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Abstract—The increasing popularity of remote Cloud File Sharing (CFS) has become a major concern for privacy breach of sensitive
data. Aiming at this concern, we present a new resource sharing framework by integrating enterprise-side Attribute-Based Access
Control/eXtensible Access Control Markup Language (ABAC/XACML) model, client-side Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) scheme, and cloud-side CFS service. Moreover, the framework workflow is provided to support the encrypted-file writing
and reading algorithms in accordance with ABAC/XACML-based access policy and attribute credentials. However, an actual problem
of realizing this framework is that policy matrix, derived from access policy, seriously affects the performance of existing CP-ABE from
Lattice (CP-ABE-L) schemes. To end it, we present an optimal generation algorithm of Small Policy Matrix (SPM), which only consists of
small elements, and generates an all-one reconstruction vector. Based on such a matrix, the improved CP-ABE-L scheme is proposed to
reduce the cumulative errors to the minimum and prevent the enlargement of error bounds. Furthermore, we give the optimal estimation
of system parameters to implement a valid Error Proportion Allocation (EPA). Our experimental results indicate that our scheme has
short size of parameters and enjoys efficient computation and storage overloads. Thus, our new framework with optimization methods
is conducive to enhancing the security and efficiency of remote work on CFS.

Index Terms—Security, Cloud File Sharing, ABAC/XACML, Attribute-Based Encryption, Small Policy Matrix.

F

1 INTRODUCTION

C LOUD File Sharing (CFS), also called online file shar-
ing, is a popular service in which a user is allocated

storage space on a cloud server, and reading and writing
files are carried out over the Internet.By keeping users
own documents and media in cloud, the CFS is rapidly
increasing because it provides seamless access to these data
via any Internet-capable device, e.g., laptop, smartphone,
tablet, from any location. This high demand for storage has
nurtured the growth of a thriving cloud service industry
that offers affordable, easy-to-use and remotely-accessible
cloud services. Therefore, the CFS services, e.g., Amazon
WorkDocs, iCloud Drive, Box, Dropbox, Egnyte, Google
Drive, OneDrive, have been the primary choice of individu-
als and enterprises with increasing competitiveness.

The other advantage of CFS is to meet the requirement
of remote working. The COVID-19 pandemic has created an
abrupt need for employees to be moved out of corporate fa-
cilities and into virtual environments. According to Gallup 1

report, the percentage of full-time employees working from
home due to COVID-19 closures jumped from 33% to 61%
throughout the second half of March 2020. Moreover, 88% of
organizations have encouraged or required their employees
to work from home, according to a March 17 Gartner, Inc.
survey of 800 global human resources (HR) executives. As
a powerful tool, the CFS not only provides flexibility for
employees remote work needs, but also helps saves business
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thousands of dollars in IT investments.
But as with every new technology, there are several se-

curity risks on the use of third-party remote cloud services,
including:

• Loss of control over sensitive data, is that when
using third-party file sharing services, the data privacy
settings are beyond the control of the enterprise.

• Concern of having the data leaked, stems from the fact
that the cloud is a multi-user environment, the data is
potentially at risk of being viewed or mishandled by
the provider, as well as a number of external threats.

• Threats from hacker’s snooping, originate from the
risk that files in the cloud are among the most sus-
ceptible to being hacked without security measures in
place, and even if the CFS provides storage-oriented
encryption for files, data can still be intercepted on
route to its destination.

To avoid the above risks, some CFS services, such as Google
Drive, can keep the cloud-bound documents protected with
a password, but the password is still easy to crack. There are
third-party client-oriented encryption tools, e.g., Boxcryptor,
GarbleCloud, Veracypt, that promise to encrypt documents
before uploading them, but the other users or collaborators
having access to the file will need to provide the password,
derived from the owner, to open the file. Considering this
requires additional channels for key distribution, it is a fairly
complex process that is not guaranteed. Moreover, these
existing encryption tools do not support flexible data access
and policy-based sharing on the enterprise-side. Thus, the
best way is to ensure that the enterprises, rather than the
CFS service, can encrypt the employee’s files during storage
and transmission under the control of their security experts.
Therefore, in this paper we concentrate on an effective
enterprise-side encryption framework with flexible access
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control mechanism built on the CFS.
There exist a large number of classical public-key en-

cryption schemes used as our candidates, but the schemes
against quantum computing may be more worthy of consid-
eration. The reason is that the traditional cryptosystems do
not have the ability to cope with the potential risks incurred
by the “quantum attacks”, and post-quantum cryptography
can guarantee long-term data security because the data may
be stored on the network for a long time without be-
ing deleted. Furthermore, National Security Agency (NSA)
pointed out the necessity for transition to quantum-resistant
schemes is increasing, and then issued a policy statement on
the development standards for post-quantum cryptography
in 2015 [1], [2]. In 2016, National Institute of Standards and
Technology (NIST) also announced a call for post-quantum
standard submissions, including encryption schemes, dig-
ital signatures, and key-encapsulation mechanisms, for re-
placing the current cryptosystems such as RSA, ECC [3].
Thus, we now must begin to prepare information security
systems so as to be able to resist quantum computing.

Challenges. In order to provide access control mechanis-
m for the CFS, Attribute-based Access Control (ABAC) may
be the best choice to manage sensitive data under the control
of enterprise. Strictly speaking, ABAC is a policy-based
approach of controlling the authentication process based
on attributes. Attributes are considered as descriptions of
subjects, objects, actions, and environmental factors that are
combined to create access policies and access requests. An
example standard to realize ABAC is the eXtensible Access
Control Markup Language (XACML), as shown in Fig. 1.
The ABAC/XACML model supports and encourages the
separation of enforcement (PEP), decision making (PDP),
and management (PAP) of the authorization, meanwhile
attribute credentials for authorization are specified from PIP
in terms of the XACML requests.

  Policy Enforcement Point 

(PEP)

 Policy Decision Point 

(PDP)

Authorization Service 
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Fig. 1. The ABAC/XACML model.

One of the most suitable cryptosystems for ABAC/X-
ACML is Attribute-based Encryption (ABE), which is a
group-oriented cryptographic technique by integrating ac-
cess policies with data encryption. In a Ciphertext-Policy
ABE (CP-ABE) system, the user’s private keys described by
an attribute set are produced by a trusted authority, and
a ciphertext generated by a sender is associated with an
access policy over attributes. Then, a user can decrypt this
ciphertext only if there is a match between the attributes of
the user’s key and the policy of ciphertext. Therefore, the
combination of ABE and ABAC/XACML will be adopted
to guarantee security of migrating sensitive data to the CFS.

Despite good foundations on ABE and ABAC/XACML,
there are still the following challenges for us:

• How to establish a more effective solution to integrate
enterprise-side ABAC/XACML management, client-
side ABE encryption, and cloud-side CFS service into
a complete data migration system; and

• How to improve the performance of ABE cryptosystem
to encrypt sensitive data against future security risks,
including quantum attacks.

Thus, we will focus our attention on the solution to these
two challenges in this paper.

Related works. Bethencourt et al. [4] proposed the first
CP-ABE scheme using a threshold secret sharing, however,
this scheme was only proved secure under the generic group
heuristic. A general approach to convert KP-ABE systems
into a CP-ABE system was presented by Goyal et al. [5]
with a security proof based on the standard decisional
bilinear Diffie-Hellman assumption. Herranz et al. [6] pro-
posed the first dynamic (t,N)-threshold CP-ABE scheme
with constant-size ciphertext, which was more expressive
than merely AND gates. However, the above schemes were
constructed on bilinear mapping techniques [7], [8]. In ad-
dition, Liu et al. [9] presented an algorithm that converts an
arbitrary (t,N)-threshold access tree to the corresponding
matrix of Linear Secret Sharing Scheme (LSSS), which pro-
vides a meaningful reference to design highly expressive
CP-ABE schemes.

To integrate ABE and ABAC together, Zhu et al. [10]
presented an efficient temporal access control encryption
scheme for cloud services with the help of cryptograph-
ic integer comparisons and a proxy-based re-encryption
mechanism at the current time. Soon afterwards, a practical
Cryptographic ABAC (CABAC) framework was introduced
by them [11] to support provable policy decision-making
and verifiable attribute Tokens among multiple distributed
authorities. In summary, those above works provide us
good tools to establish a cryptographic solution to integrate
ABAC and ABE.

In post-quantum cryptography, seeing that the hardness
of lattice problem is considered to resist quantum attacks,
researchers are inspired to construct ABE schemes with lat-
tices cryptographic primitive. Zhang et al. [12] first utilized
the lattice theory to develop an ABE scheme, which was
secure under the LWE assumption. However, the scheme
had an increase in the size of system parameters due to
the introduction of default attributes and two “trapdoor”
techniques. Boyen [13] introduced the linear secret sharing
scheme into a monotone access structure to construct a KP-
ABE scheme, but the size of private key and ciphertext
was too long. Wang [14] presented a lattice CP-ABE scheme
under the LWE assumption, but the scheme only supported
AND-gates on attributes and the size of public key was
relatively long that would lead to high storage and commu-
nication costs. Dai et al. [15] proposed a Ring LWE-based
construction of KP-ABE, which supported both ciphertext
and public key homomorphism. Chen et al. [16] proposed
two CP-ABE schemes under the Ring LWE assumption,
which only supported a single threshold structure. Also, in
our improvement, we refer to the lattice trapdoor sampling
optimization proposed recently in [17], [18], [19], [20].

Approach. The major problem of the previous design
on lattice-based ABE is the considerable size of parameters
caused by access policies. We attempt to develop a practical
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approach to design a more expressive CP-ABE scheme but
with a small size of parameters. This requires us to design
an algorithm of generating a policy matrix W whose inverse
has small coefficients. We call it a Small Policy Matrix (SPM).
For a given policy, the policy matrix is public but not
unique, so we need to optimize it to meet our requirements.
Considering that the error item ei is introduced by using
the LWE construction, for a small ε, the decryption process
will rely on the equation ‖

∑
i(W

−1)1iei ‖≤ ε, so each
component of (W−1)1 must be as small as possible 2. On
the contrary, for lattices in Zq , the coefficients of (W−1)1 is
uniformly distributed on Zq since W−1 is non-optimal in
the existing ABE schemes, so it will result in the failure of
the decryption process with non-negligible probability.

Our approach constructs a small policy matrix W sup-
porting both logic AND and OR gates, which is an approx-
imate “sparse matrix” containing only −1, 0 and 1. This is
obviously different from the existing schemes [9] on policy
matrix construction, e.g., Vandermonde matrix. Moreover,
this ensures that the inverse of candidate submatrix (W∗)−1

only contains small integer coefficients. Thus, the absolute
value of the determinant of (W∗)−1 can only be 1, which is
commonly far less than that of other schemes, e.g., the deter-
minant of inverse of Vandermonde matrix [9]. Furthermore,
we prove that the coefficients of (W−1)1 are all ONEs in
this paper, thus the policy matrix generated by our scheme
is optimal and meet the requirement of minimizing the error
amplification range in the lattice-based cryptosystem. At
this time, we obtain the minimum solution

min(‖
∑

i
(W−1)1iei ‖) =‖

∑
i
ei ‖

for a distribution ei ← χ and all validated W in any dimen-
sional space. Compared with the aforementioned schemes
[12], [21], our scheme achieves shorter parameters, such as
q ≥ 246 in our scheme vs. q ≥ 2124 in [12], [21] for m = 215,
from the results in Section 5.4.

Contribution. We focus on a new solution to protect
sensitive data in remote CFS against privacy breach and
quantum attacks. To further improve the performance of
solution, we optimize the existing CP-ABE from Lattice
(CP-ABE-L) by using optimal policy matrix and minimized
cumulative errors. Our work is summarized as follows.
• We present a new resource sharing framework by inte-

grating enterprise-side ABAC/XACML model, client-
side CP-ABE scheme, and cloud-side CFS service. This
framework workflow is provided to support encrypted-
file writing and reading operations in accordance with
ABAC/XACML based access policy and attribute cre-
dentials.

• Aiming at the problem that policy matrix seriously af-
fects the performance of existing CP-ABE-L, we present
an optimal generation algorithm of small policy ma-
trix, which only consists of elements in {−1, 0, 1}, and
generates an ALL-ONE reconstruction vector. Based on
such a matrix, the improved CP-ABE-L scheme is pro-
posed to reduce the cumulative errors to the minimum.

• To further optimize the performance of CP-ABE-L, we
analyze the bound of error term and give the optimal

2. (W−1)1 denotes the 1-st row of inverse of W and (W−1)1i is the
i-th element of the above row.

estimation of system parameters (e.g., modulus’ size is
less than 64 bits) to implement a valid Error Proportion
Allocation (EPA). Our experimental results indicate that
our scheme has short size of parameters and enjoys
efficient computation and storage overloads.

Organization. Some related preliminaries and back-
grounds are reviewed in Section 2. Our system model is
described in Section 3. In Section 4, we propose a construc-
tion of SPM and a improved CP-ABE-L scheme. In Section
5, we provide the parameters optimization and performance
analysis. The paper concludes in Section 6.

2 PRELIMINARIES AND BACKGROUNDS

Vectors will be written in column form and by bold lower-
case letters (e.g., x). Denote xi be the i-th component of x.
Roman T represents the transposition of vector. Set matrix
denoted by bold capital letters (e.g., A) as the set of its
column vectors. And, define |A| be the determinant of A.
`2 and `∞ norm will be denoted by ‖·‖ and ‖·‖∞, respec-
tively. We view ‖A‖ as the Euclidean norm of the longest
column in matrix A, i.e. ‖A‖ = maxi‖ai‖. Let Ã be the
Gram-Schmidt orthogonalization of A. For A ∈ Rn×m and
B ∈ Rn×l, define (A‖B) ∈ Rn×(m+l) be the concatenation
of A’s columns followed by B’s columns.

2.1 Lattices
A m-dimensional lattice Λ is defined as Λ =
{
∑m
i=1 xiai|xi ∈ Z}, where the sequence of m linearly in-

dependent vectors a1,a2, · · · ,am ∈ Rn is a basis of Λ.
For a prime q and any fixed u ∈ Znq , we describe three
full-rank m-dimensional integer lattices defined by A =
[a1,a2, · · · ,am] ∈ Zn×mq as follows,

Λq(A) = {e ∈ Zms.t.∃s ∈ Znq ,ATs = e mod q},
Λ⊥q (A) = {e ∈ Zms.t.Ae = 0 mod q},
Λu
q (A) = {e ∈ Zms.t.Ae = u mod q}.

Discrete Gaussian. For any vector c ∈ Rm and any positive
parameter σ > 0, define ρσ,c(x) = exp(−π ‖x−c‖

2

σ2 ) be the
Gaussian function on Λ ⊂ Zn with center c and parameter
σ. Let the sum of ρσ,c over Λ as ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x).

And, for ∀y ∈ Λ, define DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ) be the discrete

Gaussian distribution over Λ with center c and parameter σ.
Specifically, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ

when σ and c are 1 and 0, respectively. Moreover, DΛ,σ,c is
always defined over the lattice Λ⊥q for A or Λu

q (A).

2.2 Sampling Algorithms
The following algorithms are used to sample short vectors
from specific lattices. Looking ahead, we will use Sam-
pleLeft and SampleRight algorithms to generate the private
keys in real system and respond the private key queries
made by the adversary in simulation, respectively.

Definition 1 (Sampling Algorithms [22]) For q > 2 and
m > n, the algorithms are defined as follows.
• Algorithm SampleLeft(A,B,TA, σ,u): takes a full rank

matrix A ∈ Zn×mq , a matrix B ∈ Zn×m1
q , a

short basis TA of Λu
q (A), a Gaussian parameter σ >
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‖T̃A‖ω(
√

log(m+m1)), and a vector u as inputs, out-
puts a vector e ∈ Zm+m1

q distributed statistically close to
DΛu

q (F),σ , i.e., Fe = u, where F = (A‖B).
• Algorithm SampleRight(A,B,R,TB, σ,u): takes matri-

ces A,B ∈ Zn×mq , and a uniform random matrix R ∈
{−1, 1}m×m, a short basis TB of Λu

q (B), a Gaussian
parameter σ > ‖T̃B‖

√
mω(

√
log(m)), and a vector u as

inputs, outputs a vector e ∈ Z2m
q distributed statistically

close to DΛu
q (F),σ , i.e., Fe = u, where F = (A‖AR + B).

The following lemma is also needed for our security proof.

Lemma 1 ( [22]) For a prime q, m > (n+1) log2 q+ω(log n),
randomly choose matrices A,B ∈ Zn×mq . Let R be an m ×m
matrix chosen uniformly in {−1, 1}m×m under Zq . Then for all
vectors w ∈ Zmq , the distribution (A,AR,RTw) is statistically
close to the distribution (A,B,RTw).

2.3 Existing Researches
We now review the LWE problem defined by Regev [23].

Let T = R/Z be the group of reals [0, 1) with modulo
1 addition. For a real α ∈ R+, Ψα is the distribution on T
of a normal variable with mean 0 and standard deviation
α/
√

2π, and reduced modulo 1. Let bxe = bx + 1
2c be a

nearest integer to x ∈ R. For an integer q, define Ψ̄α as the
discrete distribution over Zq of the random variable bqXe
mod q, where X ∈ T has distribution Ψα.

For a modulus q ≥ 2 and a distribution χ on Zq , the LWE
problem asks to recover a secret s ∈ Znq given any samples
(a,aTs+e) from distributionAs,χ on Znq ×Zq , where a ∈ Znq
and e← χ. Regev [23] shows for certain noise distributions
χ, denoted by Ψ̄α, the LWE problem is as hard as the worst-
case SIVP and GapSVP under a quantum reduction.

Theorem 1 ( [23] ) Let α = α(n) ∈ (0, 1) and q = q(n)
be a prime such that αq > 2

√
n. If there exists an efficient,

possibly quantum algorithm that solves LWEq,Ψ̄α problem, then
there exists an efficient quantum algorithm for approximating the
SIVP and GapSVP problems, to within Õ(n/α) factors in the `2
norm, in the worst case.

The following theorem, derived from Theorem 3.2 of [17]
taking δ = 1/3, is an improved sampling algorithm that
samples an essentially uniform matrix A ∈ Zn×mq with an
associated basis S of Λ⊥q (A) with low Gram-Schmidt norm.

Theorem 2 ( [17]) Let q ≥ 3 be odd and m = d6n log qe. There
is a PPT algorithm TrapGen(q, n) that outputs a pair (A ∈
Zn×mq ,S ∈ Zm×m) such that A is statistically close to a uniform
matrix in Zn×mq and S is a basis for Λ⊥q (A) satisfying

‖S̃‖ 6 O(
√
n log q) and ‖S‖ 6 O(n log q) (1)

with all but negligible probability in n.

Micciancio and Regev [24] state an additional property
of discrete Gaussian distribution as follows.

Lemma 2 ( [24]) For any n-dimensional lattice Λ, vector c ∈
Rn, and reals ε ∈ (0, 1), σ ≥ ηε(Λ), we have

Pr
x∼DΛ,σ,c

[‖x− c‖ > σ
√
n] ≤ 1 + ε

1− ε
· 2−n. (2)

The following lemma about the distribution Ψ̄α is used
to ensure that decryption works correctly.

Lemma 3 ( [19], Lemma 3) Let y be some vector in Zm and
let e ← Ψ̄m

α . Then the quantity |yTe| treated as an integer in
[0, q − 1] satisfies

|yTe| ≤ ‖y‖qαω(
√

logm) + ‖y‖
√
m/2, (3)

with all but negligible probability in m. As a special case, if
e ← Ψ̄α is treated as an integer in [0, q − 1], then |e| ≤
qαω(

√
logm) + 1/2 with all but negligible probability in m.

2.4 CP-ABE from Lattices

A CP-ABE from Lattice (CP-ABE-L) is presented in accor-
dance with the constructions in [12], [21]. The CP-ABE-L
scheme consists of four algorithms, including Setup, Extrac-
t, ABE-Enc and ABE-Dec, as follows.
—-Initialization. The system manager chooses a security
parameter n and an attribute set U = {att1, · · · , attN},
where the number of attributesN is unlimited. As described
in Algorithm 1, the Setup algorithm is executed to generate
a pair of the public key pk and the master secret key msk.

Algorithm 1 Setup(n,U)

Input: a positive integer n, and an attribute set U .
Output: the public key pk = (A,B,E,u), and the master secret

key msk = TA.
1: Generate the parameters m, q and σ;
2: Compute (A,TA)← TrapGen(q, n);
3: (*A ∈ Zn×m

q and TA ∈ Zm×m
q is a short basis for Λ⊥q (A)*)

4: Choose two random matrices B,E← Zn×m
q ;

5: Choose a random vector u = (u1, · · · , un)T ← Zn
q .;

6: return (pk = (A,B,E,u),msk = TA);

—-Extract Key. As shown in Algorithm 2, the Extract algo-
rithm is used to generate the user’s private key for a given
attribute set S ⊆ U by using pk, msk and a cryptographic
hash function H : {0, 1}∗ → Zn×nq .

Algorithm 2 Extract(pk,msk, S)

Input: the public key pk, the master secret key msk and a
user’s attribute set S ⊆ U .

Output: the private key sk = ({di}∀atti∈S , S).
1: for each atti in S do
2: Set Ai = (A‖E +H(atti)B) ∈ Zn×2m

q ;
3: di ← SampleLeft(A,E+H(atti)B,TA, σ,u);
4: (*Aidi = u and di ∈ Z2m

q is a short vector*)
5: end for
6: return sk = ({di}∀atti∈S , S);

—-Encryption. In the CP-ABE-L scheme, the ciphertext is
associated with an access policy Π expressed by a policy ma-
trix W ∈ Zk×lq over U , and the i-th row of W corresponds to
atti ∈ U . Let W∗ be a candidate invertible submatrix in W.
The ABE-Enc algorithm only needs to encrypt a message M
by using pk and an integer D = LCM∀W∗⊆W(|(W∗)−1|),
where LCM denotes the lowest common multiple function.
The above process is described in Algorithm 3.
—-Decryption. The ABE-Dec algorithm (described in Algo-
rithm 4) is composed of policy decision-making and mes-
sage retrieval. At last, the algorithm use the private key skS
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Algorithm 3 ABE-Enc(pk,W,M)

Input: the public key pk, a policy matrix W ∈ Zk×l
q of the

access policy Π, and a message bit M ∈ {0, 1}.
Output: the ciphertext C = (c,Z,W).

1: for each atti belongs to Π do
2: Calculate D = LCM∀W∗⊆W(|(W∗)−1|) in terms of W;
3: Set Ai = (A‖E +H(atti)B);
4: Choose l random vectors s, r2, · · · , rl ← Zn

q ;
5: Set v = (s, r2, · · · , rl)T;
6: Pick e← χ and compute c = uTs +De+Mb q

2
c ∈ Zq ;

7: for i = 1 to k do
8: Set Wi as the i-th row of W;
9: Compute λi = Wi × v ∈ Zn

q ;
10: Pick a random noise vector ei ← χ2m;
11: Compute zi = AT

i λi +Dei ∈ Z2m
q ;

12: end for
13: Generate Z = (z1, z2, · · · , zk) ∈ Z2m×k

q ;
14: end for
15: return C = (c,Z,W);

Algorithm 4 ABE-Dec(C, sk)

Input: the ciphertext C and the private key sk.
Output: the Message M .

1: if S `W then
2: Exist a candidate W∗ ∈ Zt×t

q to meet S `W∗;
3: for each i in [1, t] do
4: Compute wi = zTi di ∈ Zq ;
5: end for
6: w = (w1, · · · , wt)

T ∈ Zt
q ;

7: Set (W∗)−1
1 as the 1-st row of the inverse of W∗;

8: Compute c′ = (W∗)−1
1 ·w ∈ Zq ;

9: Compute r = c− c′ ∈ Z;
10: Set M = 1;
11: if r is closer to 0 than to b q

2
c then

12: Set M = 0;
13: end if
14: else
15: return ⊥;
16: end if
17: return M ;

to retrieve the the decrypted message M . The correctness of
this algorithm is presented in the supplementary file.

The core approach of the CP-ABE-L scheme is to multi-
ply a sufficiently large constant D = (T !)2 associated with
policy matrix W into the noise vector, where T is the size
of identity set of attributes {1, 2, · · · , T}. Thus, the mag-
nitude of noise vector is amplified D times. To ensure the
correctness of decryption, the modulus q is conservatively
estimated at q ≥ m3 logm · 25T in Agrawal’s scheme [21].
Let T = O(logm). It is easy to see q ≥ 1.88 × 2123 for
m = 215 at 112-bit security (n = 112). The parameters of
the above CP-ABE-L scheme, constructed on the Shamir’s
secret sharing scheme, are much larger than those of general
lattice cryptosystems. This inevitably brings the increase
of computation and storage overheads, which negatively
affects the practical use of ABE.

3 SYSTEM MODEL

3.1 Potential Applications
In many application scenarios, CP-ABE-L provides a se-
cure approach for sharing resources, especially for an open
untrusted environment where the data is no longer under

the resource owner’s control. Today, this kind of open
environment is becoming more and more popular, such as
cloud computing, blockchain, and IoT, so CP-ABE-L plays
an increasingly important role in protecting data privacy.
For clarity, we will take secure cloud file sharing (CFS)
services as an example to introduce how the CP-ABE-L
scheme enforces an access control mechanism in cloud.

Although most remote CFS services, such as Box, Drop-
box, Microsoft, and Google, claim to adopt encryption to
protect data, there are always leaks or bugs in their software,
which make user’s private data vulnerable to hackers, let
alone CFS providers themselves. To solve this problem,
client-side encryption has been proposed because it is in-
feasible for CFS service provider to search or modify any
document encrypted by client.

However, this brings a new problem: the traditional
encryption systems are difficult to realize the sharing among
generous users with different responsibilities. To solve it,
we consider introducing Attribute-based Access Control
(ABAC) and ABAC-friendly cryptosystem, e.g., CP-ABE, in-
to CFS to express and implement vastly diverse access con-
trol policies for various types of shared data. For example,
Al-Dahhan et al. [25] analyzed the major issues of CP-ABE
in the IoT paradigm and discussed benefits, requirements,
challenges, and weaknesses of outsourcing and sharing data
in cloud. More importantly, ABAC-friendly cryptosystem
must be able to resist quantum computing with lower
storage overheads and computational complexity. Thus, we
introduce CP-ABE-L into our system framework to ensure
the security of CFS in the post-quantum era.

3.2 System Framework

A cryptography approach that integrates ABAC/XACM-
L system into existing cloud storage service is proposed
to achieve secure cloud file sharing, where XACML is a
standard for the implementation of ABAC. The system
framework contains the following three parts:

• Enterprise-side ABAC/XACML model, which per-
forms a lightweight enterprise-side authorization man-
agement independent of the cloud according to the
rules defined in policies;

• Client-side CP-ABE scheme, which enforces client-side
encryption/decryption under ABAC/XACML policy;

• Cloud-side CFS service, which provides a black-box
cloud-based file storage and sharing for tenants.

In this framework, as shown in Fig. 2, the CP-ABE
scheme is placed on the client side to protect the tenant’s
privacy against potential untrusted servers, where the data
is no longer under the resource owner’s control. Moreover,
authorization center based on ABAC/XACML can derive
the CP-ABE scheme to automatically encrypt or decrypt
the resources, so that it does not need too much manual
intervention for these client-side operations. More specifi-
cally, the authorization center can provide access policies
and attribute credentials for encryption and decryption in
CP-ABE, respectively. The integration of CP-ABE, ABAC/X-
ACML, and CFS, is conducive to policy-based data sharing
within enterprise and organization.
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Fig. 2. The system framework of secure cloud file sharing based on the CP-ABE scheme and the ABAC/XACML model.

3.3 ABAC/XACML Model

The ABAC/XACML’s reference architecture (applied to SIC-
SACML, IBM TSPM, Sun XACML, XEngine, WSO2, etc.)
is shown in wheat and yellow box of the Fig.2. In this
architecture, the functionality of Policy Enforcement Point
(PEP) and Policy Decision Point (PDP) can be distributed
or centralized, and they constitute so-called Authorization
Service (AS). In our framework, the PEPs are deployed in
a distributed way into client side in order to interpret the
cloud tenants’ access request. The PDP is more often used
as an access point of authorization service for receiving
requests from the PEPs. The other points, Policy Information
Point (PIP) and Policy Administration Point (PAP), are placed
inside the enterprise to take responsibility for policy and
attribute repository, respectively. For an access request, the
workflow of this architecture is described as follows:
• For an access request (S,A,O,E) from an authenticat-

ed subject, the PEP interprets this request, expressed
by the function Q ← PEP(S,A,O,E), and sends the
request Q to the PDP. Here, (S,A,O,E) denotes that
the subject S intends to enforce the operation A on the
object O under the environment E.

• In terms of the require Q, the PDP requires the PAP to
retrieve the corresponding access policy Π, expressed
by the process Π← PDPPAP(Q). Furthermore, the PDP
queries the PIP to obtain the attribute set A for subject,
object, and environment according to the policy Π, ex-
pressed by A ← PDPPIP(Q,Π). At last, the PDP makes
access decision, expressed by A ` Π, according to Π
and A. Note that, PDPX(·) denotes the PDP perform
functions by querying the entity X.

• The final decision result (either permit or deny) given
by the PDP is sent to the client-side PEP, and then
the PEP fulfills the operation A of the access request
according to the decision of PDP.

For a basic CFS system, assume that the user’s access
requests for the PEP just consist of two basic operations,
Read and Write, on the sensitive files in cloud. As far as
encrypted file is concerned, our solution must provide a
transparent way to implement encryption (when writing) and

decryption (when reading) corresponding to the “write” and
“read” requests, which is the focus of this paper.

3.4 System Workflow
This paper briefly introduces how to integrate CP-ABE
scheme and ABAC/XACML model to complete encrypted
file sharing. Assume that the ABAC/XACML administrator
establishes CP-ABE by invoking Setup() in the initial stage,
so that any user in the system can share the cryptosystem
and unified public key. Moreover, any user in the system can
own his privacy key with attribute credentials generated by
the function Extract() from the authorization center.

Without loss of generality, assume that the CFS involves
only two basic file operations, Read and Write, as mentioned
before. The specific processes of algorithms 5 and 6 are
described as follows.

3.4.1 Encrypted-file writing process
When PEP interprets an encrypted-file write request from a
resource provider, it completes the conversion of the request
in an ABAC/XACML format, i.e., Q← PEP(S, “W”, O,E),
and then sends it to the PDP in the authorization cen-
ter. Next, the PDP follows normal ABAC/XACML routine
to retrieve access policy from the PAP, i.e., (ΠS ,ΠO) ←
PDPPAP(Q), where the policy consists of the subject’s ΠS

and object’s ΠO. The former is used to define the permission
of resource provider’s writing action, and the latter is to
define the rules on the written file, which will be embedded
into the encrypted file. For ΠS , the PDP continues to obtain
the set of attributes of subject, object, and environment from
the PIP, i.e., A ← PDPPIP(Q,ΠS). And then, the PDP makes
access decision according to ΠS and A. If the result is true,
the PDP will permit the PEP to perform the write operation;
otherwise, the operation is denied.

After receiving the permission, the client-side PEP con-
verts the object’s policy ΠO into a policy matrix W, i.e.,
W ← SPMGen(ΠO, ·), see Section 4 for details. After
obtaining the public key pk reserved in the authorization
center, the PEP invokes the algorithm ABE-Enc to encrypt
a random session key ek according to the policy matrix
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Algorithm 5 WriteEncryptedFile(S,O,E)

Input: a subject S, an object O, and the environment E.
Output: True or False.

1: Generate a request Q← PEP(S, “W”, O,E);
2: Retrieve access policy (ΠS ,ΠO)← PDPPAP(Q);
3: Query the current attribute set A ← PDPPIP(Q,ΠS);
4: if A ` ΠS then
5: Compute W← SPMGen(ΠO, ·) invoked by PEP;
6: Generate a random session key ek;
7: Compute Cek ← ABE-Enc(pk,W, ek) invoked by PEP;
8: Obtain the object’s file O.file;
9: Compute Cf ← SymEnc(ek,O.file) invoked by PEP;

10: Store (Cek, Cf ) into the cloud;
11: return True;
12: else
13: return False;
14: end if

W, i.e., Cek = ABE-Enc(pk,W, ek). After that, for a given
object’s file O.file, the PEP continues to make use of ek to
encrypt the file by using a symmetric encryption algorithm,
i.e., Cf = SymEnc(ek,O.file). For example of Fig. 2, the ac-
cess policy for specifying a medical document is “((Role =
Doctor) OR (Title = Anesthetist)AND (Depart. =
Surgery))” built on Boolean logic. Next, the PEP can require
the cloud provider to store the encrypted file (Cek, Cf )
because the request is granted by PDP as mentioned above.

3.4.2 Encrypted-file reading process
As shown in Algorithm 6, the encrypted-file reading process
is essentially the same as that of writing process. At first,
resource consumer submits an access request on “read file”
to the PEP, then the PEP interprets the request (i.e., Q ←
PEP(S, “R”, O,E)) and sends Q to the PDP. Next, the PDP
makes access decision according to the policy derived from
PAP (i.e., ΠO ← PDPPAP(Q)) and the attribute credentials
associated with the policy ΠO , obtained by querying the
PIP, i.e., A ← PDPPIP(Q,ΠO).

Algorithm 6 ReadEncryptedFile(S,O,E)

Input: a subject S, an object O, and the environment E.
Output: True or False.

1: Generate a request Q← PEP(S, “R”, O,E);
2: Retrieve access policy ΠO ← PDPPAP(Q);
3: Query the current attribute set A ← PDPPIP(Q,ΠO);
4: if A ` ΠO then
5: Obtain the user’s private key skS to PEP;
6: Compute ek ← ABE-Dec(skS , Cek) invoked by PEP;
7: Obtain the encrypted file Cf from the cloud;
8: Compute file← SymDec(ek, Cf ) invoked by PEP;
9: Send file to the user;

10: return True;
11: else
12: return False;
13: end if

If the decision is permitted (i.e., A ` ΠO), the PDP
send the permission to the PEP. The client-side PEP in-
vokes the algorithm ABE-Dec to decrypt the ciphertext Cek
with the help of consumer’s private key skS , i.e., ek ←
ABE-Dec(skS , Cek). In the above example, an user assigns
the private key with the following attributes: “(Depart. =
Surgery), (Name = Alice), (Title = Emergency)′′. Clearly,

in this case, the CP-ABE decryption will fail due to the
failure of matching the above policy. This does not usually
happen if the PEP’s decision result on A ` ΠO is true, but
may happen when ABAC/XACML is abnormally executed
or the attacker forges the PDP’s permission to the PEP. Thus,
it is an important security mechanism for cryptographic
policy matching on ABE to prevent unauthorized access
besides ABAC/XACML.

Finally, after downloading encrypted file from cloud
platform, the PEP takes the session key ek as a certificate
to decrypt the file by invoking the symmetric decryption
algorithm, i.e., file← SymDec(ek, Cf ).

Through the explanation of system workflow, it is not
difficult to see that the CP-ABE scheme is able to provide
more complete control over managing and protecting high-
value or sensitive data among the resource providers, the
consumers, and the cloud service provider. However, as
mentioned in the related work of Section 1, there are still
two practical problems to be improved in the candidate
CP-ABE-L schemes [14], [16] against quantum attacks. One
problem is the lack of an optimization approach to convert
access policy into policy matrix, which leads to excessive
error terms in CP-ABE-L. Another problem is the lack of a
parameter optimization approach to reduce the storage and
computation overloads of CP-ABE-L. These two problems
will be analyzed and improved in the subsequent sections.

4 CONSTRUCTION OF SMALL POLICY MATRIX

The most innovative aspect of our work is to design an
optimization approach of access policies for lattice-based
cryptosystem. For a given policy Π, our approach is to
construct a corresponding policy matrix W that is an ap-
proximate “sparse matrix” containing only −1, 0 and 1. The
benefit is that its determinant could be either 1 or −1. This
further ensures that the inverse of the policy matrix, W−1,
contains only small integer coefficients. Such a policy matrix
W is called Small Policy Matrix (SPM), which is defined
formally as follows.

Definition 2 (Small Policy Matrix, SPM) For an integer q, a
matrix W is called Small Policy Matrix (SPM) in Zq if

1) an access policy Π can be converted into a policy matrix
W ∈ Zk×lq by using Algorithm SPMGen(·);

2) the matrix W consists of elements in {−1, 0, 1};
3) there exists a candidate submatrix W∗ ⊆ W, where the

determinant of its inverse satisfies |(W∗)−1| = ±1, and the
1-st row elements of its inverse (W∗)−1 consist of all ones,
i.e., (W∗)−1

1 = (1, 1, · · · , 1).

Based on this idea, we present a practical optimization
algorithm SPMGen(·) to convert access policy Π into small
policy matrix in this section. More importantly, the gener-
ated SPM is optimal because the coefficients of (W−1)1 are
all ONEs. Such a property of SPM can satisfy the require-
ment of minimizing the range of error amplification in the
lattice-based cryptosystem. In the last part, we provide the
improved CP-ABE-L scheme by adopting the SPM to one
given in Section 2.4.
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4.1 Small Policy Matrix Generation
We now provide an effective method to convert attribute-
oriented access policy into a cryptographic form that is used
in the CP-ABE-L scheme. Based on the previous research
results [13], such an access policy can be converted into
a share-generating matrix. For clarity, this matrix is called
policy matrix, which plays a key role in our improved scheme
since it is used to encrypt a message in a direct way.

For a policy expressed by Boolean logic, a set of at-
tribute predicates in it can be set as {P1, P2, · · · , Pn}. Each
predicate contains an attribute name and a constant, e.g.,
“Depart. = Surgery”, which means access is permitted if
a user’s department is surgery and then outputs True. The
different attribute predicates may correspond to the same
attribute, e.g., two predicates, “Depart. = Surgery” and
“Depart. = Pediatrics”, are used to restrict the scope of
the authorized departments.

Adapted from [13], a policy matrix can be realized by a
Linear Secret Sharing Scheme (LSSS). In this case, the secret
sharing refers to methods for distributing a secret amongst
a group of predicates in policy, each of which is allocated
one share of the secret. A secret sharing scheme derived
from policy Π over {P1, · · · , Pl} consists of two aspects,
share generation (Definition 3) and secret reconstruction
(Definition 4). The process of share generation is described
as follows.

Definition 3 (Share Generation in LSSS, [13]) For the se-
cret s that will be shared over Zq , the access policy Π can be
converted to a k × n share-generating matrix W, the i-th row of
which is labeled by a predicate Pi. And the share λi which belongs
to predicate Pi will form a vector λ over Zq . Randomly choose
r1, · · · , rn−1 ∈ Zq , the vector λ is the k shares of s by using
λ = Wv, where v = (s, r1, · · · , rn−1)T.

In this definition, the core process of share generation
is to convert the access policy Π to a share-generating
matrix W. This conversion are divided into two phases: the
conversion from access policy into policy tree, and then into
policy matrix. We will describe these two phases as follows.

1) Convert access policy Π into policy tree.
At first, we assume that access policy Π is expressed

by a monotone Boolean formula with “AND (∧)” and “OR
(∨)” gates over some attribute predicates, which are named
by Pi from left to right. For example, define a policy Π as
“the department may be Surgery or Dental”, i.e., Π = P1 ∨
P2, where P1 means “Depart. = Surgery”, and P2 means
“Depart. = Dental”.

It is easy to convert the policy into a policy binary tree
in which each internal node corresponds to a logic operator
and each leaf node corresponds to a predicate. As an exam-
ple, let us give an illustration in the left of Fig. 3. Here, the
policy is defined as Π = [P1∨(P2∧P3)]∧(P4∨P5∧P6), and
the leaf nodes are simple predicates, which are recorded as
P1, P2, · · · , P6. Note that, considering that the binary tree
produced from the policy is not unique, the policy matrix
generated from it is also not unique. This step will be used
in the initial stage (see step 2) of Algorithm 7.

2) Convert policy tree into W by using Definition 3.
According to Definition 3, we design the SPMGen(·),

described in Algorithm 7, to realize the convert from policy

AND

s

r1

r2

s-r1

P1

Boolean Formula: [P1 (P2 P3)] (P4 P5 P6)

① 

① 

② 

② ③ 

④ 

OR

AND

AND AND

r1-r2

r3

AND

④ 

P4 P5

r4

AND

OR AND

P6

P2 P3

③ ⑤  

r1 r1

r3-r4

s-r1-r3

⑤  

AND

Fig. 3. The policy tree and evolution process of its policy matrix.

tree into policy matrix. The algorithm SPMGen(·) is a
recursive algorithm with an access policy Π, a current node
pointer p in the policy binary tree, the addresses of three
variables, W, k and l, where k denotes the row corre-
sponding to the current node, and l denotes the number
of columns in the matrix.

Given a target policy Π, the initial invocation is set to
SPMGen(Π,NULL,W, k, l), where the initial node pointer
p is NULL. According to step 1 in this algorithm, the
condition p == NULL ensures that three input variables,
W, k and l, are initialized as W = (1), k = 1, and l = 1, in
terms of step 2-4. In addition, let the secret s be the value of
the root node, as shown in Fig. 3, so that v = (s).

Next, we turn our attention to the process of internal n-
odes in policy tree. The procedure of this process is executed
by step 7-20 in this algorithm. Starting with the above initial
state, we take an simple example to illustrate this procedure,
which consists of two cases:

Algorithm 7 SPMGen(Π, p,&W,&k,&l)

Input: an access policy Π, the current node pointer p with
the initial value NULL, the address of policy matrix &W,
the address of the current row &k, and the address of the
current column &l.

Output: the policy matrix W.
1: if p == NULL then
2: Convert Π to a binary tree, where the root pointer is p;
3: Generate initial policy matrix W = (1);
4: Set k ← 1 and l← 1;
5: end if
6: if the node pointed by p is not a leaf node then
7: if p.op == Operator.AND then
8: Append an all zero vector Wk before the k-row;
9: Append an all zero vector WT

l+1 after the l-column;
10: Set l = l + 1, Wkl = 1, and W(k+1)l = −1;
11: Invoke W← SPMGen(Π, p→ left,W, k, l);
12: Set k = k + 1;
13: Invoke W← SPMGen(Π, p→ right,W, k, l);
14: else
15: Append an all zero vector Wk+1 after the k-row;
16: Copy k-th vector Wk into (k + 1)-th vector Wk+1;
17: Invoke W← SPMGen(Π, p→ left,W, k, l);
18: Set k = k + 1;
19: Invoke W← SPMGen(Π, p→ right,W, k, l);
20: end if
21: end if
22: return W;

• For an AND gate with s, a random value r1 and s− r1

are assigned to its left and right child node, respectively.
Then, according to step 8-10, we convert the initial ma-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

trix W = (1) into
(

0 1
1 −1

)
and v′ = (s, r1)T, such

that λ′ = (r1, s− r1)T. Next, we make recursive calls to
the left child of the current node via SPMGen(Π, p →
left,W, 1, 2), where k = 1 denotes the left child cor-
responding to the 1-th row. Similarly, the right child is
processed via SPMGen(Π, p → right,W, 2, 2), where
k = 2 denotes the right child corresponding to the 2-th
row. Meanwhile, the number of rows and columns in
W is increased by 1, respectively.

• For an OR gate with s, the same value s is assigned
to all of its child nodes. Then, according to step 15-

16, we convert the initial matrix W = (1) into
(

1
1

)
and v′ = (s), such that λ′ = (s, s)T. Next, we make
recursive calls to the left child of the current node via
SPMGen(Π, p → left,W, 1, 1), where k = 1 denotes
the left child corresponding to the 1-th row. Similar-
ly, the right child is processed via SPMGen(Π, p →
right,W, 2, 1), where k = 2 denotes the right child
corresponding to the 2-th row. Here, the number of
rows in W is increased by 1, but the columns remain
unchanged.

The SPMGen(·) has a recursive procedure to traverse a tree
using pre-order traversal, and repeat the above process until
all nodes in the tree are filled with shares. For example, the
evolution process of W is shown in the right of Fig. 3.

At last, the SPMGen(·) outputs a 6×5 final policy matrix

W =


0 1 0 0 0
0 0 1 0 0
0 1 −1 0 0
0 0 0 0 1
0 0 0 1 −1
1 −1 0 −1 0

 ,

where the number of rows and columns is equal to the num-
ber of leaf nodes and the dimension of v, respectively. More
importantly, the final matrix has the following features: 1) it
is an approximate “sparse matrix” containing only -1, 0, and
1; 2) its determinant is either 1 or −1 (Theorem 3).

According to λi = Wiv in Definition 3, the share of
leaf node can be computed as follows. Assume the final
secret vector v be (s, r1, r2, r3, r4)T, where r1, r2, r3, r4 are
randomly chosen. For i = 1, · · · , 6, the value placed on
the leaf node Pi represents its share λi, i.e., λ1 = r1, λ2 =
r2, λ3 = r1− r2, λ4 = r4, λ5 = r3− r4, and λ6 = s− r1− r3.

Our SPMGen(·) algorithm can express the general
(t,N)-threshold policy by means of the conversion between
policy matrices. There exist some researches on the con-
version methods, e.g., the paper [9] illustrates the different
forms for describing access policies in detail, and points
out that any monotone access structure on Boolean formula
can be converted to AND-OR-gate access tree. Exactly, the
given (t,N)-threshold policy is first converted to a minimal
form access structure, then to a monotone Boolean formu-
la by using equivalent Disjunctive Normal Form (DNF),
and finally to an AND-OR-gate access tree. In this way,
the SPMGen(·) algorithm can deal with the AND-OR-gate
access tree derived from the (t,N)-threshold policy. Note
that an equivalent AND-OR-gate access tree will have more
leaf nodes than the original threshold-gate access tree. This

will lead to larger size of policy matrix, and then affects
performance negatively.

4.2 Small Policy Matrix Reconstruction

For a policy matrix W generated by SPMGen(·), we can
employ it to design an encryption algorithm associated with
the share generation in LSSS. Furthermore, the decryption
algorithm can be designed on the secret reconstruction in
LSSS, which is described as follows.

Definition 4 (Secret Reconstruction in LSSS [13]) For any
authorized set U , define I ⊂ {1, 2, · · · , k} be I = {i : Pi ∈ U}.
There exist constants {ωi ∈ Zq}i∈I such that, if {λi} are any
valid shares of a secret s according to share generation in LSSS,
then s is retrieved by

∑
i∈I ωiλi = s. Also, {ωi} can be found

in polynomial time in the size of the share-generating matrix W.
Furthermore, for any unauthorized set, no such constants {ωi}
exists, i.e., s should be information theoretically hidden.

According to Definition 4, we prove that our proposed
Algorithm SPMGen(·) has a remarkable feature: the recon-
struction vector is the vector of all ones from Theorem 3.

In the following description, we will still consider the
policy tree mentioned in Fig. 3. We first define U =
{P2, P3, P4, P5, P6} as an authorized set of this example.
Therefore, we have I = {i : Pi ∈ U} = {2, 3, 4, 5, 6},
and select these rows W2,W3,W4,W5, and W6 in W
corresponding to P2, P3, P4, P5, and P6 as the reconstruction
matrix. And then, we observe whether there is a reconstruc-
tion vector ω = (ω2, ω3, ω4, ω5, ω6) to satisfy

ω2W2 + ω3W3 + ω4W4 + ω5W5 + ω6W6

= (ω2, ω3, ω4, ω5, ω6)


W2

W3

W4

W5

W6

 (4)

= (1, 0, 0, 0, 0).

According to the above equation, the values, ω2, ω3, ω4, ω5

and ω6, can be calculated in polynomial time, i.e.,

(ω2, ω3, ω4, ω5, ω6) = (1, 0, 0, 0, 0)


W2

W3

W4

W5

W6


−1

(5)

= (1, 0, 0, 0, 0)


1 1 1 1 1
1 1 0 0 0
1 0 0 0 0
0 0 1 1 0
0 0 1 0 0


= (1, 1, 1, 1, 1).

Thus, we deduce ω2 = ω3 = ω4 = ω5 = ω6 = 1, i.e.,
ω is the vector of all ones. Therefore, for the valid shares
λ2, λ3, λ4, λ5, and λ6 derived from P2, P3, P4, P5, and P6
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Fig. 4. Examples of access policy trees, policy matrices, and their inverses with two or three leaf nodes.

respectively, the secret s can be reconstructed according to
λi = Wiv and Equation (4) as∑

i∈I
ωiλi = (ω2, ω3, ω4, ω5, ω6)(λ2, λ3, λ4, λ5, λ6)T

= (ω2, ω3, ω4, ω5, ω6)


W2

W3

W4

W5

W6




s
r1
r2
r3
r4

 (6)

= (1, 0, 0, 0, 0)(s, r1, r2, r3, r4)T = s.

Thus, we can use the reconstructed secret s to design the
decryption algorithm. The key to achieving effective recon-
struction is to calculate the inverse of the reconstruction
matrix. For instance, in the above process, we gain the
reconstruction matrix

W∗ =


0 0 1 0 0
0 1 −1 0 0
0 0 0 0 1
0 0 0 1 −1
1 −1 0 −1 0

 , (7)

which is a candidate submatrix of W, and its inverse is

(W∗)−1 =


1 1 1 1 1
1 1 0 0 0
1 0 0 0 0
0 0 1 1 0
0 0 1 0 0

 . (8)

We find that it is a special matrix consisting of only 0 and 1.
In addition, in order to further study the above conclu-

sions, we have listed the access policy trees with almost two
or three leaf nodes in Fig. 4. In the figure, subfigures (a) and
(b) describe the case of two leaf nodes, and subfigures (c)-
(h) represent the case of three leaf nodes. Note that there is
also a case of three leaf nodes, in which the root and internal
nodes are OR gates, but this is omitted in Fig. 4 since only
the same row vectors are added to the policy matrix.

For all cases, we use the SPMGen(·) to convert the policy
tree into W. Then, the inverse (W∗)−1 of their candidate
submatrices W∗ ⊆ W are listed in Fig. 4, respectively. We
observe that all candidate submatrices have such a feature that
the 1-st row elements of their inverses are all ones.

Theorem 3 The access policies, expressed as a monotone Boolean
formula over logic AND or OR, can be converted into a policy
tree. Using the SPMGen(·) algorithm described above, this tree
can be further converted into a small policy matrix W, where the
determinant of the inverse of a candidate submatrix W∗ ⊆ W
satisfies |(W∗)−1| = ±1, and the 1-st row elements of (W∗)−1

consist of all ones, i.e., (W∗)−1
1 = (1, 1, · · · , 1).

The proof of the theorem is presented in the supplement file.

4.3 Improved CP-ABE-L Scheme with SPM
We now turn our attention to the CP-ABE-L scheme in
Section 2.4. This scheme always introduces Shamir’s k-out-
of-l secret sharing scheme to establish the access policy
matrix by employing Vandermonde matrix on the identity
set of attributes {I1, · · · , IT } in Z, where T indicates the
maximum number of attributes. In decryption, Shamir’s
scheme uses a linear combination of shares to reconstruct
the secret. By using the fractional Lagrangian coefficients
Li =

∏T
j=1,i6=j

−Ij
Ij−Ii mod q, the cumulative error term is

bounded to x′−
∑
i∈S Lie

T
i xi < q/k in the process of secret

reconstruction, where k is a constant integer and S indicates
the subset of shares.

However, the value of Li may be arbitrarily large be-
cause it is an element in Zq , even if both the numerator
and denominator in Li are restricted to integer fractions. To
eliminate the denominator, Agrawal et. al. ( [21], Lemma 3)
proposed a common idea, which is to multiply the noise
vector by a sufficiently large constant D = (T !)2 to hold

Dx′ −
∑

i∈S
DLie

T
i xi < q/k

with overwhelming probability, where DLi ∈ Z for ∀i ∈ S
and |DLi| ≤ D2 ≤ (T !)4 for ∀Ii ∈ [1, T ]. But the magnitude
of the error term eT

i xi is amplified by (T !)4 ≤ 24T log T

times. In Agrawal’s Fuzzy IBE/ABE scheme [21], the mod-
ulus q is conservatively estimated at q ≥ m3 logm · 25T . Let
T = O(logm), it is easy to have q ≥ 1.88×2123 for m = 215

at 112-bit security (n = 112).
In light of complex access policies, the parameters of

ABE scheme become much larger than those of gener-
al lattice cryptosystems. This brings about an increase
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in computation and storage overheads. In fact, the con-
stant D can be computed in terms of W, i.e., D =
LCM∀W∗⊆W(|(W∗)−1|) ∈ Z. Fortunately, we have already
got the conclusion |(W∗)−1| = ±1 for ∀W∗ ⊆W according
to Theorem 3. Thus, the SPM has the ability to reduce the
constant D to ±1, i.e., D = ±1. This means that the SPM is
the optimal expression of policies in ABE.

According to the above analysis, we introduce the SPM
into the CP-ABE-L scheme, which can be optimized to
a great extent. To avoid repetition, we only describe the
revised parts about encryption and decryption algorithms
in the CP-ABE-L scheme of Section 2.4, as follows.

Encryption. The encryption process remains the same as
the given CP-ABE-L scheme except for the step 3).
Exactly, the step 3) is revised as follows: pick e← χ and
k noise vectors ei ← χ2m for i ∈ [1, k], and compute

{
c = uTs + e+Mb q2c ∈ Zq,

zi = AT
i λi + ei ∈ Z2m

q , i = 1, . . . , k,
(9)

where Z = (z1, z2, · · · , zk) ∈ Z2m×k
q . Finally, it returns

the ciphertext C = (c,Z,W).
Decryption. The decryption process also remains the same

as the given CP-ABE-L scheme except for the step 2).
The revised part in the step 2) is as follows: compute

c′ = (W∗)−1
1 ·w =

∑t

i=1
wi ∈ Zq (10)

for (W∗)−1
1 = (1, 1, · · · , 1).

Considering that different leaf nodes may correspond to
the same attributes, the size of policy matrix is nonlinear
with the number of attributes in the policy. In addition,
the size of ciphertext in CP-ABE-L is directly linear to the
number of rows in policy matrix, and the latter is equal
to the number of leaf nodes in policy tree. In the view of
the improved scheme, the ciphertext Z is a k-dimensional
vector, W is a k× l matrix and the corresponding policy tree
has k leaf nodes. This means that the larger policy matrix,
the larger the ciphertext of CP-ABE-L. However, the policy
matrix does not affect the number of private keys.

Then, we show our improved CP-ABE-L scheme meets
the correctness. We do the following steps if S `W∗.

• Invokes the SampleLeft algorithm, we obtain Aidi =
u. Then, we compute wi = zT

i di = (λT
i Ai + eT

i )di =
λT
i u + eT

i di for i = 1, · · · , t. Therefore, the vector w
can be denoted as

w = (zT
1 d1, · · · , zT

t dt)
T =

 λT
1 u + eT

1 d1

λT
2 u + eT

2 d2

· · ·
λT
t u + eT

t dt

 (11)

=

 λT
1

λT
2

· · ·
λT
t

u +

 eT
1 d1

eT
2 d2

· · ·
eT
t dt

=λu+

 eT
1 d1

eT
2 d2

· · ·
eT
t dt

 .
• By using the secret reconstruction in LSSS, we have v =

(W∗)−1λ = (s, r2, · · · , rt)T, so we can retrieve the first

element sT = (W∗)−1
1 λ. Then, we compute

c′ = (W∗)−1
1 w =(W∗)−1

1 λu + (W∗)−1
1

 eT
1 d1

eT
2 d2

· · ·
eT
t dt



= (W∗)−1
1 W

 sT

rT2
· · ·
rTn

u + (W∗)−1
1

 dT
1 e1

dT
2 e2

· · ·
dT
t et



= (1, 0, · · · , 0)

 sT

rT2
· · ·
rTn

u +
t∑
i=1

(W∗)−1
1i (dT

i ei)

= sTu +
t∑
i=1

(W∗)−1
1i (dT

i ei) = sTu + e′, (12)

where we define e′ =
∑t
i=1(W∗)−1

1i (dT
i ei).

• Thus, we compute r = c − c′ = Mb q2c + e − e′. If |e −
e′| < b q4c, then the algorithm can decrypt the ciphertext
correctly and output the right message M .

To ensure the correctness of our scheme, the overall noise
terms, including e and e′, must be small enough to meet the
condition |e− e′| < b q4c with overwhelming probability.

Furthermore, Learning with Errors (LWE) will be used
to reduce the security of our improved CP-ABE-L scheme,
the proof of which is presented in the supplement file.

We observe that the CP-ABE-L scheme will be more
effective if multi-bit messages can be encrypted. Chen et
al. [26] proposed a multi-key fully homomorphic encryp-
tion scheme over ring, which can encrypt a ring element
rather than a single bit. With a similar algebraic structure
of [26], our construction can be extended to support multi-
bit messages over ring, such that the performance will be
further improved. Therefore, it is a more practical solution
for using ring-LWE to build our CP-ABE-L scheme in order
to achieve secure CFS.

5 PARAMETER OPTIMIZATION

In this section, we will analyze how to make cumulative er-
rors minimum and improve the performance of our scheme,
including storage and computation complexity. We also
provide a performance comparison between the previous
researches and our scheme.

5.1 Minimized Cumulative Errors
This paper analyzes how to choose appropriate parameters
to ensure the correctness and security of the scheme. Before
proceeding, we define some symbols as shown in TABLE 1.

TABLE 1
Definition of symbols in our improved CP-ABE-L scheme.

Symbol Description
n the security parameter
m the dimension of Lattice
s the total number of attributes
t the number of attributes in decryption (t ≤ k ≤ s)
k the number of attributes in policy
l the number of logic in policy

Denote t as the number of attributes in access policy, and
T is the maximum of t, i.e., t ≤ T . Without loss of generality,
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we use k logm as the upper-bound on the growth of T for
some k > 0, i.e., T = O(logm). Note that, the total number
of attributes is not limited in our CP-ABE-L.

To ensure the correctness of decryption, we need to
satisfy the following equation according to Section 4.3,

r = c− c′ = e− e′︸ ︷︷ ︸
error term

+Mbq
2
c, (13)

where e′ =
∑t
i=1(W∗)−1

1i (dT
i ei) =

∑t
i=1 dT

i ei in terms of
the constant vector (W∗)−1

1 = (1, 1, · · · , 1) in Theorem 3.
Then, we estimate the magnitude of error term |e − e′| =
|e−

∑t
i=1 dT

i ei| as follows.
To analyze the bound of error term, we use an accumu-

late vector approach to combine multiple dot products of
two vectors into a dot product of two long vectors. Let di =
(di,1, · · · , di,2m) ∈ Z2m

q and ei = (ei,1, · · · , ei,2m) ← χ2m.
We have

∑t
i=1 dT

i ei =
∑t
i=1

∑2m
j=1 di,j · ei,j . Considering

that e has the same distribution as eij , we further define

e− e′ = e−
t∑
i=1

2m∑
j=1

di,j · ei,j =
2mt∑
k=0

d̄k · ēk = d̄Tē, (14)

where all elements are expressed into two vectors, d̄ =
(d̄0, · · · , d̄2mt)

T = (1, d1,1, · · · , dt,2m)T ∈ Z2mt+1
q and

ē = (ē0, · · · , ē2mt)
T = (e, e1,1, · · · , et,2m)T ← χ2mt+1.

By Lemma 2, we obtain ‖d̄‖ ≤ σ
√

2mt+ 1 with
overwhelmingly probability. Then, by Lemma 3, we have
|d̄Tē| ≤ ‖d̄‖(αqω(

√
log(2mt+ 1)) +

√
2mt+ 1/2). There-

fore, we have the inequation

|e− e′| ≤ (σ
√

2mt+ 1) · (αq · ω(
√

log(2mt+ 1))

+
√

2mt+ 1/2)

= ασq ·
√

2mt+ 1 · ω(
√

log(2mt+ 1))

+σ(2mt+ 1)/2

≤ ασq · ω(
√

Γ log Γ) + σ · Γ/2, (15)

where Γ = 2mT + 1. According to the requirement of
successful decryption, the error term in Equation (15) is less
than bq/4c with high probability. Since the error consists of
two parts, the problem of allocating the proportion of them
is called error proportion allocation (EPA). The solution to this
problem must ensure that three following lattice-generation
conditions hold with overwhelming probability.

1) For the TrapGen algorithm that can operate correctly,
we need m ≥ d6n log qe, ‖T̃A‖ ≤ O(

√
m) and ‖T̃B‖ ≤

O(
√
m) in terms of Theorem 2.

2) A sufficiently large σ is needed for SampleLeft and
SampleRight (Definiton 1), such that we have σ >
‖T̃A‖ω(

√
log(2m)) and σ > ‖T̃B‖

√
m · ω(

√
logm)

used in the security proof of CP-ABE-L.
3) To ensure the security of our scheme, we need the rela-

tion m > (n+ 1) log2 q + ω(log n) (Lemma 1). And we
apply Regev’s reduction (Theorem 1) to the hardness of
LWEq,2m,Ψ̄α , i.e., q > 2

√
2m/α for χ = Ψ̄2m

α .
We take n as the security parameter, round up m to

the nearest larger integer and q to the nearest larger prime.
To meet these conditions, we firstly divide the probability
b q4c >

√
2q
6 + q

29 into two following items:

σ · Γ/2 < q/29, (16)

ασq · ω(
√

Γ log Γ) <
√

2q/6. (17)

We then set the parameters (m,σ, q, α) as follows.
1) Assume that δ is a real such that n1+δ > d(n+1) log q+
ω(log n)e. We set m = 6n1+δ in terms of Theorem 2.

2) According to the above condition 1) and 2), we integrate
the result of two sampling algorithms into the standard
deviation σ = m logm/2 > m · ω(

√
log(2m)) if for

any c = 2, there exists m0 = 24, such that logm >
c ·
√

log(2m) for every m ≥ m0.
3) According to Equation (16), the modulus q satisfies

28σ · Γ = 28(m logm/2) · (2m logm+ 1)

< 28m2 · logm · log(2m)

< 28m2 log2(2m) = q. (18)

4) According to Equation (17), the parameter α satisfies

[ 6√
2
σ · ω(

√
Γ log Γ)]−1

> [ 6√
2
σ ·
√

2m logm+ 1 log(m logm)/2]−1

> [ 3√
2
σ ·
√

2m log(2m) log(m logm)]−1

> [ 3
2m logm

√
m log(2m) log(m logm)]−1

> [ 3
2m

3/2 logm · log(2m) · log(m logm)]−1

> [3m3/2 log3m]−1 = α, (19)

where logm · log(2m) · log(m logm) < 2 log3m, and
ω(
√

log(2m logm+ 1)) < log(m logm)/2 if for any
c = 2, there exists m0 = 22, such that log(m logm) >
c ·
√

log(2m logm+ 1) for every m ≥ m0.

TABLE 2
Parameters set for our improved scheme.

n δ m σ q α
1 56 0.94 213.83 216.62 243.45 2−33.71

2 80 0.87 214.39 217.24 244.68 2−34.72

3 112 0.81 214.91 217.81 245.81 2−35.65

4 128 0.79 215.12 218.04 246.26 2−36.02

5 192 0.73 215.75 218.72 247.62 2−37.13

6 256 0.70 216.19 219.20 248.58 2−37.92

7 512 0.63 217.26 220.37 250.89 2−39.79

As shown in TABLE 2, all the above results are combined
to provide several optional parameter sets for 7 common
security strengths in which n is from 56 to 512. Meanwhile,
we use q > 2

√
2m/α in condition 3) as a test criterion to

check whether the parameters conform to the requirements.
Then, according to TABLE 2, we show the parameter change
trends under the different security strengths (n) in Fig. 5. In
Fig. 5 (a), it is easy to see that the parameters, q, δ and
m, increase slowly with the increase of n. On the contrary,
the parameter α decreases rapidly with the increase of n
in Fig. 5 (b). Thus, the developers are allowed to choose a
prime modulus q of size at no more than 64 bits. For micro-
controllers with 64-bit structure, it offers fast implementa-
tions of lattice arithmetic operations.

5.2 Storage Complexity
In this section, we analyze the storage complexity of the
policy matrix generation algorithm and our improved CP-
ABE-L scheme, as follows.
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(a) (b)
Fig. 5. The parameter change trends for our construction under the different security strengths (n): (a) The trend curves of the lattice dimension m,
the Gaussian parameter δ, the modulus q; and (b) the trend curve of the parameter α.

(a) (b)
Fig. 6. The complexity of our scheme, where (a) and (b) represent the storage complexity and computational complexity,respectively.

1) Storage complexity of SPMGen(·).
For a complete binary policy tree with depth h, we in-

voke the SPMGen(·) algorithm to generate policy matrix W
by traversing the nodes of the tree. Exactly, the SPMGen(·)
requiresO(h) stack spaces to implement the variable storage
in the recursion. Thus, the storage complexity of SPMGen(·)
is proportional to the depth of tree, i.e., O(h).

2) Storage complexity of policy matrix W.
For a given policy matrix W ∈ Zk×lq , its storage com-

plexity is O(kl). In the worst case, the number of rows
in W generated by SPMGen(·) is 2h−1 (i.e., k ≤ 2h−1),
which is equal to the number of leaf nodes. Moreover, the
number of columns is related to the number of AND nodes
in the policy. Exactly, the number of columns is equal to the
number of AND nodes plus 1 (i.e., l ≤ 2h−1), where 2h−1−1
is the maximal number of internal nodes. Thus, the storage
complexity of the generated policy matrix W is O(22h−2)
bits for the matrix with coefficients {-1,0,1}.

3) Storage complexity of CP-ABE-L.
The modulus q is an important parameter for storage

complexity because our CP-ABE-L scheme will be devel-
oped under Zq . According to TABLE 2, q is a prime at most
251, i.e., log q ≤ 51, under all candidate security strengths.
Therefore, the block of 8-byte (called 64-bit-word) can be
effectively allocated for the element of lattice vector under
Zq . Another important parameter is the security strength
n. According to the NIST Special Publication 800-57 [27],
112-bit security strength (which corresponds to 2048-bit RSA
keys) is considered to be secure until 2030.

In TABLE 3, we show the storage overheads of main
entries, including pk, msk, sk, C and M , output by four
algorithms. Assume the size of q be a fixed 64 bit, the space

TABLE 3
Storage overheads of main entries in our scheme.

Algorithm Entry Size (bit) Space Complexity

Setup pk (3nm+ n) log q O(nm)
msk m2 O(m2)

Extract sk 2ms log q O(ms)
ABE-Enc C [(2m+ 1)k + 1] log q O(km)
ABE-Dec M 1 O(1)

complexity remains quadratic on m, n, s or k for all entries
except M . Moreover, the master secret key msk is a short
basis, such that it can be stored on unit bit rather than byte.
For clarity, we present the trend curve of storage complexity
under different security strengths in Fig. 6 (a). According to
the NIST specification, when n = 112 bit and k = s = 10,
the length of user’s private key sk and ciphertext C is about
2-4MB, and the system public key pk is 20MB. Thus, the
storage overheads of our scheme against quantum attacks
are larger than those of traditional cryptosystems, but it is
still acceptable for the current PC storage capacity and cost.
In addition, msk is 100MB, which is the heaviest cost for
space. The msk is generated only once, and is handled by
the system administrator, not users.

5.3 Computational Complexity

We next discuss the computational complexity of the policy
matrix generation algorithm and our improved CP-ABE-L
scheme, as follows.

1) Computational complexity of SPMGen(·).
For a complete binary tree with depth h, there are at

most 2h−1 − 1 internal nodes. The SPMGen(·) algorithm
is invoked as many times as the number of nodes. In the
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pre-order traversal process, the algorithm will increase 1
cycle every time a internal node is processed. It can be seen
from Section 4.1 that the SPMGen(·) is a recursion but does
not operate on leaf nodes. Assuming that the processing
efficiency of AND node is the same as that of OR node, it is
easy to obtain that the computational cost of SPMGen(·) is
O(2h−1 − 1).

2) Computational complexity of CP-ABE-L.
Similar to storage complexity analysis, considering the

fixed 64-bit storage of q, a CPU with 64-bit word can
effectively complete the algebraic operations in CP-ABE-
L. This ensures that only one CPU instruction/operation is
needed to perform one algebraic operation for each element
in lattice vector under Zq . Let tm denote the time of one
multiplication or addition under Zq , ts denote the time of
one random number generation under Zq , tsample denote
the time of one TrapGen or SampleLeft operation. In TA-
BLE 4, we show the computational complexity of the four
algorithms in our scheme. It is easy to see that the time
complexity of Extract and ABE-Enc is the fourth power
formula, but one of Setup and ABE-Dec is the quadratic
formula. This means that the time consumptions of the
former two (Extract and ABE-Enc) are higher than that of
the latter two (Setup and ABE-Dec).

TABLE 4
Execution time of each algorithm in our scheme.

Algorithm Time Complexity
Setup O(nm · ts + tsample)
Extract O(n2ms · tm + tsample)

ABE-Enc O(kn2m · tm + (ln+ 2mk) · ts)
ABE-Dec O(tm · tm)

Furthermore, we show the trend curve of time complexi-
ty under different security strengths in Fig. 6 (b), where a 64-
bit multi-core CPU with 3.6GHz is used to perform our CP-
ABE-L scheme. This means that the number of operations is
3 × 109 per second in terms of the previous assumption 3.
Under the 112-bit security strength and the same settings in
the above storage complexity, the time costs of Setup and
ABE-Dec algorithm are less than 1ms, and that of Extract
and ABE-Enc algorithm are less than 3s. Therefore, the
overall performance of our CP-ABE-L scheme is acceptable
and reasonable in the context of post-quantum security,
especially for the rapid decryption.

5.4 Performance Comparison

As shown in TABLE 5, we compare the performance of our
scheme with that of other related works [12], [14], [16]. These
schemes are lattice-based CP-ABE and argued to resist post-
quantum attacks. The communication complexity takes the
size of public-key (pk), secret-key (sk), ciphertext (C) and
message (M ) into account. Further, each of these schemes is
distinguished from three aspects, Operation, Post-quantum,
and Hardness. From TABLE 5, it is easy to see that the
schemes in [12], [16] support single threshold operation,
which would lead to low availability of the system. More-
over, the scheme [14] also has a low availability since it only

3. The fact that the Intel Core i7-6850K Processor (15M Cache,
3.8GHz) is round 345.6GFlOPS has far more than our assumption.

supports AND operations. In addition, the PK size in the 
scheme [14] is relatively long, thus it would lead to high 
storage and communication costs. As a whole, the overall 
performance of our scheme is better than those of [12] and 
[16], but is close to that of [14].

However, the comparison results are inaccurate and in-
complete in TABLE 5 if we only compare them from the 
perspective of mathematical formulas. The reason is that 
the parameters m and q in our scheme are far less than 
those of the schemes derived from [21], including [12], [14],
[16] under the same security strength n. According to the
Agrawal’s Fuzzy IBE/ABE scheme in [21], the modulus
q is conservatively estimated to be q ≥ m3 log m · 25T ,
where T = O(log m). When the security strength is 112-bit
(n = 112), the modulus q is greater than 1.88 × 2123 ≈ 2124

for m = 215(>14.91). This means that each element in Zq 
must be stored in two 64 bits (128 > log q) rather than 
one 64-bit in our scheme. This also implies that one 64-bit 
CPU instruction cannot perform one algebraic operation of
each element in Zq for [12], [14], [16]. Compared with these 
schemes, our scheme achieves shorter parameters, such as 
q ≥ 246(>45.81) for m = 215, from the results in TABLE 
2. The benefits gained from it is that a 64-bit CPU is able
to realize the storage and computation of elements in Zq . 
Thus, the whole performance of our scheme has a significant 
improvement in comparison with others.

6 CONCLUSION

In this paper, we address the problem of CFS-based data 
leakage on employees’ remote work. We propose a new 
solution that integrates multiple existing technologies, in-
cluding ABAC/XACML, CP-ABE-L and CFS. However, it 
is still a serious problem for improving the performance of 
these technologies. To do it, we construct a SPM that has 
small coefficients and generates an all-one reconstruction 
vector. Based on these advantages of SPM, we improve 
the existing CP-ABE-L scheme to guarantee data privacy 
against quantum attacks in the CFS. Therefore, our work 
significantly improves the efficiency and security of increas-
ingly popular employees’ remote work.
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