

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

SHAPE Project Creo Dynamics:

Scale Resolving CFD and CAA processes for Ground Vehicles
based on Open Source

Torbjörn Larssona*, Johan Hammara , Jing Gongb, Michaela Barthb, Lilit Axnerb
 aCreo Dynamics AB, Westmansgatan 37A, SE-582 16 Linköping, Sweden

bPDC Center for High Performance Computing, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden

Abstract

Creo Dynamics [1] is a Swedish engineering company with core competence in fluid dynamics, acoustics and structural
dynamics. Creo Dynamics has broad experience from participating in national and international research programmes
focussing on the development of new emerging technologies for the automotive or aerospace industries. In the company,
experienced engineers develop and deliver simulation tools and procedures – often based on open source software [2] –
which are tailored towards specific needs and applications; this process always involves maintaining a conscious balance
between turn-around time and accuracy.
Creo Dynamics has recently undertaken a PRACE SHAPE project together with application experts from the KTH Royal
Institute of Technology. During the course of the project we developed templates and “recipes” for a range of tasks that are
involved in the automotive industry – such as automated handling of computer-aided design (CAD), parallel meshing,
solving and post-processing. These were all tailored towards a particular automotive application, namely the aerodynamics of
a heavy-duty semi-trailer. We also focused on parallel implementations and executions for large-scale simulations. In
addition to monitoring the efficiency of the processes (for meshing and solving run-time performance and scalability) and
identifying critical bottlenecks, we gave significant attention to pinpointing performance deficits in the processes so as to
give guidance for a further fine-tuning of the overall methodology.	

1. Background and Introduction

The transport sector contributes to about 25% of the total CO2 emissions in the EU and is the only sector where
the trend is still increasing [3]. Hence, it is of paramount importance to increase the efficiency of freight
transport in order to stop increasing (and preferably start to decrease) the amount of CO2 that is emitted.	With the
strong likelihood of future stringent legislation requiring far more environmentally friendly technology, it is
crucial that we develop more efficient virtual testing techniques.

Efficient numerical methods for time dependent flow simulations are becoming increasingly important for highly
accurate predictions of aerodynamic drag, aero-acoustic sources, and vehicle dynamics and handling. Accurate
and detailed predictions of the aerodynamic flow, and eventually the acoustics propagation, around road vehicles
and aircraft are challenging - they put exceptionally high demands on the simulation methods that are used with
respect to both numerical and physical fidelity. As a result, the computational resources that are required are

a* Corresponding author. E-mail address: torbjorn.larsson@creodynamics.com

2

often immense, thus making these types of analyses less viable in a high-paced production environment with
short lead times and strict cost constraints. Despite this, Computational Fluid Dynamics (CFD) is a vital and
necessary tool nowadays for the design of aerodynamically efficient products like cars, trucks, airplanes and
turbomachines.

In the last two decades, the automotive industry has seen most of their dedicated in-house developed simulation
codes being replaced by commodity commercial software. This trend can be exclusively attributed to the need to
cut costs. The development effort required to keep in-house software (that is based on programming techniques
from the late 1980s) up-to-date and at the cutting-edge is considerable. The outsourcing of this key technology
has led to a less than ideal dependency on commercial Computational Fluid Dynamics (CFD) software vendors
with software-development plans and corporate business strategies that are not necessarily perfectly in line with
the needs and expectations of the automotive industry.

With emerging open source technologies on the horizon, the CFD engineering landscape is expected to change
once again. The maturity of open source CFD software is starting to have an impact, even in industry. This is not
only because of the attractive and obvious advantages of software being license-free, and thus deployable on a
massive scale. The importance of software being fully accessible, and the inherent development potential that
comes with the concept of open source, has undoubtedly been recognized. The leverage effect from an ever-
growing open source community should not be underestimated either. Numerous examples have shown that open
source software can be an ideal platform for developing state-of-the-art codes, in terms of flow physics,
numerical algorithms and software performances.

The envisaged CFD methodology, as outlined in this paper, is expected to deliver simulation accuracy in line
with the current industry best practices but at a considerably lower cost.

The first task in the project was primarily devoted to the development of templates and “recipes” for automated
CAD handling, parallel meshing, solving and post-processing that were tailored towards the chosen application
(that is, modelling a semi-trailer).

In the second task, we studied the parallel implementation of code and execution on large parallel clusters. Here
the main focus was on the monitoring of process efficiency (meshing and solving run-time performance and
scalability), plus the identification of critical bottlenecks and performance deficits in the processes to give
guidance for fine-tuning the overall methodology.

The project was steered by engineers from Creo Dynamics and executed in collaboration with researchers and
application experts from the KTH Royal Institute of Technology. Creo Dynamics, a small engineering company
with core competence in fluid dynamics, acoustics and structural dynamics, has broad experience from
participating in national and international research programmes focussing on the development of new emerging
technologies for the automotive or aerospace industries.

2. Benchmark Description

The aerodynamic drag on a heavy-duty truck-trailer equipage is significant and, with new stringent legislations
on fuel efficiency and CO2 reductions coming into effect in the pipeline, substantial development to improve the
aerodynamic efficiency of such ground vehicles is required. Furthermore, the trend towards electrification and
hybrid technologies for vehicles means that now, more than ever, there is a need for the aerodynamic drag to be
decreased in order to increase the range of electric vehicles (EVs). With EVs expected to dominate the road car
market in the near future, there is also renewed interest in topics relating to airborne noise.

Experimental aerodynamic testing of full-size trucks is challenging, particularly as there are only very few
facilities in the world where it is possible to do such tests. Highly accurate predictions of the aerodynamic (and
acoustic) properties of these large vehicles via physical testing are immensely expensive, and consequently often
not justifiable in a repetitive manner, especially in the fast-paced development that is paving a route to
sustainable transportation. Instead, further investments in dedicated virtual testing techniques are required with a
firm commitment to large-scale High Performance Computing (HPC).

3

Figure 1 Truck-Trailer CFD model, side view

In the current project we use a generic, but representative, CAD model of a heavy-duty semi-trailer as shown in
Figure 1 above. The model includes a fairly detailed chassis and underside as displayed in Figure 2.

Figure 2 Truck-Trailer CFD model, bottom view

We are aiming for high fidelity scale-resolving simulations to enable us to make accurate predictions, not only of
the airflow distribution, but also of the aeroacoustic noise generation and propagation. For this reason all the
steps in the simulation processes need to be made efficient for parallel computation and also scalable to many
thousands of computational cores.

Herein, we set up and analyse an automated process that, using prepared CAD surfaces as input, generates a high
resolution CFD mesh fulfilling predefined quality metrics. The process also performs a steady state RANS
(Reynolds-averaged Navier-Stokes) simulation, and extracts results and post-processing data. All these are steps
implemented in parallel on distributed compute nodes without the need for any intermediate input/output (I/O) or
data transfers.

3. Open Source CFD Workflow

Parallel performance of all steps of the simulation process, as well as efficient I/O and data extraction, are
becoming vital as the size of models and the complexity of simulations increases. Building a fully parallelized
simulation process that removes serial bottlenecks, time consuming I/O operations, and labour intensive manual
work is a quest that is being actively pursued in the automotive industry due to the significant benefits such a
process will bring.

Here, in this project, the basic idea is to derive a (semi) automated and fully scripted simulation process for a
chosen application (truck-trailer) starting from prepared CAD data. The automation, along with the possibility to
perform the mesh generation in parallel on distributed compute nodes where the same nodes are also used for
subsequent CFD simulations, are central features of the work. These features mean that all the steps in the
process can be executed in a homogeneous Linux-based computer environment thus avoiding serial bottlenecks,
time-consuming I/O, and additional data transfers.

The main steps of this process, described in Figure 3 below, are based entirely on the OpenFoam toolbox.

4

Figure 3 OpenFoam Workflow

4. The OpenFoam Utilities and Solvers

4.1 SnappyHexMesh

The pre-processing phase (that is, the Generate Mesh phase in Figure 3) is based on the OpenFoam meshing
utility snappyHexMesh, which relies on a geometry description in stereolithography (STL) file format. Before
executing the snappyHexMesh (in parallel) though, a couple of serial steps are performed to create and
decompose an initial background hexahedral mesh and to extract geometrical feature edges. These operations
only require a few seconds of computational time running on a single core, and consequently will not be
described here.

The mesh generation is defined and controlled from the snappyHexMesh dictionary, snappyHexMeshDict, that
contains numerous parameters for mesh control.

The five main sections of the dictionary are:

• geometry
o Definition of geometrical entities

• castellatedMeshControls
o Definition of features, surface and volume refinements

• snapControls
o Definition of parameters for surface snapping

• addLayersControls
o Definition of parameters for boundary layer meshing

• meshQualityControls
o Definition of mesh quality metrics

The meshing process is divided into three main steps. The first step is the generation of a castellated mesh where
all criteria relating to surface and volume resolution should be met. This “lego-type” mesh does not yet conform
to the input STL surfaces, and will be saved in a folder known as time 1.

Once the castellated mesh has been completed, a snapping stage follows. Here the mesh points are snapped to
the surfaces in an iterative fashion to create a fully conformal mesh according to some pre-defined quality
metrics. The snapped mesh is then saved in a folder known as time 2.

The final mesh generation step in the snappyHexMesh process is the addition of boundary layer cells on selected
parts of the geometry. This is arguably the most difficult, and least robust, step in the entire meshing process –
this often requires plenty of model preparation and tuning before an acceptable mesh quality can be reached. The
final layered mesh is then saved in a folder called time 3.

In this study, all three steps in the mesh generation process have been monitored in terms of memory usage and
parallel run-time performance – these are discussed in detail in Section 5.1.

Creating high quality meshes on complex configurations with snappyHexMesh is far from trivial and finding
suitable “meshing recipes” often requires a sound understanding of the various steps in the mesh generation
algorithms, as well as rigorous knowledge of the model configuration and the predominant flow physics
involved. Often a good deal of iterative testing and parameter tuning may be needed before a mesh of acceptable
quality can be generated.

5

During meshing, the mesh quality is constantly being monitored and snappyHexMesh will, in an iterative
fashion, try to improve the mesh quality until all the relevant criteria have been met.

In the meshQualityControls section of the snappyHexMeshDict, we define relatively strict criteria for the final
mesh quality, with face skewness and face orthogonality being two very important quality metrics, see Figure 4
for the definition of these metrics.

Figure 4 Skewness and orthogonality quality metrics

Since snappyHexMesh can run in parallel on distributed cluster nodes by using dynamic load balancing, it is well
suited to become an integrated part of a fully scripted CFD process running in batch on a large parallel cluster.

However, parallel efficiency and scalability while running on multiple cores has been reported to be poor and the
code suffers from high memory consumption as well. One possibility for reducing the memory consumption is to
use a distributed STL input instead of the (default) approach where the STL data gets copied across to every
compute node. This may decrease the significant overhead in RAM allocation that eventually causes
performance issues. With the utility surfaceRedistributePar the geometry can be decomposed and distributed
across the processors, thereby reducing redundancy and hence memory consumption. These two ways of
providing STL input for snappyHexMesh are schematically illustrated in Figure 5.

Figure 5 Standard (left) vs. Distributed (right) STL input

In this project both methods are evaluated and compared in terms of run-time and memory allocation.

An example where the STL data has been distributed over 8 cores is shown in Figure 6, where the colours
represent the different core allocations.

6

Figure 6 Distributed STL input (8 cores)

An illustration of a representative mesh is displayed in Figure 7 where a vertical cut through (part of) the
computational domain is visible. Note the particularly dense mesh underneath and behind the vehicle.

Figure 7 Vertical cut through the time 3 mesh

4.2 The OpenFoam Solver

The Navier-Stokes equations for the incompressible flows are written as

 ∇ ∙ 𝐯 = 0

 !𝐯
!"
+ 𝐯 ∙ ∇ 𝐯 = −∇𝑝 + 𝜈∆𝐯

with suitable initial and boundary conditions, and where 𝐯 is the velocity vector, 𝑝 is the pressure and 𝜈 is the
kinematic viscosity. Since the solutions for the coupled equations are not straightforward, the viscous and
pressure sub-steps require solving a Poisson-equation subject to various boundary conditions.

7

Within the project, the simpleFoam solver is employed to address the large simulations. The Semi-implicit
methods for Pressure-Linked Equations (SIMPLE) algorithm is implemented in the solver simpleFoam and
couples the Navier-Stokes equations in an iterative procedure following [4].

• Set the boundary conditions.
• Solve the discretized momentum equation to compute the intermediate velocity field.
• Compute the mass fluxes at the cell faces.
• Solve the pressure equation and apply under-relaxation.
• Correct the mass fluxes at the cell faces.
• Correct the velocities on the basis of the new pressure field.
• Update the boundary conditions.
• Repeat till convergence.

5. Results and Discussions

The simulations were performed on the Cray XC40 system Beskow [5] at PDC, KTH Royal Institute of
Technology, Sweden, and on MareNostrum [6] at BSC, Spain. Beskow is based on Intel Haswell processors and
the Cray Aries interconnect technology. It consists of 1676 compute nodes, each of which consists of 32 Intel
Xeon E5-2698v3 cores. MareNostrum has 36 racks dedicated to calculations. These racks have a total of 48,448
Intel SandyBridge cores with a frequency of 2.6 GHz and 94.625 TB of total memory.

5.1 snappyHexMesh

Before proceeding with the large scale distributed parallel meshing, the parallel scalability of snappyHexMesh
was first evaluated on a couple of thin compute nodes at PDC where each node has 24 cores and 512 GB RAM.
Different releases of snappyHexMesh (2.3.x, 2.4, 3.0+, 1606+) were tested. Although there were some
performance differences observed between the various releases, unfortunately all the releases were suffering
from poor parallel scalability. For these tests, an intermediate sized mesh of 160 million cells was constructed to
make the mesh generation possible on a single core.

Figure 8 below shows the run-time performance and scalability obtained for this intermediate test case.

Figure 8 Run-time and scalability test of snappyHexMesh, intermediate case using OpenFoam v3.0+

Next, larger meshes of around 350 million cells were generated in parallel on a sequence of 512, 1024, 2048,
4096 and 8192 cores, respectively. The run-time performance and scalability of the entire meshing process, as
well as the timings for each meshing step, are displayed in Figure 9. These graphs clearly illustrate that the
castellated meshing step (time 1) represents a significant portion of the total meshing time (>50%) and that the
parallel scalability of this step is particularly poor.

8

Figure 9 Run-time and scalability test of snappyHexMesh, large case

snappyHexMesh also suffers from relatively high memory consumption. This may lead to performance
implications if the computational nodes have limited RAM. Often separate (fat) nodes or another shared memory
compute architecture must be brought in for the mesh generation for large and complex cases. This not only
creates additional bottlenecks and performance deficits in the overall simulation process but it also increases the
cost and complexity of the necessary compute infrastructure.

Using distributed STL input can reduce the memory consumption of snappyHexMesh and may provide
opportunities to generate larger meshes by using less overall memory. In the more recent versions of
snappyHexMesh this functionality has been improved. Herein we present results obtained while using version
1606+.

Using a distributed STL input we save close to 300 GB in total accumulated memory while meshing in parallel
on 1024 cores (see Figure 10). This represents about a 30% reduction in the overall memory consumption.

However, this saving in RAM comes with a significant penalty in mesh generation time as seen in Figure 11.
Performance degradation in all steps in the mesh generation process is observed (time 1, 2 and 3).

Figure 10 Accumulated memory of snappyHexMesh running on 1024 cores, large case

9

Figure 11 Run time performance of snappyHexMesh STD vs. DIST STL, large case

5.2 The scalability of simpleFoam

Assessments of the total run-times for the simpleFoam solver using the two mesh generation strategies
introduced in Section 4.1, i.e. based on the standard and distributed STL input, are presented below. Figures 12
and 13 show the flow solver scalability for a case containing 110 million cells on MareNostrum and Beskow,
respectively. For each run we average the timings over 500 time steps. The decomposition method Scotch [7] is
used for the standard STL input whereas the hierarchical decomposition method is used for the distributed STL
input.

The execution time per step reduces from 13.874 to 1.158 seconds when running the case with the standard STL
on 2048 cores, see Figure 12. An almost linear speed-up can be observed from 128 to1024 cores on
MareNostrum for the standard STL input. A parallel efficiency of 74.4% is achieved using 2048 cores compared
with 128 cores for the standard STL input. Here we use the definition of the parallel efficiency as

𝜂 % =
𝑇!"#
𝑇!"#

∙
𝑁!"#
𝑁!"#

∙ 100

where is 𝑇!"# the execution time per step for the minimum number of cores 𝑁!"#, while 𝑇!"# is the execution
time per step using the maximum number of cores 𝑁!"#.

Due to memory limitations, the minimum number of cores that can be used for this case on MareNostrum is 128.
The performance and scalability for the Distributed STL input is a bit worse than those for the Standard STL, see
Figure 12. A partial reason for this deficit is that the more efficient partition tool Scotch is employed for the
Standard STL. Currently only simple partition methods, such as hierarchical, are implemented for the
Distributed STL input.

On Beskow the execution time per step reduces from 17.057 to 0.643 seconds when run the case of standard STL
input on 4096 cores, see Figure 13. We can obtain almost linear speed-up from 128 to 2048 cores for the
Standard STL. The parallel efficiency 𝜂 is 82.9% with 4096 cores compared with 128 cores. Using the Disturbed
STL, the performance is worse, but this allows us to run on as little as just two nodes with 64 cores. Beyond
3072 cores the performance degrades significantly. Due to the limit of memory on Beskow (32G RAM per
node), the minimum requirement for the Standard STL is four nodes (128 cores).

10

Figure 12 The performance results on MareNostrum

Figure13 The performance results on Beskow

5.3 Results

We have presented a complete CFD simulation process that runs in parallel on large Linux clusters. The entire
workflow, from prepared CAD input to the output of results, is executed in batches without the need for any
intermediate I/0, data transfer or human interventions in between. All steps in this process rely exclusively on
open source software.

Although the scalability of snappyHexMesh is rather mediocre, we demonstrated that fairly large and complex
CFD meshes could be successfully generated on distributed compute clusters in a limited period of time. Mesh
generation of a detailed semi-trailer configuration comprising 350 million cells was completed in less than 25
minutes using 4096 compute cores. On the same number of cores, the simpleFoam solver was shown to perform
well. Hence, for this size of problem, the presented process performs well.

128 256 512 1024 2048
Number of Cores

0.5

1

2

5

10

20

30

Ex
ec

ut
io

n
Ti

m
e(

s)
/s

te
p

Ideal
Distributed STL
Standard STL+Scotch

64 128 256 512 1024 2048 3072 4096
Number of Cores

0.5

1

2

5

10

20

30
35

Ex
ec

ut
io

n
Ti

m
e(

s)
/s

te
p

Ideal
Distributed STL
Standard STL+Scotch

11

However, while scaling beyond a few thousand computational cores and with model sizes above a few hundred
million cells, a variety of problems and performance deficits arise. In particular, the mesh generation phase
(snappyHexMesh) revealed weaknesses and several software issues have been reported.

Below are a few snapshots from a steady state Reynolds Averaged Navier Stokes (RANS) simulation.

Figure 14 Flow path lines rendered by total pressure

Figure 15 Iso-contours of total pressure

Figure 16 Vehicle surfaces rendered by static pressure and plane rendered by total pressure

12

Figure 17 Vehicle centreline plane rendered by mean velocity magnitude

6. Conclusion

During the project a (semi) automated CFD simulation process tailored towards aerodynamics predictions for
heavy duty semi-trailers was developed. A variety of benchmarks related to parallel meshing and flow solving
using OpenFoam were performed. The memory usage and parallel scalability were monitored revealing
performance deficits and weaknesses, particularly related to parallel mesh generation on many cores. For
efficient simulations of large problems requiring many thousands of computational cores there are still critical
bottlenecks and deficiencies in current OpenFoam distributions that need to be addressed.

Even if the Open Source alternatives do not as yet deliver the same performance as commercial CFD software,
we conclude that time and effort that needs to be invested in Open Source software compares favorably to the
expected sum of expenses for commercial CFD licenses to produce the same results (for a medium scale
problem) and is therefore an option that is well worth continuing to investigate. Open Source software also has
the advantage that, as more development is done within the automotive research community and hence more
tools for automated processes become widely available free of charge, it has the potential to surpass commercial
software in terms of performance to cost ratio.

Research programmes such as PRACE SHAPE, giving smaller companies and research teams access to large-
scale compute infrastructures, are instrumental in the development and validation of numerical tools and
methods capable of delivering cost-effective simulations based on Open Source software.

Creo Dynamics has gathered valuable information and experiences during this project that will help in building
more efficient and competitive simulation processes tailored towards high fidelity analysis of coupled
aerodynamics and acoustic problems in automotive applications.

References

[1] Creo Dynamics AB, http://www.creodynamics.com

[2] OpenFoam, www.openfoam.com

[3] https://ec.europa.eu/clima/policies/transport/vehicles_en#tab-0-0

[4] simpleFoam, https://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOAM

[5] Beskow, https://www.pdc.kth.se/resources/computers/beskow

[6] MareNostrum, https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/marenostrum

[7] Scotch, http://www.labri.fr/perso/pelegrin/scotch/

13

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EU’s Horizon 2020 research
and innovation programme (2014-2020) under grant agreement 653838. The work was done using the PRACE
research infrastructure Tier-0 resource MareNostrum at BSC, Spain, and the Tier-1 resource Beskow at KTH-
PDC, Sweden. Support from the PRACE SHAPE programme for the technical work is also gratefully
acknowledged.

