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Abstract
Let k be a field of characteristic 0. Let k((1/z)) be the function field with respect
to the degree valuation | - |~. In this paper, we show that the values of some

power series over k(z) evaluated at certain Liouville numbers in k((1/z)) are either
rational over k[z] or transcendental. Some examples are also included.

1. Introduction

A real number « is considered a Liouville number if, for any positive integer n,
there exist integers p, and g, > 1 satisfying the inequality

1
< —.

an

_Pn

O<‘a
dn

The question raised by Mahler in 1984 [7] to explore a relationship between
Liouville numbers and certain analytic functions. Specifically, he sought for an
analytic function f(T') with property that if « is a Liouville number, then f(«) is also
a Liouville number. In fact, his inquiry was inspired by the earlier work of Maillet
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[8], who demonstrated that if « is a Liouville number and f(7') is a non-constant
rational function with rational coefficients, then f(«) is also a Liouville number. The
arithmetic properties of Liouville numbers were also explored in Maillet’s work [8].

An extensive body of scholarly research has been dedicated to the exploration of
this particular inquiry. Some research efforts have focused on constructing exten-
sive sets of Liouville numbers that are mapped onto themselves by transcendental
entire functions; see [9-11]. Others have concentrated on power series with rational
coefficients, delving into the transcendence of their values; see [1,4,5]. For instance,
Caligkan [1] demonstrated in 2018 that certain power series over Q take values of
either rational or transcendental numbers for arguments from the set of Liouville
numbers, under specific conditions. The analogous results in the p-adic number
field were also established in the same work. In 2019, Lelis and Marques [6] intro-
duced weak p-adic numbers, establishing them as p-adic transcendental numbers
and demonstrating their inclusion of p-adic Liouville numbers. They also examined
the analogous result to Maillet’s work in this context.

In 2010, Chaichana and Laohakosol [3] discussed arithmetic properties of Liou-
ville numbers in the function field, particularly in the non-archimedean case. They
also introduced a class of Liouville numbers referred to as the Liouville series and
established criteria for their algebraic independence. In another study, they ex-
tended Erdos’s result that every real number can be represented as a sum and a
product of two real Liouville numbers to the non-archimedean case. Moreover, they
demonstrated that any bilinear rational transformation over k(z) maps Liouville
numbers to Liouville numbers; see [2].

In this work, inspired by the study of Caligkan [1], we establish an analogous
result in the function field case.

2. Main Results

Throughout, let k be the field of characteristic 0. Let koo = k((1/2)) be a field of all
Laurent series over k equipped with the degree valuation |- | defined by |a|eo = €™
if

a:cnx”+---+clm+co+cx;1+%+~' € koo \{0},

where n € Z, ¢; € k for all i <n and ¢, # 0, and |0|s = 0.
We first introduce the Liouville numbers in k.

Definition 1 ([2]). An element « € ky is called a koo — Liowville number if for any
n € N there exist p,, ¢, € k[z]\{0} with |g,|ec > 1 such that

Pn 1
o Pn

qn

0<

n
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The following theorem is the main tool for proving the transcendence of elements
in k.

Theorem 1 (Roth’s theorem [12]). Let k be a field of characteristic 0. If a €
koo \{0} is an algebraic element over k(z) of degree > 2, then for each € > 0, the
inequality

—_ < [
Qle IQIX*
is satisfied by only a finite number of pairs P,Q # 0 in k[z] with ged(P, Q) = 1.

‘ P 1

Our main result states that:

Theorem 2. Let f(T) be the power series such that
F(T) =) eaT” (1)
n=0
where ¢, = byp/an with by, a, € k[z]\{0} and |an|ec > 1 for sufficiently large n
satisfying the following two conditions:

o := liminf 7deg(an+1)

n—oo deg(an) > 1 (2)

and
. deg(by,)
0 := limsu , 3
nvse” deg(ay) ®)
further let A,, = lemlag, a1, ..., a,] and derive u := lim sup ?iigg((ﬁ:)) .

n—oo
Let o be a koo — Liouville number for which the following properties hold: there

exist sequences (pn), (qn) C k[z]\{0} with |gn|ec > 1 and a sequence of real numbers
(w(n)) with lim w(n) = oo such that
n—oo

Dn 1

RS g ) “
and
lan |2 < lgnl% < lanl|2 (5)

hold for sufficiently large n, where d1,02 € R such that u < §; < §s.
If 0(1 — 0) > 462, then f(«a) is either in k(x) or a ke —transcendental number.

We separate the proof of Theorem 2 into two parts.

Part I: We show that f(T) = > ¢, 7™ in (1) converges everywhere on ks, by

n=0

showing that lim sup |c,|'/™ = 0.
n—oo
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Proof of Part I. From (3), we have § < 1. Then there exists a sufficiently small
€0 > 0 such that 6 +e9 < 1 and thus 1 — 0 — ey > 0. Therefore, for sufficiently large

n, we have
deg(bn)

deg(ay)
and we then have, for sufficiently large n,

<0+eg

[ZAES \an\iﬁ8°~ (6)

Similarly, from (2), we have ¢ > 1. Then there is a sufficiently small €; > 0 such
that o1 := 0 — &7 > 1. Since 07 < o, for sufficiently large n, we have

deg(an+1)
deg(an)

Since |an|oo > 1 for sufficiently large n, there exists Ny € N such that, for all
n > Ny, (6) holds and

g1

deg(anJrl) > 01 deg(an) > dEg(an) > 1 (7)

It is clear that the exponential growth (7) implies

lim deg(an) _ 0. (8)
n—oo n
Hence, by (6), we have
1/n
1/n % 1
lenl o = an 7|an|&_‘9—50)/" -0 (n— o0)
as desired. O

Part II: Now, we have f(«) € koo. We next show that f(«a) is either in k(z) or a
transcendental element by using Roth’s theorem.
Proof of Part II. For each n € N, set

fa(T) =", T".
v=0
Note that « is a ko,—Liouville number and there exist sequences (p,),(gn) C

k[z]\{0} with |gn]oc > 1 such that the inequality (4) holds. Then we have, for
each n € N,

() oyt () An [Bgn + Bplgpt 4o bapp
"\a) " & - Aty
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where A, = lcm[ao,al, ...yay]. Tt is clear that h, and A,q? are in k[z] and thus
I (2—”) = A 2 € k(z). Note that, by assumption (5),

0 < |an|? <|gn|™ < lan|%2.

Since lim sup izgg((f”)) = u < §; < §y, we then have, for sufficiently large n > Ny,
n—oo
that ‘izgg((a < 03, and so

0 < |An|oo < |an|®.

Now we have
0 < |An|oolgnloo < |an|262

or equivalently,
1 1

lan|oo |Anqn 1/20:

for sufﬁciently n > Ny. Moreover,

g0 | =l (%)
gmax{ﬂ f(@)e

By (6) and for all n > Ny, we obtain

ful@) ~ fu (2)]00} (10)
S

v v
< max { ~|oz|oo}
v>n+1 a
v=n+1 - Voo

< 1 ol
Vgl;?fl |au|<1x>76760 Aloo (-

By (8), we choose a sufficiently small g2 > 0 such that 1 — 0 — ey — e2 > 0 and

nqn

(@) —

lim,, —s 0 %g(a") = 00. Then, for sufficiently large n > Ny, we obtain
eodeg(an+1)
1 o+l < ———mMW——=
oxflol. +1) < 208
and so
(oo + 1) < a2 (11)

Now we have, for sufficiently large n > Ny,

1 1
|f(a) - fn( )loo < uril’r?-‘,-l { |G,V|(1x?9_€0_62 } |an+1|1 0—co—e2

1

o—e1)(1—0—eg—e2)

1
(0—e)(1—b-cq—c3)

| Anqit]oo 202

|an|

<
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by (7) and (9).
Next, consider the term |f, () — fn(22)|c in (10). We have, for each n € N,

qn
p
fn(a) - fn <n> ‘
n /) |so
n 1 v—1
3o (ot (22) o (22) )
—1 qn qn -
1 v—1
() s (7)
dn dn -

For all sufficiently large n > Ny, we have

o0

< ‘ap”‘ max {|c, |} max {
Qqn Oolgl/gn 1<v<n

s el = {2 |2 ool |
< max {M, |bny+1loos - -5 |bnloo }
< max{M,\aNO+1|2j5°,...7\an|2j5°} by (6)
< max{M,|any+1loos---s|an|oo} since §+eg <1

<max{M,|an|w} since deg(a,) is increasing,

by
ay

bNO
aANg

where M = max{
all n > Nl,

}. Then there exists Ny > Ny such that, for
o0

e
1rgnfgn{|cu|oo} < |an]oo-

Moreover, for all n > Ny, since

Pn

an

Pn
o — —

an

< max{|a|oo,
o0

} < max{|®|oo, 1} < |00 + 1,

o0

D v—1
(%)
an

and |o]oo < |0|oo + 1, we have

1
aufl +al/72 <pn> +
an

< max{‘oz”_1|oo, «

= (lafec + 1)

Pn

for all v € {1,2,...,n}. Now we have, for all n > Ny,
o— 2
n

_ Pn
1

< W'an@o (by (11)).

" anlo

|an oo (ot oo + 1)n_1

o0
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Since u < 41 < d9, there exists e3 > 0 such that 0 < u+e3 < 1. Then §; —u—e3z > 0

and so we obtain 5_% > 0. Since lim w(n) = oo, there exists No € N with
1-u—es n— o0

N5 > Nj such that

w(n)

2

2 < ((51 —-Uu— 83)
for all n > N5. Now we have, for all n > Ns,
w(n)

n 1 —U—Es 2
O o o )

n
gm0

w(n)

- 1 ( |a”ﬂ|§x13 ) 2
‘Qn|oonw(n) |an|oou+53

w(n)

< 1 ( qn |5 )2
> ‘qn|oonw(n) |an|oou+53

w(n)
1 1
- nw(n) u+t-es

lgn]oo 2 |an]oo

deg(Ay)

Since limsup Jog(an) — W < ute3, we then have, for sufficiently large n > N,

n—oo

< u+ €3 and so

deg(Ay)
deg(an)

| Anloo < |aﬂ|7;o+€3'
Now we can conclude that

w(n)

(
Pn 1 1 2 1
o (@) () T
n 00 ‘(J7L|oo 2 n|oo

|Anqg|oo 2

for sufficiently large n > N,.
Finally, from (12) and (13), the value of (10) becomes

: o (2)])

Anq?
1 1
< max{ (0—e1)(1—6—eg—eq) ? w(n) } (14)
| Anqlt]so 252 | Anqit]so 2

for sufficiently large n > Ns. Since lim w(n) = oo, there is N3 > Ny such that

n—oo

‘f(a) -

< max{f(a) — fa(@)]

o0

w(n) S (0 —e1)(1 =0 —¢eg—e9)

2 20, (n = No).
Therefore, (14) becomes
hn, 1
‘f(a) - A,q" (c—e(1-6_=29—<2) (15)

n I
< |Anq? s 732
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for all n > N3. Since ”(21729)

to be sufficiently small and

> 2 by the assumption and £g, €1 and €5 can be chosen

(0'—61)(1 —9—60 —82)

> 2,
264
there exists a positive number € such that
_ 1—f@—ep—
(0 — el =€) Loy (16)

289
Hence, from (15), (16) and since |A, g | > 1 for all n € N, we conclude that

hy,
Apqlt

< 1
oo ‘Anqﬁ|002+8

'f(a) -

for sufficiently large n (for all n > N3), where ¢ is a suitable positive number
dependent on g, 1 and es.

Therefore
I

Anqlt

1
<
00 |Anq;f|002JrE

Hence, it can be concluded that

— 0 (n— 00).

‘f(a) -

. I,
lim

= /().

Notice that if { Ah’&n :n €N } is a finite set, then there exists a constant subse-

quence of ( A}:CLI”)7 namely (g) Therefore,
P
fla) = tim =P

and we conclude that f(«a) = g € k(x).

Now, we may assume that there are infinitely many distinct
ged(hn, Apgly) =1 and

A}:‘;Z € k(z) with
1

hy
<
oo ‘Anq:”oo2+8

Apqlt

'f(a) - (7)

for all n > N3. By Roth’s theorem, f(«) is either a rational number over k(x) or a
ko, —transcendental number. O

We can additionally show that in the latter case of the previous proof we can
exclude rationality with details following: suppose f(a) = g € k(z). Choose N =
max{ N3, deg(Q)}. If |[PA,q" — hnQlo = 0 for all n > N, then PA, ¢ — h,Q =0
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for all n > N. That is, Ah"én = g for all n > N. Hence, (Ah’:]n) is an eventually

constant, a contradiction. Then there is m > N such that |PA@qu/ — hmQls # 0.
Therefore

hon PApqy — himn@| 1
o) - g Il 5
Apgm 0o |QAQO‘oo |QAQO|OO
Now, we have
1 o, 1
— < |fla)—

by (17). Therefore
€ < Amglod < [Qloe < e™E Y

which is absurd as we assume m > N = max{deg(Q), N3} > deg(Q). Hence, f(«)
is a koo —transcendental number.
Some interesting examples are constructed as follows.

Example 1. Define an increasing sequence (p,,) of positive integers by
pr=1, p2=2 and pPup1 >pp-n* (n>2).
Let f(T) = >, (Z—) T™ where b, = x + 1 (n > 0) and
n:0 n
_ 2P lsl ifp > 1,
M= ifn=0

be the power series over k(z). It is easy to see that, for all n € NU {0}, b,, and a,
are nonzero polynomials over k and a,, divides a,,1. Moreover,

|brloo =€>1 and |ap|eo = ePnl3) S q (n>2).

)oo>1

Next, we have

o = liminf

dolonsy) (o0, 122

n—00 eg(an) T n—oo \_ J
and deslh )
6 = lim sup cg(bn) = lim ———~=0<1.
n—oo eg(an) n—00 Pp, * LfJ
We have A, =lemlag, ay, ..., a,] = ap and |4, |00 = |an|oo (n > 2). We then obtain

u = limsup% =1.

n—oo deg(an)
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o0

Let a =

D

o0
Observe that the series > L converges in ko because
—1 xPn
n=
n

1 J— — ~'Vl 1 — ~n - =
T}eréom = 0. For each n € N| set p, = 2P k§1 —» Gn = 2P and w(n) = 2.
Then p,, g, € k[z]\{0} with |gn|ec = €P» > 1 and lim w(n) = co. Moreover,

n—oo

-2 &

1 1 1 1
<

‘ qn - a;pn+1|oo - eﬁn-f—l - eZNJn-nQ

|n w(n)”

o0 ‘ n

It follows that
1 1

Pn
a—— (n>2)
‘ nloo  |qnloo o) = g |5,
For n = 1, by direct computation, we have
(o)
1 1 1 1

i O I

RN k= ‘xp2|oo e € ‘q1|oo

Therefore, « is ko-Liouville number by Definition 1.
Choose real numbers d; = 2 and d5 = 3. Then

|an|gé <lgn o < |an|g§>

for all n € N.

Now, we have uw = 1 and o(1 — 0) = 0o > 402. By Theorem 2, we can conclude
that f(«) is either rational or transcendental. But in fact, f(«) is a transcendental
element in k., because of the following: notice that

; (Z:) 26

(1+z) +Z (;ﬁﬂ) (i xlﬁk>y € k(z)

k=1

n

for all n € N. Taking the z-adic valuation of both sides, it yields
1
>

v
n | — = max {1,
I )|, 1svsn Nl

= max {1,65”'L%J+ﬁ""/}
1<v<n

1+

— eﬁn‘ L%J"Fﬁn"

for all n € N which is increasing. This guarantees that f, ( ") (n > 1) are all
distinct. By the proof of Theorem 2, f(«) is transcendental as required.
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Example 2. If the above defining sequences are chosen to be p,1 > b, - n? and
w(n) = n for all n € N, it can be shown by a similar proof as in Example 1 that
f(«) is transcendental.
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