)
log θ(pn)

log θ(pn−1)
.
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Thus, we are reduced to proving that the right-hand side of the equation above is

larger than 1, or, equivalently,

log θ(pn)

pn
< log θ(pn)− log θ(pn−1).

This result can be easily achieved proceeding as in the proof of Proposition 2.

Proposition 5. For all n ≥ 2 such that θ(pn) ≥ pn + log pn, one has S(Nn) >

S(Nn−1).

Proof. Proceeding similarly to the proof of the previous proposition one is reduced

to verifying that
log θ(pn)

pn
> log θ(pn)− log θ(pn−1)

and, again, this result can be achieved proceeding as in the proof of Proposition 3.

We note that these bounds are significant in view of the following theorem

(see [7, Theorem 34]). We recall, preliminarily, that for two real-valued func-

tions f and g of a real variable x, with g(x) > 0, we write f(x) = Ω±(g(x)), if

lim supx→∞ f(x)/g(x) > 0 and lim infx→∞ f(x)/g(x) < 0.

Theorem 6 (Littlewood Oscillation Theorem). One has

θ(pn)− pn = Ω±(
√
pn log log log pn).

Thus, there are infinitely many integers n such that θ(pn) < pn and infinitely

many integers n such that θ(pn) ≥ pn + log pn.

4. Proofs of the Main Results

In this section we prove our main results.

Proof of Theorem 4. By contradiction, suppose that D(n) > eγ/ζ(2) for all n ≥ 3

and that the Riemann Hypothesis is false. Let n ≥ 3 be an integer such that

θ(pn) < pn and R(Nn−1) < eγ/ζ(2). Such an integer exists by Lemma 3. From

the former inequality and the definitions of the functions R and D, one obtains

that R(Nn) > D(n). Moreover, in view of Proposition 2, R(Nn−1) > R(Nn). One

derives R(Nn−1) > D(n) > eγ/ζ(2), contradicting our assumption.

Proof of Theorem 5. As one easily checks,

D(n)

E(n)
= Ψ(Nn)ϕ(Nn) =

n∏
i=1

(
1− 1

p2
i

)
.
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Taking into account that 1/ζ(2) =
∏∞
i=1

(
1− 1/p2

i

)
<
∏n
i=1

(
1− 1/p2

i

)
, one derives

D(n) >
E(n)

ζ(2)
.

Thus, if E(n) > eγ for all n ≥ 3, one has also D(n) > eγ/ζ(2) and the Riemann

Hypothesis holds true by Theorem 4.

Proof of Proposition 1. In the hypothesis that θ(pn) ≥ pn one has D(n) ≥ R(Nn)

and E(n) ≥ S(Nn). Thus, the statement is a straightforward consequence of The-

orems 3 and 2.

5. Further Remarks

In this section, we will prove that Inequalities (1) and (2) considered in Theorems 4

and 5 are satisfied for infinitely many integers n.

Passing to logarithms on both sides, Inequality (1) becomes∑
p≤pn

log

(
1 +

1

p

)
> γ − log(ζ(2)) + log log pn.

In [4], the following theorem has been established.

Theorem 7. For every positive number K, there are arbitrarily large x such that

−
∑
p≤x

log

(
1− 1

p

)
− log log x− γ > K/(

√
x log x) (11)

and arbitrarily large x such that

−
∑
p≤x

log

(
1− 1

p

)
− log log x− γ < −K/(

√
x log x).

When x satisfies (11), exponentiating both sides, one obtains∏
p≤x

(
1− 1

p

)
eγ log x < e−K/(

√
x log x) < 1.

One easily derives that if pm is the largest prime smaller than or equal to x, then

m∏
i=1

(
1− 1

pi

)
<

1

eγ log pm
.
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By Theorem 7, the equation above is satisfied by arbitrarily large m. Taking into

account that 1/ζ(2) <
∏
p≤x(1− 1/p2), for all such m’s, one has

m∏
i=1

(
1 +

1

pi

)
=

∏m
i=1

(
1− 1

p2
i

)
∏m
i=1

(
1− 1

pi

) >
eγ log pm
ζ(2)

.

One immediately derives the following corollary.

Corollary 1. There are infinitely many integers n such that

D(n) >
eγ

ζ(2)

Finally, it is easy to verify that a similar result also holds for Inequality (2).

Thus, the following statement also holds true.

Corollary 2. There are infinitely many integers n such that

E(n) > eγ .

In conclusion, the results obtained so far and, in particular, the monotonic prop-

erties of the functions R(Nn) and S(Nn) seen in Section 3, lead the authors to hope

that some refinement of the techniques introduced in this paper may lead to proving

the equivalence of the Riemann Hypothesis with Inequalities (1) and (2).
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