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Z. Ma

Abstract This paper presents the findings of the eleventh
Video Browser Showdown competition, where sixteen
teams competed in known-item and ad-hoc search tasks.
Many of the teams utilized state-of-the-art video re-
trieval approaches that demonstrated high effectiveness
in challenging search scenarios. In the paper, a broad
survey of all utilized approaches is presented in con-
nection with an analysis of the performance of partici-
pating teams. Specifically, both high-level performance
indicators are presented with overall statistics as well
as an in-depth analysis of the performance of selected
tools implementing result set logging. The analysis re-
veals evidence that the CLIP model represents a versa-
tile tool for cross-modal video retrieval when combined
with interactive search capabilities. Furthermore, the
analysis investigates the effect of different users and text
query properties on the performance in search tasks.
Last but not least, lessons learned from search task
preparation are presented, and a new direction for ad-
hoc search based tasks at Video Browser Showdown is
introduced.
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to IVIST, AVSEEKER, V-FIRST, VideoFall, VNUHCM, and
UIT who provided technical information on their systems for
the related work section of this paper.

1 Introduction

While video portals like YouTube can easily grow by
hundreds of hours of video content per minute, there is
still a shortage of effective video retrieval models pro-
viding access to contents of huge volumes. Whereas for
domain-specific data, it is possible to collect large train-
ing datasets and try to train an effective model, for
general domain datasets, it is hard to build a univer-
sal search approach. Nevertheless, there are attempts to
train models with huge volumes of training pairs (item;
text description) [62,36,45,1]. Despite these efforts, it
is worth noting that even with a perfect cross-modal
text-video search model there are other limitations af-
fecting search effectiveness. Three important factors are
limitations of human memory (i.e., ability to remember
all details), language skills, and density of items in the
dataset (i.e., ability to identify a correct item in a larger
cluster).

The analysis of annual reports from TRECVID [57],
Video Browser Showdown (VBS) [31], or Lifelog Search
Challenge [25] shows that there still exist many practi-
cal situations where state-of-the-art retrieval approaches
do not provide sufficient results even for far smaller
datasets. Hence, it is essential to continue with the de-
velopment of new video retrieval models/tools as well
as with evaluation efforts providing important perfor-
mance insights.

This paper presents a thorough analysis of the 11th

instance of the Video Browser Showdown competition
with participating tools combining interactive search
interfaces and ranking approaches based on deep ma-
chine learning models. The competition setting consists
of a known large video dataset (V3C [66]) and evalu-
ation methodology allowing fair comparison of partici-
pating systems. During the competition, all the teams
have access to a distributed evaluation server [64], where
competition tasks are presented to participating teams
at the same time and with the same time limit. In par-
ticular, three task categories are evaluated [52]:

– Visual known-item search (KIS-v), where teams ob-
serve a target video segment from the collection. No
meta-data is provided, and no cameras are allowed.

– Textual known-item search (KIS-t), where teams re-
ceive a text description of a target video segment.
The text is gradually extended.

– Ad-hoc video search (AVS) tasks introduced with a
short text description, where teams have to submit

as many correct shots (matching the description) as
possible.

A known-item search task is considered as solved by
a team once the team submits a correct frame/shotId
from the target segment. Incorrect submissions result
in a penalty deducted from the score. The evaluation
server knows the target segment and thus evaluates
submissions in known-item search tasks automatically.
In the ad-hoc search category, teams submit all items
where team members think the item is correct. Since the
ground truth is unknown for the whole collection, live
judges are necessary to assess the submissions. Teams
receive points for each correct submission (merging tem-
porally close submissions into ranges counted only once),
independent of whether other teams also found the same
segment. The scoring is described in more detail in [31].

With these settings, the video browser showdown
hosted sixteen teams during the 2022 International Con-
ference on Multimedia Modeling in Vietnam, where sev-
eral teams (or members) participated remotely. All teams
introduced a unique video search tool, and some teams
also implemented logging mechanisms. Hence, we col-
lected a non-trivial amount of data from the competi-
tion, which allows us to present the following key con-
tributions, each in a separate section:

– A broad survey of multimedia search models and
approaches participating in the 11th VBS.

– Overall summary of the competition results, show-
ing success rate, submission times, and numbers of
submissions.

– Thorough result log analysis of selected teams, re-
vealing performance insights as well as query statis-
tics.

– Analysis of ad-hoc search category, showing time-
line statistics and also a new revision of the task
category.

– Query specification methodology in connection with
a qualitative study.

The last section concludes the paper and envisions
future settings of the Video Browser Showdown.

2 Related Work Used by Participating Systems

VBS 2022 hosted many participating systems, each im-
plementing different ranking models and search meth-
ods. A general overview of the systems and the ap-
proaches they employed is presented in Table 1. This
section further summarizes important or unique meth-
ods used by each participant. For additional detail about
any system, please see the corresponding publication
referenced beside the system name in the overview ta-
ble.
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Table 1: List of participating teams and video search approaches
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vibro [33] DE 300 30 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CVHunter [49] CZ 278 30 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
VISIONE [4] IT 260 29 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IVIST [42] KR 249 25 2 ✓ ✓ ✓ ✓ ✓ ✓
AVSEEKER [41] IE 207 25 2 ✓ ✓ ✓ ✓ ✓ ✓
V-FIRST [75] VN 200 26 2 ✓ ✓ ✓ ✓ ✓ ✓
VideoFall [60] IE 197 25 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓
VERGE [6] GR 176 24 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
vitrivr [28] CH 175 21 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
VNUHCM [54] VN 161 22 2 ✓ ✓ ✓ ✓
VIREO [55] SG 158 16 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓
AIClub@UIT [34] VN 146 22 2 ✓ ✓ ✓ ✓ ✓
vitrivr-VR [71] CH 137 20 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
diveXplore [43] AT 75 14 2 ✓ ✓ ✓ ✓ ✓
Exquisitor [40] DK 72 14 1 ✓ ✓ ✓ ✓ ✓ ✓
ViRMA [19] DK 21 8 1 ✓ ✓ ✓

2.1 Concept Search

This section summarizes the concept-based search ap-
proaches utilized by participating systems, including
concepts detected for the whole image as well as lo-
calized information obtained from object detectors or
semantic segmentation.

VISIONE [4], as in previous years [2,3,5], supports
queries by object location appearing in a target scene.
That is done by drawing simple diagrams on a can-
vas to specify objects (including their spatial locations).
The object detection technique of VISIONE is based on
three pre-trained DCNN models (i.e., VfNet [80], Mask
R-CNN [27], Faster R-CNN [22]) for a total of 1,460
object classes. Similarly, VERGE employs three differ-
ent DCNN models (i.e., EfficientNet-B3, EfficientNet-
B5 [74] for label-based search of video shots and In-
ceptionResNetV2 [73]) for keyframes’ enrichment with
concept [56] and object [79] annotations.

IVIST [42], AVSeeker [41], diveXplore [43] use MS-
COCO [46]. In particular, IVIST adopts an HTC [14]
object detection model, which is pre-trained on MS-
COCO and supports an object query function to filter
the frames which do not contain the query object cat-
egories. In contrast, AVSeeker [41] indexes object con-
cepts on all keyframes into an Elasticsearch node, us-
ing categories from MS-COCO (detected by YOLOv4).
This allows users to search for concepts using advanced

query formulations such as customized AND/OR oper-
ators, fuzzy matching, negation, etc. These are provided
by the “Query String Query” of Elasticsearch. Similarly,
diveXplore [43] provides object search for object cate-
gories from MS-COCO (detected by YOLOv5).

VERGE [6] involves spatio-temporal human activ-
ity recognition using a 3D-CNN architecture. This con-
struction relies on a three-step pipeline [24]: object de-
tector, object tracker, and activity recognizer to iden-
tify human-related activities effectively.

As before, VISIONE [4] supports queries by color
location [2,3,5]. A user can draw simple diagrams on
a canvas corresponding to colors appearing in a target
scene. For the color annotation, two chip-based color
naming techniques [11,76] are employed. vitrivr main-
tains similar color-based sketches, as in previous itera-
tions of the system [29,30,65,67].

VIREO [55] supports color sketch queries using a
grid of 48 cells (6x8), which users can individually fill
with colors corresponding to their search target. Simi-
larly, VERGE [6] maintains color-based queries using a
grid of 9 cells (3x3). Video clips matching the colors in
these positions are then assigned to a higher rank.

IVIST [42] enables a color query function to find
frames depending on whether their top 3 dominant col-
ors are included in the query colors or not. VideoFall [60]
also affords users with color search based on specific
dominant colors. The annotation for dominant colors
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in VideoFall, specifically 12 basic colors, is captured by
integrating a k-means clustering algorithm to the set of
frame-pixel values.

vitrivr [28] supports semantic-based sketches, as in
previous iterations of the system. Semantic sketches are
based on a DeepLab segmentation model [15] utilized
as described in [65].

diveXplore [43] provides concept-based search for
concepts in ImageNet-1000 [18] and Places365 (detected
by EfficientNet-B2 [74]). Also, Exquisitor and ViRMA
both support concept search for 12,988 ImageNet con-
cepts, which were extracted for each keyframe using a
pre-trained DCNN ResNet model [59]. To support its
browsing and data model in VR, ViRMA further organ-
ises these concepts into a hierarchical structure using
semantic relationships derived from WordNet [19]. Fi-
nally, in addition to the ImageNet concepts, Exquisitor
also maintains search for activity concepts of Kinetics-
700, extracted from the video shots using a pre-trained
3D-ResNet model [26].

VIREO [55] allows users to perform search using a
bank of 16,263 concepts. These are extracted by the
concept decoder of the dual task model [78].

VideoFall [60] affords users with textual search and
the visible textual information in the frames is extracted
using Google Vision API.1

2.2 Embedding

In this section, we discuss joint embedding approaches,
which combine text and image/video processing archi-
tectures with the objective of mapping the same seman-
tic information to similar vectors.

The top three scoring systems, vibro, CVHunter and
VISIONE, including a large number of other systems
(AVSeeker, V-FIRST, VNUHCM and AIClub@UIT )
all use networks derived from CLIP [62]. The text query
phrases are transformed into a joint text-image vector
space with cosine similarity. Specifically, VISIONE uses
TERN [58] for text-image retrieval.

In addition to this, VISIONE uses CLIP2video [20]
for text-video retrieval. Similarly, IVIST and VideoFall
use networks based on CLIP too [62], where input text
queries are matched with videos in a joint text-video
vector space.

VERGE ’s [6] text-video matching module translates
a complex textual query and the videos into a joint
latent space for direct comparison. Next, it utilizes the
attention-based dual encoding network [21]. In contrast,
VIREO [55] uses the dual-task model [78] for the same
text-video retrieval task.

1 https://cloud.google.com/vision/docs/ocr

vitrivr and vitrivr-VR both rely on a custom visual-
text co-embedding model [72] inspired by approaches
like W2VV++ [44]. In comparison to CLIP-based ap-
proaches, the embedding models are much simpler, re-
sulting in lower hardware requirements.

2.3 Temporal Querying

Since VBS tasks can comprise longer target video se-
quences (up to 20 seconds), some systems can address
multiple items in the target sequence at once using a
temporal query.

vibro [33] employs a two-tab system in order to en-
able temporal queries. Each tab can formulate queries
of the supported modalities and produces an individual
ranked order of keyframes. If both tabs contain a query
and a result list, consecutive sequences of keyframes
from a single video are ranked according to the proba-
bility that the sequence contains content from the first
tab’s result list followed by content from the second tab
in an adjustable time range.

CVHunter [49] supports two options to address a
sequence of video segments: a context-aware ranker that
supports unordered specification of target segments and
its special case, temporal query [50], where query parts
are ordered in the same way as the searched sequence
of segments. Both approaches require distances from all
query parts to all selected frames. However, it is worth
noting that based on the VBS log analysis, the context-
aware ranker was rarely used.

VISIONE [4] uses a time quantization approach to
support temporal queries, where each video is divided
into intervals of 7 seconds. Given two queries, the tem-
poral search is performed in two steps. First, the two
queries are processed independently, and for each query,
just the result with the maximum score is kept for each
time interval. Second, the results of the two queries that
are temporally close are then combined into pairs, and
just a sample of distinctive pairs is kept in the final
result list.

V-FIRST [75] simply allows the user to input two
separate queries, then uses a weighted sum of the two
queries to generate ordered pairs of images in a video
and return them for the user to browse.

VERGE [6] limits temporal queries to concepts;
namely, the user is able to query for two concepts that
should appear in subsequent shots of the same video.
For each concept, a separate list of shot probabilities is
created, then the intersection of concepts per video is
computed, and finally, shots are re-ranked through an
objective function.

vitrivr ’s [28] temporal queries are formulated us-
ing two or more blocks, and upon presentation of the

https://cloud.google.com/vision/docs/ocr
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results, users have to switch to a dedicated temporal
query result view [30]. In contrast, vitrivr-VR’s [71]
temporal queries are formulated by grabbing and or-
dering small representations of query terms in vir-
tual space. Temporal scoring is performed as described
in [28]. The results are then presented to the user as
stacks of temporally aligned segments that are relevant
to the query.

VIREO [55] first measures the cosine similarity for
the two successive queries independently. The two dis-
tributions of keyframes will be aggregated using a slid-
ing window to produce the final probability.

Exquisitor ’s [40] temporal queries are defined by the
user training two relevance feedback models, focusing
on different aspects of the desired shot. Once the models
are defined, the results of each model will highlight the
shots which come from the same video. In addition,
temporal constraints can be better utilized to specify
the desired target shot [37].

2.4 Relevance Feedback

Once results are displayed in a video retrieval system,
relevance feedback tools enable users to provide feed-
back in the form of positive or negative examples. Com-
pared to kNN-based browsing, this feedback updates
the model or the current score rather than issuing a
new independent query.

vibro [33] only uses relevance feedback for AVS
tasks, where all presented results have to be marked as
positive or negative by the user after an initial query,
and all positive keyframes are used to produce a con-
secutive result list.

CVHunter [49] implements a Bayesian-like ap-
proach [16] to accumulate relevance scores for each
representative frame in the dataset. A temporal vari-
ant [53] of this relevance feedback approach was suc-
cessfully tested in the system as well.

V-FIRST [75] has an optional pseudo-relevance
feedback feature, where it assumes the top-k (with
k = 10) initial results are relevant and reformulates the
query by taking their centroid. This can be useful to
cluster a small set of correct answers to the top ranks.

Exquisitor [40] uses relevance feedback as its pri-
mary interactive approach for search, where it trains a
linear SVM model to construct a hyperplane to retrieve
the most relevant items [38]. With multiple modalities
involved, an SVM model for each modality is used to get
candidates, which are then fused using rank aggrega-
tion. For VBS 2022, Exquisitor uses two visual modali-
ties, semantic concepts from ImageNet and actions from
Kinetics-700.

2.5 Query by Example

Many VBS systems allow query reformulation, where
users select an example item from the currently dis-
played candidate set. The essential part of this method
is a similarity model assigning a similarity score for two
items.

vibro [33] uses a Swin [48] architecture that has been
fine-tuned for content-based image retrieval for visual
similarity search. The final embedding was binarized
and concluded to 1024 bits for each vector.

For visual similarity of two items, CVHunter,
AVSeeker, V-FIRST, VideoFall and AIClub@UIT all
use the same CLIP feature vectors [62] as was used for
text search.

VISIONE [4] supports both visual similarity search,
where the user can use an image as a query to search
for video keyframes visually similar to it, and a seman-
tic similarity search, where an image can be used to
retrieve video keyframes or video clips that are seman-
tically similar to it. The visual similarity search is based
on comparing GEM [63] features. For the semantic sim-
ilarity CLIP2Video [20] and TERN [58] are used for
searching video clips and video keyframes, respectively.

In VERGE [6], the visual similarity search module
enables the retrieval of visually similar content start-
ing from a query image and considers feature vectors
produced from a fine-tuned GoogleNet architecture [61]
and an effective IVFADC indexing structure [35].

vitrivr [28] provides two modalities for query-by-
example. One enables users to simply upload a sample
image to find visually similar items, and the other op-
erates via a “more-like-this” button positioned next to
results.

vitrivr-VR [71] allows querying by frames of already
retrieved videos through a similarity search. The feature
used for this more-like-this search can be configured and
was set to simple color and edge features for VBS 2022.

VIREO [55] calculates the cosine similarity of the
dual-task model’s [78] embedding feature and indexes
the KNNs for visual similarity search.

diveXplore [43] provides content similarity search
with GoogleNet neural codes from ImageNet-1000, us-
ing the Manhattan distance to the selected example im-
age.

2.6 Other

This section describes features and approaches which
do not fall directly under any previous categories.

CVHunter [49] allows a fast inspection of top-k
items from each video in the result set by pressing a
number key (defining the k) on a numeric keyboard.
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For AVS tasks, the tool supports fast selection of all
visible items and selection of a database subset distinct
from another team member.

IVIST [42] exploits a scene-text searching function
to search frames that contain the query text in the
corresponding scene by adopting PixelLink [17] and
ASTER [70] so that users can try to find frames where
specific scene-texts exist. VNUHCM and AIClub@UIT
also follow the approach of using textual information in
video frames for retrieval.

VideoFall [60] introduces a method of submitting
results in its video retrieval system, which involves two
distinct interfaces prior to submission. The first inter-
face is designed for users to input queries and explore
the keyframe collection like normal, whereas the second
interface is designed for users to verify the data received
from the first interface and subsequently submit the fi-
nal frame to the competition server.

VERGE [6] utilizes a human and face detection
module that aims to count the number of individuals in
each frame by identifying their silhouettes and heads us-
ing the CrowdHuman dataset [69] and the YOLOv4 [12]
deep neural network.

Both vitrivr and vitrivr-VR employ a novel query-
by-pose approach [28,71], allowing the specification
of poses seen in the target clip. This pose-based
query mode uses key-points extracted from segment
keyframes using OpenPose [13]. In addition, vitrivr al-
lows users to query by pose by dragging the key-points
on a 2D canvas, while vitrivr-VR allows the posing of
the key-points in 3D space, which are then projected
with perspective on a camera-like canvas.

diveXplore [43] supports search for texts in OCR
results detected with CRAFT [7,8].

The ViRMA [19] prototype system employs a novel
VR interaction approach by utilizing the M3 data
model [23], which takes the media objects from the VBS
dataset and maps them into a multidimensional media
space based on their metadata. Users can then visualize
the video data by filtering and dynamically projecting
the multidimensional media space to the more familiar
3D space and then can explore this visualization using
virtual reality [19]. This type of 3D visualization is ef-
fective at browsing and summarising a collection, but is
less effective at search, which is likely why the ViRMA
system did not perform well in VBS 2022.

2.7 Browsing

Table 1 contains four popular browsing approaches ap-
plied at VBS. The Ranked List simply refers to any
visualization of the ranked result set. Video Summary

refers to displaying a list of selected frames from a video.
Video Player/Preview also refers to display frames but
at a higher frame rate (not just representative frames).
Finally, the Temporal Context refers to the visualiza-
tions of resulting frames with the temporal neighbor-
hood. Systems that have notable variations on these
four browsing approaches are discussed in this section.

vibro [33] allows browsing of result lists by display-
ing the 4,000 most relevant keyframes to the current
query in a list or on a 2D sorted map. Additionally,
the entire keyframe collection can be explored with the
help of a hierarchical graph [32]. A single click on each
of the presented keyframes opens the corresponding
video in the video section of the UI, where all keyframes
are listed in chronological order, and the video can be
viewed with a video player. Double clicks on keyframes
will create a new result list and jump to the keyframes
location in the exploration graph section.

VISIONE [4] groups the results by video so that
one row (containing up to 20 frames) for each video is
displayed in the browsing interface; the rows of videos
and the frames in it are sorted according to the score
given by the retrieval model. There is a menu on each
frame that allows the user to do similarity searches, see
the entire video starting with the selected frame, or see
a preview of the video in a neighborhood of the selected
frame.

IVIST [42] displays the top-100 lists of keyframes
at once, organized into pages. Short video clips (< 5s),
including each keyframe, are displayed as a GIF to pro-
vide temporal context. A keyframe can then be selected
to display a video player function.

AVSeeker [41] generates a ranked list of the top
2,048 keyframes that best match the query and groups
them by video. The videos are then ranked by the
average score of their top 3 best-matching keyframes
to generate the final ranked list. These highest-scoring
keyframes are also used as the preview of their corre-
sponding video in the final result. Once a preview is
clicked, a menu will pop up, which allows the user to
see all matched keyframes, all keyframes of the video,
and the video itself.

To expedite the process of elimination, V-
FIRST [75] groups results by video up to a specific
number of frames per video. Frames with high similar-
ity are also removed to increase the variety of results.

VNUHCM [54] allows users to control the number
of frames that are displayed. For each frame that is se-
lected, a small video player of the corresponding times-
tamp is shown for users to interact with.

To allow fast and visually aided browsing within
videos, vitrivr-VR provides a multimedia drawer
view [71]. This video segment view, which resembles
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Fig. 1: Overall scores per team and task type

a VR drawer containing the most representative frames
of the segments of a video, allows users to browse the
segments of a video in 3D space simply by moving their
hand through the drawer.

Exquisitor [40] displays the top 42 keyframes from
its ranked list to the user. The user can either interact
with the displayed keyframes to update the relevance
feedback model, which will produce a new ranked list to
get items from, or they can continue going through the
current ranked list one keyframe at a time or get the
next 42 keyframes. In the version used, Exquisitor does
not provide a video player for the shots. Instead, it dis-
plays a shot with 1 to 5 frames depending on its length.
In addition to this, the next two shots’ frames are also
displayed below the selected shot [40]. Aside from the
shot summary, a timeline browser for the video is avail-
able either as a vertical grid or horizontal slider [39].

3 Overall results

In this section, we will discuss the final results of the
VBS 2022 competition in detail. For this purpose, we
analyze all three task types separately: KIS-v, KIS-t,
and AVS (see Section 1).

We start with the overall scores, which are shown
in Figure 1 for all teams. We can identify three major
groups of teams. The first group consists of the four
top teams, who achieved more than 230 points. Among
them is the vibro team, who was able to collect the
maximum score in all three sessions: 100pts in KIS-v,
KIS-t, and AVS, respectively. vibro is closely followed
by CVHunter and VISIONE, who also reached a similar
score for KIS-t (100pts and 90pts) and KIS-v (96pts and
100pts), but got fewer points for AVS (81pts and 74pts).
The IVIST team, as the last one in this group, was also
able to get the maximum score for AVS but achieved
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Fig. 2: Distribution of correct and incorrect submissions
for known-item search tasks per team.

substantially fewer points in KIS-t (59pts), while scor-
ing well in KIS-v (90pts).

In the second group there are the teams that
scored 210-137 points (AVSeeker, V-FIRST, Video-
Fall, VERGE, vitrivr, VNUHCM, VIREO, AIClub, and
vitrivr-VR). For these teams, we can see a much lower
and linearly decreasing score, with different difficulties
per team. For example, the vitrivr, VIREO, and AIClub
teams were challenged by KIS-t, where they achieved
only 30pts, 30pts, and 21pts, respectively. VIREO also
had difficulties with KIS-v, where they achieved only
31pts.

Finally, in the third group there are teams that were
only able to collect up to 77 points: diveXplore, Exquisi-
tor, and ViRMA. While Exquisitor was still okay in
KIS-v (40pts), ViRMA could only score in KIS-t (9pts)
and AVS (13pts). diveXplore scored in all three sessions
but only with a low number of points (28pts, 23pts, and
24pts for KIS-v, KIS-t, and AVS).

From the number of submissions for KIS (Figure 2),
we can see that the teams in the first group were able to
correctly solve 13 tasks in KIS-v, with only one wrong
submission from CVHunter. The situation was differ-
ent for KIS-t, where vibro submitted six wrong results,
CVHunter one, VISIONE three, and IVIST two.

The teams in the second group were also very suc-
cessful with KIS-v tasks but had substantially more
wrong submissions (e.g., V-FIRST solved 12 KIS-v
tasks correctly but also had six wrong submissions).
The AIClub team is an exception for KIS-v in this
group: they solved 12 tasks correctly, with only two
wrong submissions. For KIS-t the situation was much
worse than in the first group though: for many teams,
the number of wrong submissions is higher than the
number of correct ones (except VERGE, who could
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Fig. 3: Distribution of correct, incorrect, and unde-
cidable submissions for Ad-hoc video search tasks per
team.

solve six KIS-t tasks correctly, with only one wrong
submission).

In the last group of teams, the number of correct
KIS submissions is generally low, except for Exquisitor,
who could correctly solve six KIS-v tasks. It seems that
ViRMA had serious difficulties with KIS-t, for which
they submitted seven wrong submissions, while only
one task could be solved correctly.

When looking at the AVS tasks (Figure 3), it is
obvious that the IVIST team submitted most correct
results (1,851), closely followed by vibro with 1,568
submissions, while CVHunter and VISIONE submit-
ted only 1,095 and 1,038 correct results, respectively.
However, it is interesting that also most teams in the
second group found many correct items for AVS: most
notably vitrivr and VIREO, who submitted 1,310 and
1,437 correct AVS items, respectively. Most wrong sub-
missions were made by the top-scorer in this session
(IVIST with 425 wrong submissions). The number of
undecidable submissions was generally low (at most 62),
which is not only evidence of great team performance in
general, but also proof of confidence of the AVS judging
team.

It is worth noting that the submission time distri-
bution provides deeper insights into how proficient each
team’s system performed during the real-time competi-
tion. The faster the system locates the target, the more
efficient it is. As can be seen from Figure 4, most teams
had the shortest time to search for the AVS tasks re-
gardless of the correctness, followed by the KIS-t and
KIS-v tasks, respectively.

Figure 5 illustrates the distribution of time until
the first correct submission across all teams and task
types, which excludes unsolved attempts. For the AVS
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Fig. 4: Distribution of time until the first submission
per team and task type.
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Fig. 5: Distribution of time until the (first) correct sub-
mission per team and task type.

tasks, the time is almost identical to the time to the
first submission, meaning that many early submissions
are correct. In contrast, the amount of time to find the
correct answer for the other two tasks varies.

4 Analysis of KIS logs

As in previous years, during the competition, each team
was asked to log the user interactions and the result sets
of their queries for each task. Each team was given the
choice of logging this data locally or sending it directly
to the DRES competition server using a specific log
format. In this section, we present the analysis of these
logs to better understand the ranking performance of
each system during KIS tasks.

The logs are in JSON format, and each comprises
the team identifier (in some cases, also the user identi-
fier), timestamp, query description, and the list of top-
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ranked items that were retrieved for the query at hand.
We report the analysis of result and query logs only
for a subset of six teams (namely vibro, CVHunter, VI-
SIONE, VERGE, vitrivr, vitrivr-VR). Unfortunately,
the other teams did not log results in the common for-
mat or had incomplete/missing logs.

4.1 Log Pre-processing

Of the six teams with logs, three saved the logs lo-
cally (vibro, CVHunter, VISIONE), while the others
(VERGE, vitrivr, vitrivr-VR) sent the logs to DRES.
We normalized the event timestamps of locally saved
logs to the UNIX timestamp format used in DRES.
Concerning possible clock shifts between DRES and lo-
cal clocks, we mostly rely on the synchronization per-
formed by the OS. However, we carefully checked shifts
in the submission timestamps, and according to our
analysis, there might be only small differences (about
1s). Therefore, we conclude that the presented times
are consistent, and the slight shift does not affect the
following analysis. We filtered data to only contain log
entries that fell into the task duration interval and re-
moved all logs that come after the correct submissions
of respective teams.

Note that the set of logs collected may be incomplete
(due to external circumstances or team log choices),
and thus our analysis represents an approximation of
all interactions and results of the tools. For example,
VERGE experienced network problems during the com-
petition, and some of its logs were sent but not received
by the DRES server, as evidenced by the fact that
there are no logs of this team for an entire task (T6).
Moreover, different teams used different logging param-
eters and units of retrieval. vibro logged only the top-
1,000 results for each query, while other teams logged
the top-10,000 results. In our analysis, we considered
only the top-1,000 results to keep the logging scale the
same for all teams. Concerning the logging unit, vi-
bro, CVHunter, and VISIONE logged frames; VERGE
and vitrivr logged segments (predefined shots and cus-
tom shots with time intervals, respectively); vitrivr-VR
logged both frame and predefined segments. In order
to standardize the units of retrieval, we transform each
of them into a temporal form. Specifically, if a frame
is given, we convert the frame number into the corre-
sponding physical time using the frame rate metadata
associated with each video, and we check if it ends in-
side the ground-truth interval. If a shot id has been
logged, we convert the shot id to the corresponding
temporal endpoints inside the video using the provided
shots metadata, and we check if the middle time of the
submitted interval is inside the ground-truth interval.

vibro CVHunter VISIONE VERGE vitrivr vitrivr-VR
team

1

10

102

103
>103

be
st

 sh
ot

 ra
nk

user
best
other

Fig. 6: Best rank of correct items appearing in result
logs.

We note that during the competition, a live judge was
allowed to manually accept submissions from the same
shot just outside (less than 3 seconds) the KIS ground
truth segment boundary. However, these cases are rare,
and for the analysis of result log item correctness, the
original official ground truth was utilized.

In the following analysis, it is also important to cap-
ture submissions not only at the level of the whole team
but first and foremost at the level of the specific user
who used the tool. This is important, as it may happen
that if we collapse all the statistics of the whole team
– two users as they were a single one – some inconsis-
tencies may arise.

Throughout the following analysis, for the systems
that logged the user ID (vibro, CVHunter, VISIONE,
vitrivr-VR) and for each task, we labeled the user as
best and other, where we define the best user as the one
among the two that, for that particular task, obtained
– ordered by decreasing importance – (i) the best shot
rank, (ii) the best video rank, (iii) the shortest time
when the best shot was retrieved, (iv) the shortest time
when the best video was retrieved. Each metric serves
to perform a tie-break in case all the previous ones are
equal among the two users. Using this formulation, the
shot rank has primary importance. In fact, if the shot
rank differs, we have that the best user is immediately
the one having the lowest shot rank. In case any of these
metrics are missing for that specific user and task, we
set them to their maximum values (103 in case of ranks
and a time longer than the task duration in case of
times).

4.2 Comparison of retrieval models

One area of interest in comparing the system retrieval
models is analyzing whether a correct item (frame or
shot) of the searched video segment appeared in the top
positions of the retrieved results. In this respect, Fig-
ure 6 shows, for each system, the best-achieved rank of
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Table 2: Textual KIS tasks

Name Hints

T 1
Close-up of motorbike exhaust pipes being cleaned with a wet sponge.
Two chromed pipes are visible, open on the left.
The forearm of a man wearing black T-Shirt is visible a few times.

T 2
Two shots: first of a gorge with rocks hanging over a wooden walkway, second a wooden bridge seen from a creek.
In the first shot, the creek is not visible, just the rocks on the right and trees and gorge on the left.
Shot in autumn, with still some green trees but colored leafs on the ground, and boulders on both sides of the
creek (in 2nd shot).

T 3
Almost static shot of a brown-white caravan and a horse on a meadow.
The caravan is in the center, the horse in the back to its right, and there is a large tree on the right.
The camera is slightly shaky, and there is a forested hill in the background.

T 6
Slow pan over a table with a glass, vase, leather cases and a wooden frame slate, then over a board with a timetable.
The scene is poorly lit, and the text on the slate reads “Welcome to our Story”, followed by a date.
The timetable is titled “OUR WEDDING”.

T 7
A girl riding a red bicycle, followed by a close-up shot of a termite trail on a tree root.
The girl’s head is not visible, she wears a blue shirt and short red pants, and has a bag and a tripod in a basket
on the bicycle’s handlebar.
The focus in the shot of the termite trail gradually changes from back to front.

T 8
Shot of an opened magazine, showing a drawing of a bearded man on the right side, then a shot of a person
standing in a street and holding different pages of an open magazine in front of the camera.
The person in the street wears a blue T-shirt and light grey jacket, and is wearing a mask and sunglasses. There
are white frames with black text messages flashing up inbetween.
The drawing in the first shot is on black background, the man has a white beard, the title of the left page is “vote
for Pedro”.

T 9
Close-up shot of a yellow slug (naked snail) eating a green leaf with a tiny green branch.
The leaf is in the lower center of the image, the slug curved in the right half.
The slug and the leaf are on a bed of needles and small branches.

T 10
A shot of a man in a water slide, followed by two shots of two men trying to light a fire on a beach.
The man slides down head first, and wears black bathing trunks.
There is a circle of stones around the fire, and we do not see the heads of the two men.

T 11
View from an upper deck of a ship down to a lower deck and water, slowly changing the view to the front of the
ship, where a man with a camera walks into view.
The lower deck is on the left, with green floor and two red/orange chairs, and water is on the right.
The man wears black trousers and a grey jacket.

T 12
A split screen shot of a building with a green facade with many different plants, static view on the left, detail
view moving down on the right.
The walls on the ground floor are concrete walls, partly covered with woodwork.
The shadow of another building is moving down, until most of the building is in sunlight.

a correct item (frame or shot) before submission across
all 23 KIS tasks (ten of which are textual KIS, reported
in Table 2). The distribution of the minimum achieved
rank by the best users reflects the overall teams’ scores.
For example, the best rank is below 100 in about 87%
of cases for vibro and CVHunter, 78% for VISIONE,
68% for VERGE, 65% for vitrivr, and 30% vitrivr-VR.
However, the minimum achieved rank of the other user
is below 100 in about 52% of cases for vibro, 35% for
CVHunter, 48% for VISIONE, and 9% vitrivr-VR. The
considerably worse performance of the other users for
some tasks may be caused by two main reasons: (i)
we are not considering the logs after a team’s correct

submissions; (ii) a particular user may formulate better
initial queries for some tasks than the other user.

In Figure 7, we report, for each tool and each KIS
task,

– the best-achieved rank of a correct item (frame or
video shot of the target video segment) in the top
logged results of the best user in the considered task
(before the team correct submission, if any);

– the time tf when the best rank of a correct item –
as described above – was obtained;

– the best-achieved rank of any item (frame or shot) of
the correct video by the best user in the considered
task (before the team’s correct submission, if any).
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Task  T 1 T 2 T 3 T 6 T 7 T 8 T 9 T 10 T 11 T 12 V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 V 11 V 12 V 13

rank 3 1 1 16 14 1 5 13 8 1 62 73 11 11 44 235 177 6 1 30 9 12 -

t f 59s 402s 9s 85s 6s 40s 17s 50s 95s 27s 31s 46s 52s 53s 47s 33s 30s 64s 31s 56s 64s 26s -

rank 1 1 1 16 14 1 5 13 8 1 62 49 8 11 37 235 7 6 1 30 9 12 1

t v 59s 402s 9s 85s 6s 40s 17s 50s 95s 27s 31s 59s 52s 53s 47s 33s 30s 64s 31s 56s 64s 26s 18s

correct submission t cs 176s - 36s 94s 14s 47s 35s 76s 123s 38s 63s 116s 110s 64s 119s 138s 78s 94s 59s 66s 69s 31s 63s

rank 2 14 1 259 1 2 2 1 87 6 37 77 6 22 44 6 2 9 5 1 - 2 239

t f 21s 44s 15s 27s 17s 268s 22s 20s 392s 40s 159s 95s 35s 74s 193s 111s 70s 191s 45s 23s - 19s 16s

rank 2 14 1 259 1 2 2 1 87 6 37 77 6 22 1 1 1 9 5 1 27 2 2

t v 21s 44s 15s 27s 17s 268s 22s 20s 392s 40s 159s 95s 35s 74s 193s 111s 32s 191s 45s 23s 22s 19s 16s

correct submission t cs 34s 173s 33s - 23s 278s 27s 25s 413s 62s 179s 120s 39s 85s 214s 194s 76s 198s 55s 29s 34s 24s 36s

rank 87 1 3 454 1 1 2 9 2 11 5 104 88 9 122 12 751 13 10 9 8 4 179

t f 9s 12s 145s 211s 15s 18s 13s 14s 339s 12s 67s 46s 29s 33s 88s 36s 27s 36s 40s 54s 16s 235s 16s

rank 6 1 3 22 1 1 2 9 1 11 5 1 27 5 19 11 7 13 10 9 8 4 1

t v 9s 12s 145s 302s 15s 18s 13s 14s 339s 12s 67s 46s 91s 33s 88s 36s 27s 36s 40s 54s 16s 235s 16s

correct submission t cs 39s 214s 155s - 30s 54s 29s 28s - 68s 73s 80s 92s 54s 248s 48s 31s 47s 52s 56s 20s 243s 29s

rank 45 23 445 - 11 126 3 1 120 22 680 4 69 45 58 191 9 6 5 15 548 39 -

t f 279s 273s 333s - 88s 106s 21s 29s 294s 384s 104s 195s 33s 115s 250s 144s 32s 64s 41s 20s 105s 23s -

rank 13 8 445 - 11 72 3 1 120 22 680 4 7 15 2 29 9 1 1 4 548 39 30

t v 192s 93s 333s - 88s 106s 21s 29s 294s 384s 104s 195s 33s 21s 270s 164s 32s 64s 29s 185s 105s 23s 23s

correct submission t cs 318s 386s - - 89s - 40s 188s - 402s - 212s 150s 170s 297s 186s 45s 96s 44s - - 35s 87s

rank - 9 947 75 2 6 15 25 18 469 551 - 4 6 - 102 23 56 26 11 - 3 26

t f - 196s 37s 45s 22s 362s 100s 144s 139s 375s 161s - 114s 41s - 261s 30s 44s 154s 33s - 239s 20s

rank 9 9 947 75 2 6 15 25 18 469 551 244 4 6 46 102 23 56 26 11 1 3 26

t v 55s 196s 37s 45s 22s 362s 100s 144s 139s 375s 161s 30s 114s 41s 25s 261s 30s 44s 154s 33s 8s 239s 20s

correct submission t cs - 225s - - 26s - 131s - - - - - 143s 57s 103s - 218s 227s 184s 57s 25s 244s 42s

rank - - - - 57 476 33 - 40 - 150 - 117 - 211 - 58 36 15 - - 10 -

t f - - - - 71s 99s 86s - 22s - 231s - 211s - 31s - 233s 30s 195s - - 89s -

rank 57 64 17 227 57 38 24 275 40 265 150 8 10 2 187 51 58 36 15 97 1 10 106

t v 213s 156s 191s 201s 71s 344s 86s 251s 22s 286s 231s 201s 79s 187s 31s 46s 233s 30s 195s 104s 22s 89s 73s

correct submission t cs - - - - 160s - 94s - 269s - - - 267s 194s 129s - - 129s 223s 106s 46s 114s 127s

vibro

correct frame/shot

correct video

VISIONE

correct frame/shot

correct video

CVHunter

correct frame/shot

correct video

VERGE

correct frame/shot

correct video

vitrivr-VR

correct frame/shot

correct video

vitrivr

correct frame/shot

correct video

Fig. 7: The table reports for each tool with logs (i) the best-achieved rank of a correct item (frame or video
shot); (ii) the time tf in seconds when the best ranked correct item was retrieved; (iii) the best ranking of any
frame/shot of the correct video (but not necessarily the correct video segment); (iv) the time tv in seconds when
the best-ranked video frame/shot was retrieved; (v) the time tcs of the tool’s correct submission. Red values are for
the best-detected ranks of searched video frames/shots if the target video segment was not present in the logged
result for a task. Green cells show the best achieved correct item with a rank less than 100. Yellow cells show
the best-achieved video item with a rank less than or equal to 10. Red cells indicates browsing failures when a
correct item was in the first 1,000 results but was not submitted. Orange cells are other browsing failures when
the correct video was present – but no correct frame or shot was present – and no correct submission was made.

Note that, in this case, the item may not overlap
the target video segment even if it belongs to the
correct video;

– the time tv when the best rank of any item of the
correct video was obtained;

– the time tcs of the correct submission.

We can observe that the ranks and the overall com-
petition scores of the top three teams are somewhat
matched. In fact, vibro, CVHunter, and VISIONE are
able to find the correct video in the first ten results
more consistently. In general, browsing failures (red and
orange cells) are most evident in the case of textual
KIS or, as easily guessed, when the best rank of a cor-
rected item is high. However, it is also interesting to
note that for some tasks and tools, a correct video was
in the top-10 results, but it was not correctly identified
and submitted (e.g., vibro in task T2, VISIONE in task

T11, VERGE in task V10, vitrivr in tasks T1 and T8,
vitrivir-VR in task V2).

We also emphasize that the best rank and correct
submission times can be from different team members.
Hence, it might happen that the time between the oc-
currence of the best item and submission is unrealisti-
cally low. For example, vitrivr-VR had the best video
rank 97 in time 104s and submission at time 106s in
task V10. On the other hand, long submission delays
for both users just confirm issues with browsing.

Regarding vitrivr-VR please also note that it uses
an asynchronous workflow and allows users to browse
very easily within multiple result sets at the same time,
as well as within entire videos from different queries.
The current logging format does not always allow the
path from query to submitted result to be determined
uniquely, and this explains why correct results submit-
ted by vitrivr-VR do not always appear in the top-
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ranked logged query results or appear at a very high
rank.

Some teams (e.g., VISIONE, vitrivr, vitrivr-VR)
display the search results by grouping together those
from the same video and showing a limited number of
items for each video in the browsing interface. There-
fore, many correct submissions may have been gener-
ated from a video level-hit and not by scanning the top
results from highest to lowest score (i.e., in the order
in which they were logged and used in the analysis re-
ported in this section). See, for example, VISIONE in
task V7: even if the best correct item rank is pretty
high (751), the correct video was displayed on the first
page of the results (7th row in the browsing interface).

4.3 Browsing efficiency

Figure 8 shows the relation between the rank of the
first appearance of a correct item (frame or shot) in
the logged result set and the elapsed time in second be-
tween this first appearance and the correct submission,
if any, both for visual KIS (left-hand graph) and textual
KIS (right-hand graph) tasks. Note that these graphs
give an approximation of the real browsing time because
(i) it is possible that a correct submission was made
through inspecting the video and not the top-ranked
frames/shots, (ii) the team user who first retrieved a
correct item may not be the same who submitted the
final correct answer (information on which team mem-
ber made the correct submission is not available for
all teams). Nevertheless, these graphs give some insight
into how long it took users to find a correct item once it
was present in the result set. This time clearly depends
also on the specific system browsing capabilities and the
user behavior (e.g., some users may prefer to check just
a limited number of results and eventually reformulate
the query instead of exhaustively inspecting the results
set). Overall, we observed that – as expected – the time
between the first appearance of a correct item and the
submission tends to increase with the rank of the item.
However, in textual KIS tasks, it happens more often
that the rank of the first appearance is low (even 1),
but the operator takes a long time before submitting
a correct result (which we recall he/she has never seen
before but knows only a textual description). For ex-
ample, in the graph in Figure 8b, we can see five cases
where the rank was less than 25, but the operator took
more than two minutes to make a correct submission,
and in one case, no correct results were submitted at
all. These outliers are less frequent in the case of visual
tasks - only one team in a single task, VERGE in V10,
had a correct item in 15th position (obtained after only

Table 3: Percentages of query type usage across all KIS
tasks for each individual team.

Team Text Image ODLS OCR ASR Color

vibro 69.9 27.8 0.0 0.0 0.0 2.3
CVHunter 82.2 17.8 0.0 0.0 0.0 0.0
VISIONE 78.5 0.0 21.1 0.0 0.0 0.3
VERGE 88.6 8.5 1.4 0.0 0.0 1.4
vitrivr 82.1 0.0 1.0 8.3 6.0 2.7
vitrivr-VR 96.9 0.0 0.0 3.1 0.0 0.0

20 seconds from the start of the task) but did not sub-
mit any correct results at the end. More generally, it is
interesting to note that the variance of the time delta
increases with the rank, as different strategies may be
used by the team members., e.g., exhaustive inspec-
tion of a result set, query reformulation, or video-level
browsing, just to guess a few.

4.4 Querying modalities

In this section, we aim to provide a more in-depth look
at what kind of query modalities the individual teams
actually used during the competition. In order to do so,
we divided the query logs into six categories by sum-
marizing the underlying analysis methods of the dif-
ferent teams. The outcome was: Text, Image, ODLS,
OCR, ASR and Color. Text includes joint-embedding
queries for most of the logging teams and VERGE´s
concept search. Image groups methods such as query-
by-example through visual similarity search and rele-
vance feedback with global image embeddings. ODLS
stands for object detection, localisation and segmenta-
tion and includes those kinds of queries that specify
a number of objects or objects and their positions in
an image. Since ODLS queries of the VISIONE system
were often used in combination with the text modality,
we keep also multi-modal combinations in the ODLS
category. Examples are VISIONE’s concept search and
VERGE’s number-of-object filter. Although OCR (op-
tical character recognition) and ASR (automatic speech
recognition) searches were formulated with text, the un-
derlying analysis methods are fundamentally different
compared to the other methods, which is why we as-
signed two additional categories. The last query type
Color groups methods, where color was solely used for
a search. Please note that > 1000 used in tables/graphs
may mean also that the searched target was filtered out.

Table 3 depicts per-team relative usage of individ-
ual query categories. Throughout all teams, pure text
queries are by far the most used variant, while image
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Fig. 8: Relation between the rank of the first occurrence of a shot in the result logs and time delta to correct
submission for both visual (a) and textual (b) KIS tasks. NCS stands for Non-Correct Submissions and corresponds
to all the correct frames found in the result logs that were not correctly submitted (either because of running out
of time or incorrect submissions). The blue line is found through linear regression, and it is accompanied by the
95% confidence intervals.

500

525

550

575

600
577

522

Task Type
Textual KIS
Visual KIS

ASR Color Image OCR ODLS Text
Query types

0

20

40

60

80

1
12

26
18

53

17
4

69

13 14

Qu
er

y 
ty

pe
 c

ou
nt

Fig. 9: Comparison of query type usage across all teams
for KIS-v and KIS-t tasks. Results are grouped by query
type and task type.

queries are the second most used. Obviously, these re-
sults are affected by what modalities are actually im-
plemented by individual teams, but nevertheless, text
queries dominate considerably.

Additionally, Figure 9 compares query modalities
usage across the two task types KIS-t and KIS-v. Even
though text is still the most frequently used category
for both task types, query modalities such as image and
ASR gain popularity in the KIS-v tasks, where audio-
visual information is presented.

Nonetheless, a question may arise whether text
queries are also effective apart from being popular.
To clarify this, Table 4 depicts the ranking of correct
shots/frames per team and query type. In most cases,
the performance of text queries is similar to or better
than the performance of other query modalities. One
notable exception is CVHunter, where Image queries,
for instance, achieved 43% results within the top-100,

while only 19% of text queries were within the top-100.
In this case, however, CVHunter often utilized relevance
feedback queries, which incrementally refine the previ-
ous text search results, so the performance of Image
queries is in a sense pre-conditioned by the performance
of text queries.

4.5 Querying density

In this Section, we focused on how individual teams
divide their time between querying and other activity
(e.g., browsing). First of all, we focused on whether the
querying intensity changes in the course of the task du-
ration. We divided each task into 1-minute intervals
and counted the volume of per-team queries from this
interval.2

The count of per-team queries decreases from ap-
proximately 3.6 in the first minute to approximately
2.1 in the last minute. This may indicate that in later
stages, teams focus more on browsing, while earlier they
try to re-formulate their search more. Even though the
differences are not so substantial, we can also focus on
per-team querying density in general. Table 4 contains
the mean volume of queries per team per minute of their
active participation.3 Here, two main outliers are VI-
SIONE, who made, on average, 5.4 queries per minute,
and vitrivr-VR, who only logged 1.9 queries per minute.
In the case of vitrivr-VR, the main cause is the tool
design itself, which is much more focused on browsing

2 We only kept those teams that did not yet solve the task,
i.e., the timestamp of their correct submission was higher
than the upper bound of respective interval (or they did not
solve the task at all).

3 Counting from the task start time to task end time or
correct submission time, whichever comes first.
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Table 4: KIS tasks query statistics per team and query type. Only the query types with 10+ per-team occurrences
are depicted. For each team, the mean volume of queries, the mean number of words, and the mean string length
of textual queries are depicted. Then, for all pairs of a team and a query type, top-K denotes the percentage of
queries for which the target shot was within the first K results, and > 1000 denotes the percentage of queries
where the correct shot was not present in top-1,000 results.

Team
Query Query per Words per Query top-10 top-20 top-50 top-100 top-200 >1000
type Minute query length

vibro Text
4.96

8.09 40.86 7.3 12.2 21.1 29.3 37.4 43.1
IMAGE - - 10.2 14.3 20.4 30.6 32.7 51.0

CVHunter Text
3.40

9.14 49.06 10.8 13.8 15.4 19.2 20.0 48.5
IMAGE - - 10.7 14.3 39.3 42.9 57.1 32.1

VISIONE Text
5.41

21.2 103.89 9.7 16.3 19.4 26.0 35.7 48.0
ODLS - - 13.1 19.7 19.7 23.0 26.2 54.1

VERGE Text
2.58

4.49 25.20 13.4 14.4 23.0 32.1 45.5 38.0
IMAGE - - 11.1 11.1 11.1 27.8 38.9 55.6

vitrivr Text
3.28

N/A N/A 3.2 4.8 8.9 13.3 18.5 67.3
OCR - - 0.0 0.0 0.0 4.0 12.0 88.0

vitrivr-VR Text 1.91 5.70 28.37 0.0 1.6 3.8 7.0 10.3 80.0
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Fig. 10: Time to initiate the search with the first query.
Results are grouped by team and task type.

than its competitors. In the case of VISIONE, the cause
is that queries are evaluated “on the fly” at any user in-
teraction with the search interface (even just moving or
resizing an object in the canvas) without the necessity
of explicitly clicking on the “search” button.

Finally, we also measured users’ reaction times, i.e.,
how fast did they construct the first query. Figure 10
depicts this statistic per team and task type. Notably,
vitrivr-VR experienced significantly higher times for
their initial queries than the rest of the teams. This
is not unexpected, particularly considering the rise of
text-based, cross-modal retrieval since text entry in VR
is still much slower than using conventional keyboards.

We also assumed that textual description is faster
to process and, therefore, initial query times would be
significantly smaller for textual KIS tasks. While this
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Fig. 11: Distribution of the number of words and
string lengths for textual queries. Grouped by individ-
ual teams and ranks of the correct results.

was true for some teams (vibro, VISIONE), the results
were not conclusive in general. In fact, it is important to
note that certain teams, including VISIONE and vibro,
occasionally did not manually type the textual query
during textual KIS. Instead, they copied and pasted
the query from the DRES visualization interface used
to view the tasks. Unfortunately, this copy-and-paste
action was allowed but not logged, so it is impossible
to determine which teams relied on this method and
how frequently they did so.

4.6 Analysis of textual queries

In this subsection, we focused on the properties of the
textual queries. Specifically, we evaluated the length of
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textual queries with respect to the number of words
and the number of characters, for which the mean val-
ues are depicted in Table 4. Note that vitrivr’s logs
do not contain the text of the query. Therefore we
exclude them here. We observed some notable differ-
ences in textual querying strategies of individual teams:
both VERGE and vitrivr-VR used, on average, shorter
queries (w.r.t. both metrics), while VISIONE usually
constructed much more complex queries - on average
twice as large as its next competitor.

There are two main reasons behind this observa-
tion. Firstly, VISIONE provided more extended and de-
tailed textual descriptions of the searched scene com-
pared to other teams. Secondly, a significant portion
(about 83%) of VISIONE’s queries were temporal tex-
tual queries (descriptions of two different scenes of the
same video clip), which were concatenated as a single
textual query in this analysis. We also note that the
vibro team did not log temporal queries as temporal
fusion was an on-the-fly computed interface option for
two independent queries.

We were also interested in whether the additional
effort coming with the construction of larger queries
pays off, i.e., whether a better ranking of correct
items/videos is achieved. Nonetheless, as teams use dif-
ferent ranking models and per-team querying strategies
also differ substantially, we have to resort to per-team
comparisons. Figure 11 depicts per team enhanced box-
plots of queries, where the correct shot was within, or
outside of top-1,000 results. In general, the differences
were smaller than we expected, but even though, for the
vibro, CVHunter, and VERGE teams, within top-1,000
queries were significantly larger (w.r.t. both number of
words and the number of characters); in case of t-test,
p-values <= 0.04) than outside top-1,000 queries. Es-
pecially for vibro, the pattern was quite notable. How-
ever, just producing larger (more descriptive) queries
might not lead to better results. This is illustrated
by VISIONE, whose queries were largest in general,
but lengths of within top-1,000 and outside top-1,000
queries were without significant difference.

We also observed how much the initial results could
be improved via subsequent text query reformulations.
For this, we grouped all queries collected for each user
and task and ordered them from first to last. We de-
note this as query sequences and grouped queries with
respect to their position within the sequence. Figure 12
depicts enhanced box-plots for the ranks of correct
shots. It can be seen that textual reformulation may
lead to some notable improvements. On the other hand,
results also reveal numerous browsing errors, where cor-
rect shots were within top-10 or top-100, but queries
were reformulated anyway. This may indicate the ne-
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Fig. 12: Ranking distribution of correct shots w.r.t.
query sequence position. “First” and “Second” denote
the first text query per task and the next text query
(i.e., first reformulation/extension). “Last” denotes the
very last text query logged for a particular user and
task. Note that only query sequences with length >= 3
are depicted.

cessity to focus more on the browsing capabilities of
individual tools to prevent such oversights.

5 Analysis of AVS tasks

As in previous years, VBS organized another session fo-
cusing on Ad-hoc search tasks. Specifically, 8 AVS tasks
(see Table 5) were performed where teams were required
to submit as many correct shots as possible. Figure 13
shows shares of correct submissions of all teams in all
tasks. It is apparent that there is not one dominant
team for all tasks. For example, looking at the top two
AVS systems, vibro was way more effective than IVIST
in the task a01, while in the task a10 the situation was
reversed. Nevertheless, all top-performing AVS systems
(vibro, IVIST, VIREO, CVHunter) show an ability to
solve a non-trivial share of the multi-set of correct sub-
missions.

Figure 14 shows how the overall number of received
correct submissions grows over time of each AVS task,
while Figure 15 shows the number of submissions in
specific time slots.

In both graphs, the same submissions from n dif-
ferent teams count as 1. Hence, the graphs show the
progress in the detection of new and unique correct
scenes. The trend is similar for all tasks. After a first
slow period (about 40s, except task a07), there starts
to be continuous growth with occasional peaks.

Figures 16 and 17 present the number of submissions
and the first k submissions by n teams. It is apparent
that the overall number of submissions is always higher
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Table 5: AVS tasks

Name Hint

a01 Find shots showing one person playing a guitar (other people but no other musicians may be visible).
a02 Find shots of one or more persons balancing on a bar, railing, rope or slackline, without any device under their

feet.
a04 Find shots of someone riding a horse or sitting on a horse (living animal).
a05 Find shots taken from any vehicle driving inside a tunnel, requiring part of the vehicle being visible.
a06 Find outdoor shots showing a teddy bear (toy).
a07 Find shots of a waterfall, without people.
a09 Find shots of one or more decorated trees (not just branches) that are not lit (inside or outside).
a10 Find shots of someone with their hands on a camera (not e.g. a phone-like device), filming or taking/preparing to

take a picture.

than the overall number of correct submissions (only
unique submissions are counted). Regarding times to
first submissions, there is not a clear difference between
the time until the first submission and the first correct
submission. Similarly, except for task a09, the times to
the first submissions by 50% of teams are quite similar
to the corresponding times in the correct submission
graph. However, the times to the tenth submissions by
50% of teams are becoming lower than the times for
correct tenth submissions by 50% of teams. To sum
up the analysis, there are differences in the complexity
of AVS tasks. Some tasks are easier to solve for many
teams, while others are way more challenging and also
interesting for VBS-like interactive search evaluations.

The VBS 2021 report [31] presented an observation
that in several AVS tasks, there were many teams in dis-
agreement with one judge. Since the text query prepa-
ration for VBS 2022 was more thorough (see Section 6),
we also analyzed the agreement/disagreement stats in
Table 6. Compared to the previous year, the data do not
reveal a significant level of disagreement across seven
tasks. Indeed, except for a few exceptions (e.g., eleven
teams against one judge in task a02) the teams mostly
agreed with the judge’s decision. Only in one task a09
there are cases where the teams disagreed with judges
more often. However, this might also be caused by the
task’s difficulty and attempts to send at least something
(the overall numbers are low).

5.1 New direction for Ad-hoc search at VBS

For many years, AVS tasks were evaluated at VBS in
a similar fashion as at TRECVID. Teams were sup-
posed to submit as many correct shots as possible, often
overloading judges with thousands of submissions. The
scoring function was designed to provide a high score
for precision and (pooled) recall. However, there were
also opinions questioning the current way AVS tasks
are evaluated.

a01 a02 a04 a05 a06 a07 a09 a10
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Fig. 13: Share of AVS submissions judged as correct per
team and task.
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Although 100% recall with high precision of found
shots is an important goal in various domains (security,
endoscopy), for VBS, it is also highly important to first
localize videos containing a correct shot. In other words,
ad-hoc search can be divided into two task categories –
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Table 6: Number of teams in agreement/disagreement with judges

Number of Teams

Task 1 2 3 4 5 6 7 8 9 10 11

a-1 1317/369 188/30 36/5 3/0 - - - - - - -
a-2 140/47 59/6 33/0 30/0 23/0 3/2 9/0 4/0 2/0 - 2/1
a-4 605/172 266/9 165/2 93/0 61/0 35/0 8/0 5/0 3/0 - 1/0
a-5 345/246 156/23 100/6 45/0 9/0 5/0 7/0 - 1/0 - -
a-6 134/82 71/10 52/6 46/1 40/0 34/0 25/1 15/0 4/0 5/0 2/0
a-7 778/542 291/93 159/32 91/12 66/5 28/1 17/2 3/0 1/0 - -
a-9 44/74 9/19 3/5 2/3 1/5 2/1 - 1/1 - 1/0 2/0
a-10 1419/512 371/38 157/6 85/1 44/0 17/0 7/1 3/0 1/0 - -

Bold font highlights cases where the fraction is lower or equal to one (i.e., #agreement
#disagreement

≤ 1)
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Fig. 15: Correct video submissions over time during an
AVS task.
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Fig. 16: Selected AVS metrics per task. Higher y-axis
values indicate that teams found it easier to find results
to submit for a task.
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a given task, it is easier to find results that judges deem
correct.

localization of correct videos and effective search (e.g.,
advanced browsing) of the videos. From the organiza-
tion’s perspective, finding just one piece of evidence of
video correctness (i.e., only the first correct shot) de-
creases the workload for judges and also simplifies dis-
cussions about a fair scoring function. Therefore, we
have decided to focus on the video localization part of
AVS tasks at the next VBS events.

A possible new scoring formula to compute AVS
score per team can follow the objective of finding as
many videos as possible, where the team must submit
one correct shot from each video (i.e., evidence for each
video). We note that the formula should integrate a
penalty mechanism to prevent floods of unverified sub-
missions. In addition, a maximum limit of submissions
per team could also be introduced (not considered cur-
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rently). An example approach to defining the score ft
of a team t in an AVS task could be as follows:

ft =1000 ·max
( 1

|C|

Vt∑
v

(
cv − iv · p

)
, 0
)
,where

iv := number of incorrect submissions before
the first correct submission for video v,
number of submissions in v else

cv := 1 if correct submission for v, 0 else
Vt := set of videos with a submission for team t
p := submission penalty constant (e.g. 0.2)
C := distinct correct videos across all teams

Although there are data to estimate the penalty
from the VBS 2022 competition, we plan to carefully
set this penalty based on more experiments. The reason
is that the available data might be biased with respect
to the AVS scoring formula used at VBS 2022.

While possibly suffering from the bias of teams op-
timizing for the scoring function used at the VBS 2022,
an early analysis of this data shows an average of 1.39
incorrect submissions before the first correct submission
per task, team, and video. The maximum number of in-
correct submissions before the first correct submission
for the corresponding video was 19. With the new scor-
ing function in place, it will be interesting to see if more
careful inspection of submissions can be encouraged.

6 Lessons from text query definition

In the purely physical VBS editions up to 2020, the
judges for AVS tasks were seated next to each other in
the room, and any questions concerning the ambiguity
of handling queries were done informally among them.
As reported in [31], a briefing with the judges was con-
ducted for the first virtual VBS in order to discuss and
refine the AVS queries but was found insufficient to en-
sure consistency of judgments. Thus, the briefing of the
judges for VBS 2022 was extended to consist of (i) a ses-
sion discussing and refining the AVS query texts like in
2021, (ii) a similar session for refining the KIS-t queries,
and (iii) a dry-run session in which the judges tried to
solve the AVS tasks themselves and provided feedback
about the query texts. Both the discussion and dry-run
sessions were held as web conferences. Six judges par-
ticipated in the sessions. More details and the evolution
of this process can be found in [9].

The creation procedure for creating the textual
queries was unchanged from previous editions of VBS
(see [51] for details). The queries were provided in a

shared document that was made available to the judges
in advance of the sessions. However, the ground truth
was not included in the document.

Discussion session. In the discussion session, both AVS
and KIS-t queries were covered. For AVS queries, the
query text was read together with the judges, and they
were asked whether they could imagine scenes covered
by the query and request clarifications on possible in-
terpretations of the queries that came to their minds.
A reformulation that found consensus in the group was
chosen for proposed changes. Where necessary, addi-
tional notes were recorded for later reference by the
judges.

For KIS-t queries, the query was read together with
the judges, and the target clip was shown. As it was
unclear which order would be better, reading the query
first and watching the clip were tried, but first, read-
ing the query seemed preferable. Then required changes
and clarifications of the queries were discussed, watch-
ing the clip again if needed.

Dry-run. In order to perform the dry-run, SOMHunter
V2 [77] was used as a browsing tool. The existing
Docker deployment of the tool4 was modified to run
a set of independent instances (one per judge) on the
same machine. A startup script took care of modifying
configurations so that the Docker containers required
by each instance would use a dedicated set of ports.
The containers were hosted on an Amazon Web Ser-
vices EC2 machine with 64GB RAM.

After a brief introduction to the tool, the judges
were given up to 10 minutes to explore and discuss one
query. Searching was stopped once a larger number of
results was collected. The results were analyzed in order
to understand what type of content could be found for
the query and which ambiguities and border cases may
exist. Similar to the discussion session, consensus on
a reformulation of queries was found, and additional
notes were recorded where necessary. All but one of the
AVS tasks have been solved by the judges in the dry-
run session, which already provided a good indication
that the tasks would be solvable in the competition.

Query improvements. Both sessions resulted in a num-
ber of changes to the originally proposed queries. As
shown in Figure 18, the mean lengths of the queries in-
creased after each of the sessions as details and clarifica-
tions were added. Figure 19 provides details about these
changes on a word level, expressed as the number of
changes per query. Most changes concerned nouns: more
than 1.6 noun additions/changes per query were made

4 https://github.com/siret-junior/somhunter

https://github.com/siret-junior/somhunter
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Fig. 18: Mean lengths of text queries: originally pro-
posed queries, after discussion of the texts and after
the dry-run (applies only to AVS).

for AVS queries, and almost two additions/changes for
KIS-t queries. The numbers are slightly lower for ad-
jectives and prepositions, but the pattern is similar for
nouns. It is worth noting that while the number of
changes is similar for both types, more additions were
made for KIS-t queries, which indicates the higher need
to add details. Also, changes of words (typically finding
a more precise term or easier-to-understand synonym)
were only done in the discussion session, while after the
dry-run, only words were added. Examples were added
for some AVS queries, but this occurs in less than 1 in
5 cases.

Assessment. In order to assess the effectiveness of the
modified judges briefing, we performed an online sur-
vey among all participating team members in the week
after VBS 2022. We received 20 responses, of which
17 respondents stated they had participated in 2021.
The repeated participants were asked to compare the
clarity of the KIS-t and AVS queries as well as their
perception of the consistency of the judgments of their
AVS submissions on a 5-point scale ranging from much
worse to much better. The responses to these questions
are shown in Figure 20. Roughly one-third of the re-
spondents did not observe any changes, and one-eighth
found the KIS-t queries less clear than in the previous
year. But the majority of the respondents found the
clarity of the descriptions as well as the judgment con-
sistency better or much better. It is worth noting that
for AVS clarity and judgment consistency, none of the
respondents reported a decrease in the quality, and also
much better was chosen in some cases (which was not
chosen for KIS-t). We believe that this is a consequence
of performing the dry-run, which helped both improve
AVS queries and ensure later judging quality.
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7 Discussion and future challenges

A VBS-like evaluation is a unique large-scale experi-
ment organized once per year. The observed results of
the experiment provide a unique insight into the ex-
pected interactive search performance in KIS and AVS
challenges with current state-of-the-art models. Based
on the observed results, we would like to provide a sum-
mary of findings with a discussion on future directions.

– We start with the most resonating message (and not
only within the VBS community [47]) that the CLIP
model and its variants represent a game-changer
in cross-modal search. The approach and its near-
future potential (using larger training datasets [68])
may break some assumptions that were made for
challenges like VBS. This can be shown with Figure
21 illustrating Zipf’s law for the commonly observed
distribution of concepts in image datasets [81]. For
known-item search tasks, there were two challenges
– concepts with a high number of occurrences of-
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Fig. 21: Zipf’s law in a video collection.

ten required non-trivial additional interaction, while
rare concepts used to be hard to find with mod-
els trained with standard general-purpose training
datasets. With CLIP-based models and huge train-
ing datasets, rare concepts are now more likely to
be known by content-based ranking approaches and
thus often become findable with a free-form text
query. Hence, one of the key remaining challenges
for the future seems to be effective refinement and
browsing in large clusters with many similar in-
stances. We add that large clusters can also emerge
if users do not actively remember all the details of
the searched scene.

– Based on our survey on textual task quality, the con-
cepts users imagine are sometimes culturally depen-
dent. These issues indeed remain a challenge even
with potentially much better ranking-models and
represent an interesting task for future evaluations.
We note that, so far, VBS has mostly data of users
from Western cultures using CLIP, so the alignment
of concepts between user and model may be high.

– Human interaction was still important even at this
iteration of VBS, where top-performing teams al-
ready used CLIP. Even despite the overall good
ranking performance of the joint embedding mod-
els, one-third to one-half of issued text queries (for
systems employing the CLIP model) ended up with
a search scene outside of considered ranked results
(i.e., rank > 1000, see Table 4). On average, users
are able to improve their textual queries over time
(Figure 12) and also refine/modify the queries with
different modalities (Figure 9).

– Another future challenge are evaluations of the im-
pact of users. We can observe that today’s vision-
language models are sensitive to wording differences,
so their use in video retrieval systems harms re-
trieval consistency [10], i.e., the desirable property

that a system returns consistent results for simi-
lar but differently phrased information needs. We
are planning future evaluations with more users per
team and more controlled settings (predefined start
query) to analyze the impact of users vs. tools fur-
ther.

– Another interesting challenge for future evaluations
is to focus on different types of visual data. Interac-
tive search in various visualizations of other types of
data (e.g., images from human motion in RGB color
space) might test the generalization of presented ap-
proaches and systems for different domains, espe-
cially in situations where a good initial text query
is not available.

8 Conclusions

The paper presents findings from the eleventh iteration
of the Video Browser Showdown, where 16 teams par-
ticipated with their interactive video search systems.
The wide panorama of video analysis and retrieval ap-
proaches was used, as described in the related work sec-
tion. The results confirm the effectiveness and reign of
joint-embedding approaches, where CLIP-based mod-
els demonstrate impressive performance. The top three
systems vibro, CVHunter, and VISIONE (according to
the VBS ranking), were able to solve all visual known-
item search tasks as well as almost all textual known
item search tasks. Considering the size of the video col-
lection, this is a great achievement compared to the pre-
vious several years. The result logs of six teams revealed
that with multiple attempts to formulate a (mostly
text) query, the teams were able to find known items
at good ranks. However, there emerged also several
browsing/visualization issues where the teams over-
looked a correct item with a good rank. The anal-
ysis of AVS tasks did not reveal a clear winner, al-
though the average performance of vibro, IVIST, and
VIREO teams was impressive. The analysis of agree-
ment/disagreement with judges revealed a positive ef-
fect of the new query preparation process, which was
supported by an online survey as well. For future VBS
evaluations, we plan to make visual known-item search
tasks harder (e.g., shorter target segments or domain-
specific collections) and reconsider AVS tasks (search
for videos with a correct item).
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