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ABSTRACT

Attention-based neural architectures have consistently demon-
strated superior performance over Long Short-Term Memory
(LSTM) Deep Neural Networks (DNNs) in tasks such as
key-frame extraction for video summarization. However,
existing approaches mostly rely on rather shallow Trans-
former DNNs. This paper revisits the issue of model depth
and proposes DATS: a deep attentive architecture for super-
vised video summarization that meaningfully exploits skip
connections. Additionally, a novel per-layer temporal nor-
malization algorithm is proposed that yields improved test
accuracy. Finally, the model’s noisy output is rectified in an
innovative post-processing step. Experiments conducted on
two common, publicly available benchmark datasets show-
case performance superior to competing state-of-the-art video
summarization methods, both supervised and unsupervised.

Index Terms— key-frame extraction, video summariza-
tion, Deep Neural Network, Transformer, self-attention, batch
normalization

1. INTRODUCTION
Automated video summarization consists in deriving succinct
summaries of original, full-length videos, which capture the
most important segments of the full input and jointly convey
its essence in a compact manner. In static and dynamic sum-
marization, the output is a set of still key-frames [1] and a
short trailer/skim [2], respectively. The goal is to select an
informative, representative and temporally ordered subset of
the original/full video. This paper focuses on key-frame ex-
traction, since skims can be easily constructed by concatenat-
ing video segments centered on extracted key-frames. These
should be both visually representative of the full-length video
and diverse in content.

Initial unsupervised approaches to key-frame extraction
involved clustering or dictionary learning [1]. Later, super-
vised Deep Neural Networks (DNNs) were exploited to ana-
lyze convolutional representations of video frames and to out-
put per-frame scalar importance scores. These are manually
post-processed to derive the final video summary. Ground-
truth per-frame importance scores are exploited for learning.
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Long Short-Term Memory networks (LSTMs) are typically
utilized to capture inter-frame dependencies in supervised set-
tings, by modeling the problem as a sequence-to-sequence
task: mapping video frame representation sequences to im-
portance score sequences [3].

Unsupervised approaches have also been presented, based
on LSTMs. The state-of-the-art adversarial reconstruction
framework [4] [5][6] entails training using a composite
LSTM / GAN architecture, that contains multiple interact-
ing neural modules. However, LSTMs encode the entire
video sequence into a single, fixed-length vector and process
each video frame one at a time. Transformer architectures
relying on self-attention [7] were adopted to address this,
allowing the DNN to find correlations across the sequence’s
items. However, only rather shallow Transformers have been
employed [8], due to the assumption that Transformers are
overparameterized and prone to overfitting.

Moreover, a well-known issue with DNNs is internal co-
variate shift: during training, the input data distribution of
each layer varies across iterations, because the input of each
layer is the output of the previous one, whose parameters
are constantly being updated. As a result, each layer has
to learn to accommodate/adjust to constant variations across
training iterations. Batch normalization [9] is a differentiable
per-layer operation which addresses the issue by allowing the
DNN to learn to standardize the mean and the variance of each
layer’s inputs. Then, during inference on test data points, the
relevant statistics stored at the end of training are employed
for standardizing the input to each layer, across the forward
pass. Alternatively, Layer normalization is common in Trans-
formers: statistics are computed separately for each data point
across all neurons and channels.

In video analysis, the temporally ordered stack of video
frame representations displays a similar, yet unique kind of
distribution shift between the embeddings of different video
frames belonging to the same input video sequence. This phe-
nomenon occurs separately at each neural layer and has the
potential to significantly inhibit achievable task accuracy at
the inference stage. Such an effect is likely to negatively in-
fluence both LSTMs and Transformers, since they both ulti-
mately rely on correlating different inputs across the temporal
axis. Yet, there is a distinct scarcity of methods specifically
targeting this issue in the literature. The typical approach is



to simply apply unit Euclidean norm normalization to each
layer’s activations [10, 11, 8]. As a result, useful informa-
tion for each video is potentially discarded, since the resulting
per-frame embeddings vary only with respect to their vector
direction for different input videos. The only alternative ap-
proach that normalizes data across the temporal axis is [12].
It is called Batch Normalization Through Time (BNTT) and
it is used to enhance the discriminative capacity of the repre-
sentations generated by Spiking Neural Networks [13]. The
BNTT module captures the mean and the standard deviation
for each time-step of the i-th feature of the embeddings in the
sequence within a mini-batch during training. At the infer-
ence stage, these statistics are used to normalize a new, unseen
data point. Despite the BNTT’s ability to create more discrim-
inative temporal representations, it requires mini-batches that
contain equally lengthed data points in terms of duration.

This paper proposes Deep Attentive Transformer Summa-
rizer, or DATS: a new neural architecture for supervised video
summarization, that attempts to address the above issues by
integrating the following novel contributions:
1. A deep attentive neural network relying on self-attention
and the bottleneck layer structure [14]. The output dimen-
sionality of each bottleneck block’s is half its original em-
bedding dimensionality. Past video summarization methods
have only employed shallow Transformers, whereas this pa-
per meaningfully and effectively exploits architectural depth
to increase performance, using skip connections.
2. A novel, temporal normalization module is proposed, im-
plemented and integrated into the presented neural architec-
ture. It can be used as a per-layer normalization algorithm
for any timeseries modeling task, acting on the temporal axis
of the input sequence. This paper evaluates it on supervised
video summarization.
3. A denoising operator that smooths the predicted output is
introduced and employed to video summarization for the first
time. This is a non-neural post-processing step that adds no
additional learnable parameters.

2. DEEP ATTENTIVE TRANSFORMER
SUMMARIZER

Initially, DATS is fed an input sequence X ∈ RT×M , where
T and M represent the video sequence length and the video
frame representation dimensionality, respectively. The input
sequence is the result of feeding the raw RGB video frames
to a pretrained image recognition CNN and extracting an in-
termediate representation per-frame, typically from its penul-
timate layer. DATS consists of several consecutive attention
layers [7]. Attention blocks mitigate the issue of encoding
the entire sequence into a single fixed-length representation.
Self-attention blocks are used for all layers and are defined as:

A(Q,K,V) = softmax(
QKT

√
dk

)V. (1)

Eq. (1) computes the attention weights matrix A ∈ RT×T

that represents a measure of correlation between a video
frame xt and all other video frames. The matrices Q, K
and V denote the Query, Key and Value matrices, respec-
tively, and they all take the form of a fully-connected layer.
The input sequence is fed to the three aforementioned linear
transformations forming the following set of equations:

Q = WQ ·X (2)
K = WK ·X (3)
V = WV ·X, (4)

where W{Q,K,V } denote the parameters that correspond to
the Query, Key and Value subnetworks. DATS employs the
multi-headed version of the attention mechanism, with an at-
tention block consisting of H heads, hence having H sets of
Query, Key and Value transformations. The H independent
attention outputs are then concatenated and linearly trans-
formed into the expected dimension. Intuitively, multiple
attention heads allow for attending to parts of the sequence
differently (e.g., longer-term dependencies versus shorter-
term dependencies).

The multi-headed self-attention module is the fundamen-
tal element of DATS. The self-attention layers are stacked to
form a deep attentive network. Each layer downsamples the
sequence’s dimensionality by a factor of 2 by using a fully-
connected feed-forward layer, followed by a ReLU activation
function. The self-attention block’s output A(X) is added to
the layer’s input sequence X, thus creating an identity skip
connection [14]. As shown in Section 3, the output of the
skip connection H = A(X) + X contributes significantly
to increased evaluation accuracy. For the inference head, the
transformed sequence of the final self-attention block is fed to
a cascade of two fully-connected layers that predict the per-
frame importance scores s = {st}Tt=1.

DATS employs a novel, task-agnostic sequential data nor-
malization method. In principle, it can be utilized for any
sequence modeling task (e.g., machine translation, speech-
to-text conversion, video captioning, etc.), although this pa-
per evaluates the proposed neural architecture only on key-
frame extraction/video summarization. In this context, a neu-
ral layer’s input is a tensor T ∈ RN×T×1×M , where N de-
notes the batch size, T the number of video frames and M the
video frame representation dimensionality, while the redun-
dant unit dimension is a dummy one for conforming to tensor
standards. The layer input consists in a temporally stacked
collection of video frame representations.

Essentially, DATS incorporates a modification of batch
normalization. However, instead of normalizing the k-th fea-
ture channel along the data point axis of the mini-batch, we
normalize the k-th channel along the temporal axis, i.e., along
the video frame sequence. It holds that 1 ≤ k ≤ M . For-
mally, consider a collection of features B = {Xt,k}Tt=1 that
serves as the input to the current DNN layer. Then, the k-th



channel is shifted and scaled in order to compute the normal-
ized feature channel y(k):

µB =
1

T

T∑
t=1

x
(k)
t (5)

σ2
B =

1

T

T∑
t=1

(x
(k)
t − µB)

2 (6)

x̂(k) =
x(k) − µB√

σ2
B + ϵ

(7)

y(k) = αx̂(k) + β (8)

In Eqs. (5)-(8), the mean and the standard deviation of the
k-th feature dimension across the entire video sequence (i.e.,
across the temporal axis) is first computed. Then, B is stan-
dardized using the computed statistics (µB,σ

2
B). Similarly to

[9], the Temporal Normalization module is a function param-
eterized by α and β. These scalar parameters are learnt during
training along with the model’s parameters.

Finally, in order to deal with the noisy outputs produced
by the inference head, a simple operator ϕ(·) is defined. It is
appended to the tail of DATS, in order to smooth out the gen-
erated video frame importance scores in a post-processing
step occurring immediately after inference. ϕ(·) acts on a
small temporal region R(t) in a neighbourhood around a
video frame indexed by t:

R(t) = {st|max(0, t−s) ≤ t < min(t+s,T ), st ∈ s}. (9)

Parameter s is a user-defined hyperparameter that dictates
the region size. In general, supervised key-frame extraction
ground-truth labels provided by human annotators do not
present abrupt changes in the per-frame importance scores.
However, the raw output generated from typical summariza-
tion DNNs during inference commonly incorporates high-
frequency noise components, when viewed as an 1D signal
defined over the temporal domain. This implies that a fac-
tor limiting the accuracy of existing summarization DNNs is
their inability to learn the concept of smoothness.

One way to overcome this issue is to learn a parametric
operator that shifts and scales the importance scores based on
their value within a small temporal region. This paper argues
that a simpler non-parametric operator s′t = max(R(t)) can
provide satisfactory performance without inducing any addi-
tional computational cost.

The proposed deep attentive neural network architecture
is trained by minimizing the Mean Square Error (MSE) loss
function, computed between the predicted video frame im-
portance scores s ∈ [0, 1]T and the respective ground-truth
importance scores y ∈ [0, 1]T . As a preprocessing step, the
minimum value of each ground-truth importance score se-
quence is first subtracted from every individual importance
score. Then, each per-frame score is divided by the resulting
maximum:

yshift := yold −min(yold) (10)

y :=
yshift

max(yshift)
. (11)

By doing so, the model has to learn for all videos to predict
consistently a minimum/maximum value of 0/1, respectively.
This strategy prevents overfitting.

Table 1: Peformance comparisons in the canonical setting, in
terms of F1-Score.

Method Datasets
TVSum SumMe

CLIP-It!supervised [15] 66.3 % 54.2%
iPTNet [16] 63.4% 54.5%
PGL-SUM [11] 61.0% 55.6%
M-AVS [17] 61.0% 44.4%
SUM-GAN-AAE [18] 58.3% 48.9%
CA-SUM [8] 61.4% 51.1%
DSNetanchor−based [10] 62.1% 50.2%
DSNetanchor−free [10] 61.9% 51.2%
AC-SUM-GAN [19] 60.6% 50.8%
RR-STG [20] 63.0% 53.4%
DATS (proposed) 73.3% 61.8%

Table 2: DATS ablation study.

Model
Variant

Datasets
TVSum SumMe

w/o Output Smoothing 73.1% 56.7%
w/o Temporal Normalization 70.5% 57.4%
w/o Skip Connections 62.0% 47.9%
Complete DATS 73.3% 61.8%

3. EXPERIMENTAL EVALUATION
All aspects of the evaluation process follow established com-
mon protocols, utilizing 2 public datasets: TVSum [21] and
SumMe [22]. TVSum contains 50 videos with their visual
content ranging from documentaries, news and television
shows to video tutorials. SumMe is comprised of 25 videos
characterized by a relatively shorter duration and covering
more diverse content, such as holidays and sports. According
to established protocol, two additional datasets were em-
ployed to augment TVSum/SumMe during training: OVP
and YouTube [23]. However, test/evaluation does not involve
these two auxiliary datasets. YouTube and OVP consist of
39 and 50 video sequences, respectively. Following com-
mon convention, all videos are temporally subsampled at a
rate of 2 Frames Per Second (FPS), starting from an original
framerate of 30 FPS for all videos/datasets.

Three evaluation settings were adopted, separately for
SumMe and for TVSum: canonical, augmented and transfer.



Table 3: Comparison of best performers in the 3 evaluation settings.

Method TVSum SumMe
Canonical Augmented Transfer Canonical Augmented Transfer

iPTNet [16] 64.4% 64.2% 59.8% 54.5% 56.9% 49.2%
DSNeta−b [10] 62.1% 63.9% 59.4% 50.2% 50.7% 46.5%
DSNeta−f [10] 61.9% 62.2% 58.0% 51.2% 53.3% 47.6%

DATS (proposed) 73.3% 73.5% 67.4% 61.8% 56.2% 62.7%

In the first two settings, 80% of TVSum/SumMe was used
for training and the remaining videos were employed only
for test/evaluation. The validation set was randomly divided
into 5 splits. Moreover, in the augmented setting, the current
dataset (either TVSum or SumMe) is augmented with the
remaining three datasets during training (YouTube, OVP and
either SumMe or TVSum). The transfer setting dictates that
the DNN is trained on the union of 3 datasets and evaluated
on the remaining one. The canonical setting was the default
comparison protocol.

Per-frame semantic representations were extracted for
each video frame from the pool5 layer of a pretrained
GoogLeNet, according to common conventions. DATS in-
corporates 3 self-attention layers and the embeddings dimen-
sionality is halved on each layer’s output. Every self-attention
layer has 8 attention heads. For each experiment, the model
was trained for 500 epochs with the Adam optimizer, using
a learning rate equal to 10−4 and a weight decay equal to
10−5. In order to generate the final key-frame summary after
neural inference has been completed for a test video, the shot
cut/scene change points must be detected by employing the
Kernel Temporal Segmentation (KTS) algorithm. This step
is essential so as to then execute the 1/0 Knapsack algorithm,
which requires both the predicted video frame scores and
video frame weights. The weights are are trivially derived by
evaluating the video frame count of the shots defined by the
detected shot cuts.

The F1-Score metric is utilized evaluating DATS and its
competitors. For a given predicted summary A and a ground-
truth summary U , the precision and recall metrics, P and R
are defined as:

P =
||A ∩ U ||
||U ||

, R =
||A ∩ U ||
||A||

, (12)

where the || · || denotes the cardinality of a set. The F1-Score
metric F is computed as follows:

F =
P ·R
P +R

. (13)

For TVSum and SumMe, the predicted summary’s qual-
ity is evaluated by comparing it to the ground-truth summary,
derived from the ground-truth per-frame importance scores.
During validation, both the average F1-Score (across all 5 test
dataset splits) and the maximum F1-Score (across all 5 splits

and all training epochs) is computed for each test video se-
quence, as dictated in [21] and [22], respectively.

DATS is compared against recent, state-of-the-art deep
neural key-frame extraction methods, both supervised and un-
supervised, using the canonical setting. As it can be seen in
Table 1, DATS achieves top performance and a gain of 7% in
F1-Score against the latest state-of-the-art method, i.e., CLIP-
It! [15]. With 6.5 million parameters, the proposed approach
also attains a favorable balance between complexity (number
of parameters) and accuracy.

DATS was also evaluated on the Augmented and the
Transfer settings, by introducing videos from the OVP and
YouTube datasets during training. As shown in Table 3, DATS
surpasses competing methods in these settings as well. More-
over, it actually performs slightly better than in the canonical
setting, most likely due to training on a larger/augmented
dataset. The challenging transfer setting task reveals that
DATS can generalize well on unknown samples, provided
that it has been trained on a sufficiently large dataset. Fi-
nally, Table 2 indicates that the utilized skip connections are
instrumental for architectural depth to be effective.

4. CONCLUSIONS
This paper presented DATS: a novel deep attentive architec-
ture for key-frame extraction in video summarization tasks.
Based on the overall experimental evaluation, there are three
important findings we can highlight. First, it seems that a
greater number of training data points contributes to increased
summarization accuracy, even under a domain/data distribu-
tion shift between the training and the test stage. Second, all
three main components of DATS are essential to its high ac-
curacy: i) the deep structure with the skip connections, ii) the
temporal normalization algorithm, and iii) the output smooth-
ness operator. Third, deep attentive architecture such as the
proposed one hold the promise of alleviating model complex-
ity, without sacrificing accuracy. In fact, DATS performs as-
tonishingly well at a fraction of the model complexity its com-
petitors showcase.
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