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1 INTRODUCTION  
Semantic phenotyping has been shown to be an 

effective means to aid variant prioritization and 
characterization by comparison to both known 
Mendelian diseases and across species with ani-
mal models (Robinson et al 2013).  This process, 
whereby symptoms and characteristic phenotypic 
findings are curated with species-specific ontol-
ogy terms, has generated a baseline set of disease-
phenotype descriptions for more than 7,000 Men-
delian diseases (Kohler et al 2014a) as well as 
many thousands of descriptions of additional ani-
mal models.  By leveraging the knowledge en-
coded in the ontology graph and methods drawn 
from information theory, similarities can be com-
puted between any two sets of phenotype descrip-
tions (Washington et al 2009). This very powerful 
technique has the potential to be used for disease 
diagnosis, particularly for novel and rare diseases 
when the underlying genetic cause is unknown.   

The robustness of semantic similarity methods 
is heavily dependent on the quality of both the 
knowledgebase as well as the phenotype profile 
being studied. Therefore, capturing the highest-
quality phenotypic profiles is necessary. Until 
now, these phenotypic profiles have been typi-
cally captured by specialized curators, but as we 
want to move this technique into the diagnostic 
setting it will need to move into a physician’s 
hands.  This process of acquiring structured phe-
notype annotations for individual patients may 
seem daunting and unnecessarily complex for 
physicians with high demands on their time. An-
notation tools such as Phenotips (Girdea et al 
2013) greatly facilitate recording rigorous pheno-
type annotations in the clinic, but don’t them-
selves provide guidance about what constitutes 
annotations sufficient for comparative phenotype 
analysis.  Since clinicians are not used to provid-
ing structured phenotype data, it is necessary to 
provide a measurement of how a given patient 

phenotype profile compares against the corpus of 
available genotype-phenotype annotations, includ-
ing that of known diseases, animal models, and 
other patients in the system.  A metric to gauge 
overall complexity and diagnostic capability of a 
phenotype profile generated in this way would 
greatly enhance the ability to use structured phe-
notyping in the clinical setting for comparative 
analysis. Conversely, such a metric can also be 
utilized in the context of any systematic model 
organism phenotyping efforts.  

Here, we present a method to assess the suffi-
ciency of a phenotype profile, by investigating the 
necessary and sufficient information characteris-
tics required to identify disease similarity based 
on phenotypes alone.  This scoring method is be-
ing provided as a REST service through the Mon-
arch Initiative API. 

2 METHODS. 
2.1 Data and Ontologies 

Data and ontologies for analysis were down-
loaded on 2014-03-23. Human disease-phenotype 
annotations were obtained from http://human-
phenotype-ontology.org, and treated as our “gold 
standard” set, which contained annotations for 
approx. 7,500 diseases.  Mouse genotype-
phenotype annotations were obtained from MGI 
(www.informatics.jax.org). Zebrafish genotype-
phenotype annotations were obtained from ZFIN 
(www.zfin.org).  All annotation data, pre-
formatted for use in OWLSim, is available for 
download1.  This data is also regularly updated in 
the Monarch Initiative website and services.  

We used the Human Phenotype Ontology (HP) 
(http://purl.obolibrary.org/obo/hp.obo) in pairwise 
comparisons of diseases in this study, and the in-
tegrated phenotype ontology for multi-species 
analysis (Kohler S. et al 2014b), which includes 
the HP, the mouse phenotype ontology (MP), and 
  
1 http://code.google.com/p/phenotype-ontologies/  
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a zebrafish phenotype ontology (ZP) derived from 
the post-composed Entity-Quality annotations 
used by ZFIN (derived from the Zebrafish Anat-
omy and PATO quality ontologies).  
2.2 Derived Disease Profiles 

We generated new disease profiles derived from 
the set of disease-phenotype profiles described 
above.  Briefly, one or more synthetic disease pro-
files D’ was created for each disease D by remov-
ing, replacing, or altering phenotypes in the pro-
file.  These were generated in several ways: re-
moving entire phenotypic categories (Method 
2.3), replacing some or all annotations with less-
specific superclass(es), or choosing random sub-
sets.  For any given derived disease, a set of con-
trols were generated in parallel in order to assess 
any significant difference in similarity score be-
tween the derived disease and the original parent 
disease.  For category-depletion derived diseases, 
we used only those diseases were there was >1 
annotated category.  
2.3 Categorical classifiers 

We used the 1st degree subclasses in the upper 
level of the HP (typically divisions based on ana-
tomical systems) to assess the role of broad phe-
notypic categories in the specificity of a profile. 
The 20 classes are listed in Table 1. 

Category ID 
abdomen HP:0001438 
blood HP:0001871 
breast HP:0000769 
cardiovascular HP:0001626 
connective tissue HP:0003549 
ear HP:0000598 
endocrine HP:0000818 
eye HP:0000478 
genitourinary HP:0000119 
growth HP:0001507 
head/neck HP:0000152 
immune HP:0010987 
integument HP:0001574 
metabolism HP:0001939 
musculature HP:0003011 
neoplasm HP:0002664 
nervous system HP:0000707 
prenatal HP:0001197 
respiratory HP:0002086 
skeletal HP:0000924 

2.4 Similarity methods 
All similarity comparisons were performed us-

ing OWLSim (owlsim.org), which enables a set of 

ontological entities to be compared against one or 
more other sets.  Briefly, the HP and disease-
phenotype associations were loaded and Informa-
tion Content (IC) scores generated for each class 
based on the frequency of annotations (directly or 
inferred). Similarity scores were computed using 
OWLSim, as described in Smedley et al (2013), 
between the derived diseases (both cases and con-
trols) and all diseases in the set.   

Receiver Operator Characteristic (ROC) analy-
sis was performed using the R ROCR package 
(rocr.bioinf.mpi-sb.mpg.de/) to assess the preci-
sion/recall of derived disease profiles when com-
pared against their parent diseases. 
2.5 Profile scores 

Scores for any phenotype profile can be ob-
tained via REST services, described in our docu-
mentation at monarchinitiative.org .  We utilized 
IC measurements to generate scored annotation 
profiles for all diseases in our corpus of annota-
tions.  We generate three scores for an annotation 
profile as follows. 

A simple score is calculated to assess the rich-
ness (measured by sumIC) and depth/strength 
(measured by maxIC and meanIC) of a profile as 
compared to all other annotated profiles (diseases 
or genes), without regard to the underlying shape 
of the ontology.  The simple score is calculated 
using all phenotypes in the profile (where D is an 
alias for it’s set of phenotypes P1..n.  Here, α, β, 
and γ coefficients were chosen to independently 
weigh the effects of sumIC, maxIC, and meanIC, 
respectively (where α+β+γ=1).  This results in a 
score in the range of (0..1).  Our initial implemen-
tation weighs each factor equally.  

€ 

simple_ score(D) = α
sumIC (D)

mean(sumIC (D1..n ))
+ β

max IC (D)
mean(max IC (D1..n ))

+γ
meanIC (D)

mean(meanIC (D1..n ))

 

We can account for the shape of the ontology by 
assessing scores based on high-level categories in 
the ontology.  A categorical score can be calcu-
lated using a similar formula to the simple score, 
but by taking the subset of phenotypes that are 
subclasses of a single phenotype category, and 
scaled using the mean obtained only from diseases 
with annotations to that category.  The overall 
categorical score for a profile is averaged for all c 
categories (in our initial tests, there are c=20 
categories as described above).  We do not yet 

Table 1 Classes used to assess the role of broad phenotypic categories.  
The HPO identifier and abbreviated label is shown. 



Annotation Sufficiency 

3 

correct for phenotype classes that are subclasses 
of multiple categories (asserted or inferred).  

We calculate a scaled score per profile by in-
corporating the categorical score in a weighted 
formula, with the initial δ=0.25: 

The Monarch Initiative REST services currently 
use the α,β,γ,δ coefficients presented here.  

3 RESULTS & DISCUSSION 
To explore the creation of metrics to evaluate 

the sufficiency of a phenotype profile, we first 
integrated and analyzed semantically curated phe-
notypic characteristics and their properties of 
more than 7,500 genetic diseases from OMIM, 
Decipher, and Orphanet, together with a catalog 
of approximately 47,000 mouse and 14,000 ze-
brafish genotypes with curated phenotypes from 
MGI and ZFIN, respectively.  

In order to approximate sub-optimal and/or 
more-general patient profiles that might be ob-
tained in the clinic, we created a synthetic series 
of disease-phenotype profiles derived and per-
muted from the known disease profiles.  These 
derived profiles were compared to all known dis-

eases (including the original “parent” disease) us-
ing OWLSim in order to obtain a similarity score 
and rank.  Furthermore, for any derived profile we 
create a set of control profiles to test for signifi-
cance of similarity score changes.  This method is 
illustrated in Figure 1 for Schwartz-Jampel Syn-
drome (OMIM:255800).  In order to test the influ-
ence of skeletal phenotypes in the phenotype pro-
file (Figure 1A), we created a derived disease by 
removing all skeletal phenotypes (Figure 1B) 
from the phenotype set, together with a set of con-
trols where an equivalent number of random non-
skeletal phenotypes were removed (Figure 1C). 
 These derived phenotype profiles were then com-
pared to the entire corpus of diseases, including 
the parent disease.  In this example, removing all 
skeletal phenotypes resulted in a similarity score 
of 86% when compared to the original disease, as 
opposed to the controls, which were significantly 
more similar (with 91+/- 0.78% similarity).  This 
suggests that, for this disease, skeletal phenotypes 
are significantly more influential compared to 
random.  This result makes intuitive sense be-
cause skeletal phenotypes comprise 40% of the 
phenotypic profile for Schwartz-Jampel Syn-
drome, and removing them would appear to pre-
sent a very different disease.  However, when 
compared to all other known diseases, the skele-
tal-depleted derived disease profile is still more 

Figure 1.  Illustration of 
original and derived disease-
phenotype profiles for 
Schwartz-Jampel Syndrome, 
Type I. (A) Original pheno-
type profile with color-coded 
phenotype categories. (B) 
Derived phenotype profile 
with all skeletal phenotypes 
(n=4) removed.  (C) A set of 
control profiles created by 
random removal of n annota-
tions. (Only a subset of phe-
notypes is indicated for illus-
trative purposes.) 

€ 

categorical_ score(D) =

simple_ score_ per _category
1

c

∑ (D)

number _of _categories

€ 

scaled _ score(D) = (1−δ)(simple_ score(D))
+δ(categorical_ score(D))
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similar than any other disease in the annotation 
corpus. 

 If we take the derived disease profiles created 
for all multi-categorical diseases (n=5948) and 
compare them to known diseases, 92% of these 
derived diseases are still most-phenotypically-
similar to their parent-disease.  There was little 
difference in Area Under the Curve (AUC) scores 
and shape of the ROC curve when assessing the 
derived disease comparisons to all known diseases 
for each category (Figure 2).  This result suggests 
that the semantic similarity algorithm and ap-
proach are very robust; faced with many missing 
phenotypes, even entire categories, a suboptimal 
disease profile is still sufficient to compare and 
obtain the correct disease. 

As described in the Methods, we have imple-
mented a computation of a sufficiency score, 
available dynamically as a REST service from 
http://monarchinitiative.org/page/services, which 
can be utilized by third-party applications.  The 
scaled score, which is a measurement of the 
uniqueness, depth, and complexity of a phenotype 
profile, is prominently displayed (transformed to 
0-5 stars) on any disease, gene, or genotype page 
in the Monarch website so users can immediately 

understand how the phenotype profile of a given 
entity compares against the rest of the corpus.  As 
applied to animal models, it can aid researchers 
when assessing the quality of a phenotype match; 
for example a highly-similar cross-species match 
might be less meaningful if it only has a 2-star 
sufficiency score (which probably indicates it is 
poorly annotated).  For clinicians, a 5-star graphi-
cal display has been added to the Phenotips 
(www.phenotips.org) interface in order to provide 
feedback to clinicians recording patient phenotype 
profiles in the clinic.  

We plan to continue our analysis using these 
same methods to create additional synthetic phe-
notype profiles for comparison as mentioned in 
the methods, by varying several factors:  overall 
information content (sumIC) and number of anno-
tations can be tested by simply removing one or 
more annotations; maximum information content 
(maxIC) can be tested by removing one or more 
of the most-significant annotations; specificity of 
annotations can be tested by “lifting” annotations 
to more-generic superclasses. Finally, we can take 
into account the co-occurrence frequency for any 
pair or set of phenotypes. The additional derived 
datasets will also help us examine potential limita-
tions of our method that might be due to incom-
pleteness of our baseline set. We will use the re-
sults of these analyses to derive optimal weighting 
coefficients for the different factors in order to 
refine our initial implementation of the suffi-
ciency score. 
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Figure 2.  ROC curve indicates robustness of the OWLSim similar-
ity algorithm when entire phenotypic categories were removed. 
 ROCR was performed using similarity scores comparing all de-
rived diseases with all other original disease phenotype profiles.  A 
comparison was classified true if a derived disease was compared 
to it’s parent disease, otherwise it was false.  These were grouped 
into bins and plotted according to the category of phenotypes that 
was depleted in the derived diseases.  AUC was calculated for each 
category, and ranged from a minimum of 0.9893 for nervous sys-
tem-depleted to a maximum of 0.99997 for prenatal-depleted pro-
files. 


