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Scientific projects and measurables

1. Studies of exoplanets

* Measurable: the collective radial velocity of an ensemble of
stellar absorption features. Shifts are measured between
observations taken at different times (cadence =years).

2. Measurements of fundamental constants

 Measurable: a set of relative shifts for an ensemble of
absorption lines. Shifts are different for each atomic species
considered but are correlated. Shifts are calculated within a

single (sometimes coadded) spectrum.

3. Redshift drift

- Measurable: the change in the radial velocity (acceleration) of
an absorption feature. Shifts are a function of the line’s
cosmological redshift and are measured from observations

taken at different times (cadence = decades).



The effect of varying alpha

Wavelength shifts, velocity shifts,
and change in « are related by:

AN Av A«
— == xqg—
A C Q

The broad range in q coefficients means that
shift directions and amplitudes are
very different for different transitions

A2 —340 x 1076

Znl12026 . h=2479

= NS

: v=+10424msT
Nil[1741 | i g=-1400

! y=-4970ms™!
Fell2344 i | g=1254

vE+5993ms—]

Fell1608 g=-1200
i y=-3935ms~!
MgIl2796 i g=211
V=+1203ms‘]
MgI2852 i~ g=86

—20—10 0 IIOHI 20

Velocity (kms™1)



Simulation in ACDM

Elapsed time = 20,000,000 years
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, and stabill

ining accuracy, precision
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Courtesy of T. Schmidt
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Technical requirements imposed by the science

cases

Expected signal

FUNDAMENTAL
EXOPLANETS CONSTANTS REDSHIFT DRIFT
0.1 ms-1/year, 5-30 ms 0.003 ms-1/year,

periodic

relative between lines

linear with time

Over 1000s of lines

For a single line

Over 100s/1000s of lines

Precision (ms-1) 0.02 <5 0.01
Accuracy (ms-1) ? <1 ?
Instrument
stability 0.02 1 0.02

(ms-1/year)




Laser Frequency Combs
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Examining A-calibration residuals*

*the instrumental profiles were
assumed to be Gaussian but HARPS LFC I\/Illakowc et al. 2020
they are not
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ESPRESSO FP but a very similar pattern for LFC <s.imigt et al 2021
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A worrying result from a comparison of two LFCs

—— Pixel shift method =~ —4— Line shift method  Milakovic et al. 2020
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Exposure

Approximately 50 cms-1 difference in the instrumental zero-point

The reason for the effect is unknown (partly flux-dependent).
The interpretation is that the zero-point cannot be measured
with accuracy better than 50 cms-1 even when LFCs are used

Would have gone unnoticed if two LFCs were not used simultaneously!



Instrumental profile
modelling: HARPS



The instrumental profile
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Figure 3 from Anderson & King 2000



The instrumental profile
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The math and the advantages of the effective IP

Anderson & King 2000

The value of the effective PSF is the integral
of the instrumental PSF over a pixel centred at the some location
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Intra-pixel response function

The observed flux in a pixel centred at i from a line source located at x.

Fi; = foyp(t — 2., ] — ys) + Bij

N N

Source brightness  Source position Background

The functional form of the effective IP can be estimated from

. F..— B,
V(Az, Ay) = !

If Tu,Ys, [+, Bij are known

*

Advantages
1. No integration is required, simply evaluate the effective IP at the pixel centre

2. No need to know the true instrumental profile (it is never directly observable in any case)

3. Naturally takes into account the unknown intra-pixel response function



The effective IP for 1d

The value of the effective PSF is the integral
of the instrumental PSF over a pixel centred at the some location
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Intra-pixel response function

The observed flux in a pixel centred at i from a line source located at x.

Fij = f*wE(Z — ZE*,j—y:k) + Big

N N

Source brightness  Source position Background

The functional form of the effective IP can be estimated from

i(aa, o) = T1 =P

*

|f x*%,f*,Bi?- are known

Advantages
1. No integration is required, simply evaluate the effective IP at the pixel centre

2. No need to know the true instrumental profile (it is never directly observable in any case)

3. Naturally takes into account the unknown intra-pixel response function



Gaussian IP approximation
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T A ,o) = Xp | —— .
o o\ 2T P 2 o f* = AoV 21

| divided each echelle order into 16 segments (256 pixels)
and stacked the normalised lines on top of their Gaussian centres
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Gaussian Process: getting the most likely IP

Given pairs of data points {x,y} with noise €, find the most likely function f(x)=y+€

Function f(x) is sampled from . ) . .
a multivari(at)e normgl distribution p(f) =N (m7 K) ,  Where mg = m(xia 9)7 is the mean function

K;; = k(z;,x;¢) isthe covariance

matrix
Likelihood of the data as r(0 N -
. = -m, K + diag({o;
a function of hyperparameters ( ’w) (y’ ! - g({ 7’}))
Samples from prior distribution GP regression on noise-free dataset GP regression on a noisy dataset
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Plots produced using code from https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html



Intensity (arb.)
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HARPS IP in pixel space
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Intensity (counts x10°)
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Fit quality Is excellent everywhere

Colour is logarithm(!) of chi-squared
(a reasonably good fit everywhere)
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Gaussian IP centres - empirical IP centres (astrocomb)

0 (ms™)
O
£ 600
S 300
1S .
oL — - (pix)
000 005 010 015 0.0

L .

—— » Zero difference
2030 T m— (white colour)
;: IS 0.15 rarely observed
4570 625 I
-
< 600 ]  Differences up to
: { [70-10 0.22 pix (approx
< 575} 100 180 ms-)
5 | _
g o0 18"% « Correlations
S 525 11 across the

14 0.00 detector
500 1 - i
0 1024 2048 3072 4096 (PiX)

Line centre (pix)



Measuring the wavelengths of lines in the

spectral overlap regions

e 1440 LFC modes were
observed twice

300

 Wavelength of each line
was measured by fitting it
using the empirical IP
(IP in velocity space) in the
A-calibrated spectrum

* Velocity shift between two
measured wavelengths
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Median v (ms-1) RMS v (ms-) 70% |v| (ms-1)
Empirical IP -4.04 6.92 7.32
Gaussian IP -49.28 32.43 69.20




Repeating line pair velocity shifts on the detector
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Results

 The HARPS IP is asymmetric everywhere in the A range of the
astrocomb (in both fibres)

 The asymmetry varies quickly and strongly as a function of position on
the detector (fibre B more asymmetric)

* Line centres measurements may differ up to 0.22 pix between
Gaussian and empirical IP

* The average shift between the wavelength calibrations determined
from Gaussian IP and empirical IP centres is -51 ms-1 but can be as
large as -180 ms-

 |If the empirical IPs are correct, and the wavelength calibration derived
from them is accurate, using Gaussian |IPs for line fitting and calibration
introduces both short and long scale distortions in the HARPS
wavelength scale as large as 180 ms-1

e Accuracy for a single line is not better than 7 ms-1 even when empirical
|IPs are used



Open questions

e Should orders be merged given the shifts between the repeating
lines?

 What parameters does the IP depend on (charge transfer, etc.)?
Temporal evolution?

 How do we re-establish the zero-point of the instrument
accurately to enable long term studies? Tunable combs!

 Redundancy? Two LFCs operated simultaneously? LFC+I>
absorption cell?

e Should we go to 2D, avoiding spectral extraction altogether? E.qg.
forward modelling using ray-tracing models

e Next: neural networks to reconstruct the 2D IP as a function of
relevant parameters






