Defining species in *Fusarium* and the FUSARIOID-ID database

Marileide M. Costa

Westerdijk Fungal Biodiversity Institute

SASPP Congress, Pretoria, August 2022

Outline

The genus Fusarium How to define a species - Species concepts The Fusarioid-ID Database Case study

The genus Fusarium

- 400 species described, grouped in 18 species complexes
- Plant pathogens
- Mycotoxin producers
- Opportunistic human pathogens
- Endophytes and saprotrophs

The genus Fusarium

Species are defined by the use of the:

- Morphological species concept
- Phylogenetic species concept
- Biological species concept

But also by

- biological features like substrate and host
- geographical distribution
- mycotoxin production
- metabolite profile etc.

available online at www.studiesinmycology.org

STUDIES IN MYCOLOGY 98: 100116 (2021).

Fusarium: more than a node or a foot-shaped basal cell

P.W. Crous^{1,2}, L. Lombard^{1*}, M. Sandoval-Denis^{1,3*}, K.A. Seifert⁴, H.-J. Schroers⁵, P. Chaverri^{6,7}, J. Gené⁸, J. Guarro⁸, Y. Hirooka⁹,

- Introduced 4 new genera, 18 new species, and made 16 new combinations
- A new online identification database, Fusarioid-ID, accessible at www.fusarium.org

The fusarioid sister genera

Cyanonectria Neocosmospora Albonectria Setofusarium Geejayessia and others

ML-tree, ITS, LSU, rpb1, rpb2, tef1 Crous et al. 2021

Defining species in *Fusarium* and the FUSARIOID-ID database

Crous et al. 2021

The fusarioid sister genera

Characters of the sexual and assexual morph

Morphological Species Concept MSC

What does the MSC tell us ? It shows the morphotypes !

What is this concept useful for ?

First step in the characterization of field isolates

Everyone who has a Fusarium manual can use it

How does it work in the lab?

Evaluating macro- and micromorphological characteristics

Comparing with the literature

Limitations There are no morphological markers for all species

Morphological Species Concept MSC

Morphotype *Fusarium verticillioides* Conidia formed in long chains, on monophialides only

Includes *F. verticillioides, F. thapsinum, F. napiforme, F. andiyazi, F. musae ...*

Morphotype *Fusarium* subglutinans Conidia formed in false heads, on polyphialides

Includes

F. subglutinans, F. sacchari, F. guttiforme, F. tupiense, F. circinatum ...

Biological Species Concept BSC

Population delimited by a reproductive barrier – Mating Population MP

What does the BSC tell us? If the species is a biological species;

Why is it useful to apply this concept?

It helps in the differentiation of species, which do not have a morphological marker; When a molecular biology laboratory is not available;

Limitations

It works only on heterothallic species;

It is not always possible to induce the sexual stage in the laboratory; minimum number of isolates is necessary.

How does it work in nature?

Out of the 18 biological species described in the *Fusarium fujikuroi* species complex, only 5 have been reported in nature so far.

Leslie et al. 2005; Leslie and Summerell, 2006; Costa et al. 2021

Biological Species Concept BSC

Group of individuals that interbreeding with each other – Mating Population

How it works in the lab?

- Mating type identification by PCR
- Laboratory crosses among isolates with opposite mating type;
- Crosses of field isolates with tester strains of other biological species;

Selection of tester strains for each mating type.

Klittich and Leslie 1988; Kerényi et al. 2004; Leslie and Summerell 2006

Phylogenetic Species Concept PSC

Populations delimited by the agreement of clusters generated from DNA sequences – clades

Genealogical Concordance Phylogenetic Species Recognition – GCPSR

What does the PSC tell us?

Shows clusters generated from existing polymorphism in sequences of gene regions;

Why is it useful to apply this concept?

It allows us to access the real diversity of species;

Separates the species that do not have a morphological marker and that do not reproduce sexually;

It allows us to describe new species.

Questions:

How many *Fusarium* species are still to be described ?

What is the real diversity of species in tropical environments ?

Defining species in *Fusarium* and the FUSARIOID-ID database

FUSARIOID-ID database

Includes all agricultural, environmental and clinically important fusarioid genera and species, based on curated sequences of several DNA barcode genes.

Provide a stable, regularly updated, and user-friendly platform for the identification of *Fusarium* and species in allied genera.

Some of the genera included in the database

- Fusarium
- Neocosmospora
- Cosmosporella

- Albonectria
- Fusicolla
- Cyanonectria

- Cyanonectria
- Microcera
- Macroconia

Information is provided for the included species and accepted species lists

Viable data in the FUSARIOID-ID database

- About 500 taxon names
- 21 genera 300 Fusarium species
- 1550 strains

Viable information in the FUSARIOID-ID database

- Protocols for species description morphological and molecular studies
- Information about Types and Holotypes of accepted species
- Sequences and aliment data for strains

How are new data included in the database ?

A case study with novel species found on tropical grasses

Mycological Progress (2021) 20:61–72 https://doi.org/10.1007/s11557-020-01658-5

ORIGINAL ARTICLE

Fusarium species from tropical grasses in Brazil and description of two new taxa

Marileide M. Costa¹ · Maruzanete P. Melo² · Filipe S. Carmo¹ · Gláucia M. Moreira¹ · Elaine A. Guimarães¹ · Fernando S. Rocha³ · Sarah S. Costa¹ · Lucas M. Abreu⁴ · Ludwig H. Pfenning¹

- 47 isolates recovered from seeds of Brachiaria
- 12 phylogenetic species reported within the FFSC, FIESC, FCSC

- WESTERDIJK FUNGALBIO DIVERSITY INSTITUTE
- 3 new species

Defining species in *Fusarium* and the FUSARIOID-ID database

• Photoplates, showing morphological markers

F. brachiariae sp. nov. Morphotype "*mundagurra*"

F. caapi sp. nov. Morphotype "*mundagurra*"

What new data are included in the database ?

- Information about life style
- Curated sequences from types and other reference material
- Photoplates, showing morphological markers

There is public access to all data, well organized and grouped in the Fusariod-ID database

How can you recover information of *F. brachiariae* from the database ?

Through search functions, like:

- Name
- Ex-type strain
- Substrate-host
- Country
- Sequence

Three main challenges still remain

- i. to formally describe already known, distinct phylogenetic lineages;
- ii. to reveal cryptic species within collections, e.g. IMI, BBA collections; labelled with names based on morphological characterization only;
- iii. to access still underexplored niches in different ecosystems or peculiar substrates.

What do we intend to accomplish ?

- Standardized template for the description of species.
- List of terms for species descriptions.
- Interactive monographic compilation of fusarioid fungi that include taxonomic and nomenclatural information with a list of key literature.

Acknowlegement

Phytopathology group

Odo van Vloten Foundation

This research benefitted from funding by the European Union's Horizon 2020 research and innovation program (RISE) under the Marie Skłodowska-Curie grant agreement No. 101008129, project acronym "Mycobiomics".

Funded by the European Union

