
Available on-line at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Investigating and Exploiting Application Dynamism For

Energy-Efficient Exascale Computing

Venkatesh Kannana,∗, Lubomı́r Ř́ıhab, Michael Gerndtc, Anamika Chowdhuryc, Ondřej
Vysockýb, Martin Besedab, Horák Davidb, Radim Sojkab, Jakub Kruzikb, Michael Lysaghta

aIrish Centre for High-End Computing, Dublin, Ireland
bIT4Innovations, Ostrava, Czech Republic

cInstitute für Informatik, Technical University of Munich, Germany

Abstract

READEX is a EU Horizon 2020 FET-HPC project whose objective is to exploit the dynamism found in high-performance
computing applications at runtime to achieve efficient computation on Exascale systems. In this paper, we describe the use
of the READEX methodology to investigate dynamic behaviour of PRACE-relevant applications at runtime and describe
how such application dynamism can be exploited to tune a range of application-, system software- and hardware-level
parameters for improved performance and energy efficiency on current and future European extreme-scale systems.

1. Introduction

High performance computing (HPC) is a major driving force for European research and innovation in many
scientific and industrial domains. The applications in these areas are highly complex, and demand high per-
formance and efficient execution. As a result of this growing need for computational performance, the energy
consumption of the HPC systems has continued to increase. This is a cause for concern because the energy
requirements of near-future European extreme-scale systems will be a major factor of the total cost of owning
the HPC system. Therefore, it is crutial to improve the energy-efficiency of the applications that run on these
systems.

A significant source of improvement for applications is that they commonly exhibit dynamic resource require-
ments. This may stem from different regions in the application that are executed or changes in the workload
at runtime. Consequently, such dynamism in an application presents opportunity to tailor the utilisation of
resources in the HPC system based on the requirements of the application at runtime. The READEX (Run-
time Exploitation of Application Dynamism for Energy-efficient eXascale computing) project leverages this
approach to deliver improved performance and energy-efficiency when executing applications on current and
future extreme-scale systems. The goal of the READEX project is to create a tool suite that

1. Identifies existing dynamism in an application to determine its tuning potential.

2. Determines the configurations for different hardware-, system software- and application-level tuning pa-
rameters that suit different scenarios that may arise during the application’s execution.

3. Applies the best configuration for the tuning parameters during the application’s runtime.

In this paper, we describe how, as a part of PRACE WP7, we have chosen to investigate an alpha prototype of
the READEX tool suite to identify existing dynamism in an application to determine its tuning potential. When
analysing a given application, the READEX tool suite quantifies the application dynamism using dynamism
metrics such as compute intensity and execution time of the application. The objective of the tool suite is to
switch the values for different tuning parameters at runtime to optimal configurations based on the observed
application dynamism. We also present the preliminary results from our tuning experiments to demostrate the
potential savings that may be achieved using the READEX approach.

In Section 2., we present an overview of the READEX tool suite and the workflow to describe its use.
In Section 3., we use preliminary results to demonstrate how the technologies developed in the READEX
project enable quantifying the dynamism in an application and the potential gain demonstrated by our tuning
experiments. In Section 4., we describe the reporting structure that has been created to summarise and present
the results of the application dynamism analysis experiments that are performed in READEX. A wider set of
tuning parameters that are targeted by READEX and related work are discussed in Section 5.

* Corresponding author: e-mail. venkatesh.kannan@ichec.ie tel. +353-1-524-1608 fax. +353-1-764-5845

1

Fig. 1. Overview of READEX workflow

2. Overview of READEX Methodology

2.1. Dynamism Metrics

The application dynamism metrics that are presently measured and used in the READEX tool suite are execu-
tion time and compute intensity. While the semantics of execution time is straightforward, compute intensity is
a metric that is used to model the behaviour of an application based on the workload imposed by it on the CPU
and the memory. In the alpha prototype of the tool suite, compute intensity is calculated using the following
formula and is analogous to the operational intensity used in the roofline model [13]:

Compute intensity = Total number of instructions executed
Total number of L3 (LLC) cache misses

Similar to operational intensity, compute intensity can directly dictate the tuning of two hardware parameters
associated with the processor: core frequency and uncore frequency. For instance, a low compute intensity may
indicate an application that is more memory intensive, which results in increased L3 (LLC) cache misses. Since
this would cause increased traffic between the L3 cache and the main memory, it will be desirable to increase
the uncore frequency. On the other hand, a high compute intensity may indicate an application that is more
computation intensive. In this case, it will be desirable to increase the frequency of the CPU cores.

2.2. Objective Values

By measuring the variations in these dynamism metrics in an application, the READEX tool suite aims to
optimise execution time or energy consumption (or a combination of both) of the application. These are
considered to be the objective values that are to be optimised in the READEX project.

2.3. Tuning Parameters

The objective values are optimised by switching the configuration of the tuning parameters based on the observed
values of the dynamism metrics. For instance, the tuning parameters whose configurations can be explored using
tuning experiments performed in the alpha prototype of the READEX tool suite are processor core frequency,
uncore frequency of the processor socket and the number of OpenMP threads used to run the application.

2.4. READEX Workflow

An overview of the READEX workflow in which the READEX tool suite is applied on an application in two
phases is illustrated in Fig. 1 and explained below:

1. Design-time Analysis (DTA)
This is performed during application development and is composed of the following steps:

2

(a) Prepare the application for analysis by instrumenting regions of code that contribute significantly to
objective values – execution time and energy consumption – that are to be optimised. This instru-
mentation is done by adding annotations, both automatically and by letting the user add application-
domain knowledge to expose parameters that define the dynamic behaviour of the application using a
new programming paradigm being developed in the project.

(b) This instrumented application is analysed to first identify existing dynamism that can be exploited by
tuning hardware, system-software and application parameters. If a significant amount of dynamism is
detected, then the regions of code that express this dynamism, referred to as significant regions, are
identified and enlisted.

(c) Following this, experiments are performed to apply various configurations to the tuning parameters
in order to estimate the objective values (execution time and energy consumption) for each runtime
instance of each significant region, referred to as a runtime situation (rts).

(d) The results of these experiments are used to cluster rtss with similar objective values into a scenario.

(e) The results of the design-time analysis are aggregated into a tuning model which is composed of the
specifications for

• Scenarios: Groups of rtss which are found to require the same best configuration for the tuning
parameters.

• Configurations: Values for the tuning parameters, with one configuration for each scenario listed
in the tuning model.

• Classifier : A methodology to map a given rts into one of the scenarios listed in the tuning model.

• Selector : A methodology to identify the configuration best suited for a given scenario.

2. Runtime Application Tuning (RAT)
This is performed during the production run of an application and is composed of the following steps:

(a) During the production run of the application, each encountered rts is mapped into a scenario using
the classifier.

(b) Following this, the best configuration of the tuning parameters for the current scenario is identified
using the selector, and the tuning parameters are switched to the pre-computed values listed in the
tuning model.

(c) Upon encountering an rts that was not seen and classified at DTA, the configuration for a default
scenario that is guaranteed to satisfy any rts is used.

During the course of the READEX project, RAT will be extended to include a calibration mechanism for
the tuning model in which the classification, selection and configuration switching mechanisms may be
updated based on analysis performed by the READEX tool suite during the production run.

More details on the workflow of the READEX tool suite are available in [8].
In the READEX tool suite, DTA is performed by the Periscope Tuning Framework (PTF) in conjunction

with Score-P which provides the instrumentation and measurement infrastructure. RAT is performed by a
newly developed READEX Runtime Library (RRL) in conjunction with Score-P. The RRL is also used during
DTA to perform the tuning parameter switching when searching for the best configurations using PTF.

3. Investigating Application Dynamism

In this section, we demostrate how technologies developed in the READEX project allow the analysis of an
application during the “application pre-analysis” step in the READEX workflow. The objective is to identify
different types of dynamism that may exist in the application, particularly inter- and intra-phase dynamism.

To explain this, consider the snippet of C code shown in Fig. 2. Here, the code regions of interest are the
body of the for-loop and the calls to functions laplace() and fftw() due to their expected higher resource
requirements in comparison with the rest of the code. Being the body of a main iterative computation in the
application, the for-loop body is referred to as a phase region. In this phase region, the functions laplace()
and fftw() are the significant regions. In this context, the READEX tool suite targets identification of two
types of dynamic behaviour:

• Inter-phase dynamism: This is exhibited if the dynamism metrics vary significantly for different runtime
instances (phases) of a phase region. For example, inter-phase dynamism is present if the execution time
measured for different iterations of the for-loop in Fig. 2 is significantly different.

• Intra-phase dynamism: This is exhibited if the dynamism metrics vary significantly for different runtime
instances of the significant regions in a phase. For example, intra-phase dynamism is present if the execution
time or compute intensity of laplace() and fftw() vary significantly in an iteration of the for-loop.

In Section 3.1., we use a mini-application, miniMD from the Mantevo benchmark suite [6], to illustrate the
presence of dynamism using execution time and compute intensity as the dynamism metrics. The relevance
of miniMD stems from it being a light-weight version of NAMD which is a widely-used molecular dynamics
application in the European HPC community. In Section 3.2., we briefly present the technologies that are being
developed in the READEX tool suite to instrument an application and the dynamism identified by the tool suite
using miniMD. This demostrates and evaluates the techniques developed in the READEX project to identify

3

int main(void)

{

// Initialise application

// Initialise experiment variables

int num_iterations = 100;

for (int i = 1; i <= num_iterations; i++)

{

// Start of phase region

laplace(); // Significant region

residue = reduction(); // Insignificant region

fftw(); // Significant region

// End of phase region

}

// Post-processing:

// Write noise matrices to disk for visualisation

// Teriminate application

return 0;

}

Fig. 2. Code sample with phase and significant regions

existing dynamism in an application for improving its performance and energy consumption. In Section 3.3., we
present the preliminary results of the savings achieved from applying tuning actions in response to the identified
dynamism for the total FETI solvers (PERMON [7] AND ESPRESO [9]), BLAS routines and the AMG2013
Proxy application [1]. It is key to note that FETI solvers, such as PERMON and ESPRESO, are also of big
interest and relevance to the European HPC community. These reported savings serve to support the goals
of the READEX project and the tool suite which is under development. The results of comparing the savings
observed from the tuning experiments will be compared in future to those achieved by runtime tuing performed
automatically by the READEX tool suite.

3.1. Manual Analysis of Dynamism

We use the simple miniMD application to illustrate dynamism that may exist in applications. Firstly, we identify
the phase region that is of interest in the application. Fig. 3 presents the run(...) function that contains
the main iterative computation in miniMD. Here, the body of the for-loop is the phase region which performs
the simulation for the number of times (ntimes) specified as a part of the input data provided to miniMD.
The phase region contains calls to multiple functions among which some are identified as significant regions
since their execution times are a significant part of the total application run time. The remaining regions are
considered to be insignificant regions.

As a part of the manual dynamism analysis, our next objective is to identify variations in the dynamism
metrics of interest to us in this phase region. Presently, we use variations in execution time and computational
itensity to quantify the existing dynamism. For compute intensity, we use the PAPI (Performance Application
Programming Interface [3]) counters PAPI INS TOT and PAPI L3 TCM to calculate the compute intensity as
explained in Section 1. for each iteration of the for-loop. An example of the variation in execution time and
compute intensity measured in miniMD is illustrated in Fig. 4. This experiment was run with 8 MPI processes
on 8 cores of an Intel Xeon 2680v3 processor with 2.5 GB memory. Consequently, we observe the following:

• The execution time and compute intensity spikes once every k iterations of the for-loop. Here, k = 10.

• The observed spikes are due to the execution of the body of the if ((n+1) % neighbour.every) block
in the run(...) function.

Here, the frequency of the spike in execution time and compute intensity is decided by neighbour.every which
is an input data provided to miniMD.

Thus, this illustrates the existence of inter-phase dynamism in the miniMD application. Following this, our
objective is to demonstrate how the tool suite developed in the READEX project supports identification of
dynamism in applications. This is presented using the miniMD example in the following section.

3.2. Analysis of Dynamism using READEX Technologies

One of the components developed in the READEX tool suite, readex-dyn-detect, is targeted to measure and
quantify the variation in the dynamism metrics of interest in a given application. For this, the first step is to
identify and annotate the phase region in the application using Score-P. An example of the annotated phase
region of the miniMD application is presented in Fig. 5.

4

void Integrate::run(...)

{

// Initialise

for (n = 0; n < ntimes; n++)

{

// Start of phase region

...

initialIntegrate(); // Insignificant region

...

if ((n+1) % neighbour.every)

{

// Reneighbour atoms

}

else

{

// Computation for atoms

}

...

force->compute(...); // Significant region

...

// End of phase region

}

}

Fig. 3. Code snippet of miniMD phase region

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180 200

tim
e

(m
s)

Phase ID

miniMD per-phase execution time

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140 160 180 200

co
m

pu
te

 in
te

ns
ity

Phase ID

miniMD per-phase compute intensity

Fig. 4. Inter-phase dynamism observed in miniMD using manual analysis

5

void Integrate::run(...)

{

// Initialise

SCOREP_USER_REGION_DEFINE(R1)

for (n = 0; n < ntimes; n++)

{

// Start of phase region

SCOREP_USER_OA_PHASE_BEGIN(R1, "INTEGRATE_RUN_LOOP", 2)

...

initialIntegrate(); // Insignificant region

...

if ((n+1) % neighbour.every)

{

// Reneighbour atoms

}

else

{

// Computation for atoms

}

...

force->compute(...); // Significant region

...

// End of phase region

SCOREP_USER_OA_PHASE_END(R1)

}

}

Fig. 5. Code snippet of miniMD phase region annotated with Score-P

readex-dyn-detect identifies and quantifies the inter- and intra-phase dynamism using execution time
and compute intensity as dynamism metrics. Variation in the execution time across rtss of the phase region
indicates inter-phase dynamism. Variation in the execution time of significant regions across rtss indicates
intra-phase dynamism. Furthermore, different compute intensity, i.e., compute vs. memory bound, of different
significant regions also indicates intra-phase dynamism. To quantify the dynamism that is identified, statistical
information about the performance metrics is measured via Score-P that includes the number of samples,
minimum, maximum, average, and deviation for each metric.

3.2.1. Intra-phase dynamism

Intra-phase dynamism detection by readex-dyn-detect is based on measuring the execution time and compute
intensity. Therefore, the total number of instructions and L3 (LLC) cache misses are measured via PAPI.

The tool then analyzes for each significant region the variation in the execution time characteristics. It
computes the standard deviation relative to the mean execution time of the region in percent (deviationr)
and relative to the mean execution time of the phase (deviationp) as described in Equations 1 and 2 below,
respectively. The values characterize how significant the variation in the execution time is for the region and
phase execution respectively.

deviationreg
r =

dev tregincl

mean tregincl

∗ 100 (1)

deviationreg
p =

dev tregincl

mean tphaseincl

∗ 100 (2)

The variation is considered significant if it is larger than a threshold vt. To decide whether this leads to
significant dynamism, the tool computes the computational weight of the region, i.e., its percentage on the
phase execution time, according to the formula

weight =
tregincl

tphaseincl

∗ 100. (3)

If the region’s execution time variation is significant and its weight is larger than a threshold vw then the
tool reports the presence of intra-phase dynamism due to that significant region.

Another source of intra-phase dynamism is the variation of other characteristics across different significant
regions. The tool currently supports a comparison based on the compute intensity of significant regions. It is
based on the number of total retired instructions and the number of L3 cache misses. The former is used as
a measure for the work done and the latter for the amount of data transferred between memory and the L3
cache. It should be noted that this measure of transferred data is coarse, since it does not take into account all
writes to memory as well as, for example, hardware prefetching. The tool checks all significant regions with a

6

weight above vw. It compares the compute intensity of those regions and reports intra-phase dynamism if the
deviation is larger than a threshold vi.

3.2.2. Inter-phase dynamism

Finally, readex-dyn-detect investigates whether there is significant inter-phase dynamism in the application.
This analysis is based on the execution time of the phase region using the statistical performance metrics
obtained from Score-P. The tool computes the relative deviation of the execution times of the phase region
deviationphase

p . If this deviation is larger than the threshold vt, then the tool reports inter-phase dynamism.

3.2.3. Result for miniMD

An example summarising the analysis result of readex-dyn-detect for the miniMD application is shown in
Fig. 6. The results include the list of significant regions that are identified along with statistics that include the
minimum, maximum and standard deviation of the dynamism metrics for the significant regions and phases from
the dynamism analysis experiments. Also included are the weight of the dynamism metric for each significant
region as a percentage of the metric measured for the phase as described above. Based on this, the types of
dynamism identified in the application are summarised.

For the miniMD application, the dynamism analysis by READEX identifies the available inter-phase dy-
namism illustrated in Fig. 4. It also identifies intra-phase dynamism for routine compute halfneigh due to
variation in the execution time and for functions borders, compute halfneigh, and binatoms due to variation
in their compute intensity characteristics.

3.3. Savings from Tuning Experiments

In order to evaluate the savings achieved on the objective values, the READEX tool suite has developed a tool
called MERIC [2] which measures resource consumption of significant regions inside the evaluated applications.
The savings are measured in two parts, static and dynamic savings, using the measurements obtained with
default settings (2.5 GHz processor core frequency, 3.0 GHz uncore frequency and 1 OpenMP thread) for the
tuning parameters as the baseline. The static savings are measured by setting different values for the tuning
parameters for each tuning experiment. In each experiment, the dynamic savings are measured by setting
optimal configurations for the tuning parameters as the dynamism varies for different significant regions.

MERIC wraps a list of libraries, that can read and update environment settings. The list of currently supported
libraries and runtime systems include the cpufreq on Linux, the x86 adapt on Taurus [5], OpenMP and Cilk++.
These are used to tune parameters such as processor core frequency, uncore frequency, number of OpenMP
threads and number of active cores, respectively.

To monitor the hardware CPU counters and power consumption, MERIC uses HDEEM [5], Linux perf event
and PAPI [3]. The HDEEM energy measurement system is developed by TU Dresden and the Atos (previously
Bull) company. It can provide energy measurements of different granularity: the node level, the CPU socket
level and DRAM level. It is considered to be more accurate than Intel RAPL [4] counters that approximate the
energy consumption on Intel processors.

Currently, MERIC the users to manually select the regions of interest in the code. As the READEX tool
suite is developed, the MERIC tool will automatically obtain the list of significant regions from the results of
readex-dyn-detect to be used in the tuning experiments.

3.3.1. Energy Savings Evaluation for Selected Applications

In this paper, we present and discuss the energy savings achieved for different benchmark applications by
applying the READEX methodology. This is performed using the MERIC tool which can currently measure
savings either for energy consumption or execution time. In the next versions, the MERIC and READEX tools
will be improved to use a combination of both execution time and energy consumption as a single objective
function to be optimised.

The results of the overall energy savings measured using MERIC on a set of applications is presented in Table
1. Here, PERMON [7] and ESPRESO [10] are iterative total FETI solvers. For PERMON the the number of
processor cores used is statically tuned through the number of MPI processes per node and the processor core
frequency is dynamically tuned. For ESPRESO the processor core frequency and number of OpenMP threads
are both dynamically tuned. All these tests were performed on a single socket of a dual socket compute node.
Consequently, this increases the baseline consumption of energy consumption. Thus, the dynamism can be
potentially higher if both sockets are used. In future, these tests will be performed to obtain the measurements
on both sockets.

In the case of the Algebraic Multigrid (AMG2013) solver ProxyApp we were able to achieve static/dynamic
savings 11.42/1.43% for AMG2013 by setting the optimal core frequency and statically tuning the number of
MPI processes.

The energy savings evaluation of selected sparse and dense BLAS routines performed on one computational
node was obtained by dynamically tuning the processor core frequency. The results are summarised in Table
2. In this case a significant energy savings up to 23% is observed and the optimal core frequency varies from
1.2 GHz to 2.5 GHz. So we observe that, for instance, if an application uses a combination of dense BLAS

7

Granularity threshold: 0.010000

There is a phase region

Granularity of PHASE_REGION: 0.044406

Granularity of ForceEAM::compute: 0.019962

Granularity of ForceEAM::compute_halfneigh: 0.019951

Granularity of Comm::borders: 0.159099

Granularity of Neighbor::build: 0.341959

Granularity of Neighbor::binatoms: 0.200335

Candidate regions are:

PhaseRegion

ForceEAM::compute

ForceEAM::compute_halfneigh

Comm::borders

Neighbor::build

Neighbor::binatoms

Call node: ForceEAM::compute_halfneigh Inclusive Time 15.6506

Parent node: ForceEAM::compute Exclusive Time 3.92518e-05

Call node: Neighbor::binatoms Inclusive Time 6.83612

Parent node: Neighbor::build Exclusive Time 2.93781e-10

Significant regions are:

Comm::borders

ForceEAM::compute_halfneigh

Neighbor::binatoms

Significant region information

==============================

Region name Min(t) Max(t) Time Dev.(%Reg) Ops/L3miss Weight(%Phase)

Comm::borders 0.159 0.167 1.6 1701 18

ForceEAM::compute_halfnei 0.016 0.033 12.3 85 43

Neighbor::binatoms 0.176 0.179 0.8 452 20

Phase information

=================

Min Max Mean Dev.(% Phase) Dyn.(% Phase)

0.0171156 0.526382 0.0444062 245.164 1146.84

Min Max Mean Dev.(% Phase) Dyn.(% Phase)

0.0171156 0.526382 0.0444062 245.164 1146.84

threshold time variation (percent of mean region time): 10.000000

threshold compute intensity deviation (#ops/L3 miss): 10.000000

threshold region importance (percent of phase exec. time): 10.000000

SUMMARY:

========

Inter-phase dynamism due to variation of the execution time of phases

Intra-phase dynamism due to time variation(%) of the following important significant regions

ForceEAM::compute_halfneigh

Intra-phase dynamism due to variation in the compute intensity of the following important significant regions

Comm::borders

ForceEAM::compute_halfneigh

Neighbor::binatoms

Fig. 6. Dynamism identified in miniMD using READEX tool suite

8

Application Static savings [%] Dynam. savings [%] Total Savings [%]

PERMON TFETI 11.84 2.68 14.52
ESPRESO TFETI 7.24 5.44 12.68
BLAS ROUTINES 5-23 5-23
ProxyApps 1 - AMG2013 11.42 1.43 12.85

Table 1. Static and dynamic energy savings measured by the MERIC Tool

1 or 2 functions and BLAS 3 functions then one can expect significant dynamism in the application. Similar
observations hold for sparse BLAS functions.

Action Opt.freq. [GHz] Savings [%]

AXPY 1.2 19
SpMV - CSR 1.3-1.7 11-20
SpMV - COO 1.3-1.8 8-17
DMV - FLOAT 1.2 21-23
DMV - DOUBLE 1.2 17-22
SpMM - CSR 1.8-2.4 5-8
DMM - FLOAT 1.7-1.9 2-14
DMM - DOUBLE 1.8-2.5 0-10
SpMDM - CSR-DOUBLE 1.2-1.7 12-20
SpMDM - COO-DOUBLE 1.2-1.8 13-20

Table 2. Energy savings from processor core frequency tuning for BLAS 1,2,3 routines

4. Reporting Application Dynamism

The measurements collected by the application dynamism analysis experiments performed by the READEX
tool suite are logged into a READEX Applicaton Dynamism Analysis Report (RADAR). The RADAR presents
the values set for the tuning parameters in the experiments and measurements of the dynamism metrics and
the objective values. This is done at the three levels of granularity mentioned above: (1) total application run,
(2) per phase region, and (3) per significant region as shown in Figs. 7, 8 and 9, respectively.

Application Name
Benchmark ID

All Phases

Default

Tuning Parameters
Core Freq (GHz)
Thread Count

Dynamism Metrics
Execution Time (s)
Compute intensity (Instr / L3 Miss)

Optimal

Tuning Parameters
Core Freq (GHz)
Thread Count

Dynamism Metrics
Execution Time (s)
Compute intensity (Instr / L3 Miss)

Savings (as % of Default)
Execution Time (s)
Energy (J)

Fig. 7. RADAR – Total Application Run Perspective

In each perspective, the measured dynamism metrics are presented for the default and optimal configurations
that are used for the tuning parameters.

In the phase and significant region perspectives, the minimum, maximum, average and standard deviation
of the dynamism metrics are presented. Additionally, the savings achieved are presented by comparing the
objective values for the optimal configuration with those for the default configuration.

In the significant region prespective, the average value of a measured dynamism metric for each significant
region is also presented as a percentage of that of the phase it belongs to. Further, these values are logged in
the RADAR for different settings of input data set parameters and environment parameters each of which is
uniquely denoted by a “Benchmark ID”.

5. Conclusions

5.1. Summary

Improved performance and energy efficiency of European HPC applications is of paramount concern for extreme-
scale computing systems that are under research and development, and should be of increased concern for
PRACE application enablement on the road to Exascale. One approach to address this is to optimise resource
utilisation and configure the environment in accordance with the requirements of the application during its
execution. The READEX project aims at developing a tool suite to exploit this approach. The technologies
that are developed in READEX facilitate automatic identification of dynamic resource requirements in an

9

Application Name
Benchmark ID
Phase Region

Default

Tuning Parameters
Core Freq (GHz)
Thread Count

Dynamism Metrics

Execution Time (s)

Min
Max
Avg
SD

Compute intensity (Instr / L3 Miss)

Min
Max
Avg
SD

Number of runs

Optimal

Tuning Parameters
Core Freq (GHz)
Thread Count

Dynamism Metrics

Execution Time (s)

Min
Max
Avg
SD

Compute intensity (Instr / L3 Miss)

Min
Max
Avg
SD

Number of runs

Savings (as % of Default Avg)
Execution Time (s)
Energy (J)

Fig. 8. RADAR – Phase Region Perspective

Application Name
Benchmark ID
Significant Region

Default

Tuning Parameters
Core Freq (GHz)
Thread Count

Dynamism Metrics

Execution Time (s)

Min
Max
Avg
SD
Avg as % Phase De-
fault Avg

Compute intensity (Instr / L3 Miss)

Min
Max
Avg
SD
Avg as % Phase De-
fault Avg

Number of runs

Optimal

Tuning Parameters
Core Freq (GHz)
Thread Count

Dynamism Metrics

Execution Time (s)

Min
Max
Avg
SD
Avg as % Phase De-
fault Avg

Compute intensity (Instr / L3 Miss)

Min
Max
Avg
SD
Avg as % Phase De-
fault Avg

Number of runs

Savings (as % of Default Avg)
Execution Time (s)
Energy (J)

Fig. 9. RADAR – Significant Region Perspective

application and tuning hardware-, system software- and application-level parameters for optimised objective
values such as performance and energy consumption.

In this paper, we have demonstrated with PRACE-relevant applications how the READEX tool suite (by
way of an alpha prototype) identifies and reports on dynamism in an application. We also presented the initial
results from tuning experiments that were performed on larger applications to demonstrate the potential savings
that are targeted by the READEX approach. The development roadmap of the READEX tool suite is discussed
in detail in a deliverable report [8].

10

5.2. Related Work

The ANTAREX project [12] targets efficient performance and energy consumption of applications on hetero-
geneous Exascale systems that are composed of multi-core CPUs and accelerators. To achieve this, a domain-
specific language is designed for expressing adaptivity, energy and performance strategies to enforce runtime
application tuning along with resource and power management. Consequently, an additional compilation steps
is required to translate the domain-specific language into the target language.

A manual approach to dynamic tuning of parameters was described by Schöne and Molka [11]. This approach
extends the VampirTrace framework with a library for users to specify optimal configurations for individual
regions, which are later applied at runtime.

The READEX approach is unique and interesting due to automatic analysis and identification of dynamism
in an application and its modelling, using tuning experiments performed at design time, to later perform tuning
actions during the application’s production run.

References

1. CORAL Benchmarks. Last accessed August 10, 2015.

2. MERIC Tool for Energy Measurement - GIT Repository. https://code.it4i.cz/xvysoc01/meric.git.

3. Performance Application Programming Interface. http://icl.cs.utk.edu/papi/.

4. RAPL Interface. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3.

5. Taurus HPC System, TU Dresden. https://doc.zih.tu-dresden.de/hpc-
wiki/bin/view/Compendium/SystemTaurus.

6. The Mantevo Benchmark Suite. www.mantego.org.

7. The PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) Toolbox.
http://industry.it4i.cz/en/products/permon/.

8. Michael Lysaght, Kashif Iqbal, Joseph Schuchart, Andreas Gocht, Michael Gerndt, Anamika Chowdhury,
Madhura Kumaraswamy, Per Gunnar Kjeldsberg, Magnus Jahre, Mohammed Sourouri, David Horak,
Lubomir Riha, Radim Sojka, Jakub Kruzik, Kai Diethelm, and Othman Bouizi. D4.1: Concepts for the
READEX tool suite. Technical report, ICHEC, TUD, TUM, NTNU, IT4I, Intel, gns, 2016.

9. L. Riha, T. Brzobohaty, A. Markopoulos, O. Meca, and M. Merta. ExaScale PaRallel FETI SOlver
(ESPRESO). http://espreso.it4i.cz. Last accessed January 14, 2016.

10. Lubomir Riha, Tomas Brzobohaty, Alexandros Markopoulos, Ondrej Meca, and Tomas Kozubek. Mas-
sively parallel hybrid total feti (htfeti) solver. In Proceedings of the Platform for Advanced Scientific
Computing Conference, PASC ’16, New York, NY, USA, 2016. ACM.

11. Robert Schöne and Daniel Molka. Integrating performance analysis and energy efficiency optimiza-
tions in a unified environment. Computer Science - Research and Development, 29(3-4), 2014. DOI:
10.1007/s00450-013-0243-7.

12. Cristina Silvano, Giovanni Agosta, Stefano Cherubin, Davide Gadioli, Gianluca Palermo, Andrea Bar-
tolini, Luca Benini, Jan Martinovič, Martin Palkovič, Kateřina Slaninová, João Bispo, João M. P.
Cardoso, Rui Abreu, Pedro Pinto, Carlo Cavazzoni, Nico Sanna, Andrea R. Beccari, Radim Cmar, and
Erven Rohou. The antarex approach to autotuning and adaptivity for energy efficient hpc systems. In
Proceedings of the ACM International Conference on Computing Frontiers, CF ’16, pages 288–293, New
York, NY, USA, 2016. ACM.

13. Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual performance
model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009.

Acknowledgements

This work was supported by the PRACE project funded in part by the EUs Horizon 2020 research and innovation
programme (2014-2020) under grant agreement 653838.

11

	Introduction
	Overview of READEX Methodology
	Dynamism Metrics
	Objective Values
	Tuning Parameters
	READEX Workflow

	Investigating Application Dynamism
	Manual Analysis of Dynamism
	Analysis of Dynamism using READEX Technologies
	Intra-phase dynamism
	Inter-phase dynamism
	Result for miniMD

	Savings from Tuning Experiments
	Energy Savings Evaluation for Selected Applications

	Reporting Application Dynamism
	Conclusions
	Summary
	Related Work

