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This briefing summarizes the current state of knowledge
about how the widespread and growing use of artificial light at
night interacts with six key topics: the night sky (Section 1);
wildlife and ecology (Section 2); human health (Section 3); pub-
lic safety (Section 4); energy security and climate change (Sec-
tion 5); and social justice (Section 6). It also includes a discus-
sion of the emerging threat from light pollution caused by ob-
jects orbiting the Earth (Section 7). Finally, it concludes with a
discussion of the knowledge gaps that exist within these topics
and the research questions whose answers can fill the gaps (Sec-
tion 8). It is intended to be useful to those seeking to broaden
their understanding of research on the causes and consequences
of artificial light at night.

Introduction
Light pollution is surging in both its presence and reach
across our planet (1–3). It is the source of both known and
suspected harm to the nighttime environment (4, 5). It is
also generally recognized as a form of environmental pol-
lution (6). Scientific studies suggest the over-use of artificial
light at night (henceforth ‘ALAN’) is the main source of light
pollution (7, 8). The main challenge they identify is how to
maximize the human benefits of ALAN while limiting its po-
tentially negative social and environmental impacts (9–11).

1 The Night Sky
Light emitted into the night sky makes it difficult to see the
stars. On the ground, ALAN makes the nighttime environ-
ment brighter. Weather changes like clouds and snow on the
ground can make this impact worse. New and inexpensive
light sources like white light-emitting diodes (LEDs) have a
growing impact on both the night sky and outdoor spaces at
night.

The most immediate symptom of light pollution is the
phenomenon of “skyglow”. It brightens the night sky in and
near cities where large installations of outdoor lighting ex-
ist. The lower layers of the Earth’s atmosphere scatter light
emitted near the ground. Some of that light escapes the atmo-
sphere where Earth-orbiting satellites detect it (12), but many
light rays encounter molecules and small particles in the at-
mosphere. These interactions redirect the paths of some of
the light rays back down to the ground. Observers there see

light appearing to come from the night sky itself; see Fig-
ure 1. Skyglow competes with the faint light of astronomical
objects in the night sky. It lowers the contrast between those
objects and the background sky, making it difficult to observe
them (13). There are currently no absolute metrics to char-
acterize light pollution in wide use among researchers and
practitioners (14, 15).

A slow but steady rise in skyglow in much of the world
leads to gradually degraded visibility of the natural night
sky and a transformation of outdoor spaces. Such a situa-
tion, changing slowly over decades, may go unnoticed due
to a psychological effect known as a “shifting baseline” (16).
This applies to various aspects of artificial light on a ‘normal’
night: the number of visible stars, the amount of artificial
light associated with perceptions of safety, and the experi-
ence of using non-visual senses such as hearing and balance.
Along with other effects, the loss of the night sky is barely
noticed.

Figure 1. The streetlight at left emits light in many different directions. Some of
the light rays (1) travel upward into the sky and pass completely through Earth’s
atmosphere. Satellites detect some of these rays (2) as they pass over the nighttime
side of our planet. In other cases (3), the atmosphere scatters rays back to the
ground. This light becomes the familiar “skyglow” seen over cities. Some of the
rays traveling downward (4) reflect off the ground into the sky where they are seen
by satellites. Lastly, some rays scatter into astronomers’ telescopes (5), blocking
their view of the universe. Credit: IDA.

Researchers have also studied both the sources of light
pollution and the means of reducing its influence. In many
places, publicly owned sources of light contribute most to
the brightness of the night sky, especially in the earlier hours
of night (17–19). Certain approaches, such as shielding light
fixtures and reducing their intensity, seem to have the greatest
benefit in terms of decreasing skyglow (20, 21).
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Remote sensing of light pollution
“Remote sensing” is a method of measuring the properties
of something at a distance without directly sampling it. It
is often applied to measurements of light pollution made
by stratospheric sounding balloons (22–24), low-flying air-
craft (25), unmanned aerial vehicles (or ‘drones’) (26), Earth-
orbiting satellites (27) and even the International Space Sta-
tion (28). In particular, satellites provide our only view of
the global scale of the problem of light pollution (1, 29). Re-
mote sensing platforms closer to the Earth’s surface, men-
tioned above, offer more detailed information at finer spatial
scales and over longer time periods.

Figure 2 shows a global map of night lights made with
satellite remote sensing observations (30). This is a compos-
ite image composed of observations of Earth made over many
nights in one year. It gives the appearance of our planet as if
it were simultaneously night everywhere at once. It also en-
sures that the result does not include clouds or light from the
aurora near the Earth’s poles. The camera used to make this
map uses a sensitive detector that records faint light in the vis-
ible spectrum. It can resolve features on Earth smaller than
one kilometer in size. This is smaller than the size of most
cities, so the images give detailed information about the num-
ber and characteristics of various light sources on the ground.
Images like these dating from as early as the 1970s are avail-
able to the public and for scientific study (31).

In recent years, researchers have learned much about the
spread of light pollution across the globe by studying remote
sensing data. They found that skyglow fouls the night sky for
more than 80% of all people and more than 99% of the U.S.
and European populations (29).

Both the amount of artificial light seen on Earth at night
and the land area that light covers grew by about two per-
cent each year on average during the first half of the 2010s.
(Figure 3) (1). Yet, both numbers vary significantly across
our planet (32). There are only a few countries in which they
seem to be either stable or decreasing (1, 33).

Satellite remote sensing used to make studies like these is
not perfect. For example, the best available satellite cameras
are not sensitive to some colors of light. In particular, they
do not see the blue light emitted by white LED lighting. This
means that key light pollution indicators are probably under-
estimated. Ground-based visual estimates of night sky bright-
ness support this hypothesis. These indicators increased on a
global average basis by about 10% per year between 2011-
2022 (Figure 4) (3). There are also other concerns related to
the accuracy of satellite data used in these studies. These in-
clude the angle at which satellites sense lights (34) and the
time of night satellites pass over cities (35).

Combining satellite data with ground-based observations
can improve the reliability of results (36), and the need for
new, dedicated orbital facilities to address important research
questions is urgent (37, 38). This is especially true given
that some Earth-observing satellite missions, such as NASA’s

Terra, are slated to end in coming years.

Environmental conditions change night sky quality
Cloudy conditions tend to make skyglow more intense in ur-
ban and suburban areas. This is because overcast nights can
increase the intensity of light reflected back down to ground
level by up to ten times (39, 40). However, in rural areas
with few light sources, cloud cover tends to darken the night
sky (41). This is because clouds efficiently absorb and scat-
ter light from both natural and artificial sources, decreasing
the amount reaching the ground. Skyglow is also sensitive
to very small particles in the air (42), and it can be increased
by air pollution (43). ALAN itself may also interact or in-
terfere with the chemistry of gasses in the lower atmosphere,
potentially contributing to degraded air quality (44, 45).

Ice and snow make skyglow worse because they reflect
much more light than darker ground covers. This enhances
the apparent nighttime light emissions from cities (46). Snow
cover on the ground under clear-sky conditions can increase
night sky brightness by up to three times (47). When clouds
cover the sky in the winter months, light reflected from both
snow and clouds “amplifies” skyglow. The result can raise
the night sky brightness by over 3500 times compared to
overcast conditions with no artificial light (48). Even in clear
weather, the tendency of ground covers like asphalt and con-
crete to reflect light can raise night sky brightness (49, 50).

The rise of solid-state lighting may threaten dark skies
Global light pollution has increased in recent years in part be-
cause of the introduction of solid-state lighting (SSL). This
kind of lighting uses semiconductor materials to generate
light. It differs from earlier technologies that used electric
currents in tubes of gasses like high pressure sodium, mer-
cury vapor or metal halide. Those earlier light sources once
dominated the global outdoor lighting market.

The most familiar kind of SSL technology is the white
light-emitting diode, or LED. This technology now accounts
for almost 50% of global lighting sales (51). The lighting
market’s explosive growth in recent years is due in part to
the exceptional energy efficiency of SSL, which is up to ten
times higher than earlier technologies like incandescent fila-
ment lamps. While one-for-one SSL replacements save en-
ergy compared to earlier technologies (with beneficial im-
pacts; see Section 5), the energy efficiency and low cost of
SSL can encourage over-lighting (with negative impacts; see
Sections 2, 3, and 5). In order to achieve the full promise of
SSL, factors such as the spectrum and distribution of the light
source should be carefully designed (52).

The rapid rush to adopt and install SSL has changed the
color of artificial light emitted into the nighttime environ-
ment (53, 54). White LED lighting generally emits much
more short-wavelength (i.e., blue) light than other technolo-
gies. This causes a shift in the color of cities as they transition
to SSL (55). It may also make skyglow over cities worse even
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Figure 2. A cloud-free composite image of the Earth at night made using Earth-orbiting satellite data for the year 2016. Credit: NASA Earth Observatory/Goddard Space
Flight Center/J. Stevens/M. Román.

Figure 3. This figure from reference (1) shows how nighttime lights on Earth changed during 2012-2016. The map on the left shows the change in the land area showing
indications of artificial light as seen from space, and the map on the right shows how much the brightness of the light changed. Red colors mean increases in lit area and/or
brightness during the study period and blue colors mean decreases. Yellow areas were unchanged.

when the number of lumens – that is, the amount of light to
which the human eye is sensitive – used is the same (56–58).
This may extend the impact of city lights much farther into
adjacent, ecologically sensitive areas (59, 60). It also specif-
ically threatens the productivity of ground-based astronomi-
cal observatories (61, 62), which rely on sites with dark night
skies in order to produce new knowledge about our universe.
However, the characteristics of LED lighting can enable its
more efficient use, often requiring less light for the same ap-
plications than previous technologies (63). When cities plan

LED retrofits carefully, they can hold light pollution steady
or even reduce it (64–66).

Dark-sky conservation and astrotourism
Meanwhile, the ongoing conversion of world outdoor light-
ing to SSL, and its potential to increase skyglow, may work
against dark-sky landscape conservation goals. Public inter-
est in visiting naturally dark places is increasing (67). This
has created a new kind of “astrotourism” (68, 69) with sig-
nificant revenue-generating potential (70). This may in turn
encourage lighting practices and public policies that protect
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Figure 4. The relationship between naked-eye limiting magnitude (NELM), a measure of the number of visible stars in the night sky, and the brightness of the night sky (‘Sky
Brightness Factor’) from citizen science observations obtained between 2011 and 2021. Larger NELM values mean that more stars are visible. Points are observations in the
years 2011 (green squares) and 2021 (blue triangles) as well as the average of all years (gray circles). Adapted from Figure 1 in (3).

night skies, yet it calls into question what defines a “dark
sky” (71) and how it should be quantified (72, 73). It also
requires understanding how to measure or describe nighttime
darkness to best preserve it (13, 74). Limited evidence sug-
gests that efforts that recognize the value of dark skies and
support their conservation may have positive benefits in re-
ducing skyglow on regional scales (75).

2 Ecological Impacts
ALAN exposure impacts almost every species studied by sci-
entists. It interferes with their biology and changes how they
interact with the environment. This harms ecosystems and
can make plants and animals less resilient in the face of en-
vironmental change.

Organisms at or near the surface of the Earth experience
natural levels of light that vary by factors of over one bil-
lion (Figure 5). The rising and setting of the Sun and Moon
set light levels and the timing and duration of light exposure.
They are the most important sources of light in the natural
environment, and they establish cues that species look for
around them. This tells them when to engage in certain be-
haviors like finding food and mates.

Some species rely on very dim sources of natural light,
such as starlight, for orientation and navigation (77–80). Ar-

tificial light can disrupt the activities of these species. Their
behaviors evolved over billions of years in the presence of
only natural sources of light at night.

The scale of ALAN impacts on wildlife
Scientists have studied at least 160 species for effects due to
ALAN exposure. They have observed harms at levels from
individual plants and animals all the way up to entire popu-
lations (81–84). Nearly all living things react to light. Of-
ten these reactions negatively affect both individual organ-
isms and entire populations. Observed effects have been seen
among birds (85–87); fishes (88); mammals (89–91); rep-
tiles (92–94); amphibians (95–97); insects and other inverte-
brates (98–101); and plants (102–105). Effects are seen par-
ticularly in aquatic environments (106) including the world’s
oceans (107, 108) to depths of hundreds of meters (109).

The presence of ALAN disrupts natural light intensity, its
timing and color characteristics (110). It increases total light
intensity relative to natural levels and tends to shift the spec-
trum of ambient light away from its natural condition and
toward shorter wavelengths to which many nocturnal species
are especially sensitive (111, 112). Poorly timed light ex-
posure interrupts various biological activities in plants and
animals (113). These activities rely on the daily and seasonal
rhythms of exposure to light in the environment. Examples
include finding food (114–117); the time at which certain an-
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Figure 5. Natural illumination during the day and at night. The solid black line is the amount of light falling on surfaces near the ground. Certain times are indicated: SS
= sunset (when the Sun’s angle above the horizon reaches 0◦); CT = end of civil twilight (Sun angle = −6◦); NT = end of nautical twilight (Sun angle = −12◦); AT = end
of astronomical twilight (Sun angle = −18◦). Note that the increments on the vertical axis increase in factors of ten. The horizontal axis shows the angle above or below
the horizon of the moon. Dotted lines show the illumination by the moon for its full and quarter phases. Cloud cover decreases the ground brightness by the amount in the
shaded region at upper left. The shaded region at lower right is the contribution from starlight under clear skies. Adapted from (76); figure courtesy of T. Longcore.

imals first emerge from their hiding places (118, 119); plant
and animal reproduction (89, 120–122); sequencing of sea-
sonal events in plants (123); and animal migration (124) and
communication (125, 126). All these effects can make it dif-
ficult for organisms to survive and reproduce (127); it may
even influence how species evolve (128, 129). This adds to
other environmental pressures many species face like habitat
loss and climate change (130–132).

Artificial light exposure seems to weaken the immune
systems of some organisms (133–135). Parents may pass
that weakness to their offspring (136, 137). ALAN exposure
may thus leave some species more vulnerable to both preda-
tors and parasites (138, 139). Researchers also find that light
exposure often occurs alongside noise caused by human ac-
tivity (140). The combination of artificial light and acoustic
noise can further harm some species (141, 142).

How light affects biology
Light has two kinds of effects on plants and animals: inter-
nal (through physiology) and external (through interactions
with the environment and with other species). Physiologi-
cal effects of ALAN exposure include disruption of normal
chemical signaling in organisms (143, 144). This signaling
relates to the circadian rhythm, a roughly 24-hour cycle of

activity tied to the length of the day. Exposure to sunlight,
followed by many hours of darkness, establishes an environ-
mental cue. This helps ‘entrain’ the circadian rhythm when
the period of the rhythm differs from the day length. Arti-
ficial light exposure at times that conflict with these natural
cues is an environmental effect that can interfere with this
entrainment.

In addition, some species show sensitivity to the po-
larization of light (145, 146). Polarization refers to the
plane in which light waves travel. Light can become po-
larized by reflection from surfaces such as water, which
presents a special challenge to aquatic species near sources
of ALAN (147, 148). The example of polarization effects
shows that when evaluating the impact of ALAN on wildlife,
we must look at factors in addition to the intensity, spectrum,
duration and timing of light exposure (149, 150).

Modifying outdoor spaces at night by exposing species
to artificial light causes environmental effects. There are few
sources of natural light in the nocturnal environment besides
the Moon and stars. This light dominated the landscape for
billions of years until the invention of electric light. ALAN
can therefore be a disadvantage to species that evolved in a
world without it. It therefore represents an emergent pressure
on populations and communities of species (152).
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Figure 6. A cartoon representation showing how ALAN exposure can make prey
species more vulnerable to predators in the wild. In lab tests of rodents, ALAN
interferes with signaling processes beginning in the brain’s pineal gland. This in-
terference apparently decreases anxiety responses, such as activity in open areas
and behaviors like standing up on the hind legs, that could increase their visibility to
predators. Figure 1 from Russart and Nelson 2018 (151).

The sweeping changes brought about by ALAN have
many observed effects on ecosystems (Figure 7). For in-
stance, ALAN exposure can change the interaction between
predatory species and their prey (154–157). This weak-
ens food webs (158, 159) and can make wildlife suscepti-
ble to other environmental harms (160–162). Other ways
ALAN causes environmental harms to species are by reduc-
ing options for finding food (114, 115, 163); altering how
species find mates and reproduce (164–167); and interfer-
ing with organisms’ abilities to orient themselves and move
about (79, 87, 168–170). ALAN also alters the competition
for resources between species by either including species in,
or excluding them from, their habitats based on their expo-
sure tolerance (171–173).

ALAN can create an effective barrier in the environ-
ment to the movement of organisms. They sometimes avoid
lit areas in preference to darker ones, and ALAN can dis-
guise barriers that can injure or kill individuals (174, 175).
It can also cause phototaxis, a condition in which organ-
isms tend to move either toward light (positive phototaxis;
e.g., 162, 176, 177) or away from light (negative phototaxis;
e.g., 178, 179). Phototaxis is a cause of injury and death
among both birds and insects (180–182).

ALAN is one of the most pressing and imminent threats
to global biodiversity (183, 184). Studies suggest clear im-
pacts on wildlife populations due to artificial light, even
from indirect exposures (185). In particular, certain types

of outdoor lighting adversely affect wildlife biology (186).
In some cases lighting may convey advantages to invasive
species (187), helping them out-compete native species. Yet
biological impacts of artificial light sources are still mainly
referenced to human vision. Our understanding of the im-
pact of artificial light on species beyond our own is therefore
hindered by the convention of measuring light in reference to
human vision. Scientists stress the need to take into account
the different visual systems of animals in comparison to hu-
mans (112, 188). Researchers have further called for ecology
considerations in outdoor lighting design (189) and a “dark
infrastructure” to preserve species diversity (190).

ALAN is likely responsible for the death of millions of
birds and insects each year. In the following subsections, we
focus on these two classes of animals.

Migratory birds
Although most migrating birds navigate by sensing the
Earth’s magnetic field (191), many species also rely on light
cues in the environment. Some use these cues to ‘calibrate’
their magnetic sensitivity (192, 193). Artificial light ex-
posure interferes with this behavior, with red light poten-
tially disrupting their magnetic orientation more than blue
light (194, 195).

Positive phototaxis is of particular concern for the con-
servation of migrating birds. Bright lighting in cities can be-
come a beacon to some species, drawing them away from
their migratory routes (196, 197). Fixtures emitting light ver-
tically seem to have the strongest effect (169), but even ‘dark
sky friendly’ lighting attracts birds at night (198). The at-
traction to light can become lethal as it promotes collisions
between birds and windows (199). And birds drawn off their
migratory routes and into cities by ALAN suffer higher ex-
posure to harmful air pollution (200, 201).

ALAN can negatively affect the distribution of birds at
points along migratory routes where birds stop to rest and
feed (202). The presence of lit cities along those routes
causes birds to fly higher than in more rural areas (203). Very
bright installations can attract so many birds that weather
radar installations can detect them (197). This fact is now
used to measure the extent of attraction of birds to bright light
sources on landscape scales. Researchers find that period-
ically switching powerful light sources off during the night
can reduce this effect by providing opportunities for birds
‘trapped’ by positive phototaxis to escape (204).

Pollinating insects
Ecologists have studied the role that various species play in
providing what are now called ‘ecosystem services’. These
are the benefits that humans receive from the natural environ-
ment. An example of an ecosystem service that is critical to
human wellbeing is the pollination of food crops by insects.
Many of these insects are only active at night. Some species
seem to pollinate only under conditions of dim, natural light
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Figure 7. Routes by which ALAN exposure can influence interactions between different species. The figure shows some of the ecological consequences of those interactions.
Figure 7 in Gaston et al.. 2014 (153), licensed under CC-BY-3.0.

such as moonlight (205).
ALAN appears to harm at least some nocturnal pollinator

species (206–210). This could reduce crop yields (211) and
threaten food supplies in some instances (212). It may even
contribute to significant population declines among pollina-
tors that some have called the ‘insect apocalypse’ (213–215).

Researchers find effects from many types of outdoor
lighting, including common applications such as street light-
ing (216), and in at least some cases, light color may dis-
rupt nocturnal pollination (217). While some pollinators may
simply seek out darker places, they may find conditions there
less suitable (218). Further work is needed to firmly establish
the importance of the threat and which lighting changes make
the greatest improvements for pollinators.

3 Human Health
Scientific evidence establishes a link between ALAN exposure
and adverse human health consequences. These include dis-
ruptions in chemical signaling in the body, certain kinds of
changes at the genetic level, and shifts in sleep/wake cycles
set by natural light sources. These effects may contribute
to the incidence of certain chronic diseases in some people.
These conclusions are largely drawn from controlled studies
of exposures to indoor lighting, suggesting caution in inter-
preting the influence of outdoor lighting on health.

The light-melatonin connection
The relationship between outdoor ALAN exposure and hu-
man health and wellbeing is controversial. Replicating ur-
ban environments and using human participants is difficult
to achieve in practice. This leads researchers to rely on lab
studies carried out on certain animals, such as mice and rats,
which serve as well-understood models of biology in mam-
mals generally. In these studies, ALAN exposure seems to
have effects on the entire life cycle, from childhood (219,
220) and adolescence (221–223) to old age (224, 225).

In particular, these effects seem to result from short-
wavelength (“blue”) light. While exposure to blue light
during the day is important for healthy circadian function-
ing (226), exposure to this light at night can disrupt the hu-
man circadian rhythm. This can affect everything from the
timing of hormone release in the body to the duration and
quality of our sleep (227), potentially resulting in adverse
health effects (228, 229). The significance of these effects
depend on the intensity of light, the proportion of blue light,
and the timing and duration of the exposure. Research now
points to lighting approaches that can reduce the impact of
ALAN on circadian rhythms (230).

Exposure to light at inappropriate times during the 24-
hour day delays or prevents the secretion of melatonin (231).
This powerful antioxidant is a hormone that interacts with the
immune system (135, 232). Low-intensity artificial light can
suppress melatonin production (233). As little as 5 lux of
light can yield this effect in some particularly sensitive peo-
ple (234, 235); that is about 50 times brighter than full moon-
light and 100 times less intense than the amount of light in a
bright indoor office environment. In another study performed
under various recommended roadway lighting exposures the
spectrum of the light source yielded no apparent impact on
melatonin levels in the saliva of healthy subjects (236). More
research is required to determine quantitative exposures to
ALAN that might result in negative health outcomes.

The production of melatonin varies over the 24-hour day.
Researchers guessed that there must be some way by which
the body senses light in the environment. They suspected
that it might not relate to our image-forming sense of sight.
In 2001, Professor George Brainard and his co-workers dis-
covered the missing piece of the puzzle. They found evi-
dence for the chemical machinery in light-sensitive cells in
the retina of the eye that couples light exposure to the sys-
tem regulating the circadian rhythm (237). This machinery
involves a substance called melanopsin that is very sensitive
to blue light (238).

Melanopsin is produced in specialized cells called in-
trinsically photoreceptive retinal ganglion cells, or ip-
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Figure 8. A cartoon representation of how the human body regulates the circadian
rhythm. The system of internal “clocks” (inside the blue ring) is designated “A”, and
external influences that affect the clocks are labeled “B”. In A, the master clock in
the brain is set by exposure to light. The brain in turn sets peripheral clocks in
various organs through nervous and endocrine signals. External factors (B), which
include metabolic signals, can further manipulate the peripheral clocks. Figure 2
in (229).

GRCs (239). ipRGCs are particularly sensitive to blue light
and send signals to the master circadian “clock” in the brain.
This establishes a timing reference for other such ‘clocks’ in
various organs and systems of the body (Figure 8). Those
clocks in turn govern various biological activities (240, 241).
Exposure to ALAN can cause the master clock to go out of
sync with the natural light pattern of the 24-hour day (242).
The consequences of such resets are still not fully understood.
And some of the peripheral clocks seem to be sensitive to
light on their own, independent of the brain (243).

Further, it is now recognized that light exposure makes
changes at the level of our genetic code. While it is not known
to alter our DNA, the molecule that spells out that code, light
can cause “epigenetic” changes in humans (244, 245). These
changes can switch genes “on” or “off”, altering their normal
roles. Some of those genes relate to the function of our cir-
cadian clocks. Epigenetic changes to those genes appear to
increase the risks of certain cancers (246), particularly breast
cancer (247, 248).

The consequences of frequent ALAN exposure
Frequent exposure to excessive light at night may be an
emerging lifestyle risk along with other factors associ-
ated with shift work, contributing to various health prob-
lems (249). These include obesity (250–252), diabetes (253,
254), and certain cancers (255–257) such as that of the
breast (258–260) and prostate (261–264). ALAN exposure
also seems to promote the more aggressive spread of some
types of cancer (265). It can make cancer resistant to even
the best available drug therapies (266) and weaken the body’s
self-repair mechanisms (267).

Some epidemiological studies find strong correlations be-

tween indications of ALAN from satellite data and the inci-
dence of certain cancers (268, 269) and diabetes (270), sug-
gesting that outdoor light exposure is an influence . At the
same time, critics point out the reliance on the use of satel-
lite data to predict disease-related ALAN exposures (271).
This may make the results of some studies less reliable be-
cause satellite measurements are only crude estimates of the
actual doses of ALAN from outdoor sources that most peo-
ple receive. Other studies find little or no evidence for a con-
nection between outdoor ALAN exposure and cancer (272–
274). In some cases, apparent effects may be simply coinci-
dental (275).

A more common way that ALAN exposure triggers ef-
fects in humans is by causing insomnia (276, 277). Melatonin
production and cycles of sleep and wakefulness follow each
other. Chronic light exposure at night associated with night
shift work can cause these two cycles to decouple (278).The
result is often poor quality sleep and low sleep duration (279).
Many social and health consequences associated with fre-
quent insomnia (280, 281), posing a threat to both public
health and worker safety and productivity (282, 283).

Influences on health outcomes
Health practitioners now recognize the roles that light and
darkness play in healing from disease and medical proce-
dures. ALAN exposure delays or prevents recovery from
stroke (284, 285), hardening of the arteries (286), skin
wounds (287), and whole-body inflammation (288, 289).
Controlling ALAN exposures in places like hospitals results
in better health outcomes (290–292). The growth of outdoor
lighting may be encouraging the spread of communicable
diseases (293). It may also create conditions for new and dev-
astating diseases, such as COVID-19, to emerge (294, 295).

Other studies identify ALAN as an influence on the pro-
cess of normal aging (296). Nighttime light exposure and
frequent disruption of the circadian rhythm relate to mental
illness (297–300), improper signaling between nerves (301),
and the onset of dementia (302), and it may play a role in the
the incidence of autism (303). Babies born to some pregnant
women exposed to ALAN suffer from certain developmen-
tal defects (304, 305). On the other hand, limiting nighttime
light exposure – especially blue light – helps maintain a nor-
mal circadian rhythm. It can ward off some abnormalities
that may lead to disease (306).

We now understand much about how ALAN interacts
with our health. However, our knowledge is incomplete. It is
not possible now to directly connect outdoor light at night ex-
posure to the incidence of disease in individual people. Typi-
cally, ALAN exposure is much higher in interior applications
than outdoor settings, and for this reason it is recommended
that indoor light exposure at night be minimized. The in-
terplay between the timing and duration of ALAN exposure,
along with the brightness and color of the light, are key fac-
tors; however, whether outdoor light pollution influences hu-
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man health and wellbeing awaits further research. Part of the
challenge is telling the influence of ALAN apart from that of
other types of pollution, such as noise and air, alongside other
environmental stressors.

4 Public Safety
The belief that outdoor lighting improves traffic safety and
discourages or prevents crime is common. It may explain in
part the rapid growth in the use of outdoor light at night in
recent years and decades. There are cases where the care-
ful application of outdoor lighting may improve nighttime
safety, but there is no general benefit supported by scientific
evidence.

Traffic and pedestrian safety
There are many conflicting research results on this topic.
Some studies find that adding lighting to outdoor spaces re-
duces road collisions (307, 308) and even recommend par-
ticular illumination levels based on the results of field experi-
ments (309). Others find no effect at all (310, 311), or unclear
results (312, 313). Some researchers ask whether reducing
outdoor lighting in areas prone to traffic accidents leads to
poorer outcomes. Little evidence has emerged to support this
hypothesis (314).

Traffic studies are challenging to design and are therefore
subject to criticism (315). In particular, it is difficult to prop-
erly account for all the variables that might alter the results.
For example, a road safety study about lighting might fail
to account for changing traffic volume throughout the night.
Some variables may have a stronger influence on the obser-
vations than lighting changes.

Sometimes these variables are subtle effects that add up
to important results. It can be easy to assign responsibility
to lighting even though it actually contributed very little. As
a result, many of the claims about outdoor lighting and its
impact on traffic safety – for better or worse – may be funda-
mentally wrong (316, 317).

Researchers have not been able to predictively model
the way outdoor lighting might affect safety and security.
This is one reason why it is difficult to establish the signif-
icance of lighting in studies. There is no clear known “dose-
response” relationship that may predict appropriate lighting
levels (318). In other words, even if lighting influences out-
comes, scientists can’t determine how much light is required.

International lighting standards often do not clearly estab-
lish benchmarks for the amount of light at night that drivers
and pedestrians need on the basis of scientific evidence (319).
There are only a few instances in which the issue has been
rigorously studied, e.g., (63), and it is unclear whether the
results are universally applicable. Decision makers, from
elected officials to lighting designers, often substitute their
intuition when guidance is lacking. In a belief that more of

something is always better, they often specify too much light
relative to actual needs.

Automotive lighting
No one doubts that automotive lighting has clear public safety
benefits, but this kind of lighting may itself be the source of
objectionable light pollution. There is little evidence to date
on the contribution of automobile lights to light pollution.
Some early work suggests that the impact is not small (17,
320, 321). Many expect autonomous (self-driving) vehicles
to become common in coming decades. Researchers are only
beginning to study what this means in terms of reducing the
need for roadway lighting in the future (322).

Crime deterrence
As with road safety, the influence of outdoor light at night
on crime is mixed. Some of the same studies that looked at
lighting and traffic/pedestrian safety also considered night-
time crime incidence. Certain studies reported crime reduc-
tion when lighting is added to outdoor spaces (323). Others
find either a negative effect (324), no effect (325, 326), or
mixed results (327).

Along the same lines as whether reducing roadway light-
ing leads to unsafe conditions, some studies ask if reduc-
ing street lighting increases crime. Limited research in the
U.K. found no evident connection between part-night dim-
ming of street lighting and any uptick in crime in the study
areas (314). Like traffic and lighting studies, designing and
conducting well-controlled experiments having to do with
crime is difficult.

The amount of light used in outdoor spaces at night may
not reflect public expectations for feelings of safety and com-
fort (328), and artificial light itself may influence the human
perception of fear (329). In some cases, over-lighting can it-
self become the source of safety hazards (330). Some studies
find diminishing returns in terms of the public perception of
the safety of outdoor spaces at night as light levels increase
(Figure 9) (328). However, properly designed lighting can re-
duce light pollution and save energy without compromising
public feelings of safety in outdoor spaces at night (331).

The hazards of glare
Glare from bright artificial light sources is a particular con-
cern for nighttime safety. It results from intense light rays
entering the eye directly from a source. Some of that light
scatters inside the observer’s eye, reducing the contrast be-
tween foreground and background. This effect makes it diffi-
cult to see objects as distinct from what surrounds them.

Glare reduces the visibility of objects at night for mo-
torists, pedestrians and bicyclists. Although some older
observers report stronger sensations of glare from certain
sources, it seems to affect people of all ages (332). Some
modern lighting sources, like LED, can make glare worse
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Figure 9. Perceived “feelings of safety” (FoS) at various brightness levels of neigh-
borhood outdoor spaces in three Israeli cities. These results suggest that the most
effective application of light in improving FoS is adding small amounts to previously
dark places. Increasing light levels beyond this threshold may result only in a minor
improvement in FoS levels. Figure 7 in (328).

by emitting considerable light at very shallow downward an-
gles (16) and also by using non-uniform light sources with
insufficient optical diffusion (333).

The perception of glare seems to vary with the wave-
length of light involved. In general short-wavelength (‘cool’)
light causes stronger glare than long-wavelength (‘warm’)
light (334). Observers report that it takes about the same
amount of time to recover from glare exposure no matter the
color of light (335). The severity of glare appears to relate
more to the ‘dose’ (light intensity times exposure duration)
rather than to the color (334). If the background surround-
ing a glare source is higher in luminance, its perceived in-
tensity is lower; for instance, car headlights are often seen as
glare sources at night but not during the day. Warmer light
backgrounds reduce perceived glare more than cooler back-
grounds (336).

5 Energy Use and Climate Change
Wasted outdoor light at night is wasted energy. The world
remains highly dependent on fossil fuels to generate electric-
ity. Since light pollution represents a waste of energy, it also
contributes directly to climate change.

Light and global energy demand
Electricity used to power outdoor lighting once accounted
for about 1.5% of global power consumption (337–339).
Researchers hypothesized that the introduction of energy-
efficient solid-state lighting would reduce this consumption.
Many governments rushed to deploy the new technology in
the past decade. As the price of SSL products declined, the
adoption rate increased. The motivations for this included
reduced cost of operation and meeting the requirements of

“green” policies. At first glance, the high energy efficiency
of SSL seems to be good for the environment. For example,
the United Nations Environment Programme estimates that
a transition to energy efficient lighting would reduce global
electricity demand for lighting by 30–40% by 2030 (340).
The rapid adoption of SSL may, however, unintentionally
worsen the problem of light pollution. SSL makes outdoor
light less expensive and more convenient to consume. In turn,
cheaper light may cause the use of more and brighter light at
night where it is not needed.

The “greenwashing” of solid-state lighting
As ALAN has become cheaper to produce, the world has con-
sumed more of it. In fact, humans now consume thousands
of times more lumens of light than they did in the historic
past (341). There are now signs of what economists call a “re-
bound effect” in lighting. This is thought to result from the
improved energy efficiency and long lifetime of SSL prod-
ucts. In such conditions, increased consumption of light at
night erodes away the expected savings in energy use and re-
duction of greenhouse gas emissions. Some researchers now
question whether SSL is truly “sustainable” lighting (342).

By the mid-2010s, the average country’s annual eco-
nomic output was changing at a rate that matched that coun-
try’s increase in light at night consumption (1), although large
variations among countries existed. That observation sug-
gests that the cost savings from the switch to SSL went into
deploying new outdoor lighting. If true, it means that SSL
has not to date brought a reduction in world energy use. The
authors of the landmark 2017 study that made these findings
wrote that their results are “inconsistent with the hypothesis
of large reductions in global energy consumption for outdoor
lighting because of the introduction of solid-state lighting.”

Claims about the environmental benefits of SSL may be,
at best, overstated. Some researchers conclude from this that
a new definition of ‘efficiency’ is needed (343). It would
consider the total cost of outdoor light at night over the full
life cycle of outdoor lighting products and include factors be-
yond just the cost of electricity, such as harm to the envi-
ronment. Redefining efficiency in this way may help gov-
ernments make better decisions about outdoor lighting in the
future. It is furthermore unclear whether the root of the prob-
lem is in the technology itself or how it is applied, and hence
whether a shift in the ways in which SSL is deployed might
result in a different outcome.

The total cost of outdoor lighting
Solid-state lighting may not provide any meaningful environ-
mental benefits in terms of reducing carbon emissions. Re-
alizing the promise of SSL requires rethinking how govern-
ments regulate outdoor lighting. Otherwise, SSL may well
make the problem of light pollution worse. Its impacts have
costs to the environment that can’t be measured in currency
alone.
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The social and financial benefits of SSL seems to fade if
one considers the total environmental cost of lighting. For
example, one study of a SSL retrofit program in the United
States found a ten-year rate of return of +118.2% based
solely on savings due to reduced electricity consumption. Re-
searchers then adjusted the return for externalities such as the
social costs of poor health outcomes that may be related to
ALAN exposure and the benefit of avoided carbon emissions.
The resulting rate of return dropped to –146.2% (344).

SSL programs become less attractive when the negative
consequences of ALAN are included in return-on-investment
calculations. The jury remains out on the question of whether
SSL can deliver its promised environmental benefits without
a reduction in outdoor light consumption.

6 Light and Social Justice
We know very little about how ALAN affects people in so-
cial contexts. Light at night may be used in ways that affect
neighborhoods according to the race of the people who live
in them. That may make light at night use a matter of social
and environmental justice.

We know little about the social implications of using out-
door light at night. Remote sensing of light at night from
space can show certain patterns of light use. These obser-
vations may reveal social inequities in other variables other-
wise unnoticed (345). Poor social outcomes may follow from
the application of outdoor light. Considerations include eq-
uity, health outcomes, mobility barriers, and community co-
hesion (346), which may in part be the legacy of racist poli-
cies and practices in historical times (347).

The only comprehensive study to date on this topic
looked at the social aspects of lighting in the U.S. only (348).
Researchers found that Americans of Asian, Hispanic and
Black descent tend to live in brighter neighborhoods (Fig-
ure 10). In these areas, skyglow is about twice as high as
in predominantly white neighborhoods. They further note
that lower socioeconomic status is also associated with higher
nighttime light exposures. These conditions can add to other
social and environmental stressors such as poverty and expo-
sure to air and water pollution, affecting quality of life.

Other approaches link light at night exposure to specific
health outcomes that may harm certain groups more than oth-
ers (349, 350). There are also limited results from established
fields such as environmental psychology (351, 352). For in-
stance, feelings of “safety” can lead people to accept lower
lighting levels (353). Biased perceptions may drive the puni-
tive installation of lighting in certain neighborhoods.

Lastly, some scholars have criticized framing the idea of
“darkness” in terms how outdoor light at night use can affect
marginalized people (354, 355). They argue that failing to
learn from the lessons of environmental history may result
in simply repeating mistakes of the past. Closely related to

Figure 10. Average exposure to light pollution in the continental United States by
racial/ethnic group. The bars show population-weighted average zenith night sky
brightness levels in units of millicandelas per square meter. Adapted from Figure 4
in Nadybal, Collins and Grineski, 2020 (348).

this is the idea that light pollution is harmful to people whose
religious or cultural practices rely on access to the night sky.
The erasure of the stars from view due to skyglow separates
people from this resource. Some argue that, in particular, it
threatens Indigenous traditions and knowledge systems based
on accessibility of the natural night sky (356).

7 Space Light Pollution
The number of artificial satellites surrounding the Earth is in-
creasing rapidly. Satellites reflect sunlight to the ground and
change the appearance of the night sky. Because they raise
night sky brightness, they are a new kind of light pollution
threat.

Artificial satellites have orbited the Earth since the late 1950s.
Until recently, they were not considered a source of light
pollution. That perception changed in May 2019, when
the launch of 60 satellites in the SpaceX “Starlink” project
ushered in a new era in the use of outer space (357). Private
commercial space companies have since announced plans
to launch about 100,000 new satellites. They intend the
satellites to expand broadband internet access around the
world. Yet, some researchers question whether satellites are
necessary to achieve this goal (358).

Satellites are increasingly considered an emerging form
of light pollution (359–361). They impact the night sky in
two key ways. First, they reflect sunlight to the night side of
Earth. Illuminated satellites appear as bright, moving points
of light. They can affect activities of both amateur and pro-
fessional astronomers (362–367). By the late 2020s, hun-
dreds of satellites may be visible to the unaided eye at any
moment from a given location (368).

Second, satellites can make the night sky itself brighter
(Figure 11). This may be true even when observers do not
see the individual satellites. As a form of light pollution, it
adds to the observed brightness of the night sky along with
skyglow caused by cities. Researchers estimate that satellites
already raise night sky brightness above natural light sources
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Figure 11. A simulated view of the night sky showing the brightness attributable to
a population of 64,000 Earth-orbiting satellites. The view is centered on the zenith,
with the horizon running around the outer edge; circles centered on the zenith mark
lines of constant elevation above the horizon at 10◦, 20◦, 30◦ and 60◦. Warmer
colors indicate brighter parts of the sky. Unpublished results adapted from Bassa,
Hainaut and Galadí-Enríquez, 2021 (365).

by ten percent (369). It may rival the influence of “terres-
trial” light pollution by 2030. Observers at high latitudes are
thought to be affected more than those in the tropics (370).

Astronomers and space industry officials began consul-
tations soon after the first Starlink launch. Scientists sug-
gested reducing satellite brightnesses and limiting orbital al-
titudes to reduce harm to their observations (371, 372). De-
sign changes dimmed the Starlink satellites, but they still ex-
ceeded the target (373–377). Recent efforts emphasized the
need to engage industry and regulators with stakeholders be-
yond astronomy (378). They also called for funding to study
the problem more and to create a central clearinghouse for
information (379).

Legal scholars increasingly view large satellite constel-
lations as a disrupting influence on the global space law or-
der (380). Policy remedies proposed to date include the re-
classification of outer space as an ‘ecosystem’ subject to envi-
ronmental protections (381, 382) Ensuring reasonable access
to space for commercial development is important, but we do
not yet understand how to do so while protecting the night
sky from the effects of satellites.

8 Knowledge Gaps and Research
Needs

While we have learned much about the effects and costs of
ALAN, there is also much we still do not know. Here we sum-
marize key research questions in the coming decade.

Interest in ALAN among researchers in all fields has

grown by leaps and bounds (383). The average num-
ber of scientific papers published each year has increased
by over 1000% since 2000. Methods required to answer
particular questions increasingly span many different disci-
plines (384, 385), and the emergence of ‘night studies’ as its
own research field prove that the subject is rapidly matur-
ing (386).

The state of the science summarized in this report leads
to identifying important topics for future research:

The Night Sky
• What drives increasing ALAN emissions around the

world?

• How is night sky brightness around the world changing
on regional scales?

• How bright is the night sky worldwide on cloudy
nights?

Ecological Impacts
• What are the sensitivity thresholds and spectral con-

tents at which different ALAN impacts occur for dif-
ferent species?

• Does skyglow in particular affect many or most plant
and animal species? Does it impact entire ecosystems?

• What are the long-term ecological consequences of
light pollution?

• How does ALAN contribute to species population de-
cline or extinction?

• To what extent is ALAN responsible for insect popula-
tion declines?

Human Health
• Does exposure to ALAN in specifically outdoor spaces

affect human health in any way?

• Does outdoor light at night entering indoor spaces af-
fect sleep and health?

• Are the observed relationships between outdoor light
at night and health the result of cause and effect?

Public Safety
• How does outdoor light at night relate to traffic safety?

• How does it relate to both violent crime and property
crime?

• Can we design better experiments to answer these
questions definitively?

• What are the characteristics of lights, such as intensity,
color, and other design features, that achieve desired
safety results?
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• How can the directionality, uniformity, controllability
and spectral tuning of LED lighting support actual and
perceived safety with minimally disruptive light lev-
els?

• How far down can roadway, street and area lighting be
dimmed during low-traffic times of the night in a safe
and legally defensible manner?

Energy Use and Climate Change
• Has the ongoing global transition to solid-state lighting

had a net positive effect in terms of reducing electricity
consumption and the emission of greenhouse gases?

• What social, financial and environmental tradeoffs
have resulted from the LED lighting revolution?

• By how much does good lighting design lower electric
power consumption?

• How effective are adaptive controls at reducing light at
night use?

• Can we better quantify the amount of carbon emissions
associated with outdoor lighting?

• Which lighting technologies, design practices and poli-
cies can reduce light pollution and electricity usage to
minimum safe levels?

Light and Social Justice
• How well does ALAN use match with indicators of

public health along racial and economic lines? If
consistent disparities in the application of ALAN are
found, why do they exist?

• Which public policies are effective in reducing ALAN
disparities across different communities?

Space Light Pollution
• Are predictions about the contribution of satellites to

diffuse night sky brightness correct?

• How do night sky impacts vary according to the num-
bers of satellites, their orbital heights, and spatial dis-
tributions?

• Is there a particular “carrying capacity” of satellites in
Low Earth Orbit?

• Are any satellite designs effective at reducing or elim-
inating their impacts on the visibility of the night sky?

We also consider questions and topics that span more than
one field of ALAN research as well as the application of that
research itself:

Synthetic Research
• How are various lighting metrics related? For example,

can we model skyglow based on broad collections of
luminance?

• How does air pollution interface with ALAN?

• How are some measures of ALAN such as skyglow
specifically related to a suite of undesired outcomes
(e.g., adverse ecological, health, or astronomical out-
comes)?

Applications of ALAN Research
• How effective are outdoor lighting public policies at

reducing aspects of ALAN?

• Are lighting practices implemented at the landscape
scale effective in rehabilitating ecologically sensitive
areas?

• Which interventions besides public policy are available
to mitigate the undesired consequences of ALAN?

• Are social or financial incentives to reduce light pollu-
tion effective?

• What specific economic benefits does astrotourism
bring to communities?

• What measurable benefits do dark sky places receive?
What costs do they incur in managing their dark-sky
status?

• Which communities seek and obtain dark-sky designa-
tions and why?

Methodology
This report was compiled using as its main source the Artifi-
cial Light at Night Research Literature Database (ALANDB;
https://alandb.darksky.org/), a database of scientific literature
citations curated by experts in different fields of ALAN re-
search. We supplemented ALANDB with other online re-
sources such as Google Scholar (https://scholar.google.com/)
and PubMed (https://pubmed.ncbi.nlm.nih.gov/).

We defined “scientific literature” as results subjected to
at least single-blind, external peer review and published in
what we believed to be reputable outlets. Both open-access
and non-open-access papers were considered. Where avail-
able, we considered post-publication metrics like citations in
deciding which sources to use. We state caveats and short-
comings about sources where we know of them.

Generally we did not consider technical reports, white
papers, theses and other sources that are sometimes collec-
tively referred to as “gray literature”. Future editions of the
report may be extended to include gray literature when there
is sufficient evidence of rigorous review, especially in cases
where there is very little or no information on a topic other-
wise available.
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The original version of this report was prepared in 2022
by John Barentine, Ph.D. (Dark Sky Consulting, LLC). It
was externally reviewed by subject matter experts, whom we
thank for their comments that helped improve the result. As
a “living document”, it was updated in 2023 to account for
ALAN research developments published in 2022 and will be
similarly updated in the future.
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