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Abstract 
This report (Deliverable 4.3) provides a comprehensive overview of innovative methods 
that have been identified to assess multi-hazard risk dynamics. These methods consider 
the spatial and temporal dynamics in exposure and vulnerability resulting from 
interactions between multiple hazards and disaster risk reduction measures. The 
subsequent research supports risk managers in understanding risk dynamics and the 
effects of DRR measures, enabling decision makers to be better prepared for and recover 
from multi-hazard risk events.  

The report discusses existing databases and vulnerability statistics, as well as novel 
methods and data sources, highlighting opportunities and challenges in using these 
methods and data sources. Notable methods include developing a comprehensive 
vulnerability database for urban areas, utilising novel data streams like Google Trends and 
newspaper articles for understanding impact durations, using night-time light satellite 
data for recovery pattern analysis, implementing Machine Learning for multi-risk 
assessment, and employing Disaster Forensic Analysis to learn from past events and the 
impact of risk reduction measures. 

Dissemination level of the document 
☒Public 

☐Restricted to other programme participants (including the Commission Services) 

☐Restricted to a group specified by the consortium (including the European Commission 

Services) 

☐Confidential, only for members of the consortium (including the European Commission 

Services) 

Version History 
Version Date Authors/Reviewers Description 

V1 27/07/202
3 

Marleen de Ruiter (VUA) 
Wiebke Jäger (VUA) 
Sophie Buijs (VUA) 
Timothy Tiggeloven (VUA) 
Tristian Stolte (VUA) 
Kelley De Polt (MPG) 
Davide Mauro Ferrario (CMCC) 
Margherita Maraschini (CMCC) 
Marcello Sano (CMCC) 
Silvia Torresan (CMCC) 
Andrea Critto (CMCC) 
James Daniell (Risklayer) 
Bijan Khazai (Risklayer) 
Robert Sakic Troglic (IIASA) 
Philip Ward (VUA) 
Julia Crummy (BGS) 

Submitted to internal Quality Unit 
for review 

V2 31/08/202
3 

Same as V1 Revisions made based on review 
by Quality Unit 

V3 4/09/2023 Marleen de Ruiter (VUA) 
Sophie Buijs (VUA) 
Philip Ward (VUA) 
Julia Crummy (BGS) 

Final version including minor 
changes based on review by 
Quality Unit 



 
  
                              

3 
 

Table of Contents 
Executive summary 5 

1 Introduction 6 

1.1 Background ....................................................................................................................................................... 6 
1.2 Aims and scope ............................................................................................................................................... 6 

1.3 Structure of the deliverable ......................................................................................................................7 

2 State of the art and research needs 8 

2.1 Hazard ................................................................................................................................................................... 8 
2.2 Exposure and vulnerability ....................................................................................................................... 8 

2.3 Recovery ............................................................................................................................................................. 9 

3 Novel methods for detecting empirical evidence 12 

3.1 Examination of existing databases and functions ................................................................... 12 

3.1.1 Existing disaster loss databases and statistics 16 
3.1.2 Existing vulnerability functions that address dynamics 20 
3.1.3 Existing hazard, exposure and vulnerability databases 22 

3.2 Novel vulnerability drivers database ............................................................................................... 24 

3.3 Statistics and machine learning techniques ............................................................................... 30 
3.3.1 Novel data streams & statistics to understand impact-relevant extreme 
event durations 30 

3.3.2 Nighttime lights & statistics to understand recovery after single- vs. multi-
hazard events 33 
3.3.3 Machine learning for understanding dynamics of risk drivers 37 

3.4 Disaster forensics analysis on paired disasters......................................................................... 41 
3.5 Dynamic vulnerability: consecutive occurrence of disasters and disease 
outbreaks ...................................................................................................................................................................... 42 

4 Challenges & opportunities 44 

4.1 Datasets ............................................................................................................................................................ 44 
4.1.1 Traditional data sources 44 

4.1.1.1 Local & regional 44 
4.1.1.2 Global 45 

4.1.2 Novel data sources 45 

4.1.2.1 Nighttime lights (NTL) data 45 
4.1.2.2 Google search interest, newspaper mentions, hospitalisations and 
mortality 46 

4.2 Methods and approaches ...................................................................................................................... 47 
4.2.1 Differences in differences (DiD) 47 
4.2.2 Quantifying impact-relevant durations 48 

4.2.3 Machine learning 48 
4.2.4 Disaster forensic analysis 49 

5 Conclusions 51 

6 Data and ethics statement 51 

7 References 52 

 
  



 
  
                              

4 
 

Table of Tables 
Table 1: A summary table of existing European damage and loss databases for natural 
perils. In many cases, the database has a global, or at least European, extent with a 
differing range of hazards included. ................................................................................................................... 13 
 

Table 2: Total number of events compared to total number and fraction of events that 
have impact data, with fl = flood, ew = extreme wind, cw = cold wave, dr = drought, and  
hw = heatwave. ................................................................................................................................................................ 19 

Table of Figures 
Figure 1: Total number of disaster events as registered in EM-DAT from 2000 to 2015, 
with fl = flood, ew = extreme wind, cw = cold wave, dr = drought, and hw = heatwave. Only 
events with a total number of at least 10 and with hazard types that have been recorded 
as single- and multi-hazards events are included in the plot. (a) Total number of multi- and 
single-hazard events, (b) for events with fl and ew hazards (c) events with ew and cw 
hazards, (d) events with dr and hw hazards. ................................................................................................... 18 
 

Figure 2: Impacts for floods, extreme winds and flood – extreme wind multi-hazards in 
terms of (a) “Total Deaths”, (b) “Total Affected” and (c) “Total Damages, Adjusted 
(‘000US$’)”, with fl = flood, ew = extreme wind, cw = cold wave, dr = drought, and hw = 
heatwave. ............................................................................................................................................................................ 19 
 

Figure 3: Wind, wet, and cold extremes in the Veneto region (2009-2022). .......................... 20 
 

Figure 4: Heatmap showing the percentage of vulnerability drivers in each class (rows) 
per hazard (columns), relative to the total number of vulnerability drivers for that hazard. 
This Figure only shows the 10 most common classes, which are determined by ranking 
the classes on the sum of the rows. .................................................................................................................. 25 
 

Figure 5: Sankey Diagram showing the relationship of sub-dimensions and classes for 
drought. Each line represents a number of drivers that flow from a sub-dimension into a 
class. For readability, we only display those sub-dimension-class combinations that 
contain at least 2 drivers. ..........................................................................................................................................27 
 

Figure 6: Sankey Diagram showing the relationship of sub-dimensions and classes for 
earthquakes. Each line represents a number of drivers that flow from a sub-dimension 
into a class. For readability, we only display those sub-dimension-class combinations that 
contain at least 4 drivers. ......................................................................................................................................... 28 
 

Figure 7: Schematic drawings of the directional and driver-interaction dynamics of 
vulnerability. ..................................................................................................................................................................... 30 
 

Figure 8: Schematic summary of the workflow. For each time scale, we find the hottest 
periods (between 1-day and 90-days; incrementing in daily intervals) and aggregate the 
related heatwave impacts or response for each considered data stream in order to 
identify the most impact-relevant time scales. .......................................................................................... 32 
 

Figure 9: Step by step workflow for proposed methodological approach of applying DiD 
to study changes in NTL values post-disaster, for a large number of single- and multi-
hazard events. ................................................................................................................................................................. 36 
 

Figure 10: Stages of growing understanding of increasing disaster-risk complexity from 
single-hazard thinking (left panel), to multi-(hazard) risk thinking (middle panel), to 
including disease outbreaks (right panel). The important role of vulnerability acting as a 
multiplier is demonstrated by the changing slope of the level of well-being after disasters 
and disease outbreaks. .............................................................................................................................................. 43 

 



  
                                

5 
 

Executive summary 
This report (Deliverable 4.3) presents a comprehensive overview of innovative methods 
and data sources that are being employed by MYRIAD-EU to assess risk dynamics and 
feedbacks between risk components in a multi-hazard risk context. These methods 
consider the spatial and temporal dynamics in exposure and vulnerability arising from: (1) 
interactions between multiple hazards; and (2) the implementation of disaster risk 
reduction (DRR) measures aimed at addressing these hazards. This research supports risk 
managers to better understand the dynamics of risk and the effects of DRR measures, and 
it enables decision makers to be better prepared for and recover from multi-hazard risk 
events.  

As more and more people are facing natural hazards worldwide, it has become crucial to 
broaden our approach from studying one hazard at a time to considering multiple hazards 
together. This shift helps us understand how these hazards interact with one another—
like how one hazard can trigger, amplify, or compound the effects of another. 
Underpinning this, is a comprehensive risk framework that considers the hazard itself, how 
exposed we are to it, how vulnerable we are to its effects, and how we respond to it. By 
understanding these relationships, we can make better decisions to manage the risks of 
natural hazards in a comprehensive and interconnected way, across different sectors. 
However, to better understand these relationships and dynamics. To do this, we require 
novel methods and data sources. This report discusses the current state-of-the art, it 
presents promising novel methods and data sources that are being, and will be, used by 
MYRIAD-EU, and discusses challenges and opportunities in using them. 

In this deliverable, we highlight the following novel methods and data that we have 
identified, and we discuss the challenges and opportunities in using them to assess 
different dynamics of multi-hazard risk:  

● The development of a comprehensive database of vulnerability drivers for six different 
hazards for urban areas. 

● Data obtained through novel data streams such as Google Trends and newspaper 
articles are used to understand impact-relevant durations of extreme events such as 
heatwaves. 

● Nighttime light (NTL) satellite data are used to assess recovery patterns using a 
statistical difference-in-difference (DiD) analysis. 

● Machine Learning is used to analyse multi-risk for historical and future scenarios in the 
Veneto pilot study. 

● Disaster Forensic Analysis and paired-event analysis are used to study past events and 
learn lessons regarding disaster risk dynamics and the impact of DRR measures. 
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1 Introduction 

1.1 Background 

Risk, defined by the UNDRR (2019) as the product of hazard, exposure and vulnerability, is 
typically assessed and managed from a single hazard perspective, often neglecting spatial 
and temporal feedbacks between risk elements (Ward et al., 2022; De Ruiter et al., 2020). 
However, real-world disasters show that there are many dynamics and feedbacks at play 
that are traditionally not captured by risk models. For example, an earlier disaster can 
increase vulnerability at the time of a second event. Therefore, the international 
community (e.g., IPCC 2022, UNDRR 2022) have called upon disaster risk scientists to 
improve our understanding and modelling capabilities of dynamics and feedbacks of risk 
and risk elements. MYRIAD-EU’s WP4 aims to improve modelling multi-(hazard) risk 
dynamics and feedbacks. These improved modelling capabilities can in turn can be used 
to better inform disaster risk reduction (DRR) and adaptation strategies, and to support 
evidence-based decision-making. To better assess and model these multi-(hazard) risk 
dynamics, we require methodologies that can capture different aspects of these risk 
dynamics (Ward et al. 2022). Finally, the assessment of risk dynamics and feedbacks not 
only requires novel methods but also extensive data.  

1.2 Aims and scope  

This deliverable aims to report on the methodological developments that have been 
identified as part of Task 4.1 (“Novel approaches for identifying evidence of dynamics & 
feedbacks of risk drivers”), which was part of the "Initial design and development step" of 
the project. The findings from this task will feed into the next step of the project (i.e. "the 
Iterative Testing & refinement" step); they will be further developed and tested in Task 4.3 
to quantifying the dynamics and feedbacks of multi-hazard risk drivers”), they will be used 
to support the development of the database of empirical evidence of dynamic feedbacks 
between risk drivers (Task 4.4), and finally they will be incorporated in the software 
package and user guide for multi-hazard and multi-risk scenario generation (Task 5.4).   

In this deliverable, we outline a range of novel approaches, including several statistical and 
machine learning techniques, and open access data sources, that have been identified for 
application to detect different aspects of disaster risk dynamics. This report presents and 
discusses the opportunities and challenges of using these methods and data sources for 
understanding risk dynamics. Within the MYRIAD-EU project, the identified methods and 
data sources will be used to detect changes in reported losses and damages due to spatial 
and temporal dynamics in exposure and vulnerability caused by: (1) interactions between 
multiple hazards and (2) DRR measures taken to address those hazards. We also discuss 
how Disaster Forensic Analysis are used to study past events and learn lessons regarding 
disaster dynamics and the impact of DRR measures. 
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1.3 Structure of the deliverable 

In section 2, we outline the current state-of-the-art and research needs regarding the 
assessment and modelling of multi-risk dynamics and dynamics of and between 
components of risk. Section 3 first provides an overview of existing key databases and 
vulnerability functions statistics that exist at global, EU, national and local scales, and 
highlight those that have been identified for the assessment of multi-hazard risk dynamics 
in MYRIAD-EU. We also describe an innovative vulnerability drivers’ database, 
encompassing six distinct hazards, that was developed by MYRIAD-EU. We then discuss 
various novel methods, including statistical and machine learning techniques, that have 
been identified for the assessment of different aspects of multi-risk dynamics. Next, we 
highlight the use of Disaster Forensic Analysis to study past events, offering valuable 
insights into disaster dynamics and the effectiveness of DRR measures. We also discuss 
ongoing work on the consecutive occurrence of disasters and waterborne disease 
outbreaks and  next, in section 4, we present our main findings concerning the challenges 
and opportunities associated with well-established and novel data sources, as well as 
methods used for detecting risk driver dynamics and feedbacks. We also assess their 
suitability for use in local case studies. Finally, in section 5 we present our overarching 
conclusions.  
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2 State of the art and research needs 

2.1 Hazard 

The shift from a single-hazard focus within risk assessment and hazards research to a 
multi-hazard focus is necessitated by the increasing number of people exposed to natural 
hazards around the world. Shifting this focus to a multi-hazard scope allows for the 
analysis of different hazard relationships such as triggering, amplifying, compounding, and 
sequencing (Gill et al., 2022). A further understanding of these relationships allows for 
more informed disaster risk management that considers multi-(hazard) risks in a multi-
sectoral, systemic approach (Ward et al., 2022). In the current literature, natural hazards, 
and in particular climate extremes, are classified as extreme if the value of one or more 
characteristics is above (or below) a threshold. These thresholds may differ between 
different definitions, meaning that hazards with the same name may be classified 
differently. This difference in classification may then translate into differences in 
measured impacts or damage (Seneviratne et. Al., 2021). This leads to the need for an 
analysis scheme to produce comparable single- and multi-hazard assessments across 
different sectors (Orth et al., 2022). Within MYRIAD-EU, we aim to produce intensity-
damage relationships for single- and multi-hazard events to further understand the 
dynamics between risk drivers. As a first step towards this goal, a workflow for 
determining impact-relevant durations has been developed and applied to the case of 
heatwaves in Germany across health and societal attention sectors (De Polt et al., 2023). 
If we can recommend impact-relevant characteristics of events, such as duration, we can 
better inform, in a more consistent way, on which characteristics events should be 
analysed in terms of impact or societal response. 

2.2 Exposure and vulnerability 

Vulnerability research suffers from a lack of data and conceptual challenges (Formetta & 
Feyen, 2019; Jurgilevich et al., 2017; Schneiderbauer et al., 2017). It is therefore difficult to 
measure vulnerability – especially on the social side where it is often not visible or easily 
quantifiable. Moreover, if we can quantify vulnerability, we usually make use of static data 
and some general indicators like (the population’s) age or poverty (e.g., Rufat et al., 2015). 
Additional value in vulnerability assessments lies in the description of the pathways 
through which certain hazards impact people and assets. But to incorporate this into risk 
assessments, we need information on what actually drives vulnerability, as well as on 
vulnerability dynamics.  

Current research into vulnerability drivers seems to have reached a plateau, as we 
insufficiently challenge the underlying theories (Kuhlicke et al., 2023). We are therefore at 
a risk of blindly adopting existing vulnerability indicators for each new risk assessment. 
This is especially true for larger geographical scales, because the data are less detailed 
and because vulnerability is a very context-dependent concept (Hinkel, 2011). Moreover, 
vulnerability from a multi-risk perspective and the dynamics that it brings along have 
hardly been addressed so far in the scientific literature (de Ruiter & van Loon, 2022). More 
specifically, vulnerability drivers for one hazard may not apply (in the same way) to another 
hazard (de Ruiter et al., 2021). In MYRIAD-EU we attempt to move on from the plateau by 
collecting empirical evidence on drivers of vulnerability for several different hazards 
(Stolte et al., submitted for publication). 

If we know what drives vulnerability, we can move towards addressing the dynamics of 
vulnerability in a more holistic way. In our research, we have synthesised the current state 
of knowledge on vulnerability dynamics (Stolte et al., submitted for publication; de Ruiter 
& van Loon, 2022). Within our research for the MYRIAD-EU project, we have identified 
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three forms of dynamics based on literature and expert knowledge (de Ruiter & van Loon, 
2022): (1) time dynamics, which relate to changes in vulnerability drivers over time (e.g. 
how poverty evolves over time for a country; e.g. de Ruiter et al., 2021), (2) directional 
dynamics, which describe the link between vulnerability drivers and the impact beyond a 
linear relationship (e.g. Stolte et al., submitted for publication), and (3) management 
dynamics, which are about the way in which we deal with vulnerabilities (e.g. Schipper, 
2020). Next, we need to find ways to incorporate these dynamics in (multi-)risk 
assessments. Since our understanding of the dynamics is getting increasingly better, the 
biggest challenge ahead is obtaining sufficient data. Local scale assessments bring an 
opportunity to obtain detailed data on an area small enough to comprehend vulnerability 
dynamics, but such data are not always available or accessible. Therefore, another option 
is to try to supplement existing data with Machine Learning techniques. 

Multi-hazard events pose a significant threat to human communities and infrastructure, 
and understanding the role of social vulnerability in exacerbating their impacts is essential 
(Drakes & Tate, 2022). Social vulnerability refers to the unequal distribution of resources, 
power, and resilience among different social groups, leaving certain populations more 
susceptible to the consequences of disasters (Bergstrand et al., 2015; Rufat et al., 2015). 
Disparities in wealth, access to healthcare, education, age, and social support systems 
contribute to social vulnerability, resulting in differential impacts during multi-hazard 
events (Drakes & Tate, 2022).  

Recent disasters have highlighted the growing complexities associated with disaster risk 
and the challenges they pose to society. In our paper, we (De Ruiter and Van Loon (2022)) 
propose a paradigm shift, focusing on the factors that shape dynamic vulnerability. We 
identify three types of vulnerability dynamics: (1) the underlying dynamics of vulnerability; 
(2) changes in vulnerability over the course of prolonged disasters; and (3) changes in 
vulnerability during compounding disasters and societal shocks. We contend that 
qualitative and model-based approaches hold significant potential for capturing 
vulnerability dynamics, allowing us to recreate past trends and project future patterns, 
such as narrative-based approaches, agent-based models, and system dynamic models. 

While there are a plethora of methods to assess vulnerability (for an overview, see Douglas 
2007, De Ruiter et al., 2017 and Hagenlocher et al. 2019), we identified a large gap in 
capturing the dynamics of vulnerability in single- and multi-hazard risk assessments (de 
Ruiter and van Loon, 2022). In this report, we provide an overview of methods and 
approaches, both quantitative and qualitative, for assessing dynamic vulnerability to 
various natural hazards in a multi-hazard setting (including hazards such as flooding, 
droughts, landslides, earthquakes, volcanic eruptions, heatwaves, wildfires, and tsunamis). 

2.3 Recovery 

Recovery after disaster events is defined as “The restoring or improving of livelihoods and 
health, as well as economic, physical, social, cultural, and environmental assets, systems 
and activities, of a disaster-affected community or society, aligning with the principles of 
sustainable development and ‘build back better’, to avoid or reduce future risk.” (UNDRR, 
2020). In recent years, scientific studies have been adopting a broadened view of post-
disaster recovery, exploring topics such as self-recovery (e.g., Ahmed & Parrack, 2022; 
Sergeant et al., 2020; Schofield et al., 2019), as well as multi-hazard recovery (e.g., Hariri-
Ardebili et al., 2022; Mohammadi et al., 2023). 

In a multi-hazard context, the recovery process can be more complex than in a single-
hazard context, especially in the case of a consecutive disaster, where two or more 
disasters occur in succession, with direct impacts that overlap spatially before recovery 
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from the first event is completed (de Ruiter et al., 2020; Mohammadi et al., 2023). 
Response and recovery after the first disaster can become more demanding or 
challenging because of the occurrence of a second event (Mohammadi et al., 2023). 
Rescue teams might physically be hindered in their rescue efforts, like in 2021 in Haiti, 
where the landfall of tropical storm Grace caused a race against the clock for post-
earthquake rescue operations (IFRC, 2021). Moreover, humanitarian personnel and 
financial resources can get depleted after a first disaster, while societal needs and 
dependence on humanitarian aid can remain high or become even higher after the second 
event. On the other hand, successful recovery between events can lower a community’s 
vulnerability to consecutive hazards, for example through the implementation of ‘build 
back better’ efforts. While the recovery process after a first disaster can have a large 
influence on the impact of a second disaster, we still have a poor understanding of multi-
hazard recovery. To a large extent, multi-hazard analyses are still restricted to qualitative 
and semi-quantitative approaches; recovery 10mbrace10g is often still done from a 
single-hazard perspective; and in multi-hazard risk and impact assessments, recovery 
dynamics and residual damages are generally not included (de Angeli et al., 2022; Dhulipala 
et al., 2021; Kong et al., 2019).  

There are several recent studies that have taken initial steps to qualitatively understand 
or assess recovery in a multi hazard context, such as the research by Mohammadi et al. 
(2023), who have elaborated on multi-hazard recovery as a concept and on the challenges 
that are involved with multi-risk recovery planning, through a critical review of existing 
literature and guidelines on disaster recovery. In the studies of Hariri-Ardebili (2020) and 
Hariri-Ardebili et al. (2022), some generalised conceptual representations of recovery 
under different multi-hazard scenarios are provided. They adopt a very broad perspective 
on multi-hazard events by studying the Covid-19 pandemic not only in relation to natural 
hazards, but also in relation to other complex emergencies like mass protests or military 
movements. They explore the recovery of the healthcare system after such multi-hazard 
events in a qualitative manner by analysing several different multi-hazard scenarios (i.e. 
pandemic + natural hazards and/or complex emergencies).  

Other studies have applied a more quantitative approach to study multi-hazard recovery. 
Dhulipala et al. (2021) have, for instance, developed a generalised post hazard-event 
systems recovery modelling framework, based on state dependent Markov-type 
processes, which can be applied to multi-hazard events to simulate multi-hazard recovery 
curves. They demonstrate the model on a case study, where they simulate a set of multi-
hazard recovery curves for 64 houses in a community, which are then averaged to 
construct multi-hazard community recovery curves. Another study by Kong et al. (2018) 
has taken a quantitative approach to study multi-hazard infrastructure resilience. In 
various studies, recovery is analysed under the broader concept of resilience; Mohammadi 
et al. (2023) note that the ability to recover from a disruptive event is one of the most 
critical components of overall system resilience and that often recovery indicators have 
been used to measure the resilience of a system. Kong et al. (2018) observe that with 
regards to infrastructure resilience, the effects of overlapping, sequential, and related 
hazards are rarely considered in literature. They develop a quantitative approach to 
analyse the resilience of interdependent infrastructure networks that are subject to 
multiple sequential hazards. Through a case-study application of their methodology, they 
show that multi-hazard resilience is always different from the sum of single-hazard 
resilience.  

While it is important to understand recovery in a multi-hazard context when designing 
adequate disaster risk management strategies, most multi-hazard research to date has 
focused on the physical aspects of multi-hazards (Gill & Malamud, 2016; Tilloy et al., 2019), 
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leaving the social aspects relatively understudied (Drakes & Tate, 2022). Moreover, within 
the socially oriented studies, there is a strong focus on pre-disaster preparedness and 
mitigation, rather than post-disaster response and recovery (Drakes & Tate, 2022). While 
some initial advances in the field of multi-hazard recovery have been made in recent years, 
most studies are either qualitative or semi-qualitative and the quantitative studies that do 
exist are very localised and specific (i.e., focused on a single system in one location, e.g. 
only one bridge, or one community). Generalised quantitative observations about how 
recovery is different or similar after single- and multi-hazard events are still missing. 
Deeper insights into the general differences between single- and multi-hazard recovery 
can ultimately help to enhance disaster preparedness and response strategies. 
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3 Novel methods for detecting empirical evidence 

MYRIAD-EU uses a range of novel approaches to detect changes in reported losses and 
damages due to spatial and temporal dynamics in hazard, exposure and vulnerability 
caused by: (1) interactions between multiple hazards; and (2) DRR measures taken to 
address those hazards. We recognise that a plethora of databases and functions exist. 
This section does not aim to provide a comprehensive overview of all existing databases 
and functions, but instead focuses on those that have been identified for use in MYRIAD-
EU. Therefore, this section first discusses existing key databases and vulnerability 
functions that have been identified for use in MYRIAD-EU to address dynamics and 
feedbacks of risk. Next, we discuss a novel vulnerability drivers database for six different 
hazards that was developed by MYRIAD-EU. Then we discuss several statistical and 
machine learning techniques that have been identified to detect different aspects of 
disaster risk dynamics. Finally, we outline how Disaster Forensic Analysis are used to study 
past events and learn lessons regarding disaster dynamics and the impact of DRR 
measures. 

3.1 Examination of existing databases and functions 

We use existing disaster loss databases and statistics that exist at global, EU, and national 
scales (e.g., NatCatService, CATDAT, EM-DAT, EUROSTAT, Post Disaster Needs 
Assessments, national accounting) to identify losses and damages, several existing 
DRR/adaptation databases (e.g., RISC-KIT, ClimateADAPT, FLOPROS). This allows us to 
specifically examine changes in exposure and vulnerability across different groups (e.g., 
elderly, female) while accounting for a multi-hazard risk context. Table 1 presents many 
existing damage and loss databases that are of relevance for MYRIAD-EU.  
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Table 1: A summary table of existing European damage and loss databases for natural 
perils. In many cases, the database has a global, or at least European, extent with 
a differing range of hazards included. 

Name Author Extent Hazards 
Covered Years 

Socio-
economic 

metrics 
covered 

Level of 
coverage Open? 

Multi-
hazar

d? 

EM-DAT UC Louvain, 
OFDA, CRED Global 

All natural 
and 

manmade 

1900-
2023 

Fatalities, 
Social effects, 
Econ. Damage 

26000+ 
events 

Yes, 
restricted 
public use 

with sign in; 
Not freely 

downloadable 

No 

GDIS 

CIESIN, 
Rosvold and 

Buhuag 
(2021) 

Global 
All natural 

and 
manmade 

1960-
2018 

Fatalities, 
Social effects, 
Econ. Damage 

11081 
events Open No 

CE-DAT CRED Global 
Complex 

emergenci
es 

1998-
present 

Fatalities, 
Social effects, 
Econ. Damage 

4000+ 
events 

Yes, 
restricted 
public use 

with sign in; 
Not freely 

downloadable 

No 

JRC 
DRMKC JRC Europe 

All natural 
and 

manmade 

Historic
al-2023 

Fatalities, 
Social effects, 
Econ. Damage 

1000+ 
events Yes No 

EEA-
CATDAT 

Risklayer/CM
CC Europe All natural 1980-

2023 

Fatalities, 
Economic 

Metrics 

5000+ 
events 

Statistics 
open, 

database not 
freely 

downloadable 

No 

Brakenridg
e et al. 

Dartmouth / 
Uni Colorado Global Hydrologic

al 
1985-
2023 

Fatalities, 
Social effects, 
Less on Econ. 

Damage 

5000+ 
events Yes No 

AON 
ImpactFor
ecasting 

AON Global 
All natural 

and 
manmade 

2001-
2023 

Mostly Econ. 
Damage, 

Claims and 
fatalities 

ca. 2500 
events 

Open 
publications, 

but restricted 
use of results. 

No 

NatCatSer
vice and 

MRNATHA
N 

MunichRe Global All natural 

79-
2023 

(Mainly 
1980-
2023) 

Mostly Econ. 
Damage, 

Claims and 
fatalities 

Over 
40,000 

loss events 

Statistics 
open, 

database not 
free to 

download; 
MRNATHAN 

on original CD 

No 

Sigma SwissRe Global All natural 1970-
present 

Mostly Econ. 
Damage, 

Claims and 
fatalities 

1000s of 
events 

Statistics 
open, 

database not 
freely 

downloadable 

No 

GLIDE 

Asian Disaster 
Reduction 

Center 
(ADRC) 

Global 
All natural 

and 
manmade 

2000-
present 

Fatalities, 
Social effects, 
Econ. Damage 

1000s of 
events Yes No 
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Desinventa
r 

Country-
Specific 

Govts 

90+ 
countri

es 

All natural 
and 

manmade 

Country 
specific 
generall
y recent 

Extensive 
social, 

economic and 
environmenta

l damage 
parameters 

100,000s 
of events 

and 
datacards 

Yes No 

NOAA 
Earthquak
e, Volcano 

and 
Tsunami 

NOAA Global 

Earthquak
e, Volcano 

and 
Tsunami 

Historic
al-

present 

Fatalities, 
Social effects, 
Econ. Damage 

Earthquak
e: 6384 
events 

Yes No 

GLC NASA Global Landslide 1970-
2021 

Fatalities, 
Social Effects 

11033 
events etc. Yes No 

GVP Smithsonian 
Institution Global Volcanic 

activity 

Historic
al-

present 

Descriptions 
of social 
effects 

Covers 
1500+ 

volcanoes 
Yes No 

GFDRR 
DL-DAT World Bank Selecte

d All natural 1974-
present 

All social and 
economic 

sectors 

Around 
150 events Yes No 

CATDAT Daniell et al. 
(2014) Global 

All natural 
and 

manmade 

Prehist
oric-

present 
but 

mainly 
1900-

present 

Fatalities, 
Social effects, 
Econ. Effects, 

Economic 
sectors 

Over 
60,000 

loss events 

Statistics 
open, 

database not 
freely 

downloadable 

No 

Volcano 
Fatalities 
Database 

Brown et al. 
(2017) Global Volcano 1500-

2017 Fatalities 635 
records 

Freely 
downloadable 

CC0 
No 

Landslide 
Fatality 

Database 

Froude & 
Petley (2019) Global Landslide 2004-

2017 

Fatalities, 
Extent, 
Effects 

5490 
events 

Freely 
downloadable 

CC0 
No 

BD 
NATDIS 
Global 

Ubyrisk 
Consultants Global 

All natural 
and 

manmade 

2001-
2023 

Fatalities, 
Economic 

damage 

20,702 
events 

Statistics 
open, 

database not 
freely 

downloadable 

No 

GIDD IDMC Global 
All natural 

and 
manmade 

1998-
present Displacement 

By country, 
but events 

also 
available 

CC-BY-NC No 

EUFF Petrucci et al. 
(2021) Europe Hydrologic

al 
1980-
2020 Fatalities 2875 

events 

Freely 
downloadable 

CC0 
No 

GAPHAZ Uni. Oslo Global 
Glacier and 
Permafros
t Hazards 

Historic
al-

present 

Disaster 
impacts 87 events 

Freely 
downloadable 

CC0 
No 

Cambridge 
Earthquak
e Database 

in 
combinatio

n with 
Pomonis 
database 

Uni.Cambridg
e Global Earthquak

e 
1900-
2023 

Fatalities, 
Economic 
damage, 
Building 
damage 

1800+ 
events 

Statistics 
open, 

database 
partially freely 
downloadable 

No 
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RSOE EDIS RSOE Global 
All natural 

and 
manmade 

2004-
2023 

Fatalities, 
Building 

damage and 
social effects 

where 
available 

1000s of 
events 

Statistics 
open, 

database not 
freely 

downloadable 

No 

GallagherR
e & 

WillisRe 

GallagherRe 
& WillisRe 
Under diff 

publications 

Global 
All natural 

and 
manmade 

2012-
2023 

Fatalities, 
Economic 

metrics (total, 
insured) 

ca. 200 
events per 

year 

Via 
Publication – 
not for public 

use 

No 

EFFIS JRC Europe Forest fire 
hazards 

2000-
2023 

Forest fire 
extents, social 
effects where 

available 

1000s of 
events Yes No 

HANZE Paprotny et al. 
(2017) Europe Hydrologic

al 
1870-
2016 

Fatalities, 
Economic 
damage, 
Building 
damage 

1564 
events 

Open, 
downloadable

. Includes 
compound 

floods 

No 

WMO WMO based 
on EM-DAT Global 

Hydrologic
al and 

Meteorolo
gical 

1970-
2019 

Fatalities, 
Economic 
damage, 
Building 
damage 

11778 
events 

Statistics 
open, 

database not 
directly freely 
downloadable 

No 

ESWD-
ESSL ESSL Europe Weather 

related 
Historic
al-2023 

Fatalities, 
Building 
Impacts 

33000+ 
events 

Yes, after 
registration, 
limited use. 

No 

PAGER-
CAT 

Allen et al. 
(2008) Global Earthquak

e 
1900-
2007 

Fatalities, 
Economic 
damage, 
Building 
damage 

2000+ 
events Yes No 

FAOSTAT FAO (2021) Global 
All natural 

and 
manmade 

1970-
2019 
with 

focus 
on 

2008-
2018 

Economic 
impacts on 
agriculture 

1000s of 
events 

In publication 
form No 

EDII and 
EDR 

European 
Drought 

Centre and 
R&SPI project 

Europe Drought 1900-
2021 

Sectoral 
impacts, 

economic 
damage etc. 

500 
drought 
impact 

reports as 
of 2021 

with 30 or 
so events 

Yes No 
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3.1.1 Existing disaster loss databases and statistics 

We have identified well-established data sets in the field of natural hazards that are open 
access for academic use. Below we outline key databases that we (plan to) use in WP4 to 
assess dynamics and feedbacks of risk, and discuss their advantages and limitations:  

 
EM-DAT Emergency Event Database 
● Description:  

EM-DAT contains global data on the occurrence and impacts of mass disasters from 
1900 – present. Events may be included if they resulted in at least 10 deaths, at least 
100 people affected/injured/homeless or the affected country issued a declaration of 
emergency or an appeal for international assistance. Data are obtained from various 
sources, including United Nations (UN) agencies, research institutes and non-
governmental organisations. EM-DAT records data on different types of natural 
hazards including floods (fl), droughts (dr), earthquakes (eq), volcanic activity (vo), 
extreme wind (ew), heatwaves (hw), cold waves (cw), wildfires (wf), landslides (ls) which 
are central to MYRIAD-EU’s Pilots. The EM-DAT database states the primary hazards 
as well as secondary, associated or resulting hazards (up to two), thus including a 
certain type of multi-hazard event. It includes so-called compound events, which were 
classified as preconditioned, multivariate, temporally compounding or spatially 
compounding events by Zscheischler et al. (2020), which are similar to the so-called 
triggered or spatially and temporally coinciding hazards as identified by Gill & Malamud 
(2014). Nonetheless, most events are recorded as single-hazards (Figure 1). 

 
● Limitations:  

− The EM-DAT database does not include consecutive disasters at the same 
location, if they were not triggered. This is a limitation for multi-hazard analysis, 
because consecutive disasters can lead to significant compounding impacts and 
need to be accounted for when developing robust DRR measures (e.g., de Ruiter et 
al. 2020, de Ruiter & Van Loon, 2022).  

− Other limitations of the database for the purpose of multi-risk analysis, in particular 
of dynamics and feedbacks of risk drivers, are related to data availability and 
resolution/accuracy: 
o Data on hazard magnitude are scarce. Only the magnitude of the main hazard 

but not of the associated hazards is included. Moreover, for more than half of 
events, and also recent events after 2000, this information is missing, and 
quality or accuracy are questionable.  

o Data on location are mostly given in terms of administrative boundaries, thus 
not providing an accurate representation of spatial extent of the event. This is 
combined with GDIS for some cases to give an approximate extent, however it 
is not consistent. 

o The variable Total people Affected is not interpreted consistently across 
events and can hardly be used for comparison. 

o Economic damage is reported from different entities and uses different and 
conflicting definitions.  

o The inflation adjustment does not use Country CPI and thus assumes all 
countries are the United States. 
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● Exploratory data analysis:  
An exploratory data analysis was conducted where we focused the analysis on event 
types that have been recorded at least 10 times and cause impacts at larger than local 
spatial scales. For example, landslides have been excluded due to their mainly local 
impact. These remaining hazards include extreme wind, cold waves, heatwaves, 
droughts, floods, earthquakes, and any combination. Because earthquakes have not 
been recorded in combination with other hazards these are also excluded. The 
following multi-hazard events remain: extreme wind and floods, extreme wind and cold 
waves, heatwaves, and droughts. This is according to the EM-DAT definition of single- 
and multi-hazards, meaning that they do not have any associated hazards registered. 
A challenge when analysing impact, and ultimate changes in impact, is that many 
events miss data on impacts. Table 2 shows the total number of events recorded per 
type, as well as the number that have recorded “Total Deaths”, “Total Affected” and 
“Total Damages, Adjusted (‘000 US$’)”. Impact data are especially scarce for drought, 
heatwaves, and drought-heatwave combinations with fewer than 10 data points. 
Impact data are also limited for cold waves, extreme wind events, and combinations (< 
20 data points). Considering the data quality (see limitations of EM-DAT above), we 
focused on a comparison of losses and damages to floods, extreme wind events and 
combinations, as those have more data available (> 150 data points). Figure 2 shows 
boxplots of impact distributions for floods, extreme winds and flood – extreme wind 
multi-hazards in terms of “Total Deaths”, “Total Affected” and “Total Damages, 
Adjusted (‘000US$’)”. By visual inspection, the impact on people in terms of “Total 
Affected” as well as economic losses in terms of “Total Damages, Adjusted 
(‘000US$’)” tends to be notably higher for multi-events consisting of floods and 
extreme winds than for single-hazard events, either floods or extreme wind. This is not 
visible for “Total Deaths” in the case of flood versus combined flood – extreme wind 
events. On the other hand, the impacts of combined events do not seem to be an 
addition of the impact of the single-hazard events supporting the theory that there are 
dynamics between risk drivers leading to non-linear relationships. However, these are 
very preliminary conclusions given the quality of the data set as described above. The 
data set gives very little opportunity for robust statistical analysis. 
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● Next steps:  
To make the data set suitable for an in-depth statistical analysis of changes in losses 
and damages that arise from interactions between multiple hazards in MYRIAD-EU we 
plan to:  
− make use of additional data sources (this will be addressed as part of Task 4.4): 

o for currently missing impact data  
o for currently missing data on hazard intensities 

− investigate a wider definition of multi-hazard events, for example, consecutive 
events such as the tropical cyclone and earthquake in Haiti in 2019 and the two 
tropical cyclones making landfall in Mozambique in 2020 (see, e.g., de Ruiter & van 
Loon 2022) (this will be addressed as part of Task 4.4).  

 

 
Figure 1: Total number of disaster events as registered in EM-DAT from 2000 to 2015, 

with fl = flood, ew = extreme wind, cw = cold wave, dr = drought, and hw = 
heatwave. Only events with a total number of at least 10 and with hazard types 
that have been recorded as single- and multi-hazards events are included in the 
plot. (a) Total number of multi- and single-hazard events, (b) for events with fl and 
ew hazards (c) events with ew and cw hazards, (d) events with dr and hw hazards. 
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Table 2: Total number of events compared to total number and fraction of events that 
have impact data, with fl = flood, ew = extreme wind, cw = cold wave, dr = drought, 
and hw = heatwave.  

Event 
Type 

Total 
number of 

events 

Number of 
events with 
registered 

“Total Deaths” 

Number of events 
of events with 

registered “Total 
Affected” 

Number of events of events 
with registered “Total 

Damages, Adjusted (‘000 
US$’)” 

fl 1832 1227 1594 483 

ew 868 600 576 401 

cw 179 148 55 14 

dr 153 5 96 54 

hw 87 80 31 5 

ew,fl 277 217 232 152 

cw,ew 36 26 13 17 

dr,hw 23 12 5 18 

 
Figure 2: Impacts for floods, extreme winds and flood – extreme wind multi-hazards in 

terms of (a) “Total Deaths”, (b) “Total Affected” and (c) “Total Damages, Adjusted 
(‘000US$’)”, with fl = flood, ew = extreme wind, cw = cold wave, dr = drought, and 
hw = heatwave.  

 
ESWD (European Severe Weather Dataset)  
● Description:  

The ESWD is managed by the European Severe Storms Laboratory (ESSL) with the 
support of other public and private organisations and individuals (CMCC became a full 
institutional member in 2022). The objective of the ESWD is to collect and provide 
detailed and quality-controlled information on severe convective storm events over 
Europe. The events are geo-referenced and time-referenced and divided per category 
of hazard, providing in some cases information on the intensity of the event (such as 
wind speed or dimension of hail) and its impacts on population, infrastructures, 
buildings and more. The reporting criteria state that ESWD is intended to be a 
database that only contains important weather events that can endanger people or do 
damage. Reports can be submitted by all individuals (they may come from local 
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newspapers, social media, scientific reports, etc.), but different quality checks are 
carried out by ESSL (or their partners) to verify them. The first level, (QC0+) checks the 
plausibility of the report, mainly confronting the type of events with the general 
meteorological conditions of that day and area); the second (QC1) means that the 
report was confirmed by a reliable source; the third one (QC2) means all the pieces of 
the reports have been validated thoroughly (typically assigned to reports based on 
cases studies on a scientific level). 
 

● Limitations:  
− Not all hazard types are included in this dataset, but only those related to 

convective storms (extreme wind, extreme rain, in particular). 
− The objective of the dataset is to provide a catalogue of extreme events: impact 

descriptions are not always available and may not be very detailed. 
− The consistency of the reports during the years may vary, due to the increasing size 

of the network of associated partners, reporting individual and general attention to 
extreme weather events. For example, Figure 4 shows that the number of hail 
reports has greatly increased in the last few years in the Veneto Region, but it is 
due mainly to better recording practices than shifts in hail trends. If statistical or 
machine learning methods are to be trained on such data, it is of paramount 
importance to select time frames in which the reporting rate is (mostly) consistent. 

● Exploratory data analysis: 
Data from ESWD has been explored within the Veneto pilot, mainly for hazards related 
to extreme wind and extreme precipitation. Figure 3 shows a summary of the main 
events recorded in the Veneto area in a selected timeframe (2009-2022). The total 
number of events is close to 2000 and most of them (95%) are in the second quality 
control category (i.e., confirmed by reliable source) and provide a general description 
of the impacts. 

  

Figure 3: Wind, wet, and cold extremes in the Veneto region (2009-2022). 

Other impact and loss databases at a National Level 
 
Impact and loss databases at a national level will be discussed within D5.2 and have been 
discussed for the pilots in D3.3. 

3.1.2 Existing vulnerability functions that address dynamics 

Several European research projects have already contributed to the body of knowledge 
on vulnerability, and MYRIAD-EU aims to include and build on their advances. Some 
notable examples (as presented in the Milestone 18 document) are: 

● RISK-UE (An advanced approach to earthquake risk scenarios with applications to 
different European towns) focused on an advanced approach to earthquake risk 
scenarios and the researchers created a set of dynamic vulnerability curves for 
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different types of buildings across Europe based on empirical data and expert 
judgement (Lagomarsino & Giovinazzi, 2006). More recent advances have started to 
incorporate temporal changes in vulnerability into these models. Silva et al. (2014) 
developed a temporal vulnerability assessment methodology that takes into account 
variations in the vulnerability of buildings due to factors like structural ageing, 
modifications, and maintenance. By modelling these changes over time, they were 
able to provide a more nuanced perspective on vulnerability, demonstrating how 
seismic risk can increase or decrease based on these factors. 

● SYNER-G (Systemic Seismic Vulnerability and Risk Analysis for Buildings, Lifeline 
Networks and Infrastructures Safety Gain) is a prime example of dynamic vulnerability 
assessment in Europe. The project aimed to provide an advanced methodological 
framework for systemic vulnerability and risk analysis (Pitilakis et al., 2014). It 
developed a comprehensive methodology to quantify the seismic vulnerability of 
structures and infrastructure networks, considering the cascading effects within the 
physical and socio-economic environments. The project developed fragility functions 
for buildings, considering factors such as age, building type, and material, which 
dynamically change over time. Moreover, SYNER-G expanded its analysis to consider 
interdependencies between different elements of a city’s infrastructure system (Selva 
et al., 2017). For instance, it identified how damage to the power supply network can 
influence the functionality of the transportation and healthcare systems. This 
systemic perspective recognises the dynamic nature of vulnerability and its influence 
on the overall resilience of the urban environment. 

● MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe): was 
another significant project that focused on assessing multi-hazard risks across Europe 
(Zschau et al., 2016). MATRIX developed new methods and tools for multi-hazard and 
multi-risk assessment, considering different types of hazards (e.g., earthquakes, 
floods, landslides) and their interrelations. This comprehensive approach to risk 
assessment provides a more holistic understanding of vulnerability and improves the 
effectiveness of mitigation strategies. Specifically, MATRIX developed an Integrated 
Risk Assessment Module, which considers the potential interactions between 
different hazards and vulnerabilities in a system. This reflects the dynamic nature of 
vulnerability and provides a more realistic assessment of risk under different disaster 
scenarios. 

● STREST (Harmonised approach to stress tests for critical infrastructures against 
natural hazards) has made considerable contributions to vulnerability functions for 
infrastructure that encompass the interaction between various components of 
infrastructure networks, highlighting their interdependencies, identifying seven 
critical infrastructure sites in Europe and developing stress test methodologies to 
evaluate their vulnerabilities (Mignan et al., 2016). STREST also emphasised the 
importance of a systemic risk assessment approach that considers not only physical 
damage but also functional disruption and interdependency effects. In addition, 
Pregnolato et al. (2017) developed a dynamic vulnerability model for flood risk to 
bridge networks in the UK, considering the temporal variation in water depth and flow 
velocity during flooding events. The model used time-dependent fragility curves, 
which allowed for an accurate estimation of the failure probability at different times 
during the flood. 

● 21mbrace (Building resilience amongst communities in Europe) built an integrated 
framework to measure community resilience to natural hazards in Europe, using a set 
of indicators that capture both the exposure and adaptive capacity of communities 
(21mbrace, 2015) thus accounting for the adaptive capacity of a community or system, 
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as it affects how a system responds and recovers from damage, in dynamic 
vulnerability functions. 

 
In addition, there are recently funded projects such as MEDiate (The project – Mediate 
Project (mediate-project.eu) or the software VIGIRISKS from BRGM 
(https://www.brgm.fr/en/reference-completed-project/vigirisks-all-one-predictive-
platform-natural-risks) who are also working on dynamic vulnerability functions. 

3.1.3 Existing hazard, exposure and vulnerability databases 

Below we discuss key existing hazard, exposure, and vulnerability databases that have 
been identified for use in MYRIAD-EU. 
 
Global Human Settlement Layer 
● Description:  

The Global Human Settlement Layer (GHSL) consists of several data products on 
global population and built-up distributions. It uses satellite imagery, census data, and 
volunteered spatial information to create information on the human presence on Earth 
over time. The satellite imagery provides information on the Earth’s build-up area in a 
gridded format. Census data are used in combination with the satellite imagery to 
assign population to specific regions, cities, towns, etc. on Earth. Finally, by applying a 
certain threshold on the amount of population or built-up area in each grid cell, 
distinctions between urban and rural regions are made (GHSL Data Package 2023, 
2023). The resolution of the data varies between 10m to 30arcseconds, depending on 
the product. Note that all products have at least a 1km resolution option. In general, 
this dataset provides a useful globally- consistent coverage of data on exposure. 
Furthermore, this dataset is especially useful when assessing risk in urban regions 
because it provides a consistent and physical definition of cities, as opposed to 
spatially strongly differing administrative definitions of cities (UN-DESA, 2019).  

 
● Limitations: 

− First of all, satellite imagery requires extensive pre-processing before it can 
provide any information, and this can introduce inaccuracies.  

− Census data may not always be up-to-date or may even be missing at all for some 
regions (Kuffer et al., 2022).  

− A part of the population may also be left out of the census data (e.g. those living in 
informal settlements; Kuffer et al., 2022). 

 

● Exploratory data analysis: 
The Global Human Settlement Layer Degree of Urbanisation (GHS-SMOD) data layer 
is used as a measure of exposure, to focus the multi-hazard recovery analysis on areas 
with human presence as described in section 3.2.2.  

 
Veneto Region Emergency Dataset  
● Description:  

This dataset focuses on impacts in the coastal municipalities of the Veneto region: 
impacts were extracted from the Decreto del Presidente della Giunta Regionale 
reports (DPGR, namely Decree of the President of the Regional Council) which collects 
the activation of the regional state of crisis, namely ‘Stato di Crisi’. For each impact, 
these documents provide qualitative information on the reported damages, the list of 
the municipalities affected and the dates when the impact took place. Typologies of 
the damages reported include physical damages related to urban flooding, 

https://mediate-project.eu/the-project/
https://mediate-project.eu/the-project/
https://www.brgm.fr/en/reference-completed-project/vigirisks-all-one-predictive-platform-natural-risks
https://www.brgm.fr/en/reference-completed-project/vigirisks-all-one-predictive-platform-natural-risks
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agriculture/fisheries, people (e.g., fatalities, injuries, displacements), beaches (e.g., 
shoreline erosion, debris accumulation), structures/infrastructures, economic 
activities, and tertiary sector.  

 
● Limitations:  

− Reports may be incomplete and misleading: not all impacts that created an 
economic loss or a service interruption have been recorded, but only those that 
triggered an emergency request from the region. Thus, only events causing 
massive or extensive damages have been recorded; moreover, impacts from 
hazards such as heatwaves are not present in this dataset.  

− Moreover, each report lists the affected municipalities and the overall period but 
does not provide information on which date each municipality was affected. 

− Similarly, the typology of damage, when present, is not associated with a specific 
date or municipality. Ideally, more detailed data and reports would be required to 
accurately assess the quantitative extent of the impacts, including information 
such as coordinates, specific damage types, and monetary costs of restoration. 
However, such detailed quantitative data on impacts and their economic costs are 
not publicly available. Therefore, the impact dataset consists of pairs representing 
the day and municipality where an impact occurred. 

 
● Exploratory data analysis: 

To improve the accuracy of the input dataset, each impact was cross-checked with 
local newspapers (within activities in the frame of AdriaClim project: 
https://www.cmcc.it/projects/adriaclim-climate-change-information-monitoring-and-
management-tools-for-adaptation-strategies-in-adriatic-coastal-areas). This 
verification process aimed to identify additional events that caused significant 
damages to the population or infrastructure but were not reported in the “Stato di 
Crisi” database. Consequently, the final impact dataset comprises a total of 447 days 
of impacts from extreme weather events across eleven Veneto coastal municipalities 
during the period from 2009 to 2019. 

 
Environmental quality datasets from monitoring stations 
● Description:  

Losses and impacts on environmental quality were explored within the Veneto pilot 
activities with regards to water quality, air quality and vegetation. In particular, data 
from monitoring stations installed by ARPAV (regional agency for environmental 
protection and prevention in Veneto) on Veneto rivers (in particular for Adige and 
Brenta) and near urban centres for air quality. Information on vegetation status can be 
recovered through satellite images, analysing indicators such as NDVI (Normalised 
Diffraction Vegetation Index), LAI (Leaf Area Index), VCI (Vegetation Condition Index), 
and VHI (Vegetation Health Index). These indicators may be retrieved from Copernicus 
Land service (https://land.copernicus.eu/global/products/ndvi) or from MODIS 
(https://modis.gsfc.nasa.gov/data/dataprod/mod13.php). 

 
● Limitations:  

These impact datasets typically have a coarse temporal resolution, with few snapshots 
of data available per year. This may pose problems when trying to model dynamic risk 
factors caused by extreme weather events, because the variability of impact data may 
be limited. For example, measurements of river water quality may have been taken 
days or weeks after an extreme event, so its impact may not be recorded at all. 

 

https://www/
https://land.copernicus.eu/global/products/ndvi
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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● Exploratory data analysis: 
Several parameters are measured that can provide information on the chemical, 
physical characteristics of the water, nutrients, and microbiological organisms. In 
particular, temperature, pH, dissolved oxygen, suspended solids, phosphates, and 
nitrates are recorded from 2010 to 2022 on a monthly basis (which can vary from 
station to station). This dataset can be used to analyse the impact caused by multi-
hazard events, changes in land-use and anthropic activities on river water quality. With 
regards to air quality, data on PM2.5, PM10, and Ozone can be leveraged to study the 
changes and feedback dynamics between extreme weather conditions, air quality and 
impacts on socio-economic and environmental systems. Vegetation data are available 
from 2000 to present day, at high spatial resolution (up to 250m), with a temporal 
resolution that can vary from few days (10 days) to several months (3 months for some 
LAI layers). 

 
Other datasets 
These datasets provide a preliminary insight into exposure and vulnerability databases, 
however there are many others for use in Europe within the project which will be described 
in WP5 such as WSF 3D from DLR (Esch et al., 2022),  CATDAT (Daniell et al., 2014), HANZE 
(Paprotny & Mengel, 2023), other GHSL products (JRC, 2023; Melchiorri & Kemper, 2023), 
GPW (CIESIN, 2023), EUROSTAT (Corbane & Sabo, 2019; Batista e Silva et al., 2013), 
Facebook HRSL, LitPop (Eberenz et al., 2020), WorldPop, HILDA (Fuchs et al., 2013), HYDE 
(Klein Goldewijk et al., 2017), Kummu et al. 2018; EEA – CLC (2023), as well as building level 
databases such as OSM, Google and Microsoft and other cadastral datasets.  

3.2 Novel vulnerability drivers database  

Not everyone is equally affected by natural hazards; some people or assets are more 
vulnerable to the adverse effects of hazards than others. Although we know to some 
extent what drives vulnerability, it remains challenging to operationalise “the vulnerable” 
(Raška et al., 2020; Hinkel, 2011) and to unravel the interactions between different 
vulnerability drivers (Ayanlade et al., 2023; Simpson et al., 2023; de Ruiter & van Loon, 
2022). Furthermore, recent research shows that 85% of the social vulnerability theories 
are not explicitly explained in the literature (Kuhlicke et al., 2023). in a multi-hazard 
context, acknowledging the significance of social vulnerability takes centre stage. While 
comprehending the physical aspects of hazards remains crucial, equal emphasis must be 
placed on understanding the social, economic, and cultural factors that shape a 
community’s resilience (Bergstrand et al., 2015; Ryan et al., 2020). Social vulnerability 
encompasses the predisposition of certain individuals or groups to endure 
disproportionate impacts and hardships during hazardous events (Winsemius et al., 2018). 
Factors such as poverty, inequality, inadequate infrastructure, limited resource access, 
and marginalised social groups exacerbate vulnerability (Drakes & Tate, 2022). By delving 
into research on social vulnerability within the context of multi-hazards, we can uncover 
and address systemic issues underlying differential impacts and develop targeted 
interventions to bolster community resilience (Fatemi et al., 2017; Fraser, 2021). 
Understanding the social dynamics and inequalities associated with multi-hazard events 
empowers policymakers and stakeholders to implement equitable strategies, prioritise 
the needs of vulnerable populations, foster inclusive decision-making, and ensure that no 
one is left behind in the face of disasters (Bergstrand et al., 2015; de Ruiter & van Loon, 
2022). 

To address this gap, MYRIAD-EU has created VulneraCity, a database of urban 
vulnerability drivers, to find out what drives the vulnerability in cities to several different 
hazards (pluvial flooding, coastal flooding, drought, heatwaves, earthquakes, and 
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waterborne diseases; Stolte et al., submitted for publication). We look at cities specifically 
because of the high amount of concentration of exposed people and assets (UNDRR, 
2019; UN, 2019). We apply a systematic literature review – not a novel method on its own, 
but to our knowledge never used before to find the drivers of vulnerability to multiple 
hazards in such an extensive manner. In total, we have reviewed over 3000 studies, from 
which we gathered close to 1500 unique vulnerability drivers out of around 500 studies. 
Our focus has been on empirically derived drivers of vulnerability, but we also include 
drivers that are acquired by models, theory, adoption, or unknown methods.  

Each driver in VulneraCity is classified based on vulnerability dimension (social or physical), 
sub dimension (e.g. economic, demographic, critical infrastructure), class (e.g. drainage, 
poverty, preparedness) and acquisition method (e.g. empirical or modelled). The database 
can be used to find out what drivers are important across different hazards and help us 
further in determining which drivers may be relevant to multi-hazards. Our results show 
for instance that drivers related to conveying and gathering hazard information and 
warnings are among the most important for all investigated hazards, whereas the 
importance of drivers linked to water supply is more restricted to just drought and 
waterborne diseases. (Figure 4; Stolte et al., submitted for publication).  

 
Figure 4: Heatmap showing the percentage of vulnerability drivers in each class (rows) per 

hazard (columns), relative to the total number of vulnerability drivers for that 
hazard. This Figure only shows the 10 most common classes, which are 
determined by ranking the classes on the sum of the rows.  
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VulneraCity can also be used to find similarities and differences in the vulnerability profiles 
of the different hazards. Here, we present two examples: that of drought (Figure 5) and 
earthquakes (Figure 6). The Sankey diagrams in Figures 5 and 6 show the importance of 
each sub-dimension and class of vulnerability for the two hazards. Thicker lines mean that 
more drivers fall into that sub-dimension/class, indicating a larger importance. Both 
hazards show significantly different vulnerability profiles. For instance, governance-
related vulnerability appears to be more important for drought than for earthquakes, 
whereas vulnerability of general urban assets (i.e. those assets in the city that do not 
belong to the critical infrastructure or the living environment) are very prominent in 
earthquakes, but almost non-existent for drought. In this case, we can explain these 
differences by the nature of the hazards. General urban assets, like residential buildings, 
are important for earthquakes because of the physical damage resulting from an 
earthquake. However, such assets are hardly affected by droughts. Governance is 
arguably important for each hazard, but it is extra salient for drought as the effect of the 
hazard can be strongly mitigated by ensuring proper water supply and demand 
management. A more extensive elaboration on the commonalities and differences of the 
investigated hazards’ vulnerability drivers can be found in Stolte et al. (submitted for 
publication). 
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Figure 5: Sankey Diagram showing the relationship of sub-dimensions and classes for 

drought. Each line represents a number of drivers that flow from a sub-dimension 
into a class. For readability, we only display those sub-dimension-class 
combinations that contain at least 2 drivers. 
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Figure 6: Sankey Diagram showing the relationship of sub-dimensions and classes for 

earthquakes. Each line represents a number of drivers that flow from a sub-
dimension into a class. For readability, we only display those sub-dimension-class 
combinations that contain at least 4 drivers. 

Finally, one could also bring the list of drivers in VulneraCity to urban policy makers, 
authorities, or other stakeholders to work out which drivers of vulnerability are relevant to 
their city and to consequently act on those vulnerabilities. Altogether, this database gives 
us the opportunity to discuss vulnerability in a more holistic way than before. 

VulneraCity shows a wealth of potentially relevant drivers, but does not tell us what data 
are available to assess these drivers. Therefore, we also want to review existing urban 
datasets at a supranational (i.e., including cities from multiple countries) level. We opt for 
the supranational level because it is valuable to know how cities compare to each other to 
find out which places need the most urgent assistance in reducing their vulnerability. 
Together with VulneraCity , we can now find out which data are important yet missing to 
do a large-scale vulnerability assessment. Furthermore, we can potentially use the data as 
input for Machine Learning techniques with which we can fill in data gaps for specific cities.  

We can also use both VulneraCity as well as our review of urban vulnerability data to 
further our understanding of vulnerability dynamics. There are different aspects of 
vulnerability dynamics that we can address: (1) Dynamics over time can be addressed if we 
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find longitudinal data for cities in our review. (2) Schipper (2020) discusses the dynamics 
in vulnerability during adaptation. We also found several examples of this type of dynamic. 
For instance, mobile phones make it in theory easier to issue warnings and to 
communicate during a flood event. However, there have been several events in the past 
in which mobile phone signals were jammed because of flooding. It can thus lead to a false 
sense of security (Chandra & Gaganis, 2016). Mobile phones as a way to convey 
information during flooding is therefore an example of a vulnerability rebound effect 
(Schipper, 2020) in which the intention was to reduce vulnerability, whereas in reality 
vulnerability has increased. (3) We found several examples of directional vulnerability in 
our database. This relates to the way in which a change in a vulnerability driver translates 
into a change in the impact of a natural hazard. In most research, a one-directional 
relationship is assumed, but we found five additional forms of this relationship (see Figure 
7 for schematic drawings of this):  

● One-directional vulnerability: A driver that always results in either an increase or 
decrease of a city/citizen’s vulnerability to all hazards. Example: Disaster preparedness 
is generally considered as something that makes cities and citizens less vulnerable to 
all hazards, among others by: performing drills and thus becoming more skilled in 
dealing with disasters (Karavokiros et al., 2016; Chou & Wu, 2014; Braun & Assheuer, 
2011; Goudet et al., 2011), storing emergency materials/supplies to increase 
survivability during disasters (Kundak, 2017; Chandra & Gaganis, 2016; Martens et al., 
2009), and disaster training for medical personnel or city officials to improve reaction 
and recovery times (Daly et al., 2017; Knowlton et al., 2014).  

● Bi-directional vulnerability: A driver that can lead to both an increase and a decrease in 
vulnerability at the same time, or that simultaneously makes a city/citizen more and 
less vulnerable to a hazard. Example: A retired elderly person does not need to do 
heavy labor during a heatwave (less vulnerable than other citizens; Bradford et al., 
2015), but may have a weaker physique (more vulnerable than other citizens; Huang et 
al., 2022; Bradford et al., 2015; Bambrick et al., 2011). 

● Asynergies: A driver that decreases vulnerability to one hazard but simultaneously 
increases the vulnerability to another hazard. Example: Urban drainage systems are  
important in times of pluvial flooding (Tellman et al., 2018 Vianna Mansur et al., 2018), 
but can also distribute the water more easily into the city during a coastal flood event 
(Shen et al., 2019). Furthermore, if the drainage system gets rid of the water too fast, it 
impedes evaporative heat loss whilst this type of cooling can be beneficial in times of 
heatwaves (Kislov et al., 2020). 

● Compounding vulnerability: Two vulnerability drivers that together have an amplifying 
effect on the total vulnerability, making the combined outcome worse than the sum of 
their individual parts. Example: Elderly migrants with neuro-cognitive conditions (e.g. 
dementia). Elderly people experience an increased vulnerability to several hazards 
because age frequently comes with reduced physique (Schuster et al., 2017), impeding 
mobility during a disaster (Taylor et al., 2022). This can be compounded by the fact that 
migrants may experience a language barrier in information dissemination (Hansen et 
al., 2014; Martens et al., 2009), especially when they have a neuro-cognitive condition 
that may reduce their ability to understand a non-native language (Hansen et al., 2014). 

● Conditional vulnerability: Drivers that change the vulnerability under certain conditions 
only. Example: In a patriarchal society, women in informal settlements are generally 
responsible for household tasks that bind them to home and which makes them more 
vulnerable to pluvial flooding than men (Kayaga et al., 2021; Schofield & Gubbels, 2019; 
Chandra & Gaganis, 2016). But a woman in a more affluent community – in that same 
patriarchal society – may have resources to let servants do the heavy repairments on 
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her home after flooding, making her less vulnerable compared to men–(Grasham et al., 
2019; Schofield & Gubbels, 2019).  

● Transferable vulnerability: A driver that shifts vulnerability from one place/citizen to 
another, or which reduces the vulnerability of one place/citizen and increases the 
vulnerability of another. Example: Air conditioning lowers the temperature of the inside 
of a building, making its residents less vulnerable to heatwaves. However, it also 
increases the temperature outside of the building, worsening the urban heat island and 
therefore increasing the vulnerability of all that need to be outside (e.g. for work or 
transport Dimitrova et al., 2021; Luo et al., 2020; Kim & Ryu, 2015). Air conditioning was 
also found to have detrimental effects on other – passive – cooling techniques 
(Hatvani-Kovacs et al., 2016). 

 
Figure 7: Schematic drawings of the directional and driver-interaction dynamics of 

vulnerability. 

3.3 Statistics and machine learning techniques 

This section outlines the different methods that have been identified, analysed, and 
applied by MYRIAD-EU to assess different aspects of the dynamics of multi-risk. Below, 
we provide detailed outlines of the following methods and approaches:  

● Novel data streams such as Google Trends and newspaper articles  
● Nighttime light satellite data and statistical difference-in-difference analysis 
● Machine Learning and Artificial Intelligence  
 

3.3.1 Novel data streams & statistics to understand impact-relevant extreme event durations 

Overview 

Various research and operational communities have developed approaches to quantify 
climate extremes in relation to their specific sector. An example of such hazards is 
heatwaves, which can be characterised by intensity or duration. However, many 
definitions emphasise intensity through percentiles or absolute values, while duration is 
either missing or considered as a secondary aspect. Duration is important to consider as 
it has been shown to contribute to the magnitude of the resulting impacts. Previous 
literature has found that longer heatwaves intensify societal impacts (Vogel et al., 2020), 



 
  
                              

31 
 

ecosystem impacts (Flach et al., 2021; von Buttlar et al., 2018) and adverse health 
outcomes (Anderson and Bell, 2011). In addition, the duration of extreme heat may also 
play a role in the recovery of a system or sector following an event. To address these 
issues, an approach has been developed to identify a range of durations of climate 
extremes where impacts are most noticeable. The resulting impact-relevant durations 
can be compared between impact and response metrics to assess the possibility of 
establishing more universal classification schemes for extreme event durations. In the 
following sections, heatwaves are used to demonstrate the above methodology. 

Research aim 
The categorisation and classification of extreme climate events, such as heatwaves, vary 
across sectors, leading to challenges in making meaningful comparisons. Consequently, 
the assessment of impacts associated with these hazards becomes complex due to 
variations in event definitions and characteristics. To address this issue, a methodology 
needs to be devised to establish a timescale for studying climate extremes that is based 
on the duration or length at which the majority of impacts are observed, providing a 
standardised approach for assessing and analysing the impacts of extreme climate 
events. 

Input 

The development and implementation of this methodology, as discussed in more detail in 
De Polt et al. (2023), involves the analysis of multiple data sources capturing different 
heatwave impacts and responses across sectors in Germany. In terms of public health, 
human mortality and heat-related hospitalisations are considered. For societal attention, 
Google searches of frequency and number of heat-related news articles are considered. 
These datasets are described in Table 3. 

Table 3: List of datasets to determine impact or response from detected extreme events.  

Variable Sector Spatial resolution Temporal resolution Source 

Google Trends Public 
attention 

Country Daily Google  

News articles Public 
attention 

Country Daily WiSo  
Factiva 

Mortality Health impact Country Weekly Eurostat 

Heat-related 
hospitalisations 

Health impact Country Weekly German Federal 
Statistical Office 

 

Explanation of methods and workflow 

The main methodological steps of the approach are shown in Figure 8, and in brief, the 
approach consists of: (1) data collection; (2) impact and response data processing; (3) 
identifying extreme heat events from the underlying daily mean temperature data; (4) 
examining the daily impact and attention anomalies within each event; (5) aggregating the 
daily anomalies for each event; and (6) repeating above steps for all events of all lengths. 
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Figure 8: Schematic summary of the workflow. For each time scale, we find the hottest 

periods (between 1-day and 90-days; incrementing in daily intervals) and 
aggregate the related heatwave impacts or response for each considered data 
stream in order to identify the most impact-relevant time scales. 

● The first step in this process is to derive moving average time series for each time 
scale of interest considered, in this example 1 day to 90 days. This is done by taking 
the mean of 1-90 days from each individual day of the time series and assigning it to 
that particular day as the day of onset of the event. (See time series; Figure 2). Second, 
from the moving averages of all time scales, we find the 90th percentile of all individual 
values separately for each time scale (see grey dashed lines; Figure 2). Finally, events 
are identified for each time scale by repeatedly: (i) finding the hottest day of each time 
series (e.g., the day with the peak temperature of that event); (ii) excluding the 30 days 
around it to ensure independence between detected heatwave events; and (iii) finding 
the hottest value of the remaining time series. Steps (i)-(iii) are repeated to detect 
further heatwave events until the detected hottest temperature value of the observed 
time series does not exceed the 90th percentile of the initial time series after the 
moving average procedure (see grey vertical bars; Figure 8). Disregarding the 30 days 
around the peak in the temperature metric for each event allows more events to be 
considered within our sample size. 

● The second step is the analysis of daily anomalies per event. Anomalies are created by 
converting each day’s impact or response metric value from the observed value to a 
seasonal anomaly by removing the seasonal cycle (i.e., week number average). 

● Step three is aggregation of the daily anomalies per individual extreme event. To relate 
societal attention and health impacts to heatwave duration, we aggregate daily 
anomalies from the societal data sources over a time window equal to the length of the 
heatwave under consideration. Anomalies are used instead of raw values because they 
represent a deviation from baseline or expected values. We assume that people, and 
human and environmental systems, are largely adapted to baseline conditions, as 
expressed by the mean seasonal cycle, and are therefore less prepared for deviations 
from this baseline. Positive anomalies imply a more pronounced response than normal 
and vice versa. Ultimately, we are interested in the length of heatwaves that produce 
a more pronounced response, indicated by a larger positive anomaly over the entire 
event. This methodology is achieved by adding all observed anomaly values for the 
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length of the event (i.e., 1 day has 1 anomaly value; 2 days add the anomaly values of 
day 1 and day 2), which allows positive anomalies to accumulate and negative 
anomalies to subtract from the overall values. This is repeated for all societal metrics 
and heatwave lengths. Having completed the previous step, we then compare 
between event lengths (step 4 in Figure 1). The mean of all aggregated daily anomalies 
of all events of the same length is then calculated, producing a single value, which is 
then related to the length of the heatwave. 

● The above steps are then repeated for all lengths. Then the durations can be compared 
to find the length with the largest average daily aggregated anomaly. 

 
Novelty of methods 

This methodology has been used to address the gaps and limitations in the current 
quantification or identification of extreme events. For example, heatwaves can be 
explicitly explained in terms of intensity and duration. As most definitions emphasise the 
intensity of these hazards through percentiles, duration is either missing or a secondary 
aspect in current definitions. In particular, the duration of heatwaves is an important 
characteristic to consider, as it has been shown to contribute to the magnitude of the 
resulting impacts. These percentiles or thresholds have been defined in a variety of ways 
in the literature, resulting in events with the same name being classified or measured in 
different and potentially incomparable ways (Seneviratne et al., 2021). 

(Expected) outcomes 

The findings of this study have provided insights into useful time scales at which extreme 
event characteristics can be aggregated. An impact-relevant duration is needed to 
accurately define and determine time-dependent intensity-damage functions or hazard-
impact thresholds. 

Conclusions 

This finding highlights the relevance of making informed choices on the considered time 
scale in heatwave analyses. The approach we introduce here can be extended to other 
societal indices, countries, and hazard types to reveal more meaningful definitions of 
climate (impact) extremes to guide future research on these events. An improved 
understanding of weather and climate hazards with their impacts on society, economy and 
environmental systems will support better preparation, response, and future adaptation. 

3.3.2 Nighttime lights & statistics to understand recovery after single- vs. multi-hazard events 

Overview 

While recovery can be significantly different in a multi-hazard context in comparison to a 
single-hazard context, no quantitative studies have explored the general differences in 
recovery between single- and multi-hazard events (see section 2.3). Here, an innovative 
methodology is proposed to elucidate general patterns in single- vs. multi-risk recovery, 
analysing a large number of disaster events on a multi-continental scale. For this purpose, 
the suitability of using Nighttime light satellite data in combination with statistical 
approaches has been explored.  

Various different types of satellite data have been previously used to analyse post-
disaster recovery. Past studies have for example used satellite images to track the 
number of reconstructed buildings in a disaster-stricken area or the presence of vehicles 
on roads, as a proxy for the state of transportation and road functionality, or to identify 
(non-)collapsed and blue tarp-covered buildings (Brown et al., 2012; Ghaffarian et al., 2020; 
Miura et al., 2020). Other studies have used land use and land cover data (e.g., 
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Sheykhmousa et al., 2019) or vegetation proxies (e.g. Ryu et al., 2018) to assess post-
disaster recovery. Nighttime light (NTL) satellite data are a commonly applied recovery 
proxy to study economic recovery after disaster occurrences. It has for example been 
applied by Gillespie et al., (2015) to study damage and recovery after the Indian Ocean 
Tsunami in 2004, and by Gao et al. (2020) to analyse the economic recovery after the 2015 
earthquake in Nepal. It has also been previously applied to analyse a set of hazard events 
with the aim of elucidating general recovery trends. For example, Barton-Henry & Wenz 
(2022) used monthly NTL data in combination with a difference-in-difference (DiD) 
analysis to study hurricane recovery for 7 major hurricanes in the USA. NTL satellite data 
captures various light sources that are present at night, including moonlight, directly 
emitted light (e.g., by buildings or streetlights), and reflected lights.  

Research aim 

The general aim of this research is to find patterns and differences in the recovery 
dynamics (i.e., duration, rate) after single- vs. multi-hazard events. This study uses NTL 
satellite data and a DiD statistical analysis to characterise and compare economic 
recovery for single- and multi-hazard events in the USA, Europe, and Asia. 

Input 

The newest generation of NTL data are recorded by the Visible Infrared Imaging 
Radiometer Suite (VIIRS) satellite. These data are processed both by NASA (Black Marble) 
as well as NOAA and available with a 500m resolution as cloud-free composites, on a daily, 
monthly, and yearly basis (2012-present). For this study the daily NASA Black Marble data 
(VNP46A2) has been found most promising, as its daily temporal resolution provides the 
opportunity to assess short term recovery patterns after disaster events. Pre-processing 
of this data by NASA includes a correction for stray-light, moonlight presence, lunar 
reflectance, and for snow, seasonal, and atmospheric effects (Román et al., 2018). 

To indicate hazard-affected areas and separate single- and multi-hazard events, the 
hazard data of the MYRIAD-HES (MYRIAD Hazard Event Set) dataset (Claassen et al., 
2023) are used, which can be adapted using more recent data or locally available data of 
improved quality. MYRIAD-HES is a database of multi-hazard event footprints, derived 
using the MYRIAD-HESA (MYRIAD Hazard Events Sets Algorithm) in combination with 
single-hazard footprints). The hazard types that are included in this study are those whose 
impacts and recovery are known to be captured in NTL data (i.e., storms, floods, tsunamis, 
earthquakes, and potentially landslides). The Global Human Settlement Layer Degree of 
Urbanisation (GHS-SMOD) dataset is used as a measure of exposure, to focus the analysis 
on urban areas, where NTL data are known to better represent changes in economic 
activity than in rural areas (Gibson et al., 2021; Pérez-Sindín et al., 2021; Schiavina et al., 
2023). 

Explanation of methods and workflow 

A statistical approach that has been identified as well-suited for elucidating the effect of 
single- versus multi-hazard events on the NTL data is the DiD analysis. By comparing the 
pre- and post- intervention values of a region of interest (first difference) to the pre- and 
post- intervention values of an unaffected control region (second difference), a DiD can 
help distinguish which changes in the value in the region of interest are attributable to the 
intervention (i.e. in this case the hazard event). The DiD method assumes that the values 
in both areas would follow the same trend without the intervention. The versatility of this 
method allows its application to a wide range of topics. It has already been successfully 
employed in studying recovery following disaster events, as demonstrated by Barton 
Henry & Wenz (2022). 
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The workflow that has been set up to answer the research question is outlined in Figure 9. 
Starting from the NTL data (1), further pre-processing steps are necessary to be able to 
use the data in the analysis (2). This includes the selection of only good-quality pixels that 
represent urban area, using the mandatory quality flags that are included in the Black 
Marble data (Román et al., 2018) and the GHS-SMOD dataset (Schiavina et al., 2023). Pre-
processing also entails the removal of additional unwanted light sources, such as lights 
from fires, using the (dynamic) fire Global Wildfire Dataset that is included in MYRIAD-HES 
(Artés et al., 2019; Claassen et al., 2023). As daily NTL data are used, there can be a lack of 
data due to cloud coverage on specific days, especially problematic when the hazard event 
is associated with significant cloud coverage. As a solution, the data are aggregated to 
weekly composites, providing more coverage than daily data while preserving the short-
term insight in recovery dynamics. Using the hazard polygons (3), affected NTL pixels are 
identified per single- or multi-hazard event (4). For single-hazard events the whole 
geometry is used, while for multi-hazard events only the area affected by multiple hazards 
is considered affected. For each affected pixel, reference pixels are selected based on 
time-series similarity, to ensure consideration of heterogeneity in NTL pixels (Lhermitte 
et al., 2010; Veraverbeke et al., 2012). To be able to compare truly single-hazards to multi-
hazards, regions affected by other hazards (not included in the event of interest) are not 
considered in the analysis. Then, per event, the DiD analysis is performed (5), comparing 
the difference in NTL in the affected cells with the NTL values in the unaffected control 
cells. The results for single- and multi-hazard events are then compared, to determine if 
there are any general patterns in recovery dynamics for single- vs. multi-hazard events (6). 

Novelty of methods 

This study contributes to the generally under-studied field of multi-hazard recovery. 
Where the limited number of previous quantitative multi-hazard recovery studies were 
highly localised and specific (see section 2.3), the proposed methodology uses previously 
successfully applied data sources and statistical approaches to unveil more general 
patterns in recovery for single- vs. multi-hazard events. With regards to the use of NTL as 
a proxy for recovery, the main novelty of the proposed methodology lies in the adoption 
of a multi-hazard perspective. To the best of our knowledge, analysing both single- and 
multi-hazard events and taking into consideration what the effect is of additional hazards 
that have occurred has not been previously done using NTL data, nor other satellite 
recovery proxies. Previous studies that used NTL as a proxy for post-disaster recovery 
have only focused on single-hazard events, generally not accounting for the occurrence 
of additional hazards (e.g., Barton-Henry & Wenz, 2022; Skoufias et al., 2022). Moreover, 
previous studies that analysed a large number of events using NTL satellite data, aiming 
to investigate general trends, were not only focussed on single-hazard events, and were 
also limited to monthly or yearly NTL data (e.g., Barton-Henry & Wenz, 2022; Felbermayr 
et al., 2021). The use of the daily Black Marble data allows for new insights into short-term 
patterns. 

(Expected) outcomes 

Per single- and multi-hazard event, the methodological approach (Figure 9) yields 
information on the post-disaster %NTL intensity in the disaster-affected area in 
comparison to what would be expected based on the control pixels, per time step for a 
fixed period after the disaster. These individual results can be combined into average 
values per time step for single- and multi-hazard events separately, providing insight into 
recovery duration and speed of both event types. 
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Conclusions 

A novel methodology has been identified to use NTL satellite data in combination with a 
DiD statistical analysis to analyse a large number of single- vs. multi-hazard events, with 
the aim to provide insights into recovery patterns after both event types. An improved 
understanding of how recovery dynamics can be different after multi-hazard events in 
comparison to single-hazard events is essential for multi-risk assessments and the design 
of appropriate DRR strategies, specifically for post-disaster response and recovery.  

 
Figure 9: Step by step workflow for proposed methodological approach of applying DiD to 

study changes in NTL values post-disaster, for a large number of single- and 
multi-hazard events.  

  



 
  
                              

37 
 

3.3.3 Machine learning for understanding dynamics of risk drivers 

Overview 

Machine learning, a subset of artificial intelligence, utilises algorithms to interpret complex 
data patterns and it can be applied to the exploration of multiple risks from climate 
change. These methods have been mainly explored for their application to the Veneto 
pilot. Machine learning applications excel at leveraging big volumes of heterogeneous 
data coming from different sources to investigate spatio-temporal dynamics of the multi-
risk events and their impacts. The methodology will focus on learning from past multi-
hazard interactions, identifying the main hotspots, trends, and characteristics of multi-
hazard events, in order to produce a risk estimate associated with multi-hazard events and 
extract the most important risk factors in the case study area. A forward-looking 
assessment is also planned: by feeding future projections of different climate change 
scenarios to the previously trained (on historical data and impacts) model, the evolution of 
future multi-risk scenarios will be analysed. 
 
Research aim 

The aim of the research is to use machine learning and data driven methods to analyse 
multi-risk events in the Veneto region, through the analysis of historical records and future 
projections, considering different climate change scenarios. More specifically, machine 
learning applications will facilitate the analysis of the relationships between risk factors 
acting at different spatial and temporal scales, and across different landscapes (such as 
the coastal areas, plains and mountains that are part of the Veneto region). Moreover, 
impacts on different sectors will be considered, including environmental impacts on water 
quality, air quality and vegetation, and impacts on socio-economic systems (such as on 
population, buildings, infrastructures). 

Input 

To analyse the complex and multi-faceted interactions between hazard, vulnerability and 
exposure factors characterising multi-risk events, hazard, vulnerability and exposure 
indicators are used as input features, while historical impact data are used as assessment 
endpoint and labels for the training of supervised machine learning methods. 

Hazard data describe climate and meteorological indicators, such as temperature, 
precipitation, wind, soil moisture, sea level. These can be further divided into several 
categories, such as observations (such as real weather data from monitoring stations), 
climate reanalysis (data combining past observations with models to generate consistent, 
gridded time series of multiple climate variables) and climate projections that describe the 
future evolution of climate variables, under different climate change scenarios. Examples 
of hazard datasets are CERRA (Copernicus European Regional ReAnalysis), which 
provides meteorological variables for the atmosphere and the surface every 3 hours and 
at 5.5 km resolution for Europe; ERA-5, produced by Copernicus and ECMWF which 
provides hourly estimates of a large number of atmospheric, land, and oceanic climate 
variables at 30 km resolution for the whole globe. With regards to future climate 
projections, different Euro-Cordex models downscaled for the Veneto region or models 
developed by CMCC for the North Adriatic or Italian region (such as Climate Projections 
RCP4.5 and RCP 8.5 downscaled @2.2 km over Italy) have been explored in the Veneto 
pilot. 

Vulnerability and exposure data provide information on the territory and topography, the 
susceptibility to certain hazards and the socio-economic and environmental 
characteristics of the area under analysis. Examples of such data are topographic 
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information (elevation, slope, distance to sea or rivers, etc.), soil characteristics 
(permeability, subsidence, etc.), land use and land cover data, population characteristics 
(density, gender, age, etc.), presence of critical infrastructure (roads, airports, hospitals, 
etc.), urban, natural or cultural areas (e.g., presence of UNESCO world Heritage sites), and 
economic activity (e.g., presence of buildings linked to specific sectors). This information 
can be retrieved from European datasets, such as EUROSTAT, providing statistical 
information on socio-economic activities in Europe, or more local datasets such as ISTAT 
for the Italian territory, and regional datasets developed by the Veneto region (see D3.3a, 
appendix for Veneto pilot for more information on the datasets used in each pilot). 
Moreover, satellite images can be processed to gather vulnerability and exposure 
information, such as for vegetation conditions and land cover characteristics. Indicators 
from vulnerability and exposure, will be fed into machine learning supervised models 
together with the hazard ones to analyse the impact of past single- and multi-hazard 
disasters. The availability of vulnerability datasets covering multiple years (if possible, 
before and after the occurrence of a hazard) will allow for the investigation of vulnerability 
changes and their influence on multi-risk impacts. 

Impact data for multi-risk events are catalogues describing losses caused by historical 
extreme weather and climate events. These can be Boolean datasets, only describing the 
occurrence or non-occurrence of impacts in a defined area or sector; qualitative, providing 
a high-level description of the impacts or quantitative, expressing a monetary cost of the 
impacts. The accuracy and precision of the impact datasets is key for the robustness of 
the machine learning models, since any bias in the impact data used for training would be 
propagated and amplified in the rest of the analysis. Examples of impact datasets that are 
envisioned for machine learning applications are the ESWD (European Severe Weather 
Dataset), data from the catalogues of emergency situations in the Veneto regions, data on 
river water quality from monitoring stations deployed by ARPAV, and vegetation 
condition data from Copernicus (or similar) datasets (see also section 3.1.1). 

Explanation of methods and workflow 

The main categories in which machine learning algorithms are usually divided are 
supervised or unsupervised machine learning. Supervised machine learning is typically 
employed when past events data are available, and the aim of the analysis is to create an 
analytical relationship between a set of labelled inputs and a set of outputs. A labelled 
dataset is a set of data with input (usually called features or indicators, in risk assessment 
application they represent the risk drivers) and the corresponding outputs (labels or 
assessment endpoints, in the case of risk assessment application they can be the 
recorded impacts) (Russell & Norvig, 2016). Unsupervised machine learning algorithms 
instead aim at learning patterns and structures from raw (unlabelled) data: they can be 
used to build compact internal representation of the data (dimensionality reduction), 
clustering, and to generate synthetic data similar to the analysed samples. 

In the following section a selection of machine learning methods envisioned to be tested 
within MYRIAD-EU is presented. This is just a first analysis of the possible methods that 
can be tested: the final methods to be applied will be decided in collaboration with the 
Pilots’ teams, depending on the data availability and the research questions each case 
study will prioritise. 

Clustering algorithms aim at producing a partition of the data that can be used as a basis 
for further analyses. For example, DBSCAN, is a clustering algorithm that has been applied 
to identify the spatio-temporal clusters of hazards, such as extreme precipitation, 
extreme wind (Tilloy et al. 2022), drought, and heatwaves (Yu et al., 2022). Starting from 
data of gridded climate anomalies (identified through percentile or empirical thresholds, 



 
  
                              

39 
 

explained in section 3.2.2), the clustering techniques can be used to group single-event 
anomalies in time and space to create single-hazard clusters. These can be analysed to 
extract intensity, area covered and seasonality of the events and combined to identify 
compound or cascading multi-hazard clusters, for example applying the algorithms 
developed within Task 5.1 of MYRIAD-EU, i.e., the MYRIAD-HESA methods for the 
generation of a multi-hazard event set (Claasen et al., 2023). The main advantage of 
DBSCAN for multi-hazard footprint identification, compared to other clustering 
algorithms such as K-Means, is that it doesn’t require to know in advance the number of 
clusters analysed, but is able to extract any number of cluster analysing areas of high/low 
density of the data. Moreover, the shape of the clusters need not be convex. 

Decision trees and ensemble methods. Decision trees popularity is due to their easy 
implementation (thanks to specific python libraries, such as sklearn (https://scikit-
learn.org/stable/modules/tree.html), which provide several ready to use implementations) 
and their interpretability. In fact, the features which are more important for the learning 
tasks are identified and form the first level of the decision tree. However, decision trees 
often present overfitting: the model is learning noise and is not able to generalise to new 
unseen data.  Other methods, based on decision trees are now more popularly 
implemented in risk assessment tasks: Random Forest is based on the construction of 
many decision trees from a randomly selected sample of training data and features 
(Zennaro et al., 2021), which allow them to be more robust against overfitting (a limitation 
of traditional decision tree models). Compared to other decision ensemble learners, 
Random Forest uses bagging techniques to combine the output of the single decision 
trees. This method, also called Bootstrap Aggregation, combines results from multiple 
decision trees trained in parallel, each taking into consideration only a subset of sample 
data. Other algorithms (such as XGBoost) instead use boosting techniques, in which the 
single decision trees are combined sequentially, with each new iteration focusing on 
misclassified observations of the previous one. The boosting methods offer higher 
predictive accuracy, but at the expense of higher computational costs. Both are popular in 
climate risk assessment applications thanks to their interpretability: it is possible to 
extract the variables that most contribute to the final model through feature importance 
techniques. An example is in Park et al. (2020), where Random Forest (together with other 
supervised machine learning algorithms) is used to estimate present and future risk of 
coastal flooding in South Korea or for forest fire susceptibility assessment using Google 
Earth Engine (Piao Yong, 2022).  

Support Vector Machines (SVM) are supervised learning models mostly used for 
classification tasks. The algorithm maps training examples to points in space to maximise 
the width of the gap between the two classes. New examples are then mapped into that 
same space and predicted to belong to a class based on which side of the gap they fall. 
They excel at non-linear classification tasks: in fact, if two classes can be separated with a 
linear function (i.e., a line or a hyper-plane, depending on the dimension of the data), the 
classification is said to be linear; if a nonlinear function (such as a curve) is needed, the 
classification task is non-linear. SVM can perform non-linear classification using the 
“kernel trick”, which implicitly maps non-linearly separable inputs into high-dimensional 
feature spaces where the boundary between the classes is linear. SVM are thus widely 
used as benchmarks to compare the performance of other machine learning models. 
Some examples of their use are in storm surge flood susceptibility assessment (Sahana, 
2020) or for forest fire prediction (Singh, 2022). 

  

https://scikit/
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Neural Networks 

Multi-Layer Perceptron (MLP): MLP is amongst the simplest neural networks: an MLP 
consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. 
They are feedforward neural networks, i.e., the data flows from the input layers to the 
output layers, passing through the nodes that perform matrix multiplications (each node 
is associated to a weight that controls its contribution to the overall result) and apply non-
linear functions (called activation functions). A technique called backpropagation is used 
to train the neural network, which aims at updating the weights associated to each node 
to minimise the error between the score produced by the output layer and the expected 
result.  

The non-linearity of the activation function allows the MLP to be a universal approximator, 
i.e., it can (theoretically) model any function, given a large enough training sample. It is 
most suited to model complex-linear functions between high-dimensional data. However, 
more advanced techniques are needed if specific temporal or spatial patterns are to be 
extracted from data, such as convolutional neural networks or recurrent neural networks. 
In fact, the MLP does not consider the spatial structure of the data or the order of the 
training samples, but analyses one sample at a time, independently from the others. It is 
thus necessary to create a dedicated variable to explore time and spatial dependencies, 
(i.e., a variable for describing the wind speed at a 7-days lag-time, or a variable calculated 
over a specific distinct area). This can be unfeasible if the specific lag-times or spatial 
influences are unknown and, even if they are known, it can lead to the creation of an 
excessive number of variables, which will reduce the performance and robustness of the 
model. The MLP is still thoroughly applied for natural hazards and risk assessment, often 
as a benchmark for more complex neural networks, such as for flood susceptibility 
mapping (Ahmadlou, 2020).  
 
Convolutional Neural Networks are a type of feedforward artificial neural network that use 
a mathematical operation called convolution in place of general matrix multiplication in at 
least one of their layers. One of their distinguishing features is their ability to extract 
spatial features by enforcing a local connectivity pattern between neurons of adjacent 
layers. They have been successfully applied to extract features from images, such as 
extracting flooded areas from satellite images, (Wang et al., 2020), but also to identify and 
classify different extreme weather events (Liu et al. 2016).  
 
Recurrent Neural Networks are a class of artificial neural networks that allow the analysis 
of sequences of data, adaptively modelling temporal dynamic behaviour. This makes them 
applicable to tasks where there are factors acting at different timescales (such as a 
combination between slow onset processes and extreme events). LSTM have been used 
for example to analyse surge predictions in coastal areas (Tiggeloven et al., 2021) or 
memory effects on vegetation (Kraft et al. 2019). 
 
Novelty of methods 

The application of machine learning to multi-risk assessment is an emerging and dynamic 
area. In particular, the main novelties focus on: 

● Developing Integrated Risk Models. Advances in creating integrated risk 
assessment models that can handle multiple types of risks. This involves 
developing machine learning algorithms capable of considering various risk 
factors, such as economic, environmental and social factors, and assessing their 
combined impact on a given scenario. 
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● Data fusion and integration. As the volume of data from various sources continues 
to grow, effective data fusion and integration techniques become more important. 
Machine learning approaches can combine heterogeneous data sources like 
satellite imagery, social media data, climate models data, and more, to provide a 
comprehensive view of multiple risks. 

● Complex Relationship Recognition: Machine learning techniques, and in particular 
deep learning, are employed to recognise complex relationships between different 
risk factors and model spatio-temporal dynamics at different scales. These 
techniques can help capture non-linear interactions and dependencies that could 
lead to unforeseen risks. 

● Interpretability and explainability: Interpretability of machine learning models is 
vital in risk assessment to understand why a certain prediction or decision is made. 
Decision Trees and Ensemble methods offer techniques that allow for the 
identification of the most important risk indicators, and newly developed 
explainable frameworks for deep learning, such as SHAP 
(https://shap.readthedocs.io/en/latest/) or LIME 
(https://towardsdatascience.com/lime-explain-machine-learning-predictions-
af8f18189bfe) are helping the interpretation of the most complex models. 

 
Expected outcomes 

The general outputs that the machine learning methods can provide are:  
● Single- and multi-hazard clusters, analysing their hotspots and trends, combining 

statistical and unsupervised machine learning methods.  
● A risk assessment model trained on historical data, able to estimate the risk associated 

with different hazards and able to model impacts caused by processes acting at 
different time and spatial scales, obtained through the application of an ensemble of 
supervised machine learning techniques. 

● A ranking of the most important features for multi-risk assessment will be derived 
from the supervised machine learning model, taking into account hazard, vulnerability, 
and exposure factors. Depending on the method used, a feature importance extraction 
or a sensitivity analysis will be carried out. 

● The estimate of future risk under (different) climate change scenarios, highlighting the 
impacts caused by different combinations of risk drivers, produced by applying 
supervised machine learning models on future climate (and exposure/vulnerability) 
projections. 

 
Conclusions 

Machine learning models excel at unravelling the complex dynamics of multi-risk events 
and disentangling the effects of different risk factors. However, the availability of accurate 
impact data from past multi-risk events, high resolution hazard, vulnerability, and 
exposure information, to be used for training, may limit their applicability. 

3.4 Disaster forensics analysis on paired disasters 

Disaster forensic analysis refers to the systematic examination and investigation of past 
disasters to understand the causes, factors, and dynamics that contributed to their 
occurrence and impacts (Keating et al., 2016). It involves assessing various aspects of the 
disaster, such as physical damage, social vulnerabilities, response efforts, and recovery 
processes. By conducting thorough forensic analysis of disasters, we can gain valuable 
insights that contribute to a better understanding of disaster risk.  

https://shap.readthedocs.io/en/latest/
https://towardsdatascience/
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So far, many disaster forensic analyses have focused on comparisons between single-
hazard types across space and/or time (e.g., Kreibich et al, 2022; Borga et al. 2019). 
Building on the work by Kreibich et al. (2022), MYRIAD-EU put out a global call for multi-
risk case studies. Using the community-wide contributions, MYRIAD-EU has developed a 
global database of 160 examples of past multi-hazard event pairs from across the globe, 
including geophysical, meteorological, and hydrological hazards, and that happened within 
the past 40 years. A core team of researchers has been put together who will lead the data 
collection process. To this end, first a template has been developed and tested by non-
MYRIAD-EU contributors. This template will be used to collect data from all case studies: 
all contributors will be asked to complete the template providing detailed information 
about their case study on for example, multi-hazard type characterisation, description of 
dynamics of risk elements, and the role of DRR measures. Upon completion, this database 
will be used to assess challenges for DRR in the context of multi-hazard risk. The analysis 
will aim to provide a better understanding of (a)synergies of DRR measures between 
hazards and aims to collect good practices and bottlenecks for DRR in a multi-hazard 
context. Finally, this database can also be used to improve our understanding of how risk 
factors change in between and after multiple disasters and specifically the role of local 
(socioeconomic vulnerability) conditions relating to disaster impacts. 

3.5 Dynamic vulnerability: consecutive occurrence of disasters and disease outbreaks 

Recently, the disaster risk field has made substantial steps forward to develop 
increasingly comprehensive risk assessments, accounting for the incidence of multiple 
hazards, trickle-down effects of cascading disasters and/or impacts, and spatiotemporal 
dynamics. While the COVID-19 outbreak increased general awareness of the challenges 
that arise when disasters from natural hazards and diseases collide, we still lack a proper 
understanding of the role of disease outbreaks in disaster risk assessments and 
management. The UNDRR (2020, 2022) and the World Health Organisation (WHO, 2019) 
underscored the urgency to understand changing socioeconomic vulnerability due to the 
interactions between disasters and subsequent disease outbreaks (Fig. 10). Several 
studies have shown that natural hazards can contribute to changing vulnerability to 
waterborne disease outbreaks by, for example, impairing access to clean Water, 
Sanitation and Hygiene (WASH-)infrastructure, and increasing chances of infectious-
disease spreading in refugee-facilities (Jones et al., 2020; Mora et al., 2022). Geophysical 
disasters can also damage sanitation infrastructure, triggering waterborne disease 
outbreaks (Jutla et al., 2017). Research suggests that the probability of a disease outbreak 
following a hazard is influenced by underlying dynamics of socioeconomic vulnerability 
(Mazdiyasni & AghaKouchak, 2020). Finally, an understanding of the effects of different 
time-lags between hazards and disease outbreaks (ranging from days to months) is 
necessary to respond effectively, but is currently lacking. Therefore, MYRIAD-EU will 
make use of existing data including MYRIAD-HESA (Claassen et al. 2023), disease 
outbreaks, and global vulnerability data, and existing methods such as multivariate 
statistics and Dynamic Bayesian Networks to explore this novel field of research and to 
specifically look into vulnerability dynamics across different groups (e.g. elderly, female). 
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Figure 10: Stages of growing understanding of increasing disaster-risk complexity from 

single-hazard thinking (left panel), to multi-(hazard) risk thinking (middle panel), to 
including disease outbreaks (right panel). The important role of vulnerability 
acting as a multiplier is demonstrated by the changing slope of the level of well-
being after disasters and disease outbreaks.   
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4  Challenges & opportunities  

In this section we describe our key observations in terms of challenges and opportunities 
related to well-established and novel data sources as well as methods and their suitability 
for detecting dynamics and feedbacks of risk drivers and applicability to local case studies.  

4.1 Datasets 

We have reflected on different datasets: currently existing datasets and novel data 
sources that have been identified. Below we discuss the key opportunities, challenges and 
limitations that have been identified. 

4.1.1 Traditional data sources  

Existing data sets can be grouped based on their local-to-global availability.  

4.1.1.1 Local & regional 

Historical hazard data are typically available with high resolution and long timeframes 
(there are climate reanalysis datasets available for Europe with time series of more than 
40 years of hourly data, with spatial resolutions of a few kilometres per cell). However, 
using this data for future hazards can pose challenges due to the required generalisation 
of the models: especially when applying machine learning or statistical models trained on 
historical data to future projections these need to have a similar statistical behaviour, at 
least if analysed on the same period (i.e., comparing the historical data to a baseline 
scenario of the models, covering the same timeframe). Most often, climate reanalysis or 
observations have different statistical distributions than the modelled data due to the 
impossibility to represent all the physical processes. In particular, indicators describing 
extreme events, which are key for risk analysis, often have different ranges and 
characteristics (for example precipitation events may be more frequent but less intense 
in future projections) reducing the ability of the model to predict accurate future risk 
scenarios. Traditional bias-correction techniques often do not solve these problems 
because they are focused on adjusting averages of the variables between future and 
historical data and are not tailored for correcting the tails of the distributions. Specific 
bias-correction methods, such as quantile mapping, are thus needed to align the two 
datasets before the application of statistical or machine learning methods. 

Vulnerability and exposure data usually have a much coarser temporal resolution than 
hazard data, with many data sources presenting only monthly or yearly data. This 
difference in resolution makes it very hard for the model to learn the role of vulnerability 
and exposure factors and may limit the ability to model these factors dynamically. 

The integration of impact data can present certain difficulties to machine learning, 
particularly due to the sparse nature of multi-risk events that are predominantly linked to 
extreme weather. This sparsity poses a unique challenge for machine learning, especially 
for classification tasks that demand specific methods like oversampling, under sampling, 
or weighting to counterbalance disparities between classes. 

The accuracy of the past impact data is also fundamental to correctly identify the right 
relations between the risk drivers: if the training datasets presents spurious or 
inaccurately labelled impacts, these errors will be propagated further and amplified 
through the analysis. A lack of precision in the localisation of an impact (i.e., an area 
damaged by flash floods) may impair the ability of the model to link this event to a specific 
risk factor (such as permeability of the soil) that has a great spatial variability but had to be 
aggregated over a wide area in order to comply with the coarser resolution of the impact 
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data. Moreover, an impact dataset which is not consistent over time (most local impact 
datasets do not have clearly defined parameters and are subject to the personal 
interpretation of the person/association analysing the events) may result in biased 
models.  

Multi-risk assessment poses further challenges because there is a lack of impact 
catalogues specific for multi-risk events (most of the studies have been dealing with just 
one hazard at a time), so performing supervised machine learning may require additional 
pre-processing steps to correctly identify and label past multi-risk impacts. 

4.1.1.2 Global 

The EM-DAT data set gives limited opportunity for statistical analysis and drawing 
conclusions due to the number of data points (events with full data) and data quality. A 
preliminary conclusion given the quality of the global dataset is that there are non-
linearities in the hazard – impact relationship that might result from the interactions of 
multiple hazards. The limitations of EM-dat challenge getting accurate estimates of the 
characteristics of the risk drivers (exposure, hazard magnitude and vulnerability) and 
poses challenges to analysing their interrelationships and dynamic feedbacks.  

In order to make the data set suitable for an in-depth statistical analysis of changes in 
losses and damages that arise from interactions between multiple hazards we 
recommend using additional data sources: 

● for currently missing impact data  
● for currently missing data on hazard intensities 
● to standardise interpretation of impact variables “Total Affected” and “Total Damages, 

Adjusted (‘000US$’)” for consistency across events.  
 
We also recommend investigating a wider definition of multi-hazard events, for example, 
consecutive events such as the tropical cyclone and earthquake in Haiti in 2019 and the 
two tropical cyclones making landfall in Mozambique in 2020 (see, e.g., de Ruiter & van 
Loon 2022). 

4.1.2 Novel data sources 

Below we summarise our key findings on opportunities, challenges, and limitations of 
novel data sources. 

4.1.2.1 Nighttime lights (NTL) data 

Opportunities 

● Future releases of the Black Marble NTL data by NASA will include tools through which 
users can create a high definition 30m resolution version of the data, which would be 
useful for obtaining more detailed information about recovery of a single- or multi-
hazard event on a more local scale (e.g., Román et al., 2019). 

● NTL can provide a means to track recovery in areas where it is difficult to monitor or 
where there are no other data sources available. 

● Satellite data are beneficial because they are uniform and globally available, allowing 
for a large-scale, long-time study to uncover general patterns in single- vs. multi-
hazard recovery and the socio-economic factors that affect this.  

● The use of NTL can aid in the construction of post-disaster recovery storylines for 
multi-hazard events. 
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● Locally there can be an opportunity to account for additional factors that can influence 
the NTL values, like technical blackouts or intentional preventive blackouts, if data are 
available. 

● The general recovery characteristics found for single- vs. multi-hazard events and the 
factors that play a role could be used to include this aspect of dynamic vulnerability 
when looking into future events.  

 
Challenges  
● Defining NTL recovery as %NTL in comparison to the value without the disturbance 

does not provide insights into the specifics of recovery processes, e.g., building back 
better, people moving out or into the area, effect on resilience/adaptive capacity. For 
this we need information on more detailed post-disaster recovery indicators and 
monitoring thereof on short (days to weeks) as well as long (months to years) time 
scales. It is important that this is done in a consistent manner, to allow for comparison 
between different (single- and multi-hazard) events. 

● NTL data capture light visible from space, meaning that lights like streetlights and 
billboards contribute for a large part to the total observed light intensity. After a 
disaster, the restoration of such non-essential light sources often lags electricity 
restoration for essential infrastructure (Román et al., 2019). 

● There can be alternative reasons for NTL reductions that can affect the results, which 
cannot be accounted for using the current approach; e.g., blackouts due to technical 
problems. 

● Cloud cover can be a big challenge. Especially when analysing natural hazards like 
tropical cyclones when there can be several days before, during, and after the disaster 
where NTL values are only available for a limited number of pixels. Additionally, daily 
NTL data are computationally heavy to process. This is why the choice has been made 
to aggregate to weekly instead.  

● For some hazards, the impact is poorly captured by NTL data. Droughts, epidemics, 
extreme temperatures, and fog for example do not directly cause a NTL reduction. 
Also, explosive volcanic eruptions can produce significant volcanic ash clouds,  and 
wildfires are accompanied with significant smoke development, literally clouding the 
data (Felbermayr et al., 2021, Zhao et al., 2018) 

4.1.2.2 Google search interest, newspaper mentions, hospitalisations and mortality 

Opportunities 

● Google Trends Themes group the most relevant search terms around a theme (e.g., 
heatwaves as an extreme event) into a topic. This allows us to capture searches for 
multiple similar terms across languages, making the time series retrieved more 
meaningful than single terms. 

● Google Trends data are an unbiased sample of Google search data. The data are also 
anonymised, categorised and aggregated. 

● Google Trends data have only recently begun to be used in the natural sciences, 
although they have been used extensively across many disciplines (Jun et al., 2018). 

● Previous analyses in the natural hazards field have found strong correlations between 
search frequency for the Google topic ‘heatstroke’ and heat stroke-related deaths and 
hospitalisations (Li et al., 2016). For other hazards, Google Trends data have been used 
to quantify awareness of drought (Kam et al., 2019; Kim, et al., 2019) and interest in 
earthquakes (Tan & Majarjan, 2018). 
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● Newspapers represent one aspect of societal attention, providing written evidence of 
diverse and difficult-to-quantify impacts related to climate extremes and natural 
hazards. 

● Newspaper articles, both print and online, can serve as a source of hazard data or 
evidence, as well as a means of identifying the impact of these events. The text from 
these sources can be used in all forms of natural hazards research. 

● Hospitalisations and mortality are used prominently throughout human health and 
climate hazard impact analyses. 

 

Challenges  

● The challenge in using hospitalisation and mortality data is the availability of data at 
both temporal and spatial scales. To obtain higher resolution data, one often must 
compromise on the spatial or temporal extent of the data. A common source of 
mortality data, Eurostat, publishes data on the number of deaths in different European 
countries disaggregated by week, age, sex and NUTS3 regions, although not all these 
disaggregated datasets are available for all countries. This is due to the availability of 
data from the source country, as data transmission is on a voluntary basis. Long time 
series are needed for robust comparisons over time and for statistical modelling. 

● Challenges in using newspaper articles include the coverage of individual media 
outlets. Some media outlets may cover larger areas (i.e., country scale) compared to 
others that may focus more regionally (i.e., city scale). This can make it difficult to 
attribute the location of the hazard in question.  

● Media coverage can also have an agenda-setting effect, with readers and other news 
organisations attributing greater importance and press coverage to things that 
receive more coverage. 

● When using the content of news articles or media reports to analyse hazards, there 
may be instances where there is no verification or sources of misleading information. 
This does not affect the use of media to quantify public attention, although it should 
be considered when selecting news outlets for content analysis. 

● The values obtained from Google do not represent the absolute search volume for a 
topic but are rather normalised and then indexed on a scale of 1-100. 

● In some countries, for political or linguistic reasons, Google is not the primary search 
engine. This limits the ability to conduct analysis with the dataset globally. 

● Some regions may have such a small population, or so few people using the search 
engine, that the noise level in the data becomes problematic for some analyses. 

4.2 Methods and approaches 

Below we summarise our key findings on opportunities and challenges of novel methods 
and approaches. 

4.2.1 Differences in differences (DiD) 

DiD is a well-established method that can be used in many different contexts, to find the 
actual effect of a disturbance to a system. Often, NTL recovery studies compare nighttime 
light values pre- and post- the disaster in a disaster-struck area (e.g., Schippers et al., 2022; 
Zhao et al., 2018; Román et al., 2019), but by taking the DiD the effect of additional factors 
that can be of influence is minimised.  

Opportunities 

● This method is applicable to the pilot regions, either to study recovery for a specific 
event or to elucidate general patterns like in this study.  
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● There are opportunities to improve the method locally by using: 
− locally available hazard data of better quality than the hazard data used in this 

study; 
− impact data/inclusion of a vulnerability component to determine the affected 

regions;  
− additional datasets to track (economic) recovery, on a high temporal and spatial 

resolution. 
 

Challenges 

● Results strongly depend on affected and reference regions chosen, and whether these 
fulfil the parallel trends assumption. Because of the large number of events and the 
large scale considered in this study, the affected regions are selected only using the 
hazard extent (hazard) and a degree of urbanisation map (exposure). However, 
preferably one would only look at regions that experienced actual impact, hence 
including a vulnerability component, but this is difficult at the scale of the current 
study. Additionally, regions that are unaffected by the hazards can still experience 
spillover effects that are unaccounted for in the current methodology (Felbermayr et 
al., 2021). 

4.2.2 Quantifying impact-relevant durations  

In order to make more informed choices about the time scale to be considered in extreme 
event analyses, a methodology has been developed to determine a range of impact-
relevant durations. This methodology was developed and applied to a case study of 
extreme heat events in Germany (De Polt et al., in revision). 

Opportunities 

● The methodology for determining impact-relevant durations is applicable to any 
region, at any scale, as long as there are sufficient data to represent the hazard and the 
impacts of that hazard. 

● This information can inform future research on climate hazards by suggesting useful 
timescales over which hazard metrics (e.g., temperature for heatwaves) can be 
aggregated for cross-sectoral impact research. 

 
Challenges 
● The applicability of this method is limited by the input variables available. This is 

particularly the case for impact metrics where availability may be limited. The 
methodology requires the spatial and temporal resolution of the hazard data to be 
equivalent. 

4.2.3 Machine learning 

Machine learning functionalities and capabilities, including high accuracy and adaptability, 
showed that machine learning can be considered as a promising tool for emerging studies 
on multi-risk assessment, allowing to analyse various extreme events occurring 
simultaneously or successively (i.e., compound, or consecutive events). Input data should 
consider all spatio-temporal variables characterising these types of complex events, 
describing their dynamics over time and projecting (and predicting) them under potential 
future scenarios. 

Opportunities 

● After training, the reliability of the Machine Learning model is typically checked 
through technical steps known as validation and testing. To ensure independence, the 
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data used for one step are not employed in any of the other steps; statistical 
techniques that take into account eventual correlation in the input data are to be 
employed to verify that the groups are as independent as possible, reducing their 
eventual correlation. Some examples are block-validation techniques, which exclude 
from the validation sets data which present spatial or temporal similarities with data 
used in training (Zanetti et al., 2022). 

● The importance of an accurate impact dataset can be seen as an opportunity to 
establish monitoring techniques for building coherent and easily accessible impact 
datasets. The use of unsupervised machine learning may help in identifying past multi-
hazard events and labelling data. Moreover, it can also be combined with other 
statistical techniques (such as copulas) to produce new synthetic multi-hazard 
datasets that can be used to reduce the training cost of supervised machine learning 
models.  

 
Challenges 

● The application of Machine Learning and Artificial Intelligence to multi-risk 
assessment is heavily dependent on data availability and quality. In fact, training 
supervised machine learning model relies on historical multi-risk events to learn the 
non-linear and complex relations between the risk drivers. These data need to have a 
high enough spatial and temporal resolution to be useful for modelling and the more 
sophisticated the model is, the more input data are needed for an accurate training. 
Moreover, a conspicuous number of multi-risk events is needed to train and validate 
such models.   

● The spatial and temporal correlation of training data may reduce the robustness of the 
Machine Learning model and may pose challenges for validation and testing. In fact, 
ignoring the correlation between consecutive days or neighbouring areas when 
validating a model trained on climate data may result in underestimating errors and 
producing an overfitted model unable to generalise with new and unseen data. 

4.2.4 Disaster forensic analysis 

Disaster forensic analysis involves a methodical examination and investigation of previous 
disasters to comprehend the factors, causes, and dynamics that influenced their 
development and consequences. This process encompasses the scrutiny of diverse 
aspects related to the disaster, including physical destruction, societal vulnerabilities, 
emergency response endeavours, and the recovery journey. Through comprehensive 
forensic analysis of disasters, we acquire valuable insights that enhance our 
understanding of disaster risk. 

Opportunities 
● Disaster forensic analysis plays a vital role in enhancing our understanding of disaster 

risk by identifying root causes, assessing risk factors, evaluating response and 
recovery efforts, informing policy and planning decisions, and empowering 
communities.  

● It provides valuable insights that contribute to more effective risk reduction strategies 
and the development of resilient societies. 

 
Challenges 

● Access to comprehensive and reliable data is crucial for conducting effective forensic 
analysis. However, in many cases, data collection systems may be inadequate or 
inconsistent, making it challenging to obtain accurate and detailed information about 
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the disaster event, its impacts, and the contributing factors. Data gaps, 
inconsistencies, and biases can hinder the accuracy and completeness of the analysis. 

● Conducting a thorough forensic analysis requires time, resources, and expertise. This 
time constraint may affect the depth and rigour of the analysis. Additionally, resource 
limitations can impact the scope and scale of the analysis, particularly in cases where 
multiple disasters occur simultaneously or in quick succession. 
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5 Conclusions 
A better understanding and improved modelling capabilities of multi-(hazard) risk 
dynamics and feedbacks is needed to better inform DRR and adaptation strategies, and 
to support evidence-based decision-making. This requires the identification of data and 
methods capable of assessing these dynamics and feedbacks. 
 
Several methods have been identified, explored, and tested to address the dynamics of 
risk and DRR measures. First, assessing vulnerability can be challenging due to its 
invisibility and variability. MYRIAD-EU’s research enhances vulnerability assessments by 
studying time dynamics, impact relations, and vulnerability management. Through a 
systematic review we have compiled a database of urban characteristics of vulnerability. 
Monitoring these aspects over time reveals vulnerability dynamics, highlighting various 
vulnerability-impact relations. Next, extreme climate events, such as heatwaves, vary by 
definition, complicating sectoral comparisons. We have developed a novel methodology 
to study climate extremes based on impact duration and intensity using hospitalisation 
data combined with Google search and news article data. Thirdly, multi-hazard recovery 
differs from single hazard recovery. We are developing a quantitative methodology using 
Nighttime light satellite data to compare recovery after single- and multi-hazard events. 
This is a first step towards quantifying multi-hazard recovery. Fourthly, machine Learning 
and Artificial Intelligence have been identified as promising methods and are currently 
being tested to unveil patterns in complex data, supporting assessments for multi-risk 
events. Finally, we are using disaster forensic analysis to assess risk dynamics and the 
impacts of DRR measures using a database of historic disasters that has been developed 
in collaboration with the global multi-risk research community.  
 
Next, MYRIAD-EU will further develop and test the identified methods in its pilots and 
local-to-global studies. These methods will be used to: support the software (to be 
developed in WP5), derive dynamic vulnerability functions (WP4), and feed into the 
database of empirical evidence of risk dynamics. Findings of our studies will be used to 
support decision makers and involve affected communities, fostering resilience, through 
our pilot case studies and our sectoral representatives. 

6 Data and ethics statement 
The information in the deliverable respects the principles set out in the MYRIAD-EU Ethics 
Plan and in the Data Management Plan.  
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