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Abstract—Planning of current and future mobile networks
is becoming increasingly complex due to the heterogeneity of
deployments, which feature not only macrocells, but also an
underlying layer of small cells whose deployment is not fully
under the control of the operator. In this paper, we focus
on selecting the most appropriate Quality of Service (QoS)
prediction techniques for assisting network operators in planning
future dense deployments. We propose to use machine learning
as a tool to extract the relevant information from the huge
amount of data generated in current 4G and future 5G networks
during normal operation, which is then used to appropriately
plan networks. In particular, we focus on radio measurements
to develop correlative statistical models with the purpose of
improving QoS-based network planning. In this direction, we
combine multiple learners by building ensemble methods and
use them to do regression in a reduced space rather than in the
original one. We then compare the QoS prediction accuracy of
various approaches that take as input the 3GPP Minimization
of Drive Tests (MDT) measurements collected throughout a
heterogeneous network and analyse their trade-offs. We also
explain how the collected data is processed and used to predict
QoS expressed in terms of Physical Resource Block (PRB)/
Megabit (MB) transmitted. This metric was selected because of
the interest it may have for operators in planning, since it relates
lower layer resources with their impact in terms of QoS up in
the protocol stack, hence closer to the end-user.

Index Terms—Machine Learning, Big Data, Quality of Service,
Prediction, Network planning, Minimization of Drive Tests

I. INTRODUCTION

Current 4G networks are generating a huge amount of
data during their normal operation in the form of control,
management and data measurements. This data is expected
to increase in 5G due to different aspects, such as densi-
fication, heterogeneity in layers and technologies, additional
control and management complexity in Network Functions
Virtualisation (NFV) and Software Defined Network (SDN),
advent of the Internet of Things (IoT), increasing variety of
applications and services, each with distinct traffic patterns and
QoS/Quality of Experience (QoE), etc. Only small amount of
this data is currently stored, and a lot of valuable information is
actually discarded after usage [1]. Therefore, there is a need for
a more systematic approach for extracting relevant information
out of this wealth of operational data for the benefit of the
operator, and eventually, the end-user.
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In this context, mobile operators face multiple Network
Management (NM) challenges for future 5G networks, such
as: a) Managing future network complexity in terms of densifi-
cation of scenarios, heterogeneous nodes, applications, Radio
Access Technologiess (RATs); b) Managing the dynamicity
of networks, where some femto nodes are controlled by users,
energy saving approaches are in place, and active antennas
play a crucial role; c) Improving QoS by increasing link rates
and reducing latency; d) Managing virtualized infrastructures
based on the SDN/NFV paradigms and cloudification. The
high level objective of an operator is to build networks, which
are self-aware, self-adaptive, and intelligent. In this context,
Machine Learning (ML) can be used as a tool to allow the
network to learn from experience, improving performances,
and big data analytics can drive the network from reactive
to predictive. The exploitation of past information is highly
relevant when planning new deployments, but has hitherto
been hard to achieve.

In this paper, we focus on designing a tool for QoS
prediction, able to assist network operators in smartly planning
future dense deployments. The objective is to predict QoS in a
given area, given a certain deployment where the interference
patterns are extremely variable due to the very high frequency
reuse. 3GPP already provides an interesting data base to collect
useful data for the purpose of QoS estimation. The MDT
feature has been introduced by 3rd Generation Partnership
Project (3GPP) since Release 10. Among the targets, there
are the standardization of solutions for coverage optimization,
mobility, capacity optimization, parametrization of common
channels, and QoS verification [2]. Since operators are also
interested in estimating QoS performance, in Release 11, the
MDT functionality has been enhanced to properly dimension
and plan the network by collecting measurements indicating
throughput and connectivity issues [3].

The problem of QoS prediction, estimation and verification
has been studied in the literature in [4], [5]. Here, the authors
address the MDT QoS verification use case by identifying and
estimating different Key Performance Indicators (KPIs) and
correlating them with common node measurements to establish
whether the UE is offered an acceptable QoS. However,
previous work mainly targeted traditional macrocell scenarios,
and so, do not face the challenges of dense HetNets. In our
preliminary work [6], we focus on a more complex multi-layer
heterogeneous networks, where we predict QoS independently



of the physical location of the UE. Preliminary results show
that by abstracting from the physical position of the mea-
surements, and finding patterns in PHY layer measurements
collected from different regions of the network, we can provide
better estimations of QoS in other arbitrary regions. Further-
more, previous work suggests that regression analysis has a
better performance in a reduced space by considering distance-
based dimensionality reduction, i.e., we observe that the best
result is obtained when we consider only the information
coming from the serving and the strongest neighboring cells
as input features. As a result, in this paper, we exploit this
background to focus on improving network planning based on
MDT and QoS prediction aiming at minimizing the PRB/MB
offered [7]. We select this metric because it presents a series
of interesting features for our purpose. First, it combines
resources that are relevant for the operator (physical resource
blocks) and others that are relevant for the end-user (megabits
of data) into a single metric. Second, in terms of network
planning, it is also of interest because minimizing this metric
would allow serving users with the same QoS by consuming
less resources, and so, being more cost-effective. Therefore,
we believe this metric allows linking QoS optimization with
cost-related network planning done by operators.

We consider 4 algorithms: (1) k-Nearest Neighbours
(k-NN), (2) Neural Networks (NN), (3) Support Vector Ma-
chines (SVMs), and (4) Decision Trees (DT). In order to
improve their accuracy in prediction, we resort to ensemble
methods, which are a common tool in SL to improve accuracy.
We focus on Bagging and AdaBoost. These methods offer the
opportunity to find patterns and relationships between input
and output variables, which due to the inherent complexity
of communications and interference patterns, in the complex
heterogeneous scenarios dense deployment, would not be
readily apparent or possible to be captured through analytical
approaches. In addition to this, to deal with the huge amount
of features describing our input feature search techniques, we
propose to apply regression analysis in a reduced space rather
than in the original one. We focus on Principal Component
Analysis (PCA) and Sparse Principal Component Analysis
(SPCA), which are the most representative feature extraction
and feature selection algorithms [8]. We perform a study of
the regression techniques using the treated data, we analyse
their performance, and draw conclusions on their interest for
network planning.

As for network planning tools per se, they in general
focus on RF coverage planning (e.g., CelPlan [9]) and not
directly on QoS offered to end-users and the resources the
operator needs to offer it. On the other hand, our techniques
allow predicting the PRB/MB offered in an arbitrary point of
the network based on measurements collected throughout the
network. By integrating the schemes proposed in our paper
in a network planning tool, operators would be able to find
the most appropriate deployment layout so as to minimize the
resources (i.e., the cost) they need to deploy to offer a given
QoS in a newly planned deployment.

The paper is organized as follows. Section II introduces

the techniques that we use to construct the proposed method.
The system model is described in Section III. Section IV
describes the data analysis steps followed. Section V presents
our QoS prediction results followed by the implications of
their potential application to network planning (section VI).
Finally, Section VII concludes the paper.

II. KEY CONCEPTS

Learning is the process of gaining knowledge by instruction
or study, and the discovery of new facts by experience. Com-
puter modelling of learning processes that are able to introduce
such capabilities in computers is the main challenge of ML.
ML studies computer algorithms for learning to complete a
task, or to make predictions based on observations, i.e., it
is about learning to do better in the future based on what
was experienced in the past. ML improves the performance of
a particular set of tasks by creating a model that helps find
patterns through learning algorithms. For that, the construction
of a dataset is needed. The dataset contains training samples
(rows), and features (columns), and is divided in 2 sets. The
training set to train the model, and the test set to make sure that
the predictions are correct. ML is generally roughly classified
into: a) Supervised Learning (SL), b) Unsupervised Learning
(UL), and c) Reinforcement Learning (RL). In this paper we
focus on SL and UL approaches, since the focus is on data
analysis.

a) Supervised Learning: SL is a Machine learning tech-
nique which takes training data (organized into input and
desired output) to develop a predictive model, by inferring
a function f(x), returning the predicted output ŷ. The in-
put space is represented by a n-dimensional input vector
x = (x(1), . . . , x(n))T ∈ Rn. Each dimension is an input
variable. In addition a training set involves m training samples
((x1, y1), . . . , (xm, ym)). Each sample consists of an input
vector xi, and a corresponding output yi. Hence x

(j)
i is the

value of the input variable x(j) in training sample i, and the
error is usually computed via |yi − ŷi|. SL techniques can be
classified depending on whether they predict discrete or con-
tinuous variables into classification and regression techniques,
respectively. Since our problem is a regression problem, i.e.,
yi is continuous in nature, we select the following regression
models:

1) k-NN can be used for classification and regression [10].
The k-NN method has the advantage of being easy to
interpret, fast in training, and the amount of parameter
tuning is minimal.

2) NN is a statistical learning model inspired by the struc-
ture of a human brain where the interconnected nodes
represent the neurons to produce appropriate responses.
NN support both classification and regression algo-
rithms. NNs methods require parameters or distribution
models derived from the data set, and in general they
are susceptible to over-fitting [11].

3) SVMs can be used for classification and regression.
This method in general shows high accuracy in the



prediction, and it can also behave very well with non-
linear problems when using appropriate kernel methods.
Also, when we cannot find a good linear separator,
kernel techniques are used to project data points into
a higher dimensional space where they can become
linearly separable. Hence the correct choice of kernel
parameters is crucial for obtaining good results [12].

4) DT is a flow-chart model, which supports both classifi-
cation and regression algorithms. Decision trees do not
require any prior knowledge of the data, are robust, and
work well on noisy data. However, they are dependent
on the coverage of the training data as, as for many
classifiers, and they are also susceptible to over-fitting
[13], [14].

In order to enhance the performance of each learning
algorithm described before, instead of using the same data
set to train we can use multiple data sets by building an
ensemble method. Ensemble methods are learning models,
which combine the opinions of multiple learners. This tech-
nique has been investigated in a huge variety of works [15],
[16], where the most useful techniques have been found to be
Bagging and AdaBoost [17]. Bagging manipulates the training
examples to generate multiple hypothesis. It runs the learning
algorithm several times, each one with different subset of
training samples. AdaBoost works similarly, but it maintains
a set of weights over the original training set, and adjusts
these weights by increasing the weight of examples that are
misclassified, and decreasing the weight of examples that are
correctly classified [18].

b) Unsupervised Learning: UL is a ML technique, which
receives only inputs x, and it lets the computer learn by itself.
Data are given without labels and the objective is to find a
structure in this. Different schemes are available like cluster-
ing, and dimensionality reduction. The goal is to construct a
representation of x that can be used for predicting future inputs
without giving the algorithm the right answer [19]. Since our
problem is the huge amount of potential features our system
may have as input, in our previous work [6], we suggest that
the regression analysis has a better performance in a reduced
space. We focus on dimensionality reduction, which is the
process of reducing the number of random variables under
consideration, and can be divided into Feature Extraction (FE)
and Feature Selection (FS) methods. Both methods seek to
reduce the number of features in the dataset. FE methods
do so by creating new combinations of features (e.g. PCA),
which project the data onto a lower dimensional subspace by
identifying correlated features in the data distribution. They
retain the Principal Components (PCs) with greatest variance
and discards all others to preserve maximum information and
retain minimal redundancy [8]. Correlation based FS methods
include and exclude features present in the data without
changing them. For example, SPCA, which extends the classic
method of PCA for the reduction of dimensionality of data by
adding sparsity constraint on the input features.

In this paper, we exploit UL techniques for dimensionality
reduction, whose output is fed into an ensemble method

consisting of Bagging/AdaBoost to manipulate the training ex-
amples. The SL techniques under evaluation are then applied.

III. SYSTEM MODEL
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Fig. 1: Overview of the heterogeneous wireless network.

We consider a heterogeneous wireless network (see Fig-
ure 1), whose system performance has been evaluated in the
ns3 LTE-EPC Network Simulator (LENA) platform based on
Long Term Evolution (LTE) Release 11 [20]. The scenario
that we set up consists of 3 Enhanced Node Base stations
(eNBs) with three sectors, which results in 9 cells and 19
UEs with transmit power equal to 46 dBm. The small cell
network is based on the dual stripe scenario with 1 block of 2
buildings. We consider 30 blocks in the coverage area of the
macro cell. Each building has one floor, with 20 apartments,
which results in 40 apartments per block. The Home eNodeB
(HeNB) deployment ratio is 0.5, and the activation factor is 1,
which results in 20 HeNBs, each one located in an independent
apartment [21]. The HetNet scenario is given in Table I.

TABLE I: HetNet scenario.

Macrocell scenario Value
eNB Tx Power 46 dBm
Num. of cells 9
Num. of macro UEs 19
Small cell scenario Value
HeNB Tx Power 23 dBm
Num. of Femto blocks 30
Num. of HeNBs per block 20
Num. of home UEs per HeNB 4
Num. of home UEs per block 80
Num. of HeNBs 600
Num. of home UEs 2400

In order to obtain an overview from the scenario described
in Table I, we create a Radio Environment Map (REM).
Figure 2 shows a [100 × 100] matrix of 10, 000 values that
represent the Reference Signal Received Power (RSRP) with



respect to the cell that has the strongest signal at each point.
Each point corresponds to one pixel of 10cm by 10cm.
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Fig. 2: REM, which represent the RSRP(dBm) with respect to
the cell that has the strongest signal at each pixel.

The parameters used in the simulations are given in Table II.

TABLE II: Simulation parameters.

Parameter Value
PropagationLossModel HybridBuildings
Scheduler Round Robin
AMC model 4-QAM, 16-QAM, 64 QAM
Transport protocol User Datagram Protocol (UDP)
Traffic model Constant bit rate
Cell layout radius: 500m
Bandwidth;Num. of RBs 5MHz;25
Simulation time 0.25s

IV. DATA ANALYSIS PROCEDURE

Our approach is divided into three phases. First we collect
the data (IV-A), then we prepare them (IV-B), and finally,
we analyse them through the proposed regression analysis
methods (V). At a high level, the collected data is first fed into
a dimensionality reduction step, whose output is then fed into
an ensemble method that manipulates the training examples to
generate multiple hypotheses by applying Bagging/AdaBoost.
The learning algorithm (one of the four regression models
explained in section II) is then called to produce a regressor.
Finally, in order to evaluate the accuracy of the predictions,
the performance of the learned function is measured on the
test set.

A. Collecting the data

We collect for each UE: (1) the RSRP, and (2) the Reference
Signal Received Quality (RSRQ) coming from the serving

and neighbouring HeNBs. The size of the input space is
[l × n]. The number of rows is the number l of UEs in
the scenario, and the number of columns corresponds to the
number of measurements n, i.e., the 600 RSRPs and the 600
RSRQs coming from the serving and neighbouring HeNBs.
The size of the output space is [l × 1], which corresponds
to the QoS performance associated to the measurements in
terms of the PRB/MB transmitted. For the evaluation of the
QoS performance, the PRB/MB transmitted is considered as
QoS indicator, because by minimizing this metric, users with
the same QoS would be served. As a result, operators would
reduce costs. This is why we select this metric, given that we
study the interest of using the ML techniques under evaluation
in a network planning context.

B. Preparing the data

Once data are collected, we proceed with the data prepara-
tion.

1) In order to improve the accuracy of each learning algo-
rithm, namely k-NN, NN, SVM, and DT, we manipulate
the training examples to generate multiple hypothesis
following Bagging and AdaBoost methods. In each itera-
tion, the ensemble method (Bagging or AdaBoost) draws
a training set of size m. The base learning algorithm is
then called to produce a predictor.

2) For each test value, we predict the PRB/MB transmitted,
and evaluate performance against the actual value in
terms of the Root Mean Squared Error (RMSE) as
follows:

RMSE =

√∑p
i=1(yi − ŷi)2

p

where p is the length of the test set, ŷi, indicates the pre-
dicted value, and yi is the testing value of one data point
i. In order to compare the RMSE with different scales,
the input and output variable values are normalized by,

NRMSE =
RMSE

ymax − ymin

where ymax and ymin represent the maximum and
minimum values in the output set.

3) We reduce the high dimensional space to a space of
fewer dimensions by implementing 2 approaches: 1) the
FE-PCA, and 2) the FS-SPCA. The kinds and amounts
of measurements that each approach takes into account
are described as follows:

a) FE-PCA. The input features are selected as a result
of the PCA implementation. Once the algorithm
has identified correlated features in the data, we
retain c PCs with greatest variance and discard all
others to retain minimal redundancy. We analyse
Figure 3, which shows the cumulative contribution
of each PC to the original data’s variance, namely
σ2 =

∑n
i=1 σ

2
i , where σ2

i corresponds to the
variance of the i−th principal component. Notice
that, the PC1 accounts for the greatest possible
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Fig. 3: Importance of components.

variance in the data set, the second one (PC2)
accounts for the next highest variance, and so on.
We observe that we can obtain more than 90% of
cumulative variance if we consider only the first
100 PCs. However, in order to know how many
PCs to retain, we focus on Figure 4. This Figure
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Fig. 4: Variability in the data.

shows the variability of the data set as a function
of the c = 10 PCs. That is, the figure shows the
variances (y-axis) associated with the PCs (x-axis).
We can see, that with the first c PCs we already
capture the main variability of the data. Since the
PCA’s goal is to extract as much variance with the
fewest PCs, for further analysis we retain only the
first 10 PCs.

b) FS-SPCA. The number of input features corre-
sponds to the output generated by the SPCA im-
plementation, in which we have promoted sparsity
up to the selection of the q features that give us the
most useful information. That is, by adding spar-
sity constraint on the input features, we promote
solutions in which only a small number of input
features capture most of the variance.
The number of features is obtained by adjusting
the weights over the training examples, i.e., as
we increase the weight of SPCA, the number of
features is reduced. Figure 5, shows the NRMSE as
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Fig. 5: NRMSE as a function of the number of features

a function of different number of features selected
by the SPCA. It can be observed that for the num-
ber of features q = 92 we obtain an optimum in
terms of NRMSE. As a consequence, we promote
sparsity down to 92 features.

c) Distance based Dimensional Reduction (DR). As
a benchmark we select a distance based approach
where we reduce the dimensionality of the input
space, based on the most promising results ob-
tained in [6], where we select only the following
features:
i) signalssc: RSRP and RSRQ from the serving

HeNB,
ii) signalsst: RSRP and RSRQ from the strongest

neighbouring HeNB,
iii) signals2st: RSRP and RSRQ from the two

strongest neighbouring HeNBs,

V. RESULTS

In this section, we analyse the performance results of the
4 regression approaches described in Section II. In order to
build an effective learning algorithm, the learning parameters
given in Table III have been chosen based on experience. In
particular, for each regression model we applied grid search
algorithm to perform hyperparameter optimization [22]. Fur-
thermore, we benchmark the FE-PCA, FS-SPCA and distance
based DR approaches described in Section IV-B-3, to the
distance Location Dependent (LD) scheme, which takes the
physical position of the samples as input, i.e., the predicted
value is that corresponding to the physically closest training
sample.

Table IV summarizes the accuracy performance of the
algorithms, which is expressed in terms of 1−NRMSE×100.
From Table IV, we observe the following:

1) By abstracting from the physical position of the mea-
surements we can provide better estimations, i.e., with
proper models and parameter setting, we improve the
prediction accuracy with respect to a distance LD
scheme.

2) With proper formal dimensionality reduction techniques,
such as, FE-PCA and FS-SPCA, we improve the pre-
diction accuracy with respect to a distance DR based



TABLE III: Learning parameters.

Parameter Bagging AdaBoost

Num. iter. 1000 100

k-NN
Num. of neighbours (k) 3 5
Distance Euclidean Euclidean
NN
Size 1200 1200
Maxit 10000 10000
Decay 0.01 0.01

DT
Num. of trees (T ) 500 300

SVM
Kernel RBF RBF
Epsilon (ε); Cost C 0.2; 5 0.2; 5

approach. In particular, we observe that if we transform
the whole data by applying FE-PCA, we notice that
this approach provides better results than the FS-SPCA
approach.

3) FS-SPCA is a very useful approach if we are interested
in excluding features to retain minimal redundancy. In
this context, we can reduce the dimensionality of the
data up to 92 features and still maintain almost the same
accuracy, i.e., we observe that if we consider the 92
features, we lose only 1% of accuracy with respect to
FE-PCA.

4) When we build ensemble methods, SVM and NN regres-
sion models perform better when they are bagged than
when they are boosted. This was to expect, as Bagging
combines many weak predictors (i.e., the predictor is
only slightly correlated with the true prediction) to
produce a strong predictor (i.e., the predictor is well-
correlated with the true prediction). This works well for
algorithms where by changing the training set, the output
changes. The opposite behaviour can be found in k-NN
and DT regression models, i.e., when these algorithms
are boosted the models tend to provide better results than
when they are bagged. That is, in order to improve the
performance of AdaBoost, we use sub-optimal values,
k for k-NN, and T for DT (described in Table III),
i.e., we use values that are not that good, but at least
better than random. As a result AdaBoost does its job
properly. This is not the case for SVM and NN. Since
these learning algorithms do not have an input parameter
that we can adjust to obtain a weak predictor without
affecting the accuracy of the model, the probability that
these algorithms provide better performance when are
boosted than when are bagged is lower. Some initial
results can be found in [23].

5) By applying different regression models and in partic-
ular, when the SVM regression model is bagged, we
improve by 11% the overall accuracy of the prediction
with respect to the distance LD scheme. Moreover,
while in overall, all the regression models exhibit high

accuracy (over 90%), there is still a significant reduction
in error between the learning algorithms. For example,
in terms of the NRMSE, k-NN exhibits an error of 10%,
while SVM halves this value to 5%.

TABLE IV: Overall model accuracy
Approaches Regression model Bagging AdaBoost

1. FE-PCA 1.1 k-NN
1.2 NN
1.3 SVM
1.4 DT

90.33%
93.44%
94.70%
92.84%

91.98%
92.28%
94.07%
93.60%

2. FS-SPCA 2.1 k-NN
2.2 NN
2.3 SVM
2.4 DT

89.69%
92.41%
93.62%
91.22%

90.88%
91.78%
92.87%
92.08%

3. Distance based DR 3.1 k-NN
3.2 NN
3.3 SVM
3.4 DT

88.43%
90.09%
91.80%
89.26%

89.11%
88.85%
90.98%
90.20%

4. Distance LD 4.1 Physical position 83.03% 83.92%

Given the complexity of current and future networks, there
is the need for clearly understanding what parameters are
relevant and what are not when planning the network for
offering a certain QoS. The results of this paper show that the
massive exploitation of MDT-based data captured in a complex
and heterogeneous operational network allows predicting the
QoS in another point of the network. This is why we believe
this is an important result for planning new deployments while
complying with the QoS requirements the operator targets.
More specifically, the SVM ensemble with Bagging is the
most promising technique for its better performance and high
accuracy.

VI. IMPLICATIONS FOR NETWORK PLANNING

Our results suggest that predicting QoS metrics that relate
the interest of the operators and that of the users (i.e.,
PRB/MB) is feasible with high accuracies, which we believe
is an improvement with respect to those tools mostly focusing
on RF predictions exclusively.

Another remarkable result as far as planning is concerned
is that our results confirm that measurements gathered at
arbitrary points of the network throughout its lifetime can be
exploited to plan other arbitrary future deployments, hence
exploiting historical operational data in a more systematic way
than has hitherto been done.

Furthermore, the results obtained from dimensionality re-
duction techniques show that handling all these historical
operational data would require huge amounts of storage as
well as processing capabilities. In this respect, dimensionality
reduction techniques, such as those proposed in this paper, can
make these requirements less stringent. In fact, FE-PCA would
present less inputs to the SL step of the data processing chain
at the cost of a prior processing of features. On the other hand,
FS-SPCA would simplify the initial feature processing, since
selected features are taken as they are, but the cost would be
the higher storage need (i.e., 92 inputs vs. 10 inputs to the
SL step). Therefore, it will depend on the specific network



and operator to select whether computing or storage should
be optimized and to decide whether the price paid in terms of
accuracy is acceptable.

VII. CONCLUSION

In this paper, we applied machine learning techniques for
data analysis of QoS measurements of heterogeneous net-
works. The goal was to predict QoS and evaluate their potential
application to network planning of complex mobile networks.
We compare results from different regression techniques,
namely k-NN, NN, SVM, DT for different amounts and kinds
of input features selected by applying dimensionality reduction
techniques. Additionally, we build ensemble methods that
combine multiple learners to enhance the performance of each
regression analysis in a reduced space. We showed that: 1)
data analysis through regression techniques can be done in the
reduced space more accurately than in the original space, 2) in
regards to the analysis of the data in the reduced space, we no-
tice that by creating new combinations of features (FE-PCA),
or reducing the number of input-features under consideration
(FS-SPCA), we preserve maximum information and retain
minimal redundancy. For example, considering heterogeneous
kinds of inputs (e.g., RSRP and RSRQ), we benefit the SPCA,
as we can significantly reduce the dimensionality of the dataset
without changing the data. That is, by promoting sparsity we
get features capturing a maximum of variance. Therefore, we
can exclude a significant amount of features, and include the
features that give the most useful information, 3) while in
overall, all the regression models exhibit high accuracy, bagged
SVM learning model is the one that better fits our needs, and
exhibits more accurate predictions. As a consequence, we can
provide better estimation of QoS in a complex heterogeneous
scenario. In conclusion our results suggest that predicting QoS
metrics that relate the interest of the operators and that of
the users (i.e., PRB/MB) is feasible with high accuracies,
and that such metric can be predicted in an arbitrary point
of the network based on historical operational data gathered
throughout the network, hence justifying the application of
the presented ML techniques when planning future complex
mobile networks.

REFERENCES

[1] Nicola Baldo, Lorenza Giupponi, Josep Mangues-Bafalluy, “Big Data
Empowered Self Organized Networks,” in proc. of The 20th IEEE
European Wireless (EW) Conference; Barcelona, Spain, 2014.

[2] Seppo Hamalainen, Henning Sanneck, Cinzia Sartori, LTE Self-
Organising Networks (SON): Network Management Automation for
Operational Efficiency. John Wiley and Sons, 2012.

[3] Johansson, J., Hapsari, W.A., Kelley, S., Bodog, G., “Minimization of
Drive Tests in 3GPP Release 11,” IEEE Communications Magazine,
November 2012.
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