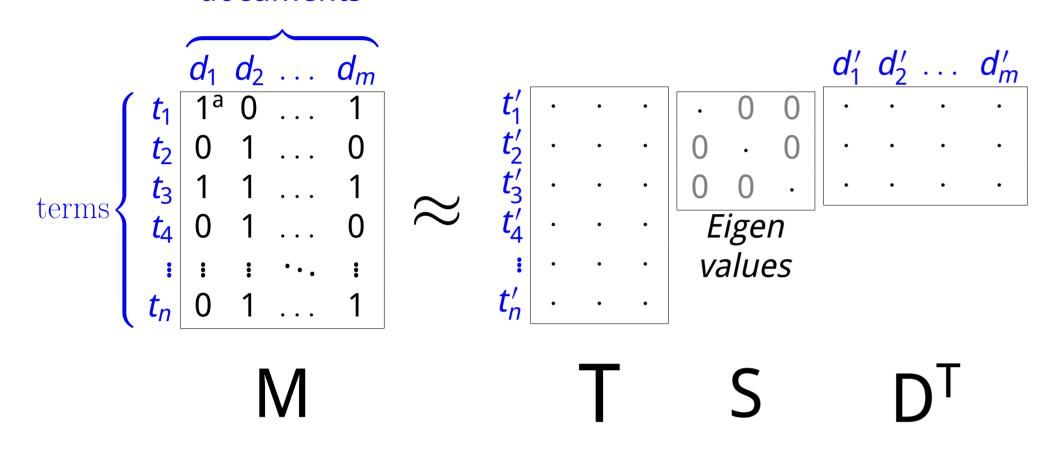
Bilingual Document Alignment with Latent Semantic Indexing Ulrich Germann, University of Edinburgh


The Bilingual Document Alignment Task

Given a collection of web page downloads and their corresponding ULRs, find pairs of pages that are translations of one another. A seed set of page pairs is given for development purposes.

Basic Approach

Compute the cosine between **document embeddings** in a joint semantic space to measure cross-lingual document similarity. We use *Latent Semantic Indexing* (LSI) to map documents into the joint space. LSI relies on reduced-rank *Singular Value Decomposition* (SVD) to perform this task.

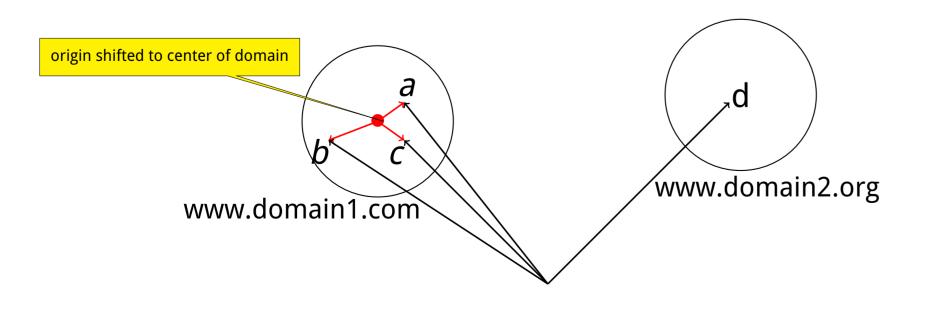
documents

^a in practice, we use tf-idf weighted term counts; see below.

Technical Procedure

1. Fill the term-document matrix with $tf_{t,d} \cdot idf_{t,D_d}$ values for each term occurring in each document pair d from the training data, with

$$tf_{t,d} = 1 + log(f_{t,d})$$
 $idf_{t,D_d} = log rac{|D_d|}{|\{d' \in D : t \in d'\}|}$


where $f_{t,d}$ is the raw occurrence count of term t in d and D_d the web domain that document d belongs to.

- 2. Factorize term-document matrix with SVD.
- 3. For each document in the data set, compute a document vector \vec{d} as in Step 1.
- 4. Fold it in: $\vec{d}' = S^{-1} T^{\mathsf{T}} \vec{d}$.
- 5. Compute document similarity between two documents d_x an d_y as

$$sim(d_X, d_y) = cos(S\vec{d}'_X, S\vec{d}'_y).$$

Features

- URL string similarity (details in the paper)
- Cosine in the global space (cos)
- Cosine after shifting origin to center of documents from a specific web site (lcos) by subtracting the mean document vector over all documents from that site from each individual vector

Results (rank=1000)

recall on the training data

	seed d	seed data excluded						
features used	strict ^a 1.00 ^b	0.99 ^b 0.95 ^b	0.90 ^b	strict ^a	1.00 ^b	0.99^{b}	0.95^{b}	0.90^{b}
cosine (cos)	86.7 93.4	95.4 96.7	97.6	82.5	88.9	91.3	92.9	93.7
"local" cos. (lcos)	86.7 92.8	94.7 95.8	96.9	83.3	88.9	91.4	92.8	93.6
URL similarity (url)	83.6 87.8	88.1 88.2	88.2	83.6	87.8	88.1	88.2	88.2
cos Icos	87.2 93.7	95.6 96.6	97.5	83.3	89.7	92.1	93.6	94.4
cos url	90.6 94.7	95.6 96.4	97.1	86.3	90.6	91.4	92.7	93.5
lcos url	91.3 95.4	96.3 97.2	97.8	86.8	91.3	92.2	93.4	94.2
cos lcos url	92.8 96.7	97.6 98.5	99.1	88.0	92.5	93.4	94.7	95.5
recall on the test data								
cos lcos url		<u> </u>		87.6	87.6	94.1	95.5	96.0

^a exact string match with the reference ULR pairs

Special Characteristics of Web Pages

• Web pages are a mix of boilerplate text and payload. Boilerplate text (menus, disclaimers, etc.) occurs on most web pages that belong to a particular (sub-)domain. The payload is the actual "content" of the page. Boilerplate text is very specific to specific domains but provides little information about the payload.

- Different URLs may lead to the same (or almost the same) page.
 This leads to problems if they rely only on pairs of URLs for evaluation.
- Web pages are often dynamically generated, sometimes delivering the same payload with different "facades" (e.g., web view, print view, boilerplate in different languages).

http://www.lagardere.com/centre-presse/communiques-de-presse/communiques-de-presse-122.html ...

http://www.lagardere.com/press-room/press-releases/press-releases-363.html ...

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 645487 (MMT) and 688139 (SUMMA).

^b soft match based on document similarity with different thresholds.