CIRCUMPOLAR OBSERVATIONS AND
PROGRAMMES

Andrew Meijers — British Antarctic Survey
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Talk outline

* Thanks to Steve and Eileen.
* Why study the Southern Ocean at all? Our
motivations.
* What is happening there now? How is the
ocean changing?
 The case for circumpolar in situ
observations.
e Circumpolar in situ programmes:
* Observing networks.
* Programmes focused on key science
guestions — OCEAN:ICE case study.
 SOOS — underpinning circumpolar
coordination.
* What next and the case for urgency.







The ocean at the center of the world
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Global warming is ocean warming

(a) Global Energy Inventory
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 >90% of all anthropogenic heat goes into the ocean, mostly via the Southern Ocean.
* Due to a combination of its unique circulation and uneven hemispheric aerosol forcing.



A major contributor to anthropogenic and natural carbon exchange

Gruber et al., 2019
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Overturning circulation brings old natural CO2 to the surface and subducts new anthro. CO2.
40% of ocean uptake of antho. CO2 via the Southern Ocean. Also sets acidification patterns.
Climate service value ~ 225,000,000,000 €/y, based on carbon price 90€/tCO2 (N.Gruber).




The Southern Ocean is the major driver of ice sheet melt

Smith et al., (2020) g o,

d) Global mean sea level change relative to 1900
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Supports a unique and globally consequential ecosystem

Antarctic Arctic
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The Southern Ocean is (still) a huge hole in our observing network

Argo observation density
in profiles per 1 degree box
10/31/2018
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Observations of top 2km of ocean by Argo floats since 2004 (>2 million)




Heat fluxes, absolutely critical to circulation dynamics — unknown in winter

All July Latent Heat Flux Obs. 2000-2004 All January Latent Heat Flux Obs. 2000-2004
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Josey et al., 2023




How ARE THINGS CHANGING IN THE
SOUTHERN OCEAN?




Changes to winds and surface temperatures

Max zonal wind speed trend 1957-2016 Annual Temperature Trends
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* Winds generally streearrmgthening, with poleward shift of westerly jets.

* Driven by ozone depletion and GHG.

e Surface warming over most of continent, but with strong variability linked to SAM.

* QOcean surface warming in north, cooling in Subantarctic and subpolar waters.
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The Southern Ocean is warming (mOStly) EN4 trends 1982-2012 in ocean heat content
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* Warming at all depths below surface.

e Accounts for ~ 1/3 of all recent global ocean warming.

* Ocean surface warming in north, cooling in Subantarctic and subpolar waters.
* Southern trends due to upwelling and surface freshwater stratification.
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Sea ice: Record summer lows

Extent (millions of square kilometers)
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Record summer lows in 2022 (Ross Sea dominant) and 2023 (everywhere).
Strongly linked to deep ASL and wind changes.
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Sea ice: The 2023 winter anomaly

ANTARCT'C SEA ICE Sea Ice Concentration Anomalies, Jun 2023

Current Year (2023) 10-90th percentiles
+2 standard deviations 25-75th percentiles
Median (1981-2010)
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DATA: Nattic 1 & lee Data Center, Boulder CO (Sea lce Index v3; 1979-2023%) GRAPHIC: Zaichary Labe (@ZLabe)
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National Snow and Ice Data Center, University of Colorado Boulder

near-real-time data

Total anomaly = -1.9 million sq km

https://zacklabe.com/antarctic-sea-ice-extentconcentration/




Sea ice: A state change since 20167

Seasonal sea ice extent anomalies
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Fogt et al., 2022 Historic reconstruction + satellite observations
Ed Doddridge (Twitter, Aug 23)




Ice shelves have lost area since 2000, along with ice sheet mass itself
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* |ce shelf mass loss equally driven by calving and basal melt thinning.
e Significant interdecadal variability.







Evolution of our view of the oceans
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Subduction via SAMW and AAIW is spatially inhomogeneous...
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Sallée et al., 2010

- Upwelling — Western boundary currents
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The deeper circulation also must be understood as a 3D circulation
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Traditional vertical circulation/biological activity model suggests an ocean CO2
source — unsupported in some regions by observations
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The zonal interaction between carbon drawdown/remineralisation and zonal flow
is required to understand the Weddell Sea as a natural carbon sink
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AABW is ~30% of global ocean volume, created only in four regions
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* Requires circumpolar coordination and integration of regional monitoring/process
studies.




Regional AABW trends vary in their drivers
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~30% reduction in
Weddell Sea bottom Bids
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Overlies significant
interannual variability.




Increased northerly winds drive reduced AABW formation in Weddell Sea

Trendsin sea ice formation rate (colour) and surface wind stress (vectors)

‘ : Southern Ocean Carbon and
Heat Impact on Climate
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30 year trend in
northerly winds.
Drives significant
reduction in sea ice
formation rates.
Consequent reduction
in dense shelf water
formation and AABW
export.

Significant links to ASL
variability and
Interdecadal Pacific
Oscillation.
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While other AABW trends are attributed instead to ice sheet melt
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The ice shelves represent even more extreme regionalisation
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Not enough to just be circumpolar: Scale is critical for important processes

Hewitt and Fox-kemper, 2022

Key Southern Ocean processes are not
being resolved in Earth System models

From S. Nicholsonand S. Thomalla
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A note of caution

“I think this circumpolar thing is the wrong approach. We need to
identify the areas that demonstrate the key processes and get them
right in models. Then maintain a handful of sites out into the future
that keep the models honest. One of the first steps has to be to get
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the domain well-defined.” |
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 Observations need to be made in service to defined scientific or social
objectives, as part of a wider plan and integrated with our other toolsets —
notably modelling.

* Observations are key to defining process representationin models and
assessing model fidelity.

* “Defining the domain” requires circumpolar observations...but at what
resolution?







GO-SHIP — Gold standard repeat hydrographic sections

* Resolving decadal
signals.

e Reference and standard
data.

* Deep observations

* Full BGC.
* Sparse, infrequent and
expensive!

Lynne Talley, pers comms.
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Argo — SOCCOM - GO-BGC: A revolution in our understanding...and more questions

Planned deployments
27 planned

Yellow: Floats

Blue: Sections/stations

Previous deployments
268 deployed; 129 active
Red: trajectories

Orange: current active
Cyan: last dead

July 28, 2023

Lynne Talley, pers comms.
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Ice shelf monitoring jewellery — NECKLACE and RINGS
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CASE STuDY: OCEAN.:ICE
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W OCEAN:ICE

OCEAN-CRYOSPHERE EXCHANGES IN
ANTARCTICA: IMPACTS ON CLIMATE AND
THE EARTH SYSTEM

A 4 year (Nov 22) Horizon Europe programme involving 17
centres, “€8 M funding (inc. UKRI co-funding)

DMI (COORDINATOR), BAS (co-CoORDINATOR) EPB, CNRS, AWI, NORSE, PICR, ETT, U.UTRECHT,
U.READING, U.NORTHUMBRIA, U.BRISTOL, U.SOUTHAMPTON, U.BRUSSELS, U.GOTHENBURG, ENS-LMD & NPI



Impact of Antarctic and Southern Ocean processes and feedbacks on planet Earth

d) Global mean sea level change relative to 1900 Circumpolar estimates of ice sheet freshwater flux
m .y - -
- are a critical unknown for coupled climate
modelling, and a barrier to effective inclusion of
1> Low-likelihood, high-impact storyline, .-~ active ice sheets in CMIP class models, or defining
including ice sheet instability . .
1 processes, under SSP5-8.5——— - c5p5 55 boundary conditions for MIP experiments.
g -7.0
-4.5
0.5 35
' E - - Key takeaway from IUGG 2023 IACS/IAPSO
_________._——-—’_’-—‘”“‘ - - - -
0 Joint Commission on Ice-Ocean Interactions
1950 2000 2020 2050 2100 discussion meeting

IPCC ARG sea level projections

OCEAN:ICE is co-funded by the European Union, Horizon Europe Funding Programme forresearch and innovation under grant agreementNr.
101060452 and by UK Research and Innovation




Impact of Antarctic and Southern Ocean processes and feedbacks on planet Earth
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Impact of Antarctic and Southern Ocean processes and feedbacks on planet Earth
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Impact of Antarctic and Southern Ocean processes and feedbacks on planet Earth

» 1. Examine interaction of subpolar
ocean and heat delivery to;

 2: Ice shelf dynamics, supporting;

« 3: Whole Antarctic ice sheet historical
reconstruction and improvement in
models and;

* 4: Future projections and
understanding of ice sheet instability,
which drives;

* 5: Analysis of ocean response to ice
sheet melt and ultimately;

* 6: Modelling of ocean-ice feedbacks

and impact on climate; which informs;

e 7: Climate assessments and advice to

policymakers and public




Antarctic research elements
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Antarctic research elements

1,6: AlIS mass balance and
freshwater flux modelling
combining surface runoff,
blowing snow and basal melt of
grounded ice sheet to provide
hindcast of recent past and

present freshwater fluxes (WP3)

%) EU-PolarNet

@ Modelled | JI
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Antarctic research elements

2: AUV deployments beneath

West Antarctic Peninsula

(warm) ice shelves and around
grounded icebergs observing
dynamics of heat delivery, basal
melt and iceberg-ocean-sea ice

Interaction (WP2)

% ) EU-PolarNet
(opernicus | E4potr
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SOUTHERN OCEAN OBSERVING SYSTEM



Antarctic research elements

3: Model code development
(NEMO) to allow iceberg
interaction with bathymetry and
sea ice. Improved freshwater
distribution, polynya
development and ocean

feedbacks. Also inclusion of

oxygen isotope tracers (WP2).
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Antarctic research elements

4: Direct measurements of basal
melt/refreeze, circulation and
mixing beneath Fimbul Ice shelf
(cold ice shelf, WP2), including
continuous oxygen isotope

measurements

@ )EU-PolarNet
(opernicus | €Y petar

{cesa
\\
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Antarctic research elements

5: Mooring and instrument
additions to existing deployments
investigating advection between
regions of key ocean-ice
Interaction (9-10) complimented by

‘mud Argo’ (8) virtual moorings

where traditional moorings
unavailable (WP1). Cf FESOM.
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Antarctic research elements

7: EO datasets used to develop
new products for of sea ice
production (WP1); monitor shelf
circulation (WP1); derive melt lake
depths over AIS (WP3); and build
bespoke consolidated datasets of

surface ice damage and calving

front locations (WP3).

% )EU-PolarNet
(opernicus E4rotr

Eg ‘ \\\\\\\.
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SOO0S - coordinating priorities, integrating existing data, and providing forums
for collaboration

‘ ;
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Foundational capabilities

l Observing System Design, Key Variables l
and Modelling
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roots scientific coordination of
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SOOS - coordinating priorities, integrating existing data, and providing forums
for collaboration

 SOOS regional working group areas,
coordinating activities and
supporting collaboration regionally —
Get involved!




SOOS in situ observation capability working groups

ot 0 3

Optimal surface mooring
placements for maximal ;
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* Observing system design (OSD) — prioritising, optimising and coordinating
observations.
e Southern Ocean Air-Sea Fluxes (SOFLUX) — A critical data gap.




SOOSmap2: Capturing disparate data streams and consolidating them in
one FAIR (Findable, Accessible, Interoperable and Reusable) framework
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Summary

* The size and complexity of the Southern Ocean means coordinated, multi-
national efforts are needed to produce coherent circumpolar
assessments.

* Some properties and budgets are now well defined, but sustained effort is
needed to maintain timeseries/coverage.

* Critical gaps exist, particularly in the deep ocean, in winter, under the ice,
in the carbon cycleand in ice sheet-ocean interactions.

 Regional and process studies are important, but must be done with
circumpolar context in mind, and integrate with other data and models.

 SOOSis invaluablein coordinating scientific priorities, methods and
advocacy.




Where next?

 The autonomous revolution is here.
* Challenge in compiling and integrating high resolution data provided by disparate
groups, short term projects and rapidly evolving sensors.
* A need for (funded!) multinational projects tackling circumpolar science
qguestions.
* Can the community define the critical questions to ask?
The CO2 flux model-ship-float disagreement?
e Sea ice sensitivity to ocean forcing?
 Air-sea heat, momentumand CO2 fluxes?
* |ce sheet <-> ocean heat/freshwater fluxes?
 Come to the circumpolar and InSync sessions on Thursday and tell us!
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These are pressing questions, and the world is watching us!
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