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IMMUNOPEPTIDOMICS

tryptic peptides
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IMMUNOPEPTIDOMICS

immunopeptidesHLA molecules
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● Massive search space: all 

protein subsequences have to 

be considered

● Increased probability of 

identifying high-scoring decoys

● Reduced identification rate at 

a fixed FDR

non-tryptic

semi-tryptic

tryptic 

SEARCH SPACE IN IMMUNOPEPTIDOMICS
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SOLUTION 1: PREDICTING
FRAGMENT ION INTENSITIES
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INTENSITY INFORMATION AVOIDS FALSE POSITIVES
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• timsTOF stays stable at low 

abundances

• A few immunopeptides can elicit an 

immune response

VALUE OF TIMSTOF FOR IMMUNOPEPTIDOMICS

Orsburn, B. Journal of Proteome Research (2023).
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● Benign and malignant samples

● Measured on both Orbitrap 

and timsTOF

1.5-FOLD PEPTIDE INCREASE ON TIMSTOF

Gravel, N.H., et al. Research Square (2023).

hematopoieticsolid tissue
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Orbitrap

timsTOF

spectral angle = 0.469

NEED FOR A TIMSTOF INTENSITY PREDICTION MODEL

17



ORIGIN OF THE TRAINING DATA

• Measured >300,000 non-tryptic 

synthesized peptides

• >120,000 previously acquired 

tryptic synthesized peptides

Meier, F., et al. Nature Communications (2021).
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• Prosit HCD 2020 was trained on 

~30 million spectra (9 million 

non-tryptic spectra)

• ~280,000 timsTOF spectra

• Improved spectral angle 

between predicted and 

experimental spectra

FINE-TUNING THE PROSIT HCD MODEL

Wilhelm, M., et al. Nature Communications (2021).
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OUR RESCORING PIPELINE

MaxQuant

Percolator
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2.4-FOLD PEPTIDE INCREASE AFTER RESCORING

MaxQuant Rescored
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Adams, C. et al. biorXiv (2023).



INCREASED PERFORMANCE ON TIMSTOF VS ORBITRAP

Orbitrap timsTOF
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Adams, C. et al. biorXiv (2023).



• A375, a melanoma cell line

• Measured in triplicate

• Missense SNPs were added to 

the FASTA file

• HLA types

IMMUNOPEPTIDOMICS ON MELANOMA CELLS

HLA-A HLA-B HLA-C

01:01 + 02:02 57:01 + 44:03 16:02 + 06:02

Phulphagar, K. M., et al. Molecular & Cellular Proteomics (2023).
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MOTIFS OF IDENTIFIED PEPTIDES MATCH HLA TYPES
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• NetMHCpan to predict the HLA 

binding affinity

• Best (=lowest) score selected for 

each peptide against HLA types

• 86% of peptides after rescoring 

are at least weak binders

IDENTIFIED PEPTIDES HAVE STRONG HLA BINDING

weak
binder

strong
binder

28
Adams, C. et al. biorXiv (2023).



SOLUTION 2:
DE NOVO PEPTIDE SEQUENCING



PEPTIDE SEQUENCING AS A TRANSLATION PROBLEM
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Neural machine translation

[start]

“la”

“mass”

“spec”

“spec”

“de”

“is” “awesome”

“masse” “c’est” “cool” [stop]



CASANOVO IS A DE NOVO SEQUENCING TRANSFORMER

● Encoder: Learns contextualized 

representations for peaks

● Decoder: Predicts the de novo 

sequence one amino acid at a 

time

● Beam search decoding finds 

the highest-scoring peptide

31
Yilmaz, M. et al. NeurIPS (2022).



● With same training data, 

Casanovo outperforms 

traditional and deep 

learning-based de novo 

sequencing tools

● Large training data significantly 

improves performance

CASANOVO OUTPERFORMS OTHER METHODS

32
Yilmaz, M. et al. biorXiv (2023).
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● Casanovo is trained on 
bottom-up proteomics data, 
exhibiting a tryptic bias

NON-ENZYMATIC FINE-TUNING AVOIDS TRYPTIC BIAS

33
Yilmaz, M. et al. biorXiv (2023).



● Casanovo is trained on 
bottom-up proteomics data, 
exhibiting a tryptic bias

NON-ENZYMATIC FINE-TUNING AVOIDS TRYPTIC BIAS

34
Yilmaz, M. et al. biorXiv (2023).

● Fine-tuning on non-enzymatic 
data mitigates the tryptic bias 
and improves performance



Check if Casanovo predictions are:

● In the human proteome

● Database search results (Tide) 

on human proteome 

→ Casanovo identifies 65% more 

unique peptides matching to the 

human proteome than Tide

CASANOVO OUTPERFORMS DATABASE SEARCHING
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Yilmaz, M. et al. biorXiv (2023).



• NetMHCpan to predict the HLA 
binding affinity

• Casanovo predicted peptides in 
human are:

○ As plausible as Casanovo & 
Tide shared peptides

○ More plausible than peptides 
uniquely identified by Tide

IDENTIFIED PEPTIDES HAVE STRONG HLA BINDING
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Yilmaz, M. et al. biorXiv (2023).



EXTERNAL EVALUATION OF ANTIBODY ASSEMBLY

37
Beslic, D. et al. Briefings in Bioinformatics (2023).



• Identifying immunopeptides is 
challenging

• Fragment ion intensity prediction for 
rescoring on timsTOF data

• Casanovo is a powerful deep 
learning-based de novo peptide 
sequencing solution

CONCLUSION
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