Cross-Forgery Analysis of Vision Transformers and CNNs
for Deepfake Image Detection

Davide Alessandro Coccomini
davidealessandro.coccomini@isti.cnr.it
Inst. of Information Science and
Technologies “A. Faedo”
Consiglio Nazionale delle Ricerche
Pisa, Italy

Claudio Gennaro
claudio.gennaro@isti.cnr.it
Inst. of Information Science and
Technologies “A. Faedo”
Consiglio Nazionale delle Ricerche
Pisa, Italy

ABSTRACT

Deepfake Generation Techniques are evolving at a rapid pace, mak-
ing it possible to create realistic manipulated images and videos
and endangering the serenity of modern society. The continual
emergence of new and varied techniques brings with it a further
problem to be faced, namely the ability of deepfake detection mod-
els to update themselves promptly in order to be able to identify
manipulations carried out using even the most recent methods.
This is an extremely complex problem to solve, as training a model
requires large amounts of data, which are difficult to obtain if the
deepfake generation method is too recent. Moreover, continuously
retraining a network would be unfeasible. In this paper, we ask
ourselves if, among the various deep learning techniques, there is
one that is able to generalise the concept of deepfake to such an
extent that it does not remain tied to one or more specific deep-
fake generation methods used in the training set. We compared
a Vision Transformer with an EfficientNetV2 on a cross-forgery
context based on the ForgeryNet dataset. From our experiments, It
emerges that EfficientNetV2 has a greater tendency to specialize
often obtaining better results on training methods while Vision
Transformers exhibit a superior generalization ability that makes
them more competent even on images generated with new method-
ologies.
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1 INTRODUCTION

The advancement of modern Deep Learning techniques is allowing
society to evolve in many ways, helping in the achievement of
increasingly stunning results in virtually every field. However, this
progress also hides pitfalls with possible uses of Deep Learning that
can be detrimental to the well-being of people. One of the most
worrying emerging phenomena is undoubtedly that of deep fakes.
These are images or videos manipulated by means of advanced
Deep Learning techniques, to make the subjects filmed say or do
things that they would never have said or done. The result of these
techniques can then be used to destroy someone’s reputation or
to provoke conflict or manipulate the reality of events to one’s
advantage.

Distinguishing an image or video manipulated by these tech-
niques from a genuine one has therefore become the goal of many
researchers who have developed innovative methodologies, often
also based on deep learning, to carry out what is called deepfake
detection. In general, these techniques try to find any artefacts or
anomalies that may be introduced during the manipulation process.

Machine Learning algorithms, however, need data to be trained,
often in large quantities, and a number of datasets have sprung
up trying to be as complete as possible in representing the vari-
ous results that can be obtained with deepfake generation systems.
In fact, there are numerous and varied techniques to manipulate
multimedia content and ideally we would like to obtain a deepfake
detector capable of identifying them regardless of the technique
used for manipulation. Even more so, it would be ideal to have a
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system capable of identifying deepfakes generated by novel meth-
ods, examples of which are not present in the training dataset. In
other words, we would like a deepfake detector capable of learning
the general concept of deepfake and not simply being trained to
recognise specific anomalies introduced by one or more specific
deepfake generation methodologies. In this research, we therefore
attempted to find out which of the main Deep Learning techniques
was most capable of generalising the concept of deepfake and there-
fore proved robust in identifying images manipulated by methods
it had never been trained on. The comparison was made between
the two categories of neural networks used in this field, Vision
Transformer and Convolutional Neural Networks. Our experiments
showed that the former were less inclined to specialise in a spe-
cific method and were able to obtain consistent results even on
deepfakes generated with novel methodologies. On the other hand,
the Convolutional Neural Networks appear able to reach better
performances in terms of accuracy on the training methods.

2 RELATED WORKS
2.1 Deepfake Generation

Deepfake Generation techniques are the set of methods used to
manipulate a human face in order to make it appear different or
to replace its identity in a realistic manner. There are two main
categories of approaches, those based on Variational AutoEncoders
(VAEs) [21] and those based on Generative Adversarial Networks
(GANSs) [13]. Methods based on VAEs use encoder-decoder pairs to
decompose and recompose two distinct faces. By then swapping
the decoders, it is possible to obtain one of the two faces from the
other face, yielding quite credible results.

The GAN-based methods use two different networks. The first
one, network called discriminator, is trained to classify if an image is
fake or not, and a second network called generator that instead must
succeed, starting from a noisy image, to generate one sufficiently
credible to deceive its counterpart. GANs have been particularly
effective in the field of deepfake generation, with excellent results
achieved with methodologies based on networks such as DiscoGAN
[20], StarGAN [5] and StyleGAN-V2 [18].

Regardless of the technique used to carry out the manipulation,
the various deepfake generation approaches are distinguished ac-
cording to the specific way in which the image is modified. Among
these the following stand out:

o Face Transfer: it transfers both identity-aware and identity-
agnostic content (e.g. expression and pose) from a source
face to the target face;

o Face Swap: it transfers the identity of the source face to the
target face while preserving identity-agnostic content;

o Face Stacked Manipulation (FSM): set of methodologies some
that transfer both the identity and the attributes of the target
on the source while others that alter the attributes of the
swapped target after the transfer of the identity;

o Face Reenactment: it preserves the identity of the source sub-
ject but manipulates the intrinsic attributes such as mouth
or expression;

o Face Editing: it edits external attributes such as age, gender
or ethnicity.

2.2 Deepfake Detection

With this wide variety of deepfake generation methodologies and
their increasing effectiveness, it has therefore become extremely
important to develop systems to distinguish a manipulated image
from a real one. This is a problem that also affects other areas
such as text, with recent work such as [11] analyzing deepfakes
in tweets to identify fake content in social networks. Anyway, as
these techniques are often applied on videos, many video deepfake
detectors emerged. Some recent works proposed the exploitation
of temporal information to recognise inconsistencies. For example
[2] try to catch motion dissimilarities in the temporal structure of
a video sequence by exploiting optical flow fields. However the ma-
jority of approaches are frame-based, classifying the video frame by
frame. In order to train effective deep learning models for deepfake
detection, a number of datasets have been created over the years,
including the first DF-TIMIT [23], UADFC [35] and FaceForensics++
[29], Celeb-DF [26], Google Deepfake Detection Dataset [10] and
the more recent DFDC [9], Deepforensics [16] and ForgeryNet [14].
The latter dataset is the most complete, largest and includes the
greater variety of existing deepfake generation methods, since it
is still recently published there are not many papers based on it.
Much research has been carried out exploiting the DFDC dataset
as it is one of the most complete and challenging in circulation
and a specific type of convolutional neural network has emerged
as particularly effective in fulfilling the task, the EfficientNet. The
latter is the basis of many solutions that have obtained state-of-
the-art results on the cited dataset such as the winning solution of
the deepfake detection challenge [30]. With the advent of Vision
Transformers and their successes in the field of Computer Vision,
some interesting deepfake detection solutions have emerged. For
example, the method presented in [34] which obtained good results
by combining Transformers with convolutional networks used to
extract patches from faces. Also interesting is the work done to
exploit a pretrained EfficientNet B7 with a Vision Transformers by
training it through distillation presented in [15]. A recent work on
merging different types of Vision Transformers such as the Cross
Vision Transformer [3] and EfficientNet BO is presented in [6]. Effi-
cientNet has recently been further improved with the introduction
of EfficientNetV2 [32], a version of EfficientNet that is more opti-
mised for smaller models, faster training and better ImageNet [7]
accuracy than its predecessor and some Vision Transformers.

3 APPROACH

In this section, we analyze in detail the dataset and the models used
to carry out our experiments.

3.1 Dataset

To be able to validate the ability of a neural network to detect
deepfakes generated by methods other than those used for the
construction of the training set, it is necessary to use a dataset
containing a multitude of deepfake generation methods and keeps
track of them. For this reason the dataset selected to carry out the
experiments is ForgeryNet [14], one of the widest deepfake datasets
available. ForgeryNet consists of 2.9M images and 220k video clips.
For our experiments we will only use the set of images for which
we have, for each of them, an associated label identifying if it has



Figure 1: Visualization of the various Deepfake generation
techniques within the dataset grouped by category [14]

been manipulated or not and the method adopted to perform such
manipulation. The fake images are generated through the use of 15
different manipulation approaches [4, 8, 12, 17, 19, 24, 25, 27, 28, 31]
with more than 36 mix-perturbations on more than 4300 distinct
subjects. Examples of applied perturbations are optical distortion,
multiplicative noise, random compression, blur and many others
shown in more detail in the ForgeryNet paper. This variety therefore
allows for the most comprehensive comparison possible between
the two categories of neural networks. The methodologies used
can be grouped into two macro-categories, ID-remained and ID-
replaced, as shown in Figure 1. In the first case the identity of the
subject in the image is not replaced but only manipulations are
carried out on his face. In the second category, on the other hand,
the identity is replaced by transferring a different face from the
one actually present in the image. In turn, these categories are
divided into 5 sub-categories: Face-Reenactment and Face Editing,
belonging to the ID-remained category and Face Transfer, Face
Swap and FSM, belonging instead to the ID-replaced category. All
these approaches represent a large part of the main methods of
deepfake generation known to date. The images in ForgeryNet
also include people in a variety of contexts. To make the task of
the two networks simpler, as in many other deepfake detection
methods, a face extraction phase is carried out through the use
of a state-of-the-art face detector, MTCNN [36]. The considered
models are trained and tested on a face basis and we performed
data augmentation like in [30]. Differently from them, we extracted
the faces so that they were always squared and without padding.
We used the Albumentations library [1], and during the training,
we randomly applied common transformations. In particular, every
time an image is passed to the network in training phase, this is
resized randomly with three types of isotropic resize that differ
for type of interpolation used (area, cubic or linear). After that,
transformations are applied randomly, namely: image compression,

gaussian noise, horizontal flip, brightness or saturation distortion,
grayscale conversion and shift, rotation or scaling.

3.2 Considered Architectures

In this research, we want to compare the cross-forgery generalisa-
tion capability of Convolutional Neural Networks, a category of
neural networks widely used in this and many other Computer Vi-
sion tasks, with that of Vision Transformers [22], a more recent type
of deep learning model that is proving to be particularly competitive.
For the first category, an EfficientNetV2-M [33] was selected, a new
version of the well-known EfficientNet that is more powerful and
lighter. EfficientNets are widely used in deepfake detection and still
form the basis of many state-of-the-art methods on the industry’s
leading datasets. The counterpart used is instead a ViT-Base, one of
the first Vision Transformers presented and of similar dimensions
with respect to the Convolutional network considered. Both net-
works are pretrained on ImageNet-21k and have been fine-tuned
on sub-datasets extracted from ForgeryNet. The sub-datasets were
constructed maintaining an almost perfect balance between fake
and real images. In addition, only faces detected with a confidence
level higher than 95% were considered in order to reduce the risk
of false detection. The networks were trained freezing the weights
of all blocks except for the last two which are specialised on the
downstream task.

4 EXPERIMENTS

In this section, we describe all the experiments carried out in our
research. The experiments are subdivided in two parts, the first in
which we will use genuine images and images generated with a
single method of deepfake generation at a time, and the second
part in which instead we will consider more methods of deepfake
generation, belonging to the same category, in the training phase.
Since the labels of the ForgeryNet test set were not yet released
at the time of the experiments, the validation set of this dataset,
from now on called test set, was used to carry out all the tests while
in the training phase, a portion equal to 10%, always the same for
all the models, was selected from the sub-dataset considered. The
latter will be called validation set from now on. The models were
trained for a maximum of 50 epochs and a patience of 5 epochs on
the validation set, using an SGD optimiser with a learning rate of
0.1 decreasing with a step size of 15 and a gamma of 0.1.

4.1 Single Method Training

Given the real-world oriented attitude of this research, a further
necessary step to apply the model in the real world is that it is as
interpretable as possible and that it can somehow be traced back to
the identity of the manipulated subject. In fact, not necessarily all
the people present in a scene of a video have undergone manipula-
tions and it may be interesting for a hypothetical user to know not
only whether the video contains anomalies but also which subject
has been manipulated and at what instant.

In this section, we describe the process used to investigate the
ability of a model, trained on real images and images manipulated
with a single deepfake generation method, to generalise the concept
of deepfake to the point of recognizing images tampered with by
other methods.
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Figure 2: Line plots representing the accuracy values obtained by ViT-Base (blue) and EfficientnetV2-M (red) on the test set,
trained on training sets consisting of real images and from left to right on images generated with the FaceShifter, Talking Head
Video and StyleGAN2 methodology respectively. Observing the space between horizontal lines it is possible to notice how the
variance of the Vision Transformer is lower than that of the CNN counterpart obtaining closer accuracies on different and
also unseen methods. On the horizontal axis the 0 represent the real images and number from 1-15 the images generated with

different generation methods.

Training Set | Validation Set

Real | Fake | Real | Fake

Subset 1 (0,1) | 12.026 | 10.076 | 1.376 | 1.080

Subset 2 (0,7) | 7.068 | 6.732 | 817 | 717

Subset 3 (0,10) | 1.931 | 1,486 | 209 171

Table 1: Number of images per subset in the Single Methods
experiment.
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Figure 3: Training set construction for the Single-Method
approach.

To perform this first comparison the two models were fine tuned on
three subdatasets as shown in Figure 3. All of them contained unma-
nipulated images but also tampered images with a specific technique
for each subdataset. The three techniques used are FaceShifter (1),
Talking Head Video (7) and StyleGAN2 (11). These were selected as

being quite different from each other so as to validate the effective-
ness of the two networks on more varied manipulation approaches.
As shown in Table 1, the sizes of the three datasets are quite varied
but always well balanced between the two classes. In this experi-
ment then, the models will only see anomalies introduced by one
specific deepfakes generation method at a time. The models trained
with the three sub-datasets were then tested with the images in the
test set, but also considering the generation methods not used in
the training set.

As can be seen in the three plots in Figure 2 the Vision Trans-
formers turn out to be more stable and less specialized. This model,
even if reaches better results on the training methods, tends to have
values of accuracy closer between the various methods of deepfake
generation. On the other hand the EfficientNet often obtains higher
accuracy than the Vision Transformer on the training methods but
achieves much poorer accuracies on the others. For example, we
can see a marked advantage of the EfficientNet over both method 7
and method 11 in the respective charts.

4.2 Multiple Methods Training

A further experiment was carried out by training on real images
and on images manipulated with a group of methods belonging to
the same category as shown in Figure 5. This choice derives from
the fact that one of the two networks may be able to generalise
even better in the presence of different generation methods, which
therefore hopefully introduce a greater variety of artefacts.

For the first experiment, the training methods considered were
those belonging to the Transfer category, i.e. FaceShifter (1), FS-
GAN (2) and Deepfakes (3), as well as unmanipulated images. For
the second experiment the methods belonging to the Face Reenact-
ment category were used, namely Talking Head Video (7), ATVG-
net (8) and First Order Motion (10). As shown in Table 2, both
subsets are well balanced but differ in size. The former is in fact
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1-15 the images generated with different generation methods.

Training Set | Validation Set

Real | Fake | Real | Fake

Subset 1 (0,1,2,3) | 59.237
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Subset 2 (0,7,8,10) | 10.408 [ 11.232 | 1.200 | 1.205

Table 2: Number of images per subset in the Multiple Methods
experiment.

considerably larger, with about 120,000 traning images and repre-
senting the largest of the sets considered in the experiments, while
the latter is smaller in size.

TRAINING DATA METHODS

Training Set 1 Training Set 2
Pretrained - Pretrained -
EfficientNetv2.| | retrained EfficientNetvz.| | Trevained

M ViT-Base M ViT-Base

Figure 5: Training set construction for the Multiple-Methods
approach.

Again, ViT-Base is found to have a significantly lower variance
than EfficientNetV2-M in both experiments conducted, as can be
seen from the horizontal lines in the charts in Figure 4. There is
also a tendency for EfficientNet to focus on a subset of the meth-
ods presented in the training set. For example, in the case of the
dataset consisting of images manipulated with Transfer techniques,
the convolutional network obtains an accuracy value of 81.1% on
method 3, while it remains particularly low on methods 1 and 2,
with accuracy values of 47.0% and 57.0% respectively. On the other
hand, the Vision Tranformer obtains rather similar accuracy values
on all three methods considered, although they are lower and are
always around 62.0%.

The same behaviour can be observed in the second experiment.
In this case, the EfficientNet reaches an accuracy of 80.1% on method
8 but drops drastically to 67.4% and 43.0% on the other two training
methods, respectively 7 and 10. The Vision Transformer instead
once again proves to be more stable with an accuracy of 74.1% and
77.5% on methods 7 and 8 and a less marked drop in performance
on method 10 reaching 62.7%. In simple terms, in all plots the blue
line representing Vision Transformers tends to remain higher than
the red line representing EfficientNets.

To conclude, although the accuracies therefore tend to be rather
low on the various novel methods, there is a tendency for Efficient-
Nets to perform better on training methods than Vision Transform-
ers, often achieving higher accuracies, but to generalise worse on
novel methods.

4.3 Final Results

To numerically evaluate which of the two models is less likely
to specialize in the deepfake generation methods used to build
the training set, we chose to calculate the variance between the
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Table 3: Table summarizing the accuracies obtained by the models on real test images (column 0) and on those manipulated
with all deepfake generation methods considered (columns 1-15). The last column of the table contains the calculated variance
values between the accuracies obtained by the models on the test set in the various deepfakes generation methods for each

training sub-dataset.

accuracies on the test set. More in detail, considering the list of 16
accuracies, one for each deepfake generation method plus the one
obtained on the unmanipulated images, obtained from each network
on the test images, the variance o2 was calculated as follows:

o T p?

n
where n = 16 is the number of accuracies, x; are the accuracy

values and y is their mean.

A model with a lower variance will have obtained more similar
accuracies between all deepfake generation methods regardless of
whether they have been included in the training set and therefore
will have learned the concept of deepfake more generally without
specializing too much on the specific anomalies introduced by a
method. From the data reported in the table 3 it can be seen that
regardless of the methods used to build the training set, the vari-
ance associated with the Vision Transformers is always lower. On
the other hand, in almost all cases the EfficientNet achieves higher
levels of accuracy on training methods probably because it has
learned to better recognize the specific anomalies introduced in
these methods and all images containing different anomalies are
considered non-deepfake. The case of the training on method 11
only, StyleGAN2, is interesting. In this case, both models have a
marked decrease in performance on unmanipulated images. This
probably derives from the fact that this specific method is particu-
larly effective and introduces fewer anomalies than others present
in the dataset, thus making the difference between a real image and
a manipulated one more nuanced.

5 CONCLUSIONS

In this paper, we conducted a cross-forgery analysis to identify
the most suitable deep learning architecture to tackle the deepfake
detection task. The experiments carried out allowed us to have
a first confirmation of the tendency of the Vision Transformers
to better generalise the concept of deepfake, exhibiting less bias
towards specific anomalies introduced by one or more deepfake
generation techniques and thus making them more suitable to be
applied in a real-world context. On the other hand, the convolu-
tional networks and in particular, the EfficientNet, seem to be more
prone to specialization, making them more applicable in contexts

in which one wants to carry out deepfake detection, excluding the
possibility that images manipulated with unpublished techniques
can be introduced. Investigating the different ways of approach-
ing the problem of the various deepfake detection solutions, not
limiting ourselves exclusively to evaluating accuracy metrics on a
subset of well-known and studied methods, is therefore fundamen-
tal to creating robust and long-lasting systems. With this research
we have taken a step forward, highlighting in greater detail the
behaviour of the main architectures used in the sector.
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