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Abstract 16 

This research presents a set of multi-objective spatial tools for maritime spatial planning and 17 

environmental management in the Adriatic Sea Basin. The tools address four objectives: 1) 18 

assessment of cumulative impacts from anthropogenic sea uses on environmental components of 19 

marine areas, 2) 3-D hydrodynamic modelling of nutrient dispersion (nitrogen and phosphorus) from 20 

riverine sources in the Adriatic Sea Basin; 3) analysis of sea use conflicts and 4) marine ecosystem 21 

services capacity assessment from benthic habitats based on an ES matrix approach. Modelling results 22 

were presented and discussed for their spatial distribution and relevance for national and international 23 

regulatory frameworks in the Adriatic-Ionian Region. 24 

 25 

1.Introduction 26 

Maritime Spatial Planning (MSP) is a rapidly expanding approach for ocean and coastal management 27 

(Hall et al., 2011; Stamoulis and Delevaux, 2015). MSP is applicable on trans-boundary settings and 28 

across sectors to ensure efficient, safe and sustainable development of human activities at sea (EU 29 

Maritime Affairs, 2016). In order to practice MSP, decision-makers and planners require an 30 

increasing amount of spatial data and tools for archiving, managing and analysing datasets. Moreover, 31 

MSP frameworks have an iterative character (Ehler and Douvere, 2009), that requires tools, designed 32 

to address multiple challenges of ocean management, that can be flexibly deployed in different stages 33 

of the MSP process and that are capable to assimilate and process novel datasets, as they become 34 

available (Yee et al., 2015). 35 

In 2014, the European Commission adopted the European Strategy for the Adriatic-Ionian Region 36 

(EUSAIR) as macro-regional strategy to create synergies and foster coordination among territories in 37 

the Adriatic-Ionian Region (AIR). The EUSAIR recognized the necessity of MSP as a planning 38 

framework to foster blue growth and sustainable use of marine resources in the Adriatic Sea, one of 39 

the most crowded European Seas (Barbanti et al., 2015; MSP-Platform, 2017). 40 

This paper presents a spatial toolset developed in the ADRIPLAN Project (2012-2015) and further 41 

extended through the RITMARE Project - Italian Research for the Sea (2012-2016), capable to 42 

address multiple challenges for sea planning and environmental management in the Adriatic Sea. The 43 

toolset is developed within the Tools4MSP modelling framework, a regularly updated MSP-oriented 44 

open source software suite (Menegon et al., 2017) and the SHYFEM model (Shallow water 45 

Hydrodynamic Finite Model; Umgiesser et al., 2004). The toolset addresses four key challenges for 46 

the Adriatic Sea, one of the most industrialized sea areas of the Mediterranean: (1) assessment of 47 
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cumulative impacts (CI) from anthropogenic sea uses on sensitive ecological components of the 48 

marine environment, (2) identification of sea use conflicts (SUC), (3) application of a hydrodynamic 49 

model for total Nitrogen and Phosphorus (N and P) dispersion mapping and (4) socio-ecological 50 

analysis of marine ecosystem services (MES) capacity from benthic habitats. Results from tools 51 

application are presented and discussed for their geospatial implications and importance for different 52 

regulatory frameworks in the AIR. 53 

 54 

2. Materials and Methods 55 

The following section describes the methodology and datasets involved in the development of the 56 

spatial tools. Geostatistical analysis and visualizations were performed in ArcGIS 10.1 (ESRI, 2017). 57 

Graphs were produced in ggplot2 using R programming language (R-Cran Project, 2017). 58 

 59 

2.1. The Adriatic Sea 60 

The Adriatic Sea (252191.4 km
2
) is a semi-enclosed basin located in the North-Central Mediterranean 61 

Sea (Scheiber and Paik, 2013; Schofield and Townsend-Gault, 2011). It is connected to the Eastern 62 
Mediterranean Sea through the Strait of Otranto. The Adriatic Sea embraces six countries: Italy (IT), 63 
Croatia (HR), Montenegro (MT), Bosnia & Herzegovina (BH), Albania (AL) and Slovenia (SL). It is 64 
an extremely complex system due to its geomorphological and ecological characteristics: lagoons, 65 
estuarine areas, coastal high biodiversity habitats (e.g. Posidonia oceanica meadows, coralligenous 66 
assemblages; UNEP-MAP-RAC/SPA, 2010; Telesca et al., 2015), deep-habitats (e.g. canyons, 67 
seamounts, deep-sea corals; Danovaro et al., 2010; IUCN, 2016; Turchetto et al., 2007), with a high 68 
variability along its north-south gradient. Moreover it is populated by benthic, demersal and pelagic 69 
fish species of high ecologic and commercial value (Coll et al., 2010; DEVOTES-Project, 2016). The 70 
rivers with the most extended catchment area are the Po (71327 km

2
) and Adige (12417 km

2
) in 71 

northern Italy, the Neretva river in Croatia (13122 km
2
) and the Drin river (13067 km

2
) in Albania. 72 

The Adriatic Sea is heavily exposed to anthropogenic pressures (EC, 2011; Goffredo and Dubinsky, 73 
2013) from a complex suite of activities: maritime transport, port activities (Trieste, Venice, Koper, 74 
Rijeka, Ancona, Brindisi, Bari or Vlorë), commercial fishery, aquaculture, especially in the lagoons of 75 
the Northern Adriatic Sea and tourism (EC, 2011). In future, an intensification of human activities 76 
could be expected, leading to increased environmental pressures and sea conflicts: development of 77 
new port infrastructures in Ploce (Croatia), Bar (Montenegro) and Vlorë (Albania; Vidas, 2008), 78 
container traffic increase by 350% by 2020 (Barbanti et al., 2015), development of new cruising 79 
routes (Venice-Ravenna-Bari-Sivola and Kotor), increase of aquaculture activities (Brigolin et al., 80 
2017; EUSAIR, 2017), increased grid connectivity through cabling and pipelines (IGI Poseidon 81 
Project, 2016; PCI Project, 2017), potential renewable energy development (Liščić et al., 2014; 82 
Schweizer et al., 2016; Vicinanza et al., 2011), new hydrocarbon concessions, establishment of LNG 83 
terminals and booming of coastal and cruise tourism (Caric and Mackelworth, 2014). 84 
The spatial characterization of results was performed by dividing the Adriatic Sea into three 85 
biogeographic subdivisions according to Bianchi 2004 (Figure 1): 1) The Northern Adriatic (NAd, 86 
area = 44434 km

2
; 17.6 %) delimited by the Conero Regional Park to Istrija, covering the national sea 87 

boundaries of HR, IT and SL; 2) the Central Adriatic (CAd, area = 132610.7 km
2
; 52.6%) delimited 88 

by the Gulf of Manfredonia to the coastal city of Dubrovnik, covering the national sea boundaries of 89 
BH, HR and IT and 3) the  Southern Adriatic (SAd, area = 75146.56 km

2
; 29.8%) delimited by the 90 

city of Otranto, covering the national sea boundaries of AL, HR, IT and MT. 91 
 92 
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 93 
Figure 1. The Adriatic Sea with administrative boundaries of coastal regions, national marine boundaries and three subdivisions (Northern-94 
Central-Southern Adriatic Sea). 95 
 96 

 97 

2.2. Objective 1: Cumulative impact assessment 98 

One of the first applications of CI occurred in 1980s for the Wadden Sea (Dijkema et al., 1985). Since 99 
then, its application has become a widespread modelling technique for cumulative impact assessment 100 
on global (Halpern et al., 2008), seabasin (Andersen and Stock, 2013) and regional (e.g. Holon et al., 101 
2015) scale. The implemented CI assessment is composed by a MSP stocktake of 45 layers: 28 102 
environmental components (E), 17 human uses (U) at sea. Moreover the U stocktake includes 18 103 
pressures (P), defined as disturbances causing temporary or permanent alterations to one or multiple 104 
ecosystem components. The P were defined according to the Marine Strategy Framework Directive 105 
(MSFD, 2008/56/EC). The units for the spatial indicators E and U include presence/absence (P/A) 106 
(aquaculture, habitats) and, where applicable, intensity indicators were applied (maritime traffic, 107 
trawling and small scale fishery). For intensity indicators, a log[x+1] transformation and a rescaling 108 
from 0 to 1 was used. In Table 1, an overview of the MSP stocktake is presented. Full E and U 109 
geospatial datasets can be downloaded under Menegon et al. (2016b). At the current stage, the CI 110 
model incorporates 516 sensitivities s(Ui, Pj, Ek). Each of the sensitivities includes a distance model 111 
m(Ui, Pj, Ek). The distance model uses a 2D Gaussian spatial convolution to model isotropic 112 
propagation of impacts across the study area. The CI spatial model implemented can take into account 113 
the dispersion of the pressure generated by each single human use as a buffer distance. The CI model 114 
functions are available under the Tools4MSP modelling framework/toolbox, an open source 115 
geopython library available in its latest version on GitHub (Tools4MSP, 2016). The CI operates on a 116 
cell grid resolution of 1 km x 1 km using the standardized European Environmental Grid (EEA, 117 
2013). CI scenario runs can be also performed from the ADRIPLAN Portal using the built-in tool with 118 
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a resolution of 10 km x 10 km (data.adriplan.eu, 2017a). For more information on the CI assessment 119 
in the study and the algorithm adopted we refer to S1 and Barbanti et al. (2015). 120 
 121 
Table 1. MSP stocktake for CI assessment and SUC analysis (P/A = presence/absence; I = normalized intensity indicator; PR = proxy; w 122 
P/A weighted presence/absence). 123 
Dataset Indicator 

Human uses (U)  
Aquaculture, Cables and Pipelines, Coastal 

Defence Work, Dumping area for dredging, LNGs, 

Military areas, Off-shore sand deposit, Oil and Gas 
Extraction, Oil and Gas Research 

P/A 

Coastal and Maritime Tourism I/PR - distance from the marinas and number of boats/marinas 
Naval Based Activities I/PR - distance from the cargo ports and port capacity 

Maritime Transport  I - Traffic density (number of vessels/year) 

Small Scale Fishery I - fishing effort expressed in 5 classes of intensity: from very low to high) 

Pair Pelagic Trawling, trawling I - hours of activities calculate through Vessel Monitoring System (VMS) 

Environmental components (E)  
Marine Mammals, Giant Devil Ray, Turtles, 

Marine habitats, nursery habitats 
P/A 

Seabirds w P/A 

 124 
2.3. Objective 2: Sea use conflict analysis 125 
The analysis of SUC is important to locate conflict areas, setup conflict mitigation strategies and 126 
guide decision makers in the definition of planning processes that can aid sustainable ocean zoning 127 
concepts (Bruckmeier, 2005; Hadjimitsis et al., 2016; Moore et al., 2017). The methodology for sea 128 
use conflict analysis is based on 17 sea uses (Table 1) using the FP7 project methodology named 129 
COEXIST – Interaction in European coastal waters: A roadmap to sustainable integration of 130 
aquaculture and fisheries (COEXIST, 2013). The following operational steps were considered: (1) 131 
classification and assignment of numerical values to five traits (mobility, spatial (horizontal), vertical 132 
and temporal scale, location); (2) assignment of rules to calculate level of conflict for pairwise 133 
combinations and (3) calculation of total conflict score for each pairwise use combination within a 134 
single grid cell. Similar to the CI assessment, also sea use conflict analysis is implemented through 135 
the Tools4MSP modelling framework/toolbox (Menegon et al., 2016) on a 1 km x 1km grid cell 136 
resolution (EEA, 2013). For further details on the methodology we refer to Gramolini et al. (2010). 137 
 138 

2.4. Objective 3: Nutrient dispersion model 139 

The open source, 3-D hydrodynamic model named SHYFEM (Shallow water Hydrodynamic Finite 140 
Model; Umgiesser et al., 2004) was used to model total nutrient (Nitrogen and Phosphorus) dispersion 141 
from rivers into the Adriatic Sea, considering a simple decay reaction to represent the first step 142 
dynamico of substances in the water sea. A detailed description of SHYFEM equations can be found 143 
in https://sites.google.com/site/shyfem/. SHYFEM has been applied in several settings such as the 144 
Lagoon of Venice (Ferrarin et al., 2013), the Black Sea (Dinu et al., 2011) and the Curonian lagoon 145 
(Umgiesser et al., 2016). SHYFEM solves the shallow water equations in a 3D formulation, using a 146 
finite element technique (Bajo et al., 2014). The domain has been represented by a computational grid 147 
counting  87,016 nodes and 158,180 triangular elements deployed for the Adriatic Sea, including 148 
Venice and Grado-Marano lagoons and the Po deltaic system. The vertical discretization of the 149 
domain counts 33 z-layers of same thickness around 1.5 m (surface) until the depth of 100 m and 150 
progressively growing under this depth until 70 m depth. Climatic and hydrological conditions, such 151 
as wind forcing, precipitations and thermal conduction for the year 2014, were retrieved from the 152 
MOLOCH Model from the Institute of Atmospheric Sciences and Climate of the National Research 153 
Council of Italy (ISAC-CNR, 2017). Catchment area extension (km

2
), river length (km), discharge 154 

rate (m
3
s

-1
) and mean riverine N & P inputs (N and P mg l

-1
) to the Adriatic Sea are presented in S3. 155 

For each river a mean annual discharge rate was retrieved, whereas for lagoons and delta systems 156 
outlets a mean annual time series was adopted. In total, 80 rivers of the Adriatic Sea Basin (62 – IT; 7 157 
– HR; 7 – AL; 1 – MT/AL; 3 – SL) were collected. Geospatial datasets for catchment area and river 158 
length were retrieved from the EEA dataset on large and other rivers (EEA, 2009a and 2009b) and 159 
from the European river catchment datasets (EEA, 2008; Figure 2). The total N and P load was 160 
retrieved from stations of the water quality monitoring system of the European Environment 161 

https://sites.google.com/site/shyfem/
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Information and Observation Network (EIONET, 2008, 2010, 2011 and 2013) and regional 162 
environmental protection agencies (ARPA-FVG, 2013; ARPAE, 2013). Na and P concentrations were 163 
collected from monitoring stations in proximity of river mouths or, in absence of a monitoring station 164 
at the river mouth, the nutrient concentrations closest to the river mouth was retained. The bathymetry 165 
was retrieved from the European Marine Observation and Data Network (Emodnet, 2017) and from 166 
regional environmental protection agencies of Veneto and Friuli-Venezia-Giulia Region. Finally, a 167 
log normalization [Log (1 + NPTotal)] of total N and P was performed in order to generate a Total N 168 
and P index (TotN&P; Menegon et al., 2017). 169 

170 
Figure 2. Riverine input dataset of Nitrogen and Phosphorus adopted from EIONET Water Quality monitoring stations applied for 3-D 171 
hydrodynamic modelling with SHYFEM. Rivers: 1 - Timavo; 2 – Isonzo; 3 – Tagliamento; 4 – Lovi; 5 – Nicesolo-Iemene; 6 – Livenza; 7 – 172 
Piave; 8 – Sile; Brenta/Bacchiglione/Gorzone – 9; 10 – Adige; 11 – Po-Venezia; 12 – Po-Goro; 13 – Po-Levante/Bianco/Tartaro; 14 – Po-173 
Volano; 15 – Reno; 16 – Lamone; 17 – Fiume Unit; 18 – Bevano; 19 – Savio; 20 – Uso; 21 – Marecchia; 22 – Foglia; 23 – Matauro; 24 – 174 
Cesano; 25 – Esino; 26 – Musone; 27 – Potenza; 20 – Chienti; 29 – Tenna; 30 – Tronto; 31 – Tordino; 32 – Vomano; 33 – Salinello; 34 – 175 
Pescara; 35 – Sangro; 36 – Trigno; 37 – Biferno; 38 – Fortore; 39 – Celone; 40 – Cervaro; 41 – Carapelle; 42 – Candelaro; 43 – Ofanto; 44 – 176 
Rizania; 45 – Basadevica; 46 – Drinca; 47 – Dragonia; 48 – Mirna; 49 – Arsa; 50 – Zrmania; 51 – Krka; 52 – Cetina; 53 – Neretva; 54 – 177 
Bojana; 55 – Drin; 56 –Mat; 57 – Ishm; 58 – Erzen; 59 – Shkumbi; 60 – Seman; 61 – Vijuse; 62 –Stella; 63 – Turgnano; 64 – Cormor; 65 – 178 
Zellina; 66 – Corno; 67 – Aussa; 68 – Natissa; 69 – Silone; 70 – Dese; 71 – Scolmatore; 72 – Osellino; 73 – Lusore; 74 – Bondante; 75 – 179 
Lova; 76 – Taglio; 77 – Montalbano; 78 – Lugo; 79 - Naviglio/Brenta; 80 – Morto/Cuori. 180 
 181 

2.5. Objective 4: Marine Ecosystem Services Capacity 182 
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The capacity of benthic habitats to provide marine ecosystem services (MES) was assessed using a 183 

EUNIS x MES matrix approach (Table 2). The matrix approach is a popular technique which has been 184 

applied in the Mediterranean (Salomidi et al., 2012), the North and Eastern Atlantic Sea (Galparsoro 185 

et al., 2014) and other European Seas (Tempera et al., 2016) for rapid assessment of MES capacity of 186 

benthic communities. 187 

 188 
Table 2. MES capacity matrix including EUNIS habitats and 12 ES according to Salomidi et al (2012) and Galparsoro et al (2014). 189 
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A3 Infralittoral rock and other hard substrata 254.2 0.1 2 2 2 2 2 2 2 2 2 1 2 2 23 

A4 Circalittoral rock and other hard substrata 501.1 0.2 2 2 1 2 2 2 2 2 0 2 2 2 21 

A4.26/32 

Med. coralligenous communities 

moderately exposed to or sheltered from 
hydrodynamic action 

488.2 0.2 2 1 2 0 2 2 2 2 0 2 2 2 19 

A4.27 
Faunal communities on deep moderate 

energy circalittoral rock 
5.7 0.0 2 1 1 1 2 2 2 2 1 2 2 2 20 

A5.13 Infralittoral coarse sediment 409.8 0.2 2 2 0 0 0 0 1 1 0 1 2 1 10 

A5.14 Circalittoral coarse sediment 101.4 0.0 2 2 0 0 0 0 0 0 0 1 1 1 7 

A5.23 Infralittoral fine sands 8836.1 3.6 2 1 0 0 0 0 1 1 0 1 2 1 9 

A5.25 Circalittoral fine sand 5742.8 2.4 2 1 0 0 0 0 0 0 0 1 2 1 7 

A5.26 Circalittoral muddy sand 10213.5 4.2 2 1 0 0 1 0 0 0 0 1 1 1 7 

A5.33 Infralittoral sandy mud 1137.3 0.5 2 0 0 0 1 0 0 0 0 1 1 1 6 

A5.34 Infralittoral fine mud 721.8 0.3 1 0 0 0 1 0 0 0 0 1 0 1 4 

A5.35 Circalittoral sandy mud 17461.8 7.2 2 0 0 0 1 0 0 0 0 1 1 1 6 

A5.36 Circalittoral fine mud 22474.0 9.2 2 0 0 0 1 0 0 0 0 1 1 1 6 

A5.38 
Med. biocoenosis of muddy detritic 

bottoms 
5792.7 2.4 1 0 0 0 1 0 0 0 0 1 0 1 4 

A5.39 
Med. biocoenosis of coastal terrigenous 

muds 
34218.9 14.0 2 0 0 0 1 0 0 0 0 1 1 1 6 

A5.46 
Med. biocoenosis of coastal detritic 

bottoms 
39083.3 16.0 2 0 0 0 1 0 0 0 0 1 1 2 7 

A5.47 
Med. communities of shelf-edge detritic 

bottoms 
38045.8 15.6 2 0 0 0 1 0 0 0 0 1 0 1 5 

A5.531 Cymodocea beds 622.7 0.3 2 1 2 2 2 2 2 2 2 2 2 2 23 

A5.535 Posidonia beds 413.8 0.2 2 1 2 2 2 2 2 2 2 2 2 2 23 

A5.5353 
Facies of dead "mattes" of Posidonia 

oceanica without much epiflora 
17.4 0.0 2 1 2 2 2 2 2 2 2 2 2 2 23 

A6.3 Deep-sea sand 1618.6 0.7 1 0 0 0 0 0 0 0 0 0 0 2 3 

A6.4 Deep-sea muddy sand 499.3 0.2 1 0 0 0 0 0 0 0 0 0 0 2 3 

A6.51 Med. communities of bathyal muds 45403.5 18.6 0 0 0 0 0 1 0 0 0 0 0 1 2 

A6.511 
Facies of sandy muds with Thenea 

muricata 
9978.9 4.1 1 0 0 0 0 0 0 0 0 0 0 2 3 

 190 

EUNIS benthic habitats were ranked based on their capacity to provide ES on a scale from 0 191 

(absent/negligible) to 2 (very high). For the case study area, 12 marine ES were considered: two 192 

provisioning services (MESProv: food resources, raw material); three regulating services (MESReg: air 193 

quality, disturbance regulation, water quality); three cultural services (MESCult: cognitive benefit, 194 

leisure, feel good-warm glove) and four supporting services (MESSupp: photosynthesis, nutrient 195 

cycling, nursery, biodiversity). MES capacity ranks were adopted from desk research as the studies of 196 

Galparsoro et al. (2013) and Salomidi et al. (2012) provide site specific MES capacity scores. In S3 a 197 

detailed description of the algorithm used for MES capacity assessment is presented. 198 

 199 
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Results 200 

Geospatial and geostatistical model results are illustrated in Figure 3 (a-d), geostatistical results are 201 

presented in Figure 4. In Figure 5 (a-d) analysis of index scores as function of distance from coastline 202 

are presented. 203 

 204 

 205 
Figure 3. Left: Geospatial results of tools application for the study area: a) CI assessment; b) SUC analysis; c) SHYFEM nutrient dispersion 206 
model; d) MES capacity from marine habitats. Right: Comparison of model results for each subdivision. Boxplots show maximum outliers, 207 
minimum outliers, boxes enclose first and third quartiles and box centres define median. 208 
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Geospatial results presented in Figure 3a indicate that high CI scores are dominant in sea areas of 209 
Friuli-Venezia Giulia, Veneto and Emilia Romagna Region located in the NAd. Maximum CI scores 210 
reach 9.5. The Slovenian Coastal Karst Region has a maximum CI score of 6 and the Croatian Istria 211 
Region a CI score of 4.8. In proximity of the port of Ancona (Marche Region) in Italy more localized 212 
high CI scores are evident. On average the Slovenian sea space has the higher CI scores (x͂ = 4) 213 
compared to Italy (x͂ = 2.3) and Croatia (x͂ = 2). In the CAd, CI scores are highest in Italian sea areas 214 
with a range from 0.2 to 5.9. Especially in proximity of the port of Pescara (Abruzzo Region) CI 215 
scores are relevant. For the Croatian sea areas CI score range from 0 to 4.2, with high scores in 216 
proximity of Zadar port (Dalmatia). Bosnia and Herzegovina has a negligible CI score. On average 217 
the Italian sea space has the highest CI score (x͂ = 1.6), followed Croatia (x͂ = 1.2) and Bosnia & 218 
Herzegovina (x͂ = 0.4). In the SAd, the CI scores for Italian sea areas range from 0 to 6.4, followed by 219 
Albania (score 2.3), Croatia (score 2) and Montenegro (score 1.7). In particular coastal areas of 220 
Apulia Region register highest CI scores in proximity of Bari and Brindisi port. On average, CI score 221 
is highest in Italy (x͂ = 1.7) followed by Albania and Croatia (x͂ = 0.6 respectively) and Montenegro (x͂ 222 
= 0.3). 223 
In figure 3b, results from sea use conflict analysis show that in the NAd the Italian sea space has the 224 
highest SUC score range, from 0 – 44, followed by Croatia (score 18) and Slovenia (score 12). 225 
Average SUC scores are equal in Italy and Slovenia (x͂ = 2). For Croatia SUC scores are negligible. 226 
 In the CAd, highest SUC score are located in Italy (score 39), followed by Croatia (score 27). Bosnia 227 
and Herzegovina has a negligible SUC score. The average SUC score is highest in Italian sea area (x͂ 228 
= 2). In the SAd Italy has the highest SUC score (score 31), followed by Albania (score 4) and Croatia 229 
and Montenegro (score 2). 230 
In figure 3c, results from nutrient dispersion (N and P) are presented in form of TotN&P index. 231 
Highest nutrient loads are located in the NAd in proximity of the Po Deltaic System (score 1). 232 
Slovenian and Croatian sea areas have similar TotN&P score of o.2 and 0.3 respectively. In the CAd 233 
highest score are located in Italy (score 0.8) followed by Croatia (score 0.6) and Bosnia & 234 
Herzegovina (score 0.4). In particular coastal area of Dalmatia Region in Croatia and in localized 235 
areas of the Marche and Abruzzo Region coasts are affected. The highest average TotN&P score is 236 
located in Bosnia and Herzegovina (x͂ = 0.3). In the SAd the TotN&P index is highest in Albania 237 
(score 0.7), followed by Montenegro (score 0.6) and Italy (score 3.3). Croatia has negligible TotN&P 238 
scores. The highest average TotN&P score is located in Albania (x͂ = 0.7), followed by Montenegro (x͂ 239 
= 0.6) and Italy (x͂ = 0.3). 240 
The spatial distribution of riverine input data applied for hydrological modelling is presented in figure 241 
2 and a detailed overview of discharge rate (m

3
s

-1
), catchment area (km

2
), river length (km), mean N 242 

and P concentrations (mg l
-1

) is presented in supplementary material (S3). In the NAd 36 (IT - ; HR) 243 
rivers were defined, in the CA 18 (7 – HR; 11 - IT) rivers and in the SA 12 rivers (7 – AL; 1 - 244 
AL/MT; - IT). In total, the drainage area of the Adriatic Sea covers 23.8 x 10

4
 km

2
. The rivers with 245 

biggest drainage area and highest mean discharge rate are the Po (74000 km
2
; m

3
s

-1
), the Neretva in 246 

Croatia (13121 km2; 378 m
3
s

-1
), the Drini in Albania (13067 km

2
; 338 m

3
s

-1
) and the Adige river in 247 

Italy (12400 km
2
; 200.8 m

3
s

-1
). The total drainage area of those rivers covers 10.9 x 10

4
 km

2
, about 248 

46.1 % of the total drainage area of the Adriatic Sea. Other rivers of relevance are the Bojana river 249 
(6056.2 km

2
; 00 m

3
s

-1
) at the border with Albania and Montenegro, Reno (5911.7 km

2
; 00 m

3
s

-1
), 250 

Piave (4433.1 km
2
; 87 m

3
s

-1
) in the Italian NAd, the Cetina river (3868.9 km

2
; 32.0 m

3
s

-1
) in Croatia 251 

and the Ofanto river (2776.6 km
2
 11.7 m

3
s

-1
) in the SAd. Other rivers coming from the Apennines in 252 

the CAd and SAd and from the Croatian Adriatic Sea catchment area have a torrential hydrological 253 
regime (Cosic et al., 2004; Guarnieri et al., 2016; Vollenweider et al., 1990). 254 
Results in Figure 3d from MES capacity mapping indicate that highest capacity in the NAd is located 255 
in Italy (score 23), followed by Croatia (score 10) and Slovenia (score 7).Whereas average scores are 256 
similar for all three countries (x͂ ranges from 6 to 7). In the Cad, maximum MES capacity scores are 257 
located in Italy and Croatia (score 23 respectively). To notice is that Bosnia & Herzegovina has the 258 
highest average score of 9, followed by Italy and Croatia with 6 respectively. In the SAd maximum 259 
MES capacity scores are locate in Italy and Albania (score 23 respectively), followed by Croatia and 260 
Montenegro (score 9). Average MES capacity score are low compared to NAd and Cad (x͂ = 3 for 261 
Italya and Montenegro; x͂ = 2 for Albania and Croatia). 262 
 263 
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The marine ES capacity matrix is presented in table 3 while its geospatial representation is shown in 264 
figure 3d. Marine habitats with the highest ES capacity are as follows: A3 - infralittoral rock and other 265 
hard substrata (254.2 km

2
, 0.1%), A5.535 - Posidonia beds (413.8 km

2
, 0.2%), A5.531 - Cymodocea 266 

(622.7 km
2
, 0.3 %), A5.5353 - Facies of dead "mattes" of Posidonia oceanica without much epiflora 267 

(17.4 km
2
, 0.0%), A4 - Circalittoral rock and other hard substrata (501.1 km

2
, 0.2%), A4.27 – Faunal 268 

communities on deep moderate energy circalittoral rock (5.7 km
2
, 0.0 %) and A4.26/A4.32 – Med. 269 

coralligenous communities (488.2 km
2
, 0.2%). Marine habitats with low ES capacity are related to 270 

deep sea environments: A6.1 - Deep-sea rock and artificial hard substrata (80.9 km
2
, 0.0%); A6.2 - 271 

Deep-sea mixed substrata (82.3 km
2
, 0.0%); A6.3 - Deep-sea sand (2141.1%, 0.4%); A6.4 - Deep-sea 272 

muddy sand (3338.5 km
2
, 0.7%), A6.51 - Med. communities of bathyal muds (45403 km

2
, 18.6%) and 273 

A6.511 - Facies of sandy muds with Thenea muricata (9978.9 km
2
, 4.1%). According to table 1, max 274 

ES capacity (MES = 23) is located in coastal areas of Italy, Croatia and Albania. The highest mean 275 
capacity is located in the NAd (Italy and Croatia). 276 
In figure 4 (a-d), the mean (μ) index scores as a function of distance from coastline (in km) are 277 

presented. Distance from coast was considered from the continental coastline. The lagoons of Venice, 278 

Grado-Marano and the aquifer of Comacchio in Italy were retained from this analysis. 279 

In the NAd, the highest mean CI score (μ =5.3) is located in Slovenia at a distance of about 11 km 280 

from coast, whereas for Italy the highest mean CI (μ=3.9) is located at a distance of 8 km. 281 

Similarly to the NAd, the highest mean CI score for the CAd is located at 10 km from Italian coasts (μ 282 

=2.5). For the Croatian CAd, the highest mean CI is located at 75-80 km distance from coast (μ = 1.8). 283 

In the SAd, the highest mean CI scores are located at 6 km distance from Italian coasts (μ =3.2), 284 

whereas for Croatia at 20 km from coast (m=1.7). For Albania, the highest mean CI scores (μ =1.4) 285 

are located at 54 km from coast, while Montenegro mean CI scores (μ =1) occur at 44 km distance 286 

from coast. 287 

In the NAd highest mean SUC score (μ =5.4) is located at about 15 km from Italian coasts, followed 288 

by Slovenia (μ =2.6) at 7 km distance and Croatia (μ =2.5) at about 30 km distance. On overall the 289 

CAd registers the highest mean SUC scores of the entire study area between 80-90 km from Croatian 290 

coasts (μ =27), whereas, for Italy, the highest SUC scores are located at 10 km (μ =3.2). In the SAd, 291 

the highest mean SUC scores (μ =6.2) are located at 5 km from Italian coasts, followed by Albania (μ 292 

=1.3) at 54 km distance, Montenegro (μ =1.1) at 42 km distance and Croatia (μ =0.4) at 25 km 293 

distance. 294 

The highest mean Total N & P index scores are located in Italian NAd with mean values of about 0.4 295 

within the 1 km distance from coast. Highest Total N & P scores for Slovenia (μ = 0.2) area are found 296 

at 11 km from coast. In the CAd, the highest Total N & P index scores were found in Bosnia & 297 

Herzegovina (μ =0.3), followed by Italy (μ ranging from 0.1 to 0.2) at 2 km from coast and below μ = 298 

0.1 from coast in Croatia. In the SAd, the highest mean Total N & P index score are found in 299 

Montenegro (μ ranging from 0.2 to 0.3) at 3 km from coast, in Albania (μ =0.2) at 1 km from coast 300 

and in Italy (μ lower than 0.1) as well at 1 km from coast. 301 

The highest mean MES capacity scores in the NAd are located at 1 km distance from coast in Italy (μ 302 

=15) and Croatia (μ =7.4) and at 10 km from coast for Slovenia (μ =6.7). In the CAd, the highest 303 

mean MES capacity scores are located within 5-10 km distance from coast in Italy (μ =9.8), Croatia (μ 304 

=6.5) and Bosnia & Herzegovina (μ =9). In the SAd, the highest mean MES capacity scores are 305 

located within 1-2 km from coast for Italy (μ =17.5), 1-2 km for Croatia (μ =7.5), at 25 km for 306 

Albania (μ =4) and 3-5 km in Montenegro (μ =8). 307 
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 308 
Figure 4. Mean index scores as function of distance from coast (in km), by country (AL – Albania; BH – Bosnia & Herzegovina; HR – 309 
Croatia; IT – Italy; MT – Montenegro; SL - Slovenia) and sea space segments (NA = Northern Adriatic; CA = Central Adriatic; SA = 310 
Southern Adriatic). 311 

3. Discussion 312 

The NAd covers 25.2% of the total study area and can be considered as a regional hub, as it is 313 

affected by intensive anthropogenic activities in its coastal and marine areas, such as shipping traffic, 314 

coastal and maritime tourism, oil and gas research and extraction, cables and pipelines, aquaculture, 315 

trawling and small scale fishery. Moreover, there is a considerable land-sea interaction deriving from 316 

commercial port activities such as Venice (Veneto Region), Trieste (Friuli-Venezia-Giulia), Ancona 317 

(Marche Region), Koper (Coastal Karst Region) and Rijeka (Istrija Region), the presence of mass 318 

tourism resorts (Veneto and Emilia Romagna Regions) and industrial and agricultural runoff from 319 
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NAd rivers, which have significant influence on coastal water quality this part of the study site (Della 320 

Croce et al., 1995; Bramwell 2004).  321 

The CAd covers 37.1 % of the total study area and can be considered a transitional sea area. Sea use 322 

conflicts are localized mostly offshore, characterized by intensive maritime traffic along the north-323 

west and south-east axes. In coastal areas, CI are dominated by small scale fishery and trawling. 324 

Land-sea interaction is more localized in proximity of Pescara port (Abruzzo Region). River input is 325 

important, as most of the rivers have torrential character. 326 

The SAd covers 37.5 % of the total study area is the gateway connecting, through the Strait of 327 

Otranto, the Adriatic Sea to the Ionian Sea and the Eastern Mediterranean Sea. Similar to other straits 328 

in European Seas, such as Gibraltar (Oral and Simard, 2008), English Channel (OSPAR 2009) or 329 

Danish Straits (HELCOM, 2010), also the Otranto Strait is characterized by intensive maritime 330 

transport, especially near Italian coastal areas, determining high CI scores and increasing sea use 331 

conflicts with other more localized sea uses, such as coastal and maritime tourism in Apulia Region, 332 

intense port activities (ports of Bari and Brindisi) and small scale fishery activities distributed along 333 

the entire coastal area. 334 

The peculiarities of anthropogenic uses, in combination with vulnerable ecological resources 335 

evidenced in the three subdivision, require an in depth analysis of trade-offs among competing sea 336 

uses and robust environmental impact assessment tools that can be deployed flexibly on site specific 337 

contexts. In the future, the implemented CI assessment will be further developed considering the (a) 338 

refinement of the spatial dispersion model to better understand specific spatial dynamics of pressures, 339 

(b) modulation of CI considering additive, synergetic or antagonistic impact phenomena, (c) 340 

implementation of a CI backtracking module for sourcing the human activities generating single or 341 

multiple pressures on an environmental component, (d) integration of land-based activities into the CI 342 

assessment model supported by hydrodynamic model functionalities, (e) modelling of non-linear 343 

response of environmental components to specific pressures (Halpern et al., 2015) and (f) assessment 344 

of cumulative impacts over ecosystem services provision (Hooper et al., 2017). 345 

The development of CI and sea use scenario needs to be further integrated with MSP datasets of 346 

future planned shipping routes, new port developments, coastal urban development trends, tourism 347 

flow projections, detailed information on potential renewable energy sites, such as offshore wind 348 

energy (Schweizer et al., 2016) or wave energy (Vicinanza et al., 2013) sites including the potential 349 

environmental impacts performed and quantitative spatial datasets on commercial fishery catch to 350 

better understand fishing fleet dynamics and the potential cumulative impacts and conflicts generated. 351 

The nutrient dispersion model evidenced that the NAd Sea is considerably influenced by riverine run 352 

off in coastal and offshore areas. Among the river basins integrated in the database, the Po river basin 353 

has the biggest extension (71.137 km
2
; S3). The Po plain is subjected to intensive anthropogenic-354 

driven modifications as it hosts 15.7 x 10
6
 inhabitants and its industrial, agricultural and service 355 

sectors produce about 40% of the national GDP (ADPO, 2017). The basin plays a determining role in 356 

eutrophication phenomena in the Adriatic Sea especially in the coastal segment of 90 km from the Po 357 

Deltaic System to Ravenna, and it is subjected to seasonal eutrophication phenomena affecting coastal 358 

water quality (ADPO, 2006). 359 

In the CAd, the rivers with most extended catchment areas are the Neretva (13121.9 km
2
) and Cetina 360 

(3868,9 km
2
) in Croatia and the Pescara river (3158,3 km

2
) in Italy. The Neretva river is the largest 361 

river of the eastern part of the Adriatic with considerable freshwater inputs to the Moli Ston Bay 362 

(Bužančić et al., 2016). According to geospatial results presented in Figure 3c, the plume generated by 363 

the Neretva river has the highest area of influence in the CAd. 364 

In the SAd rivers with most extended catchment area is the Drin river (13067.4 km
2
) in Albania and 365 

Buna/Bojana river (6065.2 km
2
) that partially forms the border between Albania and Montenegro. The 366 
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plume of the latter has influence over 150 km northwards, along the eastern coast (Marini et al., 367 

2010).  368 

Hydrodynamic models are getting increased attention due to their potential support in MSP (Filgueira 369 

et al., 2014; Mohn et al., 2011), MSFD (Garcia-Gorriz et al., 2016; Hansen et al., 2015) and WFD 370 

(Tsakiris and Alexakis, 2012). The presented hydrodynamic model has capabilities to provide 371 

information in support of EU MSFD descriptors, as they can determine indicators for past, present and 372 

future conditions, estimate future impact scenarios, fill data gaps and support the design of monitoring 373 

campaigns (Mohn et al., 2011; MSFD Modelling Framework, 2017; Piroddi et al., 2015). In 374 

particular, hydrodynamic modelling capabilities can be important for addressing MSFD descriptors 375 

that are not place specific (Gilbert et al., 2015), such as eutrophication (D5; Umgiesser 2005), 376 

contaminants (D8; Periáñez, 2009), contaminants in seafood (D9; Pommepuy et al., 2006), marine 377 

litter (D10; Ballent et al., 2013; Krelling et al., 2017) and energy, in terms of noise pollution (D11; 378 

Menegon et al., 2017; Rossington et al., 2013). In support of MSP in the study area, the presented 379 

nutrient dispersion model is part of a comprehensive research effort for the integration of full range of 380 

pressures derived from land-based activities (e.g. urban cities, coastal tourism, catchment areas) into a 381 

socio-economic database. Similarly to other CI assessments, the results from the hydrodynamic 382 

modelling will be integrative component of the CI assessment in form of land based activities. A 383 

major advantage of the presented hydrodynamic model, compared to other CI assessments in the 384 

Mediterranean (Holon et al., 2015; Micheli et al., 2013) is the comprehensive dataset of rivers, 385 

discharge rates and N and P concentrations coupled to the model. This allows a flexible deployment 386 

of nutrient dispersion scenarios on different spatial scales, taking into account anthropogenic 387 

activities, such as coastal tourism (Guimarães et al., 2012) or aquaculture (Bannister et al., 2016) and 388 

ecological peculiarities that affect or can be impacted by coastal water quality. Moreover, the 389 

presented nutrient dispersion model is a valuable test case for ecosystem services research in the study 390 

area, as model results can be used as proxy for the analysis of three ES in particular: 1) regulation of 391 

water flows (e.g. water purification and mass transport of water) associated to river plume especially 392 

in coastal areas of the NA (e.g. Po and Adige river), the CA (Neretva river) and SA (e.g. Drin river) or 393 

2) waste treatment and assimilation, due to dilution and dispersal of toxicants through hydrodynamics 394 

processes (Hattam et al., 2015) and 3) through the coupling of biogeochemical models model 395 

indicators for microbial reduction and cycling of excess nutrients can be generated (Liquete et al., 396 

2013). 397 

The presented MES capacity model is a rapid screening methodology for the analysis and mapping of 398 

marine ES on large spatial scale. Results show that coastal areas featuring seagrasses of Posidonia 399 

Oceanica meadows and Cymodocea spp. beds are high ES capacity areas. Seagrass meadows play an 400 

essential ecological role and are fundamental for supporting biodiversity conservation, nursery and 401 

habitat conservation, provision nutrient cycling and are responsible for photosynthesis processes 402 

(Campagne et al., 2015). In this context, the presented model can inform planners on the ecological 403 

functioning of coastal areas and provide baseline information for the development of ecosystem-based 404 

management strategies, required by the MSFD. From a planning perspective, the presented results can 405 

support MPA designation and management (Potts et al., 2013); however further datasets are required: 406 

1) field measurements on benthic communities distribution coupled with predictive model to assess 407 

benthic community distribution are required (Colin et al., 2011; Puls et al., 2012), 2) ecological multi-408 

functionality needs to be addressed using geostatistical techniques (Lefcheck et al., 2015; Schröter 409 

and Remme, 2016), 3) habitat fragmentation models are required to better address ecological 410 

resilience (Cognetti and Maltagliati, 2010) and 4) improved proxies for monetary and non-monetary 411 

benefits from ecological functioning are needed to better inform environmental managers. Moreover, 412 

the presented ES capacity model can be used as initial step to extent the sensitivity analysis 413 

implemented in the presented CI model, by linking the sensitivity of a benthic habitat to single or 414 



 
Paper submitted to the Special Issue  

“Mapping the Environment”of the  

Journal Science of the Total Environment  

(July 2017) 

multiple pressures as a function of the specific service it supplies (Depellegrin et al., 2013; Hooper et 415 

al., 2017). 416 

In the Adriatic Sea, the majority of marine ES research in the study area is focused on the Venice 417 

lagoon (Nunes et al., 2004 and 2008; Zanatta et al., 2005); we consider the presented mapping 418 

approach a first step towards a wider analysis of ES in the Adriatic Sea. Considering the ongoing 419 

MSP implementation process in the study, ES frameworks are particularly suitable for trade-off and 420 

synergy analysis in MSP (Lester et al., 2013; White et al., 2012) as they support the analysis of direct 421 

and indirect socio-ecological benefits from different conflict mitigation strategies. This is essential in 422 

high intensity sea use areas, such as the Northern Adriatic, where space limitation induces trade-offs 423 

among environmental components and anthropogenic activities. In the near future, ES capacity 424 

assessment will be further developed considering sea use specific supply/demand ES assessment. 425 

 426 

4. Conclusions 427 

Although the presented modelling approaches were designed in the context of specific objectives, 428 

they are highly interlinked through the dataset they process and through the environmental, planning 429 

and regulatory challenges they address. In the specific case of CI assessment, the MES framework can 430 

provide methodological advancement and support a better understanding of human-nature interaction, 431 

while hydrodynamic models, which are valuable tools for the analysis of MSFD descriptors, can be 432 

used to quantify regulating ES (e.g. water purification, waste treatment, coastal water quality) and 433 

feed CI models with spatial explicit indicators for anthropogenic pressures from land based activities 434 

(e.g. toxic compounds, heavy metals or pathogens). In the study area, the scale of analysis remains an 435 

essential factor, as it has implications on data availability and therefore on model results. 436 

The Tools4MSP modelling frameworks and SHYFEM are open source software tools. This can have 437 

an essential role in the advancement of analytical tools as they enable sharing of codes, development 438 

of user/developer communities and enable critical reflection on conceptual and methodological 439 

constrains among expert communities. 440 
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Supplementary material 666 

Supplementary material for this research includes the following items: CI assessment algorithm 667 

adopted from Andersen and Stock 2013 (Appendix S1), SHYFEM 3D Grid (Appendix S2), riverine 668 

database (Appendix S3), marine ES capacity algorithm (Appendix S4), marine ES capacity matrix 669 

(Appendix S5). 670 

S1. CI assessment algorithm modified from Andersen and Stock 2013. 671 

𝐶𝐼 = ∑ 𝑙𝑖 ∑ 𝑚𝑗 ∑ 𝑛𝑘 𝑠(𝑈𝑖 , 𝑃𝑗, 𝐸𝑘)𝑖(𝑈𝑖 , 𝑃𝑗 , 𝐸𝑘)𝑑(𝐸𝑘) 𝑤𝑖
𝑈𝑤𝑘

𝐸 

 U = Activities and uses 672 
 E = Environmental components 673 
 P = Pressures 674 
 s(U, P, E) = Sensitivities 675 
 i(U, M) = intensity U in the cell in question according to spatial model M. 676 
 w

U
 and w

E
 = weights for human activities and ecosystem components 677 

S2. SHYFEM 3D grid including Lagoon of Venice, Lagoon of Grado-Marano and Po Delta System. 678 

Author: M.Ghezzo. 679 
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S3. Input datasets for the hydrodynamic model including river length (km), catchment area (km
2
) 691 

mean discharge rate (m
3
 s

-1
), mean annual nutrient concentration in mg l

-1
 for N and P. 692 

 693 

River Nation Length 

(km) 

Catchment 

(km2) 

Discharge 

rate (m3s-1) 

Ntot (mgl-1) Ptot (mgl-1) 

Tagliamento IT 171 2610 timeserie 1.81 0.02 
Lovi IT 9 45 10 1.37 0.02 
Livenza IT 163 2503 timeserie 3.22 0.06 
Piave IT 228 4433 timeserie 2.00 0.03 
Sile IT 22 52 timeserie 3.50 0.07 
Adige IT 455 12417 timeserie 1.54 0.06 
Po-Venezia IT 699 71327 timeserie 2.70 0.13 
Reno IT 212 5912 timeserie 5.50 0.07 
Bevano IT 14 316 1.5 6.46 0.22 
Savio IT 97 643 timeserie 8.25 0.02 
Marecchia IT 70 2 timeserie 19.00 0.13 
Cesano IT 70 638 5 1.60 0.68 
Tronto IT 95 1258 8.6 1.60 0.13 
Salinello IT 72 617 18 1.60 0.15 
Pescara IT 158 3153 29.2 5.50 0.30 
Sangro IT 126 1743 21 0.33 0.07 
Trigno IT 91 1207 12.6 0.33 0.07 
Fortore IT 109 1595 13.5 1.60 0.15 
Candelaro IT 70 551 2.5 1.60 0.15 
Ofanto IT 163 2777 14.3 5.50 0.45 
Basadevica SL 9 39 0.22 7.22 0.08 
Drinca SL 3 14 0.22 4.20 0.16 
Dragonia HR 25 147 0.7 4.09 0.05 
Mirna HR 62 15 7.6 0.75 0.05 
Krka HR 98 2549 53.4 1.50 0.03 
Mat AL 111 2596 timeserie 4.33 0.05 
Erzen AL 97 904 timeserie 4.65 0.06 
Vijuse AL 248 6640 timeserie 5.40 0.07 
Turgnano IT 4 208 timeserie 3.43 0.06 
Cormor IT 11 208 timeserie 5.25 0.04 
Zellina IT 16 52 timeserie 5.43 0.03 
Corno IT 8 8 timeserie 8.25 0.03 
Aussa IT 15 203 timeserie 5.55 0.02 
Natissa IT 8 58 2 3.98 0.33 
Dese IT 37 390 timeserie 3.26 0.22 
Osellino IT 2 212 timeserie 2.80 0.18 
Taglio IT 2 156 timeserie 2.30 0.10 
Montalbano IT 5 156 timeserie 3.21 0.10 
Timavo IT 89 9 2 1.72 0.02 
Isonzo IT 146 36 timeserie 2.16 0.01 
Nicesolo-lemene IT 72 720 12 1.80 0.13 
BrentaBaccGorz IT 171 2261 timeserie 2.30 0.13 
Po-Goro IT 49 14 timeserie 2.70 0.13 
Po-LevBiaTar IT 187 2349 22 5.50 0.13 
Po-Volano IT 62 546 11 6.00 0.13 
Lamone IT 103 2 timeserie 5.50 0.03 
FUniti IT 101 1258 timeserie 5.95 0.02 
Uso IT 49 214 timeserie 13.51 0.17 
Foglia IT 85 702 7 5.50 0.32 
Matauro IT 101 1396 10.7 1.60 0.07 
Esino IT 84 955 15 1.60 0.06 
Musone IT 70 641 6.4 5.50 0.30 
Potenza IT 95 2 5.1 1.60 0.13 
Chienti IT 101 4 8.9 1.60 0.18 
Tenna IT 71 487 7 5.50 0.15 
Tordino IT 61 444 6 5.50 0.30 
Vomano IT 77 784 15 11.50 0.60 
Biferno IT 77 1316 25 8.81 0.14 
Celone IT 90 2149 2.5 13.35 0.85 
Cervaro IT 105 673 2.8 4.55 0.03 
Carapelle IT 94 1020 2.1 8.81 0.14 
Rizania SL 15 78 3.17 2.84 0.04 
Arsa HR 58 486 12.6 1.66 0.03 
Zrmania HR 88 853 37.6 0.33 0.07 
Cettina HR 196 22 32 0.37 0.01 
Nereteva HR 281 13122 timeserie 3.80 0.02 
Bojana AL/MT 229 6056 timeserie 4.12 0.09 
Drin AL 249 13067 timeserie 4.12 0.09 
Ishm AL 73 769 timeserie 4.37 0.53 
Shkumbi AL 175 12 timeserie 4.65 0.06 
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Seman AL 86 59 timeserie 5.25 0.08 
Stella IT 69 675 timeserie 4.00 0.03 
Silone IT 70 534 timeserie 3.00 0.11 
Scolmatore IT 4 10 timeserie 2.30 0.19 
Lusore IT 6 14 timeserie 4.00 0.24 
Bondante IT 2 12 timeserie 3.13 0.15 
Lova IT NA NA timeserie 3.00 0.14 
Lugo IT NA NA timeserie 5.40 0.19 
NavBrenta IT 83 738 timeserie 2.80 0.16 
MortoCuori IT 178 2034 timeserie 4.70 0.14 

 694 

S4. Algorithm applied for marine ecosystem services capacity assessment.  695 

𝐶𝑀𝐸𝑆 = 𝑀𝐸𝑆𝑃𝑟𝑜 + 𝑀𝐸𝑆𝑅𝑒𝑔 + 𝑀𝐸𝑆𝐶𝑢𝑙 

Whereas the capacity of MES to type i to provide ES can be described as follows: 696 

𝑀𝐸𝑆𝑖 = ∑ 𝐸𝑆 

 697 

 698 


