
AIMC 2023

Revisiting Reynolds -
Autonomous Agents for
Spatial Audiovisual
Composition and
Performances
Damian Dziwis1,2

1TH Köln - University of Applied Sciences, Cologne, Germany,
2Technische Universität Berlin, Germany

Published on: Aug 29, 2023

URL: https://aimc2023.pubpub.org/pub/t2bsu95w

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

https://aimc2023.pubpub.org/pub/t2bsu95w
https://creativecommons.org/licenses/by/4.0/

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

2

ABSTRACT

Autonomous agents represent a special class of systems in the context of Artificial Intelligence (AI) and

Artificial Life. As embodied AI, they are systems that have a certain understanding of their environment and

adapt their behavior accordingly. They are used in a wide range of fields, from robotics to video games, but

also in artistic practice. Craig W. Reynolds' work on steering behavior and flocking simulation provided an

important framework for simulating the motion of autonomous agents. Originally intended for use in computer

games, various adaptations and inspired applications can be found in a wide variety of domains, including

spatial composition. The motion of autonomous agents in 3D space can be used to control spatial sound

sources and other virtual objects to realize life-like behavior in improvisations or conducted performances. In

this paper, we describe the implementation of steering behaviors proposed by Reynolds as autonomous agents

in the modular 3D engine IVES for the Max development environment. Furthermore, we demonstrate the

potential to realize spatial audiovisual compositions and performances with the improvisational behavior of

autonomous agents in combination with a 3D engine specialized for art production.

Keywords: Autonomous Agents, Audiovisual Composition, AI Improvisation, AI Performance, Artificial Life,

Embodied AI

Introduction
Movement, even outside the performing arts such as dance, is an essential element throughout many domains

of artistic practice. In the field of spatial composition, the creation of sound source trajectories is an important

technique for electroacoustic and acousmatic compositions [1]. Already since the 1950s, composers such as

Edgard Varèse with "Poème électronique" (1958) in the Philips Pavilion designed by Iannis Xenakis, have been

exploring techniques and technologies for the spatial arrangement and movement of sounds through

loudspeakers in space. As loudspeaker-based spatial audio evolved from stereophony for 1D or 2D spaces to

3D sound field reproduction with technologies such as Ambisonics or Wave Field Synthesis [1], the

dimensions and possibilities of sound movement for spatial compositions also expanded. To cope with these

extended possibilities, also a variety of software emerged to support the creation of complex trajectories and

spatial compositions. Software with audio processing and complex trajectory editors, such as Zirkonomium

[2], Holophon [3] or Sound Trajectory 2 [4], allow not only the playback of audio material for loudspeaker

arrays, but also the design of accurate three-dimensional trajectories using graphical user interfaces (GUIs).

Other approaches, such as the graphical sequencer Iannix [5], do not involve direct audio processing, but allow,

among other things, the creation of multidimensional trajectories. This can be done both graphically and by

implementing generative algorithms in the programming language JavaScript. In addition to graphical editors,

such algorithms are another key method for generating trajectories and movement of sounds in the context of

spatial composition. These algorithms can range from aleatoric/random processes, generative construction of

complex geometric figures and shapes, to the simulation of motion based on various models. The Spat

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

3

programming library [6] for the Max development environment [7] provides objects for spatial audio

processing as well as algorithms for trajectory and motion generation. In addition to trajectory generation

algorithms based on 2D and 3D geometric shapes, Spat also includes objects with autonomous steering

behaviors, like the simulation for motion (simone) object [8], or a flocking simulation (boids) based on the

Reynolds boids concept [9]. Starting in the 1980s, Craig Reynolds' research made important contributions to

the simulation of flocking and herding, and to the steering behavior of autonomous agents as characters [10].

Autonomous Agents are an approach in Artificial Intelligence (AI) and the related field of Artificial Life [11].

As embodied AI [12], they are characterized as autonomous systems that have (limited) knowledge of their

environment and adapt their behavior accordingly. According to Stan Franklin's definition, an autonomous

agent "is a system situated within and a part of an environment that senses that environment and acts on it, over

time, in pursuit of its own agenda and so as to effect what it senses in the future" [13].

Autonomous agents can be implemented, for example, as systems that behave in a lifelike and improvisational

way among themselves or by navigating through their environment [10]. In this way, virtual characters and

objects can be realized that autonomously show plausible behavior in specific situations. Although Reynolds'

research originated in the context of virtual environments and computer games, his algorithms for steering and

flocking behavior have been used in a variety of domains, including spatial composition. Game engines such as

Epic's Unreal Engine [14] or Unity [15] are thus possible applications for autonomous agents in games and

virtual worlds. Besides their main purpose of game development, they also offer the possibility of spatial audio

and composition, especially in the context of spatial, audiovisual, and virtual art. In contrast to the game

engines mentioned above, the modular 3D engine IVES [16] is not intended for game development, but

specifically for use in research and art production, offering advanced possibilities for spatial audio and

generative audiovisual design. As a toolkit with open-source modules for the Max programming environment,

IVES applies the Spat library for spatial audio processing and the OpenGL-based Jitter library integrated in

Max for visual rendering of 3D elements. IVES provides a wide range of modules for spatial audio rendering

using loudspeaker arrays via Ambisonics as well as headphone-based rendering via binaural reproduction [17].

3D objects and entire virtual environments can be created for screen or projection use, as well as for common

virtual reality (VR) systems. Since IVES is implemented as modules for Max, the Max programming language

can furthermore be used to realize arbitrary sounds and visual objects, using generative algorithms or media

data (e.g. audio files, 3D models, etc.).

Although IVES already has the trajectory algorithms from the Spat library [18] integrated as a module, this

paper describes the effort to develop modules for autonomous agents. Unlike static trajectories, which specify a

fixed path for sound sources or virtual objects, the autonomous agent modules can be used to implement

dynamic behavior in the form of movement relative to the user or to other agents or objects. In this way,

improvised performances can be realized or spatial composition conducted. The integration into IVES makes it

possible to realize them not only for spatial audio reproduction via loudspeakers or headphones, but also as

audiovisual virtual artworks for screens, stages or VR. Since the steering behaviors proposed by Reynolds are

easy to implement, computationally efficient, and yet can be quite effective, especially in creative applications,

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

4

the goal of this work is to integrate them as modules for autonomous agents in IVES. The following sections

describe the underlying steering algorithms, their implementation as autonomous agents, and their integration

as modules within the IVES engine. Furthermore, use cases for possible artistic application in virtual

audiovisual works are demonstrated.

Autonomous Steering Behavior
The scope of this work is within the framework of Reynolds's "Steering Behaviors For Autonomous

Characters" [10]. This section provides a summary of Reynolds' approach and the steering behaviors used for

autonomous agents in IVES. In his paper, Reynolds describes algorithms for several steering behaviors in

autonomous characters, defined as autonomous agents "intended for use in computer animation and interactive

media such as games and virtual reality” ([10], p. 1). Following the taxonomy outlined by Reynolds, these

autonomous agents can be understood as situated, embodied, reactive and virtual agents. The proposed

algorithms aim to steer these agents' behavior according to a simple "vehicle" model [19]. ‘Behavior’, in the

context of these autonomous agents, is here defined in a top-down hierarchy of "Action Selection: strategy,

goals, planning" -> "Steering: path determination" -> "Locomotion: animation, articulation" ([10], p. 2). In

Reynolds’s approach, the emphasis is on ‘Steering’, which is implemented in the form of steering forces, that

can also be combined, to provide lifelike, improvisational movement between each other and the environment.

‘Locomotion’ is applied to a simple vehicle model using point mass approximation. It is defined by the

properties of mass, position, and velocity, with the latter two being vectors. To generate motion, for each frame

steering forces are applied to the vehicle's point mass in relation to a given target. The ‘Action’ behavior of the

autonomous agents is not determined by a higher-level goal or strategy, but only by the motion of a given

target. As a result, the agent's movement is incrementally adapted by the applied steering behavior in relation

to that target.

The steering forces described by Reynolds include: seek, flee, pursuit, evasion, offset pursuit, arrival, obstacle

avoidance, wander, path following, wall following, containment, flow field following, unaligned collision

avoidance, separation, cohesion, alignment, flocking, and leader following. Subsequently, only those steering

forces are summarized that have been implemented as autonomous agents for IVES in the context of this work.

Seek (flee, arrival, pursuit, evasion): The seek steering force moves the agent to a particular position by

directing the velocity radially towards the target. By forming a "desired velocity" ([10], p. 9) vector with the

direction from the agent to the target, and with the length of the agent's speed property, a steering velocity can

be calculated by subtracting this desired velocity from the agent's current velocity. The following steering

forces are variations of the seek force. Flee behavior is the inversion of seek force, in which the agent's velocity

is directed radially away from the target by applying the desired velocity in the opposite direction. Using seek

force, the agent will cross the target as soon as it reaches it and then turn around to reapproach it again. To stop

the agent once it reaches the target position, the "arrival" steering force extends the seek behavior by linearly

decreasing the agent's desired velocity after it approaches closer than a specified radius until it equals zero at

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

5

the target position.

Pursuit is used to seek another autonomous agent. The pursuit force is also based on the seek behavior but

extends it by predicting the target’s future position. The future position of the target agent can be predicted by

multiplying the velocity of the target by a specified factor, and adding the result to the current position. The

predicted future position is then the target position seeked by the pursuing agent. Evasion is again the inverse

of pursuit behavior, using the flee force to evade the target agent and its predicted future position in the

opposite direction.

Wander: Wander is a steering force that does not act in relation to a given target, but instead steers the agent

through the environment in a certain random manner. This is done by limiting the random steering force to the

surface of a sphere in front of the agent. At each frame, a random displacement is added to the previous

steering force, with the sum also being limited to the surface of the sphere. The degree of direction is thereby

determined by the radius of the sphere, while the magnitude of the random displacement determines the rate of

the random changes.

Path Following: Path following allows steering an agent along a given path. Instead of moving strictly

according to this path, the steering behavior enables the agent to move along the path with deviations within a

certain radius. This creates a more lifelike and improvisational movement compared to predefined trajectories.

Path following is realized by making a prediction of the agent's future position and projecting that predicted

position to the nearest point on the path. If the distance from this predicted position to the nearest point is

smaller than the specified radius, then the agent is already following the path correctly and does not need to be

corrected. Otherwise, the seek behavior is used to steer towards the projection of the predicted future position

on the path.

Flocking: Flocking is a combined behavior applied to a group of autonomous agents. It was introduced as the

boids model in 1987 by Reynolds in his paper "Flocks, Herds, and Schools: A Distributed Behavioral Model"

[9]. Here Reynolds first introduced his approach to simulating the swarm behavior of multiple agents, which he

calls boids, an abbreviation for "bird-oid". The simulation is realized with three combined steering behaviors:

separation, the ability to keep a distance from other nearby agents; cohesion, the ability to group with other

nearby agents; and alignment, the ability to align in direction and speed with other nearby agents. These three

steering forces can be simply added together, or beforehand normalized and scaled by a weighting factor for

better control. Thus, the flocking behavior, for each of the three steering forces, can be defined by the

parameters weight, as well as distance and angle to define the neighborhood.

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

6

Implementation

In this work, the steering behaviors proposed by Reynolds were implemented as two modules for the IVES

engine. They were developed in the Max programming environment using the Node.js and P5.js [20]

JavaScript frameworks (Agent module) and the Spat library (Boids module) (see Fig. 1).

Agent Module:

The implementation of the above-mentioned steering algorithms as an IVES Agent module is based on Daniel

Shiffman's implementation of the steering behaviors proposed by Reynolds. In "The Nature of Code" [21] and

"The Nature of Code 2" [22] Shiffman describes his implementations in Java (using the Processing framework

[23]) and JavaScript (using the P5js framework [20]) with corresponding code examples. The code published

by Shiffman has been adapted for use in Max and the IVES 3D engine: Shiffman's 2D implementation has

been extended to 3D and reimplemented in Max's Node.js environment (including the port of Java code).

While the P5js framework is still integrated to use the included vector functions, the rendering pipeline of P5js

is not used, and instead, the code is adapted and integrated into the IVES rendering and object handling.

The control behaviors implemented as an IVES Agent module are: seek, flee, arrive, pursue, evade, wander,

and path following.

Following Shiffman's Vehicle class, the core of the Agent module is the class ‘Agent’ with the attributes:

acceleration, velocity, position, maxspeed, maxforce, radius, distance, and id:

Figure 1: a diagram showing the architecture of the two autonomous agent modules
integrated in IVES.

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

7

class Agent{

 constructor(x, y, z){

 this.id = 0;

 this.acceleration = new Vector(0, 0, 0);

 this.velocity = new Vector(0, 0, 0);

 this.position = new Vector(x, y, z);

 this.maxspeed = 2;

 this.maxforce = 0.3;

 this.radius = 1;

 this.distance = 5;

 [...]

 }

Code 1: Constructor of the Agent class with the relevant attributes describing the agent’s behavior.

While the id attribute is used for object management within the IVES engine, the other attributes are relevant

for the implemented steering behavior algorithms: compared to Reynolds Simple Vehicle Model -

Simple Vehicle Model:

 mass scalar

 position vector

 velocity vector

 max_force scalar

 max_speed scalar

 orientation N basis vectors

Code 2: Reynolds Vehicle Model for Autonomous Characters ([10], p. 6) and its proposed attributes.

we can see that the mass and orientation attributes are missing, but acceleration, radius, and distance attributes

have been added instead. Analogous to Shiffman, also our physical model does not have a defined mass.

Furthermore, in Shiffman's implementations, as in the present adaptation, the steering behaviors are

implemented as methods of the main class. Here Shiffman implements the steering forces as a single return

vector, “force”, of the behavior methods. This is done according to Reynolds’s concept of a desired vector and

steering vector:

desired_velocity = normalize (position - target) * max_speed

steering = desired_velocity – velocity

Code 3: Reynolds force concept for Autonomous Characters ([10], p. 9).

This concept, and Shiffman's proposed implementation, was extended and adapted for use in 3D and IVES. At

each frame, the force vector is calculated by the selected behavior method, and the result is added to the agent's

acceleration attribute. In a subsequent update method, the agent's velocity is summed up with its acceleration,

the magnitude is limited to the maxspeed attribute, and finally, the agent's position is added with the calculated

velocity to produce its new position. The acceleration attribute is then reset for the next iteration:

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

8

update(){

 this.velocity.add(this.acceleration);

 this.velocity.limit(this.maxspeed);

 this.position.add(this.velocity);

 Max.outlet("/agent/vec "+this.id+" "+this.position.x+" "

 +this.position.y+" "+this.position.z+" "+this.velocity.x+" "

 +this.velocity.y+" "+this.velocity.z);

 this.acceleration.mult(0);

}

Code 4: update method for autonomous agents as proposed by Shiffman, adapted to use in IVES.

As in Shiffman, this is followed by a method that renders the agent and its changes in position. In this method,

the agent is rotated with respect to its velocity vector, eliminating the need to keep its orientation as an attribute

as proposed by Reynolds. For use in IVES, both position and rotation are output as OSC messages to control

linked IVES modules such as sound sources or 3D objects:

move(){

 let rho = this.velocity.mag();

 let phi = Math.acos(this.velocity.z/rho);

 let theta = Math.atan2(-this.velocity.y, this.velocity.x);

 if(output == 0){

 Max.outlet("/source/"+this.id+"/xyz "+this.position.x+" "

 +(this.position.z * -1)+" "+this.position.y);

 }else{

 Max.outlet("/shape/pos/x "+this.position.x);

 Max.outlet("/shape/pos/y "+this.position.y);

 Max.outlet("/shape/pos/z "+this.position.z);

 Max.outlet("/shape/rot/y "+ phi * (180.0 / Math.PI));

 Max.outlet("/shape/rot/x "+ (theta * (180.0 / Math.PI)));

 }

}

Code 5: method to move and rotate an arbitrary IVES element (e.q. sound source or 3D object), according

to the calculated agent’s position and velocity.

According to the described procedure, all listed steering behaviors have been implemented. The remaining

attributes radius and distance are used to parameterize the arrival and wandering behavior. These attributes, as

well as the desired steering behavior, can be parameterized in the graphical user interface (GUI) of the IVES

Agent module (see Fig. 2). Here it is also possible to choose the target between the listener (i.e. the interactive

first-person user in the virtual environment), another linked agent, or a virtual object. The output object, which

is steered by the behavior of the autonomous agent, can be chosen between sound sources or other virtual

objects.

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

9

In addition to interacting with virtual objects as target and output elements, the Agent module can also

integrate with other modules of the IVES engine (see Fig. 3). The "Boundaries" behavior, proposed by

Shiffman as a steering force to constrain agents within a given space [24], has been ported and extended for

combination with the IVES Room module. Originally developed to define acoustic spaces for spatial room

simulation[25], the Room module also allows the definition of a three-dimensional room that serves as a

boundary to limit the action space of an agent when the room parameter is selected. The IVES Path module

allows the definition of three-dimensional paths that can be traversed by agents using the path-following

behavior. All parameters such as steering behaviors, attributes, targets, and output elements can also be

controlled and automated for compositions or performances using OSC messages, like with the IVES Animate

module.

Figure 2: a screen capture showing the Agent
module.

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

10

Boids Module

Since it is inconvenient in practice to implement flocking behavior as a cascade of multiple Agent modules,

this group behavior was implemented as a separate module. Unlike the agent module, the Boids module is not

based on Shiffman's implementation. Instead, since the Spat library integrated in IVES already includes an

object with an integrated flocking algorithm for boids, this implementation was used as the basis for the Boids

module. The Spat boids algorithm allows extensive parameterization of the integrated steering behaviors for

separation, cohesion, and alignment, as well as extended behaviors of the individual agents. The Spat boids

object has been implemented as a module together with a GUI for the behavior parameters and also allows to

control whole groups of sound sources or virtual objects in IVES (see Fig. 4).

Figure 3: a screen capture showing a Max patch using the Agent module with the IVES
Room, Path and Shape module to create a scenery in a virtual environment.

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

11

Again, the Boids module can interact with the IVES Room module to define the bounding box parameter for

the boids object, the walls within which the boids can move, by creating a three-dimensional room (see Fig. 5).

Figure 4: a screen capture showing the Boids
module.

Figure 5: a screen capture showing a Max patch using the Boids module with the IVES Room,
and Soundfield module to steer sound sources in a virtual environment.

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

12

Use Cases
The deep integration of these two modules into the IVES engine, in addition to the other possibilities offered

by IVES, allows multiple applications and opportunities for autonomous and improvisational motion within

audiovisual virtual works. Improvised performances, conducted compositions, and also virtual installations can

be realized. The behavior of the autonomous agents can be related to a first-person user, such as a performer or

visitor, other agents, and/or virtual objects to generate improvisational trajectories or simulate lifelike behavior

in virtual worlds as an artistic work.

Possible application scenarios can, but are not limited to, the following types and combinations:

User/listener-dependent behavior:

With the Agent module, the behavior of an autonomous agent can be used to control a virtual object and/or

sound source to create dynamic and improvisational trajectories with a first-person user as the target. By

automating the steering type and its properties, the behavior can be further controlled for use in a live

performance (see Vid.1).

Complex combinations of behavior:

The combination of multiple agents with different behavior towards each other and/or their environment can be

used to realize complex scenarios for the motion of virtual objects and/or sound sources.

0:00

Video 1: a screen recording of an autonomous agent using the Agent module steering a
virtual object and sound source. The behaviors seek, flee and arrive are automated over time

in regard to the first-person user’s position. (Use headphones for binaural audio)

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

13

Linking individual agents to each other and to their environment enables life-like improvisational behavior for

artificial life simulations. In this example of ‘loving birds’, one agent wanders around the spatial boundaries

defined by the IVES Room module, while a second agent floats around the first agent, which is the target of its

seek behavior.

0:00

Video 2: a screen recording showing a ‘loving birds’ example. With one virtual object
wandering around a virtual room, seeked by another object. Both are steered by autonomous

agents using the Agent module.

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

14

Path following in combination with other behaviors can be used to realize complex trajectories with

improvisational deviations of multiple virtual objects and/or sound sources. In this example, the IVES Path

module was used to create a path that is followed by one agent in the path-following behavior, while a second

agent pursues the first one.

Group behavior of multiple agents:

Multiple agents can be combined to perform a group behavior in the environment. With the flocking behavior

of the Boids module, the behavior of multiple agents can be used to control virtual objects and/or sound

sources in their environment. Additional agents using the Agent module can be attached to extend the flocking

behavior (see Vid. 4):

0:00

Video 3: a screen recording showing two autonomous agents using the Agent module. One is
path following a 3D path, while being pursued by another one. Both are steering a virtual

object as well as sound source. (Use headphones for binaural audio)

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

15

Discussion
Steering behaviors of autonomous agents are used in many ways in composition practice. From the generation

of complex trajectories [8] to the simulation of swarm behavior [26], there are a variety of approaches. As

Graham Wakefield has pointed out, there is particular potential for audiovisual virtual works in the context of

Artificial Life simulation and computational world-making [27]. Graham's Cosm toolkit [28] already provided

a 3D engine in Max integrating the simulation of autonomous agents. The already long-outdated Cosm toolkit

left a gap not only for a 3D engine in Max, but also for the integration of autonomous agents into such an

engine.

The modules for autonomous agents presented in this paper, especially in conjunction with the IVES 3D

engine, not only fill a part of this gap, but also provide new approaches to interacting with autonomous agents

for composition and performance practice. The possibilities of not only isolated behavior of agents towards

each other and their environment, but especially in interaction with a first-person user in virtual environments,

offer many possibilities for compositions, performances, or virtual installations (see Use Cases). In contrast to

such an implementation within a common game engine, the integration into an established environment for

audiovisual digital art like Max offers special advantages. Artists can combine the design of virtual

environments with autonomous agents, for stage performances or VR, with already known processes such as

generative design for sounds and virtual objects in a familiar environment tailored to art production. In addition

to the potential that lies in the creative use of the capabilities of both presented modules: behaviors can be

combined in different ways and applied to different targets; users can also customize the implemented

0:00

Video 4: a screen recording of a swarm of 5 sound sources in flocking behavior using the
Boids module, being pursued by a virtual object in seek behavior using the Agent module.

(Use headphones for binaural audio)

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

16

behaviors or integrate their own developments due to the open-source architecture of the modules. In their

current state, the autonomous agents are limited to basic steering behaviors and thus to simple movements.

While this allows for the dynamic and improvisational integration of multiple objects and sound sources for

audiovisual compositions and performances, it quickly reaches its limits for the realization of complex

behaviors and artificial life simulations with large numbers of agents. In order to extend the possibilities with

autonomous agents in IVES, the integration of additional and new steering behaviors is considered in the

further development of the presented modules. In the next step, the steering behavior of the autonomous agents

will be combined with evolutionary algorithms in order to realize even more complex Artificial Life

simulations. In addition to the modules for autonomous agents, also the development of further AI modules for

spatial composition and performances in IVES is planned for the future. The presented modules are available

as part of the IVES toolkit in the official Github repository: https://github.com/AudioGroupCologne/IVES

Acknowledgments
I thank Christoph Pörschmann (TH Köln) for supervision and support in carrying out the research and writing

this paper.

Ethics Statement
Since the main code of this work is based on the open-source code of Craig Reynolds and Daniel Shiffman, not

only appropriate credits are given, but its implementation, as well as the whole IVES project itself, is open-

source software without any profit intentions or restrictions. It is a continuation of the work of the authors

mentioned above, and thus not only a further contribution to the open-source community, but also of benefit to

the art and scientific community.

References
B., Nadir. (n.d.). Spat Trajectories. Retrieved 10.03.2023, from

https://github.com/nadirB/Trajectory_Score_Library ↩

Baalman, M. A. J. (2010). Spatial composition techniques and sound spatialisation technologies. Organised

Sound, 15(3), 209–218. https://doi.org/10.1017/S1355771810000245 ↩

Blackwell, T. M., & Bentley, P. (2002). Improvised music with swarms. Proceedings of the 2002 Congress

on Evolutionary Computation, CEC 2002, 2(February 2002), 1462–1467.

https://doi.org/10.1109/CEC.2002.1004458 ↩

Carpentier, T. (2018). A new implementation of Spat in Max. Proceedings of the 15th Sound and Music

Computing Conference: Sonic Crossings, SMC 2018, 184–191. ↩

Carpentier, T., & Gerzso, A. (2021). Steering Behaviors for Spatial Sound Authoring. Proceedings of

International Computer Music Conference. ↩

Coduys, T., & Ferry, G. (2004). Iannix - Aesthetical/Symbolic visualisations for hypermedia composition.

Sound and Music Computing, 33, 1–6. ↩

https://github.com/AudioGroupCologne/IVES
https://github.com/nadirB/Trajectory_Score_Library
https://doi.org/10.1017/S1355771810000245
https://doi.org/10.1109/CEC.2002.1004458

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

17

Cycling’74. (n.d.). Max. Retrieved 10.03.2023, from https://cycling74.com/ ↩

Dziwis, D., Arend, J. M., Lübeck, T., & Pörschmann, C. (2021). IVES - INTERACTIVE VIRTUAL

ENVIRONMENT SYSTEM: A MODULAR TOOLKIT for 3D AUDIOVISUAL COMPOSITION in MAX.

Proceedings of the Sound and Music Computing Conferences, 2021-June(4), 330–337. ↩

Dziwis, D., Lübeck, T., & Pörschmann, C. (2023). Modular Room Simulation for the IVES 3D Engine.

Forum Acusticum - 10th Convention of the European Acoustics Association (Accepted for Publication), 1–8.

↩

Epic. (n.d.). Unreal Engine. Retrieved 10.03.2023, from https://www.unrealengine.com ↩

Franklin, S. (1997). Autonomous Agents as Embodied AI. Cybernetics and Systems, 28(6), 499–520. ↩

Franklin, S., & Graesser, A. (1996). Is It an Agent, or Just a Program?: A Taxomony of Autonomous Agents.

International Workshop on Agent Theories, Architectures, and Languages, 21–35. ↩

GEMEM. (n.d.). Holophon. Retrieved 10.03.2023, from http://dvlpt.gmem.free.fr/web/static.php?

page=Holophon_main ↩

Miyama, C., Dipper, G., & Brümmer, L. (2016). Zirkonium 3.1 - A toolkit for spatial composition and

performance. ICMC 2016 - 42nd International Computer Music Conference, Proceedings, 312–316. ↩

Møller, H. (1992). Fundamentals of binaural technology. Applied Acoustics, 36(3–4), 171–218.

https://doi.org/10.1016/0003-682X(92)90046-U ↩

Pattie, M. (1995). Artificial Life Meets Entertainment: Lifelike Autonomous Agents. Communications of the

ACM, 38(11), 108–114. https://doi.org/10.1145/219717.219808 ↩

Processing Foundation. (n.d.). p5js. Retrieved 10.03.2023, from https://p5js.org/ ↩

Processing Foundation. (n.d.). Processing. Retrieved 10.03.2023, from https://processing.org/ ↩

Reynolds, C. W. (1987). Flocks, Herds, and Schools: a Distributed Behavioral Model. Computer Graphics

(ACM), 21(4), 25–34. https://doi.org/10.1145/37402.37406 ↩

Reynolds, C. W. (1999). Steering behaviors for autonomous characters. Game Developers Conference, 763–

782. ↩

Shiffman, D. (n.d.). Stay within walls example. Retrieved 10.03.2023, from https://github.com/nature-of-

code/noc-examples-processing/blob/master/chp06_agents/NOC_6_03_StayWithinWalls/Vehicle.pde ↩

Shiffman, D. (n.d.). The Nature of Code 2. Retrieved 10.03.2023, from https://thecodingtrain.com/tracks/the-

nature-of-code-2 ↩

Shiffman, D., Fry, S., & Marsh, Z. (2012). The Nature of Code. D. Shiffman. ↩

TripinLab. (n.d.). Sound Trajectory 2. Retrieved 10.03.2023, from https://www.tripinlab.com/ ↩

Unity. (n.d.). Unity Engine. Retrieved 10.03.2023, from https://unity.com/ ↩

Valentino Braitenberg. (1986). Vehicles, Experiments in Synthetic Psychology (p. 168). The MIT Press. ↩

Wakefield, G., & Ji, H. (2009). Artificial nature: Immersive world making. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

5484 LNCS(October 2017), 597–602. https://doi.org/10.1007/978-3-642-01129-0_68 ↩

https://cycling74.com/
https://www.unrealengine.com/
http://dvlpt.gmem.free.fr/web/static.php?page=Holophon_main
https://doi.org/10.1016/0003-682X(92)90046-U
https://doi.org/10.1145/219717.219808
https://p5js.org/
https://processing.org/
https://doi.org/10.1145/37402.37406
https://github.com/nature-of-code/noc-examples-processing/blob/master/chp06_agents/NOC_6_03_StayWithinWalls/Vehicle.pde
https://thecodingtrain.com/tracks/the-nature-of-code-2
https://www.tripinlab.com/
https://unity.com/
https://doi.org/10.1007/978-3-642-01129-0_68

AIMC 2023 Revisiting Reynolds - Autonomous Agents for Spatial Audiovisual Composition and Performances

18

Wakefield, G., & Smith, W. (2011). Cosm : a Toolkit for Composing Immersive Audio-Visual Worlds of

Agency and Autonomy. Proceedings of the International Computer Music Conference, 2011. ↩

