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 34 

Research in context 35 

Evidence before this study 36 

We conducted two different literature searches in the PubMed, Scopus and Google Scholar 37 

databases, without language or publication date restrictions. The first one searched for 38 

estimates of the impacts of the urban heat island on health while the second one searched for 39 

health impacts that could be avoided by increasing the urban green infrastructure. For both 40 

cases we only considered studies carried out in European cities. Our search revealed that there 41 

are only a few studies conducted in this realm, which are only restricted to a small number of 42 

European cities. We found a large body of evidence based on time-series studies, studying the 43 

impacts of suboptimal temperatures on mortality, but only a couple of studies focused on the 44 

mortality fraction attributable to the urban heat island, all of them occurring during heat-wave 45 

events. We found only a few studies that assessed the potential preventable mortality burden 46 

of urban green interventions, however, all studies focused on extreme heat episodes. 47 

Added value of this study 48 

To our knowledge, this is the first study to estimate the mortality burden attributable to the 49 

urban heat island and the mortality burden that could be prevented by increasing the tree 50 

cover in European cities. The added value of the study is mainly constituted by the extent 51 

(covering 93 European cities) and the resolution (250 m cell size) of the health impact 52 

assessment of urban heat islands, which is unprecedented. The spatially explicit analysis of 53 

urban heat exposure and its interaction with urban vegetation informs future realistic city-54 

specific scenarios that can help mitigate adverse heat-related health impacts. 55 

Implication of all available evidence 56 

Our results showed that considerable mortality impacts can be attributed to the urban heat 57 

island in European cities. Most importantly, these impacts could be considerably reduced by 58 

increasing the tree cover and thereby providing cooling in urban environments. This evidence 59 

together with the spatial information of the areas that would benefit the most from increasing 60 

the tree cover is valuable to policymakers in view of targeted green interventions to maximize 61 

population health benefits while promoting more sustainable and climate-resilient cities. 62 

 63 

 64 

 65 
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 66 

ABSTRACT 67 

BACKGROUND: High ambient temperatures are associated with many health effects including 68 

premature mortality. Given the current warming trend due to climate change and the global 69 

built environment expansion, the intensification of urban heat islands (UHI) is expected, 70 

accompanied by adverse impacts on population health. Urban green infrastructure can reduce 71 

local temperatures. We aimed to estimate the mortality burden that could be attributed to the 72 

UHI and the mortality burden that would be prevented by increasing the urban tree cover (TC) 73 

in 93 European cities.  74 

METHODS: We conducted a quantitative health impact assessment (HIA) for the summer 75 

(June-August) of 2015 to estimate the impact of the UHI, on all-cause mortality for adult 76 

residents (≥ 20 years old) in 93 European cities. In addition, we estimated the temperature 77 

reduction resulting by increasing the TC to 30% for each city and estimated the number of 78 

deaths that could be potentially prevented as a result with the aim of providing decision-79 

makers with usable evidence to promote greener cities. We performed all analyses at a high-80 

resolution grid-cell level (250m x 250m).  81 

FINDINGS: The population-weighted-city-average UHI from June to August was 1.5°C (city 82 

range 0.5°C - 3.0°C). Overall, 6,700 (95% CI 5,254 - 8,162) premature deaths could be 83 

attributable to the UHI (ie, 4.3%, city range 0.0%-14.8% of summer mortality, 1.8%, city range 84 

0.0%–2.8% of annual mortality). Increasing the TC up to 30% at 250m resolution resulted in an 85 

average city cooling of 0.4ºC (city range 0.0ºC-1.3ºC). We estimated that 2,644 (95% CI 2,445-86 

2,824) premature deaths (ie, 1.8%, city range 0.0%-10.8% of summer mortality, 0.4%, city 87 

range 0.0%–2.0% of annual mortality) could be prevented by increasing the average TC in cities 88 

to 30%.  89 

INTERPRETATION: Our results showed the impacts on mortality of the UHI and highlight the 90 

health benefits of green infrastructure to cool urban environments, while promoting more 91 

sustainable and climate-resilient cities. 92 

 93 

Funding. GoGreenRoutes, Spanish Ministry of Science and Innovation, Internal ISGlobal fund, 94 

Medical Research Council-UK, European Union’s Horizon 2020 Project Exhaustion. 95 

 96 
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INTRODUCTION 99 

Many epidemiological studies have provided evidence on how extreme temperature affects 100 

human health and mortality. Exposure to high ambient temperatures has been associated with 101 

premature mortality (1,2), cardiorespiratory morbidity (3,4), hospital admissions (5) and 102 

children´s mortality and hospitalization (6). Temperature and mortality are related not only 103 

during extreme hot temperature events, such as heat waves, but also under moderately warm 104 

temperatures (2,7). Small changes at mild or moderate temperatures may occur more frequently, 105 

and therefore can have significant health impacts (2,8,9). 106 

The urban heat island (UHI) phenomenon refers to the temperature difference between the city 107 

and its surrounding areas and it is considered as one of the most striking climatic manifestations of 108 

urbanization (10). The UHI originates from the anthropogenic modification of natural landscapes 109 

such as changes in the pattern of vegetation and water bodies through fragmentation and 110 

conversion into impermeable surfaces (11). The increased absorption and trapping of solar 111 

radiation in built-up urban fabrics, increasing population density and the absence of green areas 112 

are the main factors that have been associated with the UHI formation (12). The UHI may intensify 113 

the impact on health of high temperatures, increasing health risks for the most vulnerable 114 

populations (13).  A study in the West Midlands, UK estimated that the UHI contributed around 115 

50% of the total heat-related mortality during the 2003 heatwave (14). Another study in Ho Chi 116 

Minh City, Vietnam, compared the heat related mortality between the central and outer districts 117 

and estimated that the attributable fraction resulting from the UHI was 0.42% (15). 118 

Previous studies have reported a nonlinear association between temperature and mortality, 119 

characterized by U- or J- shaped association (1–3). These associations vary dramatically between 120 

populations due to differences in susceptibility, age distribution, access to resources, adaptability 121 

and local public policies (e.g. extreme heat warning systems, healthcare system preparedness, 122 

etc)(1). The modelling of such complex patterns requires a sophisticated statistical approach and 123 

the collection of large historical data (2). Masselot et al (forthcoming) have provided mortality risk 124 

estimates for 801 European cities by age group accounting for a large list of city-level socio-125 

economic, climatic, and environmental characteristics (16), enabling the performance of 126 

Health Impact Assessment (HIA) studies for estimating the impacts of potential temperature 127 

variations, for instance, using a comparative risk assessment (CRA) approach.  128 

The CRA HIA approach evaluates the potential changes on the population health that would 129 

result from shifting baseline exposure levels to an alternative, counterfactual exposure level 130 

scenario (17). This approach serves as a decision-making framework with robust and usable 131 
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evidence on the implication of health-promoting scenarios that could be achieved through 132 

specific urban planning strategies (18). The CRA HIA approach can be applied at high spatial 133 

resolution level, and therefore, can capture spatial variability, which carry important 134 

environmental justice and health equity implications.  135 

There are a few known planning and design strategies to mitigate urban heat: (1) Introducing 136 

green roofs or facades (19–22); (2) enhancing the reflective properties (ie, albedo) of buildings 137 

by using light colours for roof and wall surfaces (20,23); (3) replacing impervious surfaces with 138 

permeable or vegetated areas (24–26); and (4) increasing the tree cover (TC) (27–30). Urban 139 

trees may offer an important opportunity to mitigate high temperatures while constituting a 140 

relatively simple and cost-effective solution (28). Marando et al (2021) have estimated the 141 

cooling capacity of trees in more than 600 European cities (27). The authors simulated the 142 

temperature difference between a baseline and a no-vegetation scenario, extrapolating the 143 

role of trees in mitigating UHI in different urban contexts. Urban trees were found to cool 144 

European cities by about 1.07 °C on average, and up to 2.9 °C (27). A recent evidence-based 145 

guideline has recommended a 30% TC goal per neighbourhood for cooling, improving the 146 

microclimate, mitigating air and noise pollution and improving mental and physical health (31), 147 

and many cities have already set a 30% of TC as a target (32–36). Furthermore, previous 148 

epidemiological studies have reported health benefits of exposure to 30% or more TC including 149 

lower odds of incident psychological distress (37) and non-communicable diseases (NCD) such 150 

as diabetes, hypertension and cardiovascular disease (CVD) (38). 151 

Given the ongoing global warming and the urban sprawl and development of natural lands , 152 

the intensification of UHIs is expected (6,39,40). While the benefits of global mitigation 153 

strategies have been well discussed, the health benefits of improving local climate through 154 

improving the urban planning in cities are still unknown. Furthermore, compared with global 155 

efforts, some local actions to improve urban climate offer the advantages of being politically 156 

easier to implement and of having short-term benefits (41). 157 

We conducted a quantitative HIA in 93 European cities to estimate the annual mortality 158 

burden that could be attributed to the UHI.  We also estimated the mortality burden that 159 

could be prevented if reduction in temperature is achieved by increasing the TC to 30%, 160 

following the target already adopted by many cities. Our ultimate goal is to inform local policy 161 

and decision-makers on the benefits of strategically integrating urban green infrastructure 162 

(UGI) into urban planning in order to promote more sustainable, resilient and healthy urban 163 

environments and contribute to climate change adaptation and mitigation. 164 
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METHODS 165 

Cities selection 166 

European cities and their boundaries were defined from the Urban Audit 2018 dataset of 167 

Eurostat (42). This database includes data for all European cities with more than 50,000 168 

inhabitants, also including greater cities (Supplement A). We selected the cities based on the 169 

Urban Climate (UrbClim) model temperature data availability (43). The dataset includes 100 170 

cities, six of which were not included in the Urban Audit dataset (ie, Belgrade, Novi Sad, 171 

Podgorica, Sarajevo, Skopje and Tirana). We also excluded Reykjavic, Iceland, due to lack of 172 

exposure-response function (ERF), therefore analysed the remaining 93 cities. Given that the 173 

City of London is more of an economic centre rather than a residential place (ie, with only 174 

8,200 inhabitants living by 2015), we decided to include London Greater City instead 175 

(Supplement A), hereafter referred to as city and increase the coverage in terms of city size 176 

and population. 177 

Population data 178 

We retrieved demographic data following the procedure well described by previous HIA studies 179 

for European cities (44–46). Briefly, we retrieved total population counts for each city from the 180 

Global Human Settlement Layer (GHSL) for 2015 (47), which was the latest available population 181 

layer in a high resolution (ie, 250 m × 250 m). We excluded from the baseline GHSL dataset the 182 

non-residential areas (ie, industrial zones, port areas and water bodies, airports, parks) to better 183 

represent population distribution, based on land use data from European Urban Atlas 2012 (48). 184 

We reallocated the population from the removed grid cells among the dataset according to the 185 

GHSL population distribution to maintain the total city population counts (Supplement B). We 186 

retrieved the population age distribution for 2015 from Eurostat at the Nomenclature of 187 

Territorial Units for Statistics (NUTS) 3 level (42)). We calculated the proportion of population in 188 

each 5- year age group by NUTS3 and estimated the population distribution by age group. We 189 

aggregated the groups as 20-44, 45-64, 65-74, 75-84 and 85 years and older to fit them with 190 

ERFs (Supplement B). 191 

All-cause mortality 192 

We retrieved weekly all-cause mortality counts by age group for 2015 from Eurostat (42), 193 

available for 81 cities at NUTS3 level. We estimated the daily mortality rates per age group per 194 

city assuming the same distribution as the NUTS3 and a homogeneous distribution of deaths 195 

over the same week and applied the rates to each grid cell.  196 
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For cities without weekly deaths counts available (n = 12) (Supplementary Table 1), we 197 

retrieved annual city-specific all-cause mortality counts for 2015 from Eurostat (42). We 198 

estimated the mortality rates per age group and applied the rates to each grid cell. We 199 

retrieved monthly country mortality counts (42) and estimated the proportion of deaths per 200 

month. We assumed a homogeneous distribution of deaths over the same month and 201 

estimated the daily deaths per grid cell. 202 

The daily mortality counts estimated correlated strongly between the two methods for the 81 203 

cities for which data was available (Pearson correlation=0.98), however with an overestimation 204 

of the annual city-specific mortality counts (17%). Therefore, we calibrated it (Supplement B). 205 

Baseline exposure to heat  206 

We defined the baseline exposure scenario as the daily mean temperature for the corresponding 207 

baseline 2015 TC of each city. We retrieved daily mean temperature from the Urban Climate 208 

(UrbClim) model for 93 cities at 100m x 100m resolution (43). The model combines large-scale 209 

meteorological data on surface, sea, precipitation, soil, and vertical profile, and a description of the 210 

terrain that includes land use, vegetation (Normalized Difference Vegetation Index, NDVI), and 211 

soil sealing. Temperature series were created by averaging the 100m grid cells with centroids 212 

within the spatial boundaries of each 250m grid cell. 213 

Health Impact Assessment (HIA) 214 

We conducted a quantitative HIA at 250 m by 250 m grid cell level for the year 2015, for the 215 

adult population > 20 years old residing in the 93 cities (n = 57,896,852) based on the GHSL 216 

residential population (47). We considered the summer period  from June 1st to August 31st, 217 

based on previous seasonality studies on temperature-attributable mortality (49). Year 2015 218 

was found typical of the current climate temperature-wise (Supplement C). We followed a 219 

quantitative HIA approach based on CRA methodology (44–46).  We conducted two main analyses. 220 

The first analysis estimated the impact of the exposure to the UHI effect on mortality, 221 

therefore, we compared the baseline temperature exposure with a counterfactual exposure, 222 

although non-realistic, without UHI. The second analysis estimated the mortality impact of 223 

increasing the TC to 30%, as recommended, and the subsequent temperature reductions. 224 

We retrieved city and age group-specific exposure-response functions (ERFs) from Masselot et 225 

al (16). We estimated the daily baseline temperature exposure levels and we calculated the 226 

Population Attributable Fraction (PAF) for each daily mean and age group. We estimated the 227 

attributable premature mortality burden combining the PAF and the daily all-cause mortality 228 
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(Supplement C). We repeated the same procedure for each of the counterfactual scenarios 229 

and we calculated the difference with the baseline scenario. The obtained result is the 230 

premature mortality burden attributed to shifting baseline exposure levels to the specific 231 

counterfactual exposure level scenario (ie, UHI effect or 30% TC) (Figure S1).  232 

We added up the results by city and estimated the preventable age-standardized mortality per 233 

100,000 population, based on European Standard Population (ESP) (50) and the percentage of 234 

preventable annual and summer all-cause deaths. Additionally, we calculated the Years of Life 235 

Lost (YLL) due to the premature deaths (Supplement C).  236 

We performed the analysis considering the sources of uncertainty. The parameters considered 237 

were: the ERFs, the UrbClim temperature data error, the temperature adjustment model error, 238 

the UHI data error and the cooling model error, accordingly. We constructed the uncertainty 239 

distribution for each parameter and estimated the point estimates and 95% confidence 240 

intervals performing 500 Monte Carlo iterations by sampling from the built uncertainty range, 241 

considering all the parameters uncertainties at the same time in order to have the cumulative 242 

uncertainty.  243 

Finally, we ran Pearson correlations assessing the association between the outcomes from the 244 

UHI scenario and the 30% TC scenario. 245 

Exposure response functions (ERFs) 246 

We retrieved the ERFs quantifying the association between temperature exposure and all-causes 247 

mortality by city and age group (ie, 20-44, 45-64, 65-74, 75-84 and 85 years and older) from 248 

Masselot et al (forthcoming) (16), which considers a comprehensive list of city-level characteristics 249 

making the ERFs the best evidence available in the literature. 250 

Given that the risk estimates were built under the ERA5-LAND temperature dataset with a 251 

resolution of approximately 9 km, therefore covering rural areas, it was expected that the ERF 252 

temperature range was lower than the UrbClim temperature range. For that reason, we applied a 253 

city-specific correction to the UrbClim dataset (Supplement D). 254 

Counterfactual levels of exposure to heat 255 

 Urban Heat Island.  We retrieved the mean day-time UHI and mean night-time UHI data at 256 

100 m x 100 m resolution for 2015 summer season (ie, June - August) from the Copernicus UrbClim 257 

model application (43). The UHI is estimated as the difference between the mean rural 258 

temperature (ie, represented by the rural classes of CORINE) and each of the urban grid cells 259 



9 
 

(43).  We estimated the 250m grid cell 24-h daily mean UHI by averaging the day and night UHI 260 

100 m grid cells with centroids within the spatial boundaries of each 250 m grid cell 261 

(Supplement E, a). In spite of the known differences between day-time and night-time UHI we 262 

averaged them given that the available ERFs consider 24 hours of exposure to a daily mean 263 

temperature. For the grids with negative values we considered a null UHI (Supplement E, a).  264 

 TC 30%. We estimated the decrease in temperature, ie cooling effect, as the result of 265 

increasing the TC up to 30% at a grid cell level. The Copernicus HRL Forest defines TC as the vertical 266 

projection of tree crowns to a horizontal earth’s surface (51). For each city, we analyzed the 267 

feasibility of achieving this counterfactual by estimating the percentage of open space where 268 

potentially trees could be planted according to the corresponding land use. On average, cities 269 

presented a mean difference between the open space and the 30% target at a grid-cell level of 270 

2.9%, ranging from 0.1% to 7.7%, indicating the reasonable target for European cities (Supplement 271 

E,b). 272 

As an additional analysis, we set a more attainable scenario of 25% TC, based also on previous 273 

studies´ translations of the WHO recommendation on access to green spaces (52,53); and a more 274 

ambitious of 40% TC, based on a previous research suggesting a 40% TC for having significantly 275 

reduced daytime air temperature (29). 276 

We followed the Marando et al (2021) and Heris et al´s (2021) approach (27,54), which determined 277 

the best fitted models through Machine Learning techniques were linear regressions. Briefly, (i) 278 

first, we retrieved Landsat-8 Images (30m x 30m resolution) (55) and estimated the median 279 

Land Surface Temperature (LST) (June-August, 2015) for each grid cell. (ii) Then, for each city, 280 

we developed a linear regression model with an ordinary least square algorithm trained by the 281 

LST (°C ) dataset, the TC (retrieved from Copernicus at 100m x 100m resolution) (51) 282 

(Supplement D, b) and the amount of water evaporated from trees at 500m x 500m resolution 283 

(Etree, mm day−1), which is the sum of transpiration and vaporization of intercepted rainfall 284 

from vegetation (from PML V2 evapotranspiration product, based on the Penman-Monteith-285 

Leuning canopy conductance model, (56,57)) to estimate the impact of trees on surface 286 

temperature reduction at grid-cell level (Eq. 1).  287 

Eq. (1)   LST = β0e4 + β1e4TC + β2e4Etree 288 

(iii) After that, we built a second ordinary least squares model, trained with an air temperature 289 

dataset for predicting the maximum air temperature (Tair, °C) as a function of LST and latitude 290 

(Eq. 2). The existing network of weather stations in Europe has insufficient coverage and 291 
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therefore cannot be used for the aforementioned purposes, so we used a US air temperature 292 

dataset (Supplement E, b).  293 

Eq. (2)   Tair = β0e5 + β1e5LST + β2e5Latitude 294 

We validated the model through a linear regression between the predicted values and the UrbClim 295 

values with an adjusted R2 equal to 0.66 and a RMSE% of 2.03 (Supplement E, b). 296 

iv) In order to estimate the LST corresponding to TC equal to 30%, 40% and 25%, we estimated 297 

the city-average Etree considering the grid cells with: (1) TC=28-32% (Etree30) and, (2) TC=38-298 

44% (Etree40), (3) TC=23-27% (Etree25), respectively. We considered an interval plus-minus 2º 299 

for avoiding low counts.  300 

v) Finally, we set the counterfactuals as 30% (main analysis), 40% and 25% TC (additional 301 

analyses) and estimated the respective LSTs by replacing in Eq.2 with the corresponding TC 302 

and Etree. We estimated the Tair with the obtained LST with the Eq. 2 and we calculated the 303 

difference between the baseline Tair and the counterfactual Tair. This difference is the cooling 304 

we would obtain if increasing the TC from baseline to 30%, 40% and 25%, accordingly, at grid-305 

cell level and is the temperature reduction we used as our counterfactual in the HIA. All of the 306 

grids with negative cooling values were set to Null (ie, 16%) (Supplement E,b). In addition, 307 

3.6% of the grid cells, covering 3.4% of the total population, were excluded from the analysis 308 

due to missing values of any of the parameters required for running the model. The error of 309 

the model has been estimated by calculating the propagated error of the two regressions, for 310 

each city, as described by Marando et al (2021) (27) (Supplement E, b). The city-average R 311 

squared was of 0.41 (city range 0.07 – 0.79).  312 

Sensitivity analyses 313 

We conducted sensitivity analyses to assess the effects of changes in the HIA input variables on 314 

the magnitude of our mortality estimations. We evaluated for both HIA scenarios (i.e. UHI 315 

effect and 30% TC) the effects of using Martinez-Solanas et al (2021) ERFs, available for 147 316 

European regions (NUTS2) covering 66 cities (58). For the UHI scenario, we assessed the effects 317 

of using the adjusted and the non-adjusted annual city-specific mortality datasets, the impact 318 

of using the grid-average summer UHI as well as the city-average summer UHI. For the 30% TC 319 

scenario, we assessed the effects of using the city-average cooling. In addition, we conducted a 320 

sensitivity analysis of the cooling model by changing the Etree30 estimation. We ran linear 321 

regression by city between the TC and the Etree and predicted the Etree when TC was 30%. A 322 

second approach was to run the regressions between the TC and the Etree grouping by biome, 323 
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given that the Etree is associated with the vegetation and climate of the region (56,59). In this 324 

way, we increased the counts and avoided poor adjustments. We evaluated the effects on the 325 

city-average cooling as well as on the 30% TC (Supplement F). 326 

Uncertainty analysis 327 

In order to understand the uncertainty contribution of each parameter in our confidence 328 

interval, we performed an uncertainty analysis for 6 selected cities for both HIA scenarios (UHI 329 

effect and 30% TC). For this, we ran 500 Monte Carlo simulations considering each of the 330 

parameter’s uncertainty separately. We selected the cities in order to have two cities with high 331 

mortality impacts (ie, Barcelona and Budapest), two cities with moderate mortality impacts (ie, 332 

Munich and Lodz) and two cities with low mortality impacts (ie, Riga and Rotterdam) 333 

(Supplement G). 334 

Cooling effort Index 335 

We created an indicator of the TC increment efforts needed to cool down cities, which is the 336 

ratio between the cooling effect of TC at 30% and the average increase in TC to reach the 337 

target of 30%, hereafter refer to as Cooling Effort Index. It can be interpreted as the cooling we 338 

could obtain per 1% of TC increment. 339 

RESULTS  340 

Overall, 57,896,852 inhabitants over 20 years old resided in the 93 studied cities in 2015. City 341 

population counts ranged from 95,242 (Tartu, Estonia) to 8,011,216 (London Greater City, UK), 342 

with a median population size of 624,495 inhabitants. In total 555,215 deaths from all causes 343 

were reported for the same year with 23.1% (n=128,269) having occurred from June to August. 344 

Overall, summer average temperatures ranged between 14.2°C in Glasgow, UK, and 29.7°C in 345 

Sevilla, Spain, with average maximum temperatures ranging between 22.7°C in Tallín, Estonia, 346 

and 36.8°C in Sevilla, Spain. The population-weighted-city- average daily UHI from June to 347 

August was 1.5°C (city range 0.5°C -3.0°C) (Figure 1) with maximum grid-cell values reaching 348 

4.1°C in Cluj-Napoca, Romania (Supplementary Table 1).  349 

The city-average TC was 14.9% (city range 2.1%-34.6%), whereas the grid-cell-population-350 

weighted-average was 10.9% (city range 1.8%-29.9%). We estimated that increasing the TC up 351 

to 30% at 250m resolution would result in an average city cooling of 0.4°C (city range 0.0°C -352 

1.3°C) (Figure 1) with maximum grid-cell values of 5.9ºC (Supplementary Table 1). Increasing 353 

the TC to 30% at a grid-cell level would lead to a city-average increase of 17.7% (city range 354 

3.8%-28.8%) (Supplementary Table 1). 355 
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Across all examined cities, almost 75% and 20% of the total population (57,089,394 and 356 

14,491,628 inhabitants) lived in areas with an average-summer UHI greater than 1ºC and 2ºC, 357 

respectively. Overall, 6,700 (95% CI 5,254 - 8,162) premature deaths could be attributed to the 358 

UHI during the summer months (ie, 4.3%, city range 0.0%-14.8% of summer mortality, 1.8%, 359 

city range 0.0%–2.8% of annual mortality) and 2,644 (95% CI 2,444-2,824) premature deaths 360 

could be prevented by increasing the TC up to 30% (ie, 1.8%, city range 0.0%-10.8% of summer 361 

mortality, 0.4%, city range 0.0%–2.0% of annual mortality) (Table 1, Figure 2). This 362 

corresponds, on average, to 39.5% of the deaths attributable to the UHI. 363 

A great variability in the attributable mortality burden was observed among the cities.  The UHI 364 

was associated with a range of 0 (Göteborg, Sweden) and 32 (Cluj-Napoca, Romania) 365 

premature deaths per 100,000 age-standardized population, with an average of 10 deaths per 366 

100,000 age-standardized population (Table 2, Figure 2). The increase in the TC to 30% could 367 

prevent between 0 (Oslo, Norway) and 22 (Palma de Mallorca, Spain) premature deaths per 368 

100,000 age-standardized population (Table 3, Figure 2).  369 

Overall, cities with the highest mortality rates attributable to the UHI were in Southern and 370 

Eastern Europe, particularly in Spain, Italy, Hungary, Croatia and Romania. While cities with the 371 

lower UHI attributable mortality rates were mainly located in Northern Europe including 372 

Sweden, Estonia, UK, and northern France (Table 2, Figure 2). A similar pattern was observed 373 

for the mortality rates that could be prevented by increasing the TC (Table 3, Figure 2). Indeed, 374 

the number of deaths attributable to the UHI and the number of preventable deaths for 375 

increasing the TC to 30% were strongly linearly correlated (r=0.89), as well as the attributable 376 

mortality rates (r=0.75), the percentage of annual attributable mortality (r=0.73) and the 377 

attributable YLL (r=0.89) (Supplement C).  378 

For the UHI scenario, the sensitivity analyses indicated that the largest variations in the final 379 

estimates were due to the use of the non-adjusted city-specific annual mortality dataset 380 

(+20%), followed by the use of the average city UHI (-18%), followed by the change in the ERF. 381 

For the 66 cities covered, the use of the Martínez Solanas ERF represented a 17% decrease in 382 

the impacts on the estimated preventable mortality burden. The use of the adjusted city-383 

specific annual mortality dataset and the average-summer UHI by grid resulted in slightly 384 

higher estimates (ie, +3% and +2%, accordingly) (Table 1).   385 

We observed great changes in the mortality burden estimations under alternative 386 

counterfactual scenarios. The more ambitious TC counterfactual scenario equal to 40% would 387 

lead to a 41% increase in the mortality burden with an average city cooling of 0.5°C, whereas 388 
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the more attainable TC counterfactual scenario equal to 25% would lead to a 21% decrease in 389 

the mortality burden with an average city cooling of 0.3°C. The use of Martinez-Solanas et al 390 

(2021) ERF supposed a decrease of 21% followed by the use of the average cooling by city (-391 

19%) (Table 1). Finally, the changes in the cooling estimations resulted in minor differences in 392 

the estimates (+1% and +3% for using linear regressions by city and by biome, respectively) 393 

(Table 1). Taken as a whole, the sensitivity analyses showed high robustness of our results, as 394 

the observed changes correlated strongly with our main estimations (Supplement F). 395 

Uncertainty analysis of the UHI scenario showed that the UHI was the primary contribution of 396 

uncertainty, followed by the baseline temperature, the ERF and the temperature adjustment 397 

to ERA5. For the 30% TC scenario, the baseline temperature was the primary source of 398 

uncertainty, followed by the ERF, the cooling model and finally, the temperature adjustment 399 

to ERA5. (Supplement G). 400 

Cities with higher Cooling Effort Index were mainly located in Northern Europe (ie, Oslo, 401 

Edinburgh, Göteborg, Tallin) but were also geographically-dispersed and included Sofía, Liège, 402 

Krakow, Graz, Nantes and some cities in northern Italy (ie, Torino, Bologna, Genova). Whereas 403 

cities with lower Cooling Effort Index were mostly located in the Southern Europe (ie. Athens, 404 

Thessaloniki, Bari, Varna, Valencia, Porto), they were also dispersed across Central Europe (ie, 405 

Zurich, Padova, Milano, Leipzig, Munich) (Figure 1). 406 

 407 

DISCUSSION 408 

This is the first study to estimate the mortality burden attributable to the UHI and the 409 

mortality burden that could be prevented by increasing the TC in European cities. Our results 410 

show that a large number of deaths (6,700, 95% CI 5,254 - 8,162) could be attributed each 411 

summer to the UHI and that 39.5% of these deaths can be avoided by increasing the TC in 412 

cities to 30%. 413 

Our results align with prior studies estimating the cooling obtained from UGI strategies. Sailor 414 

et al (2003) estimated that a 10% increase in the TC, could reduce urban temperatures in 415 

Philadelphia, U.S., by 0.22°C  (60), while another study for New York City, U.S, estimated a 416 

potential 0.6°C  reduction at 3 p.m. if 31% of the city area were covered with trees and green 417 

roofs (22). In addition, a recent systematic review on cooling modelling showed that street 418 

trees can reduce urban air temperature on average 0.3°C per each 10% TC increase (61). We 419 

estimated that a city-average increase of 17.7% (ie, for reaching TC=30%) would cool European 420 
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cities by 0.4°C on average (city range 0.0°C -1.3°C). Nevertheless, according to Marando et al 421 

(2021), temperatures could be reduced by 1°C on average in an European Functional Urban 422 

Area (FUA) with a TC of 16% (27). Despite of having used a similar methodology, our estimates 423 

are notably lower. The differences obtained can probably be explained by the area of scope of 424 

the study. While we developed the model at a city level, Marando et al (2021) did it at a FUA 425 

level, which is constituted by a core city and its commuting zone, often including greener areas 426 

(ie, peri-urban forests). This has two main consequences, particularly regarding the Etree layer. 427 

First, since this layer has a rather coarse spatial resolution (500m x 500m) it might not well 428 

capture spatial heterogeneity at city level, especially in the case of scattered trees (27). 429 

Second, a different transpiration rate of trees in highly urbanized settings, compared to peri-430 

urban areas, has been previously reported (62), and might explain the lower performance of 431 

trees observed in our study. In fact, urban trees are often exposed to harsh conditions (i.e. 432 

paved soils, air pollution) which can limit transpiration and, therefore, their cooling capacity 433 

(63). However, it should be noted that the cooling effect of street trees, despite being small, is 434 

important to alleviate the UHI effect in highly urbanized areas (64). 435 

Most of the cities that presented high UHI, were also the most densely populated (ie, Paris, 436 

Thessaloniki, Athens, Lyon, among others), with population densities ranging between 10,722 437 

and 20,934 inhabitats per 1 km2. Indeed, this association between population density and UHI 438 

has been well described in previous studies (10,12). Furthermore, these cities also had low TC, 439 

which indicates the potential for improving urban microclimate by increasing the urban tree 440 

layer. However, UHI formations is a complex phenomenon that have been associated with 441 

many factors. Moreover, various drivers of the UHI have differential day-time and night-time 442 

effects. While vegetation is the dominant factor for UHI intensity during day-time, the urban 443 

canyon more strongly drives UHI at night (65). On top of this, the night-time UHI intensity is on 444 

average three-fold the day-time UHI (ie, 0.6°C and 1.9°C, respectively). Therefore, UGI 445 

strategies need to be accompanied by other interventions that especially reduce night-time 446 

UHI to achieve larger health benefits, such as changing the ground surface materials (ie, 447 

asphalt to granite) and more structural interventions that involve changes in the sky view 448 

factor (ie, fraction of visible sky as the result of the street geometry and building density) (65). 449 

Indeed, our results show that, on average, 39.5% of the attributable deaths due to UHI could 450 

be avoided by increasing the TC to 30%. Evidently, and in line with other studies (66,67), this 451 

intervention should be combined with others in order to reach a greater temperature 452 

reduction and greater preventable impacts, particularly, for those cities for which increasing 453 

the TC would not reduce the temperature significantly. 454 
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Just as the characterization of the UHI is specific to each city, so is the TC cooling capacity. Our 455 

cooling estimates were not only determined by the TC cooling capacity, but by the baseline TC. 456 

In other words, if the cooling capacity is high and the baseline TC is already close to 30%, the 457 

potential for reducing temperatures through UGI would be low. In turn, if both the vegetation 458 

cooling capacity and the TC are low, the resulting potential for cooling might be higher than 459 

expected. For this reason, to improve the interpretability of our results, we built the Cooling 460 

Efforts Index. Notably, most cities with higher Cooling Efforts Index are also the ones with 461 

lower UHI attributable impacts (ie, Glasgow, Edinburg, Oslo, Göteborg, Tallin and Helsinki). On 462 

the other hand, several Mediterranean cities presented lower Cooling Efforts Index and tended 463 

to have, on average, greater attributable mortality impacts (ie, Athens, Valencia, Sevilla, 464 

Palermo, Málaga and Madrid). This implies that greater efforts are required for these cities, in 465 

order to achieve temperature reduction due to the combination of low baseline TC and low TC 466 

cooling capacity.  467 

Some of the cities in semi-arid conditions also presented low or even negative UHI, however 468 

this is not due to optimal urban planning practices. In dry regions, rural land surfaces can be 469 

warmer than urban areas, particularly if the vegetation is not irrigated (68,69). Also, droughts 470 

can limit the evapotranspiration rate (62). On the other hand, urban centers with tall buildings 471 

can provide shading amplifying this negative temperature difference (70). In spite of 472 

presenting relatively low UHI intensity, in some cities (ie, Palma de Mallorca, Alicante, Porto, 473 

Roma and Napoli) the attributable mortality impacts were high. One possible explanation for 474 

this is the already high baseline temperature which poses a baseline elevated risk for the 475 

population combined with the specific association between exposure to heat and mortality (ie. 476 

ERF). For this reason, the UHI should not be the best indicator to address excess heat in these 477 

cases, as actions to mitigate general high temperatures are still needed to reduce the 478 

associated mortality impacts. Still in these settings, UGI can have an increase cooling effect if 479 

urban irrigation is used (56,71). Therefore, TC cooling capacity could be increased and would 480 

constitute a partial solution for mitigating excessive heat. However, a pitfall to consider is that 481 

urban irrigation may cause water scarcity that could be exacerbated as a result of climate 482 

change (72).  483 

On top of this, there is the question of affordability given that trees maintenance has a greater 484 

cost under dry conditions (73). Therefore, it is important to local policy and decision-makers to 485 

consider the complete range of costs and benefits. However, in spite of the overall positive 486 

balance obtained in individual studies assessing the benefits-cost ratio of urban trees, there is 487 

no general conclusive evidence due to high variation in values, methodological differences and 488 
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the limited number of studies (74). Economic valuation is important for justifying investment in 489 

urban tree planting, therefore further studies are needed in this realm (74). Furthermore, the 490 

economic valuation should also incorporate the health and social impacts which should be 491 

integrated into the decision-making framework and would probably increase the economic 492 

benefits 493 

Urban trees provide substantial public health and public environmental benefits. However, 494 

some factors should be considered in order to maximize their potential. First, their 495 

distribution. The population-weighted-city-average TC was, on average 22% lower than the 496 

average TC without considering the population distribution, meaning that the most populated 497 

areas have less TC. In addition, previous studies have shown that urban trees are often 498 

unevenly distributed across the population, and that socioeconomically disadvantaged groups 499 

may be deprived of environmental benefits, constituting a form of environmental injustice 500 

(75). This is a reason why the intervention is proposed at a small scale enabling us to consider 501 

urban tree distribution in addition to total coverage. Nevertheless, we acknowledge that it is 502 

not always possible to meet the target in the scale used, therefore depending on the urban 503 

design, the scale of the intervention should vary. Second, planting trees in green areas (ie, 504 

parks, squares, community gardens) or grouped in central tree-lined gardens with permeable 505 

surfaces, rather than isolated street trees, may have synergic positive effects, improving not 506 

only the trees’ cooling capacity but also the green spaces’ quality and aesthetics, among 507 

others, hence maximizing the population health benefits (76). 508 

The sensitivity analyses showed that the greater changes were obtained when using Martinez-509 

Solanas et al (2021) ERFs (-17% and 21%, for the UHI scenario and 30% TC scenario 510 

respectively), which were modelled using a broader level of aggregation (ie, NUTS3), 511 

considering the entire population and with the E-obs dataset. We used an age and city-specific 512 

ERFs (16) in our main analysis, which can better reflect the population´s adaptability to 513 

ambient temperature. This is particularly important in line with evidence showing differential 514 

susceptibility associated with different age groups (ie, older adults and children have a higher 515 

risk of dying or becoming ill) (9). In addition, the ERFs also account for some socioeconomic 516 

variables, which is crucial considering that vulnerable subpopulations face greater risks of 517 

suffering from adverse health effects due to high temperatures (9). Nevertheless, we should 518 

note that we applied the same ERF across the whole city, while socioeconomic inequalities are 519 

often highly pronounced within each city population (77). 520 
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We also obtained great changes when using the city-average UHI (-18%), which were not 521 

observed, when using the summer grid-cell average UHI (+2%). This denotes that not 522 

considering the spatial variability of the UHI would lead to an underestimation of the real 523 

impacts given that often the most densely populated areas are also those with greater UHI 524 

intensity (10), which is also reflected in the mean 41% of increase obtained on the population-525 

weighted-UHI compared to the average UHI. A similar outcome was obtained when conducting 526 

the analysis considering the city-average cooling instead of the grid-cell level cooling (-19%), 527 

emphasizing the importance of accounting for cooling spatial heterogeneity. In such a context, 528 

our analysis aims to provide spatial information of the areas that would benefit the most from 529 

targeted greening intervention in order to reduce temperatures and ameliorate living 530 

conditions of urban dwellers.  531 

Results with alternative scenarios (-21% and +41%, for TC=25% and TC=40%, respectively) 532 

suggested a linear association between these values, which facilitates the UGI planification 533 

considering that the feasibility of the intervention should be adapted to each local setting. In 534 

fact, for cities with low availability of open public space, achieving the 30% TC target can be 535 

very challenging. Tree planting programmes will need to target private owned industrial, 536 

commercial or institutional spaces beyond publicly managed spaces (ie, streets and parks). We 537 

encourage city planners to choose a 30% TC target, however, a 25% TC could be set for 538 

compact cities facing space difficulties. In this way, a 25% TC target could also be combined 539 

with other strategies beyond tree planting, such as green roofs to reduce local temperature. 540 

The main strengths of our study include the use of a fine spatial scale of 250 m covering 93 541 

European cities, enabling the generation of high-resolution maps that can be used for 542 

identifying where interventions are most urgently needed, the use of city and age specific 543 

ERFs, the analysis of the attributable impacts to the UHI conducted on a daily basis and the 544 

building of a realistic city-specific counterfactual scenario that can partially mitigate the UHI 545 

impacts. Likewise, the considerable number of sensitivity analyses and the high correlation 546 

obtained between the two main analyses show the robustness of ours results. 547 

Nevertheless, our study also has several limitations that need to be addressed. First, regarding 548 

data availability, population data was only available for 2015, which is why we could not 549 

conduct the analysis for a more recent year. Also, the mortality data was available at NUTS3 550 

level and on weekly basis, and the age structure at a city level, which made the analysis less 551 

sensitive to within city variability and also ignore the potential weekend effects (ie, greater 552 

mortality than during weekdays) (78). Moreover, we were not able to build the uncertainty 553 
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ranges for both population counts and mortality due to lack of reported errors in the published 554 

data resulting in narrower CIs. In spite of this, we were able to consider the exposure spatial 555 

variability and uncertainty in both main analyses.  556 

We acknowledge also that this is a study for the summer 2015 meaning that the exact 557 

mortality estimations are only attributable for the reference year. However, similar mortality 558 

impacts, or even greater could be expected in the near future given that 2015 had summer 559 

temperatures similar to other years and that ongoing global warming and the intensification of 560 

UHIs might increase the impacts on health due to heat stress (40,58). Our ultimate goal is to 561 

generate a broad idea of the health benefits that could be achieved through UGI.  562 

Moreover, we based our analysis on the resident population exposure not considering the 563 

daily commuting of people for work or study, which may lead to a misclassification of the 564 

exposure. Nevertheless, as shown in this study, night-time UHI is considerably greater than 565 

day-time UHI, therefore we consider this limitation may not represent substantial changes on 566 

the mortality impacts. 567 

There are further limitations regarding the cooling model. First, we used an U.S dataset to 568 

build a predictive model of the relationship between surface temperature and air temperature 569 

in EU cities. Although a European dataset would have been ideal, the US one was the best 570 

option available given the insufficient coverage of the existing European weather stations 571 

network and the wide range of variables covered by the dataset. Furthermore, the model has 572 

proven to be reliable when comparing the estimated average temperature with the Urbclim 573 

temperature. A second limitation is the weak adjustment the cooling model had for some 574 

cities, which may also reflect the weak association between TC and ambient temperature. 575 

However, at the same time it enabled us to predict air temperature reduction in a simple and 576 

straightforward scalable manner through a wide spatial area. Additionally, the TC cooling 577 

capacity may depend also on other variables that were not considered in the model, such as 578 

type of trees planted (ie, leaf size and shape (79,80), height and crown width (81)). We also 579 

acknowledge that we did not account for the uncertainties each inputs of the models brought, 580 

specifically the Etree data which was obtained from another model (56,57). On top of that, a 581 

further source of uncertainties is given by the Etree30 estimation. Although probably none of 582 

the methods used can accurately estimate evapotranspiration when TC is equal to 30%, we 583 

performed sensitivity analyses that revealed there were no significant differences between the 584 

methods used in its estimation. In spite of the cooling model limitations, the coarse-grained 585 
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approach here can provide a first order guideline on expected cooling effects that is valid 586 

across the European region and that may be adjusted to specific city-settings.   587 

We focused on the analysis of the impacts on health of high temperature, yet we need to note 588 

the potential role UHI has as low temperatures mitigator (82). Specifically, considering the 589 

current greater health impacts of cold in relation to heat in the European region (2,16,58). 590 

Nevertheless, under the global warming scenarios, the number of monthly heat records are 591 

projected to rise as well as the average temperatures. Therefore, health impacts attributable 592 

to heat are projected to exceed cold attributable health impacts in the future under high 593 

emission scenarios (58). 594 

Finally, despite achieving a relatively low temperature reduction with the proposed UGI, the 595 

cooling obtained can prevent a considerable number of premature deaths. Here, we only 596 

estimated the preventable impacts associated with temperature reduction, whereas the full 597 

extent of urban greening health benefits should not be assessed on the basis of air cooling 598 

alone. Indeed, a previous HIA study by Pereira-Barboza et al (2021) estimated that 20 deaths 599 

per 100,000 inhabitants could be prevented annually if European cities complied with the 600 

WHO recommendation of access to green space (ie, 300m of distance to a green space from 601 

residency; using the NDVI as a proxy of greenness) (45). In spite of not using the same 602 

indicator, undoubtedly, our study and Pereira-Barboza et al. (2021) complement each other 603 

and indicate an urgent need to carry out actions to green cities for health. Urban greening also 604 

mitigates air and noise pollution (83–85), provides biodiversity, promotes  population physical 605 

activity (76) and has direct impacts on physical and mental health (76,86). Further studies 606 

considering all the co-benefits of incorporating UGI in urban areas are necessary in order to 607 

demonstrate the full potential of UGI to improve environmental quality and make cities 608 

healthier, sustainable and more climate change resilient.  609 

 610 

CONCLUSIONS 611 

Our results showed large impacts on mortality due to the UHI in cities, and that these impacts 612 

could be partially reduced by increasing the TC in order to cool urban environments. We 613 

encourage city planners and decision-makers to incorporate the UGI adapted to each local 614 

setting whilst combining with other interventions in order to maximize the health benefits 615 

while promoting more sustainable and resilient cities. 616 

 617 
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(A) Urban heat island  (B) Tree cover density  

(C) Cooling for TC=30%  (D) Cooling efforts Index  

Figure 1. Distribution of population-weighted-average urban heat island, population-

weighted-average tree cover density, cooling capacity for TC=30% and Cooling efforts 

index among European cities. 
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(B) Preventable mortality rates (for TC=30%) 

Figure 2. Distribution of average standardized mortality rates attributable to UHI and 

preventable under the urban green interventions. 

 

(A) UHI attributable mortality rates  
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Table 1. Results of the health impact assessment for the main analyses and sensitivity analyses 

 

 964 

 965 

 966 

 967 

  968 

  

Exposure-
response function 

(ERF) 

Summer 
preventable deaths 

(n; 95% CI) 

Summer preventable 
age-standardized 

mortality rate 
(deaths/100,000 

inhabitants, 95% CI) 

Summer 
preventable impact 

on deaths             
(%; 95% CI) 

Annual 
preventable 

impact on deaths  
(%; 95% CI) 

Year of life lost (per 
100,000 inhaitants. 95% 

CI) 

Change 
(%) 

 Urban Heat Island 

Main  
Masselot et al 
(Forthcoming) 

6,700 (5,254 - 8,162) 9.91 (7.71 - 12.07) 4.33 (3.37 - 5.28) 0.90 (0.67 - 1.11) 166.42 (128.47 - 201.98) - 

Sensitivity 

Using mean summer UHI per 
grid cell 

Masselot et al 
(Forthcoming) 

6,854 (6,196 - 7,494) 10.10 (9.08 - 11.00) 4.42 (3.98 - 4.82) 0.90 (0.76 - 0.99) 169.78 (148.98 - 185.44) +2% 

Using mean UHI per city 
Masselot et al 
(Forthcoming) 

5,478 (0 - 11,742.28) 8.08 (0.00 - 17.45) 3.51 (0.00 - 7.68) 0.72 (0.00 - 1.66) 135.90 (0.00 - 288.61) -18% 

Using the adjusted annual city 
mortality dataset 

Masselot et al 
(Forthcoming) 

6,933 (5,434 - 8,483) 10.09 (7.80 - 12.33) 4.46 (3.43 - 5.48) 0.93 (0.68 - 1.15) 142.68 (111.95 - 171.82) +3% 

Using the non-adjusted 
annual city mortality dataset 

Masselot et al 
(Forthcoming) 8,061 (6,319 - 9,864) 11.73 (9.08 - 14.33) 5.19 (3.99 - 6.37) 0.86 (0.65 - 1.04) 165.91 (130.18 - 199.79) +20% 

Using another ERF 1 
Martinez-Solanas 

et al (2021) 
4,401 (3,779 - 5,056) 10.18 (8.75 - 11.65) 4.86 (4.18 - 5.56) 1.17 (0.99 - 1.37) 185.76 (159.65 - 211.70) -17% 

Cooling 

Main 
Masselot et al 
(Forthcoming) 

2,644 (2,444 - 2,824) 4.17 (3.83 - 4.49) 1.84 (1.69 - 1.97) 0.37 (0.32 - 0.41) 69.85 (62.36 - 75.67) - 

Sensitivity 

Using mean cooling per city 
Masselot et al 
(Forthcoming) 

2,148 (792 - 3,472) 3.21 (0.77 - 5.54) 1.42 (0.38 - 2.43) 0.29 (0.06 - 0.50) 54.06 (15.05 - 91.53) -19% 

Using another ERF 1 
Martinez-Solanas 

et al (2021) 
1,694 (1,580 - 1,811) 3.96 (3.68 - 4.23) 1.87 (1.74 - 2.00) 0.46 (0.42 - 0.50) 72.49 (67.56 - 77.59) -21% 

Using a linerar regression by 
city for the Etree30 estimation 

Masselot et al 
(Forthcoming) 

2,667 (2,466 - 2,861) 4.19 (3.86 - 4.51) 1.84 (1.70 - 1.98) 0.37 (0.32 - 0.40) 70.24 (62.91 - 76.05) +1% 

Using a linerar regression by 
biome for the Etree30 
estimation 

Masselot et al 
(Forthcoming) 

2,687 (2,477 - 2,888) 4.21 (3.85 - 4.54) 1.87 (1.72 - 2.02) 0.38 (0.32 - 0.41) 71.17 (63.30 - 76.90) +3% 

Additional analysis 

Using as counterfactual 
Tc=25% 

Masselot et al 
(Forthcoming) 

2,092 (1,933 - 2,241) 3.32 (3.05 - 3.58) 1.46 (1.34 - 1.57) 0.29 (0.25 - 0.32) 55.62 (49.46 - 60.18) -21% 

Using as counterfactual 
Tc=40% 

Masselot et al 
(Forthcoming) 

3,727 (3,462 - 3,992) 5.83 (5.38 - 6.26) 2.58 (2.38 - 2.76) 0.51 (0.44 - 0.56) 97.85 (87.77 - 105.99) +41% 

1 For the 66 cities covered            
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Table 2. Main health impact assessment results of the urban heat island in ten European cities 

with the lowest (top) and the highest (bottom) attributable mortality impacts. 

 

 969 

 970 

City Name 

Mean 
summer 

temperature 
(ºC) 

Average 
Urban 
Heat 

Island (ºC) 

Population-
weighted 

average Urban 
Heat Island 

(ºC) 

Percentage of 
population 
exposed to 
more than 1º 
of UHI 

Summer attributable 
deaths (n; 95% CI) 

Attributable age-
standardized mortality 
rate (deaths/100,000 
inhabitants, 95% CI) 

Summer preventable 
impact on deaths (%; 

95% CI) 

Stockholm 16.68 0.34 0.49 0.11 0.00 (-10.00 - 8.72) 0.00 (-1.73 - 1.48) 0.00 (-0.84 - 0.73) 

Göteborg 15.93 0.44 0.63 6.84 0.00 (-4.03 - 2.69) 0.00 (-0.88 - 0.59) 0.00 (-0.47 - 0.32) 

Newcastle 15.13 0.72 0.78 23.54 0.89 (-2.51 - 4.72) 0.38 (-1.11 - 2.05) 0.16 (-0.46 - 0.86) 

Leeds 15.08 0.42 0.63 14.29 3.32 (-6.23 - 13.92) 0.63 (-1.31 - 2.76) 0.28 (-0.53 - 1.19) 

Tallinn 16.38 0.95 1.11 75.19 2.13 (-0.56 - 4.30) 0.73 (-0.17 - 1.44) 0.29 (-0.08 - 0.60) 

                

Cluj-Napoca 23.09 2.43 3.00 95.67 71.12 (65.49 - 77.05) 32.49 (29.89 - 35.14) 10.36 (9.54 - 11.23) 

Málaga 27.75 1.91 2.42 98.76 112.69 (100.53 - 124.59) 27.29 (24.32 - 30.20) 12.39 (11.05 - 13.70) 

Barcelona 25.82 1.09 1.47 76.70 362.96 (312.73 - 405.94) 26.69 (22.91 - 30.02) 14.82 (12.77 - 16.58) 

Budapest 24.82 1.60 1.90 93.95 378.10 (316.06 - 425.43) 25.71 (21.34 - 28.92) 8.77 (7.33 - 9.86) 

Palma de Mallorca 27.06 0.88 1.17 73.21 69.50 (57.37 - 81.00) 23.87 (19.57 - 27.94) 11.99 (9.90 - 13.97) 

  971 
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Table 3. Main health impact assessment results of the TC=30% scenario in ten European cities with 

the lowest (top) and the highest (bottom) preventable mortality impacts. 

 

 972 

 973 

City 
Name 

Average 
tree cover 
density (%) 

Population-
weighted 

average tree 
cover density 

(%) 

Average 
tree cover 

density 
increment 

(%) 

Average 
cooling 

(ºC) 

Maximum 
cooling 

(ºC) 

Summer preventable 
deaths (n; 95% CI) 

Annual preventable 
age-standardized 

mortality rate 
(deaths/100,000 

inhabitants, 95% CI) 

Summer preventable 
impact on deaths    

(%; 95% CI) 

Oslo 34.62 29.42 3.76 0.10 0.81 0.01 (-0.56 - 0.67) 0.00 (-0.15 - 0.17) 0.00 (-0.07 - 0.09) 

Bari 15.83 8.99 14.08 -0.02 0.47 0.26 (0.01 - 0.45) 0.09 (0.01 - 0.16) 0.05 (0.00 - 0.09) 

Glasgow 19.02 17.29 11.97 0.04 0.24 0.61 (0.42 - 0.77) 0.15 (0.11 - 0.19) 0.05 (0.03 - 0.06) 

Lille 12.97 15.26 16.11 0.01 0.22 0.90 (0.72 - 1.08) 0.17 (0.14 - 0.20) 0.07 (0.06 - 0.09) 

Edinburgh 25.36 25.48 5.40 0.02 0.33 0.62 (0.43 - 0.80) 0.18 (0.12 - 0.23) 0.08 (0.05 - 0.10) 

                  

Palma de 
Mallorca 8.03 5.15 23.03 0.68 1.04 62.56 (61.31 - 63.72) 21.60 (21.19 - 22.00) 1.95 (1.91 - 1.99) 

Barcelona 8.41 5.39 23.31 0.70 0.89 214.52 (205.60 - 220.98) 15.84 (15.16 - 16.33) 1.69 (1.62 - 1.74) 

Split 5.40 1.79 25.93 0.79 1.04 14.72 (13.95 - 15.38) 12.44 (11.80 - 12.99) 0.71 (0.67 - 0.74) 

Naples 13.05 6.37 19.67 0.64 1.00 75.77 (72.14 - 79.34) 11.28 (10.72 - 11.81) 0.98 (0.93 - 1.02) 

Murcia 10.31 8.85 20.83 0.66 1.25 29.85 (29.04 - 30.60) 10.60 (10.31 - 10.86) 0.96 (0.93 - 0.98) 

 974 
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CI Confidence interval 
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NCD Non-communicable diseases 

NDVI Normalized difference vegetation index  

NUTS Nomenclature of Territorial Units for Statistics 

PAF Population Attributable Fraction  

PML Penman-Monteith-Leuning  

RMSE Root mean squared error 

Tair Maximum air temperature  

TC Tree cover 

UGI Urban green infrastructure  

UHI Urban heat island 

UrbClim Urban Climate model 

WHO World Health Organization 

YLL Years of Life Lost  
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Evidence before the study 

We did two different literature searches in PubMed, Scopus, and Google Scholar. For the first one, our search terms were: "urban heat island" AND 

"mortality" OR "premature mortality" AND "impact assessment" OR "health impact". For the second one our search terms were: "green spaces" OR "green 

areas" OR "urban green infrastructure" OR "tree cover" OR "tree coverage" OR "tree canopy" OR "urban trees" AND "cooling" OR "temperature reduction" 

OR "heat mitigation" AND "mortality" OR "premature mortality" AND "impact assessment" OR "health impact" 
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Supplement A. City definition 

 

City definition 

We retrieved the European cities from the Urban Audit (UA) 2018 dataset (1). The city definition was based on the presence of an “urban centre”, which is 

defined as followed: (1) Selection of grid cells with population density over 1,500 inhabitants/km2; (2) Clustering of contiguous high-density cells and 

selection of clusters with a population above 50,000 inhabitants as the “urban centre”; (3) Defining cities as the local administrative units with at least half 

their population in an “urban centre”. For urban centres that extends far beyond the city, a ‘greater city’ level was created (2). 
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Supplement B. Demographic data 

 

a) Population data 

The Global Human Settlement Layer (GHSL) method combines information from population censuses and downscales the population into grid cells of 

250m by 250m resolution, based on the presence or absence of built-up area in the grid cell (3). We reduced the GHSL reference dataset to only those 

grid cells that covered residential areas to better represent population distribution, to avoid locating inhabitants in non-residential areas (eg. industrial 

zones, port areas, airports). We retrieve land use data from the European Urban Atlas 2012 and retain grid cells that intersect with any of the residential 

categories defined in the Urban Atlas (i.e. Continuous Urban Fabric, Discontinuous Dense Urban Fabric, Discontinuous Medium-Density Urban Fabric, 

Discontinuous Low-Density Urban Fabric and Discontinuous Very Low-Density Urban Fabric) (4).  

Given that the UrbClim data was available at a gridded raster, for some cities the overlap with the Urban Audit layer was not exact and as a result there 

were city grid-cells with no temperature data which were excluded from the analysis (ie, a city-average equal to 97.7% of population covered) (a full list 

with the percentage of grids and population covered is available in the Supplementary Table 1). 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                   

Figure S1: Example of 

procedure applied for the 

population redistribution 

(example: Barcelona area): a) 

original population raster from 

GHSL, b) selection of cells based 

on residential land uses, and c) 

final dataset with weighted 

population redistribution 

assigned for each cell 
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b) Age distribution 

The population age distribution for 2015 was obtained from Eurostat at the Nomenclature of Territorial Units for Statistics (NUTS) 3 level (5,6). We retrieved 

the population data by age group (i.e. 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84 and 85 years and older) and 

calculated the proportion of the population per age group. We assumed the same age distribution between the NUTS3-level and the corresponding city level. 

The population age proportions of each city were applied to the total population counts in the corresponding grid cells to estimate the population by age 

group for each grid cell and the city-level adult population count. After that, we aggregated the groups as 20-44, 45-64, 65-74, 75-84 and 85 years and older 

to fit them with ERFs. 

 

c) Mortality data 

We retrieved weekly all-cause mortality counts by age group for 2015 from Eurostat (7) for 81 cities at NUTS3 level. We estimated the daily mortality rates 

per age group per city assuming an homogeneous distribution of deaths over the same week and applied the rates to each grid cell. 

For cities without weekly deaths counts available (ie, Berlin, Dusseldorf, Frankfurt, Hamburg, Koln, Leipzig, Ljubljana, Munich, Prague, Split, Zagreb) we 

retrieved annual city-specific all-cause mortality counts for 2015 from Eurostat (7). For only one city (ie, Dublin) we estimated the total all-cause mortality 

count using the country-level age-specific all-cause mortality rates, which was also available through the Eurostat database. We estimated the mortality 

rates per age group and applied the rates to each grid cell. We retrieved monthly country mortality counts (7) and estimated the proportion of deaths per 

month. We assumed an homogeneous distribution of deaths over the same month and estimated the daily deaths per grid cell.  

For the 81 cities with weekly mortality data, we also retrieved annual city-specific all-cause mortality and followed the same procedure as described before 

for comparison.  On average, the death counts estimated with the annual city-specific dataset were 17% higher with a Pearson correlation equal to 0.98. We 

ran a linear regression between both data sets (Table S1) and adjusted the annual mortality dataset by applying a calibration of 86%. 
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    p-value 

Intercept -10.34 0.766 

Coefficient 0.86 < 2.2e-16 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

      

      

 

 

 

 Figure S2: (A) Association between GHSL total population and 

Eurostat total population. (Pearson correlation=0.99). (B) Association 

between summer all-cause deaths counts estimations from city level 

annual deaths counts and from NUTS3 level weekly deaths counts. 

(Pearson correlation=0.98). (C) Association between adjusted summer 

all-cause deaths counts estimations from city level annual deaths 

counts and from NUTS3 level weekly deaths counts. (Pearson 

correlation=0.98). 

Table S1. Linear regression coefficients and p-values for the association between 

the annual city-specific dataset and the weekly NUTS3 dataset.  

A 

B

 

C
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Supplement C. Health Impact Assessment (HIA) 

We have analysed the historical average summer temperature according to the Köppen–Geiger climate zones to check whether 2015 was a normal year. We 

did not identify 2015 as an abnormal temperature year, however we observed an overall light increase trend (Figure S3). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S3. Average summer temperature by climate zone from 1991 to 2019. The red line indicates 

2015, the baseline year for the analysis BSk = Arid, steppe, cold; Cfa= Temperate, no dry season, hot summer; Cfb= 

Temperate, no dry season, warm summer; Csa= Temperate, dry summer, hot summer; Csb= Temperate, dry summer, warm 

summer; Dfa= Cold, no dry season, hot summer; Dfb= Cold, no dry season, warm summer; Dfc= Cold, no dry season, cold 

summer 
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We retrieved city and age group-specific exposure-response functions (ERFs) from Masselot et al 2021 (8). We estimated the daily baseline temperature 

exposure levels and we assigned to each age group a RR accordingly. We calculated the Population Attributable Fraction (PAF) for each daily mean 

temperature (i) and age group (j) at a grid-cell level (k) as: 

Eq. (S2)   PAFijk=RRijk-1/RRijk 

The PAF is the proportional reduction in population mortality that would occur if temperature were reduced to the corresponding ‘Minimum mortality 

temperature (MMT)’ (ie, the mean daily temperature at which the lowest mortality occurs) (9).  

We estimated the attributable premature mortality burden combining the PAF and the daily natural-cause mortality. We repeated the same procedure for 

each of the counterfactual scenarios and we calculated the difference with the baseline scenario. The obtained result is the premature mortality burden 

attributed to shifting baseline exposure levels to the specific counterfactual exposure level scenario (Figure S4).  

We added up the results by city and age groups and estimated the preventable age-standardized mortality per 100,000 population, based on European 

Standard Population (ESP) (10) and the percentage of preventable annual and summer all-cause deaths. Additionally, we calculated the Years of Life Lost 

(YLL) due to the premature deaths as:  

Eq. (S3)   YLL = Attributable deaths age group * Life expectancy age of death 

YLL is a measure of premature mortality that considers both the frequency of deaths and the age at which it occurs. The YLLs for a cause are essentially 

calculated as the number of deaths from the specific cause multiplied by a loss function specifying the years lost for deaths as a function of the age at which 

death occurs. The average age at death was estimated as the mean age of each age group by city and the standard life expectancy at the age of death was 

obtained from country-level life tables available through Eurostat (11). YLL depends on an age weighting that encodes how the value of life is distributed 

with age, and on a time discount rate that represents a possible decreasing value of future lives. In this study, we applied a uniform age weighting and a 0%-

time discount rate following the GBD and WHO approach to count years lived equally at all ages now and in the future (ie, giving an equal weight to years of 
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healthy life lost at young ages and older ages) (12).We performed the analysis considering the sources of uncertainty. We built the range of uncertainty for 

each of the parameters involved in the mortality impacts estimations based on their SE and assuming a normal distribution. We then conducted 500 Monte 

Carlo iterations by sampling from the built ranges at a grid-cell level. From each sampling we aggregated the results to a city level, therefore we ended up 

with 500 results for each city, from which we estimated the mean (point estimate) and 2.5 and 97.5 percentiles (95% CI) for each city. 

For building the temperature and the UHI uncertainty ranges (both datasets with daily and gridded variability) we considered a sample by day (ie, same 

error for all of the grids for each day) for avoiding errors from cancelling each other out. 

 

 

 

 

 

 

 

 

 

 

Figure S4. Summarised methodological steps of the Health Impact Assessment analysis. 
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Association between UHI HIA and TC=30% HIA 
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Supplement D. Exposure Response Function (ERF) 

We generated city and age-specific ERFs from the framework of Masselot et al (forthcoming). The authors developed a three-stage analysis design to map 

ERFs across Europe. Very briefly, first, they estimated the city-specific overall cumulative exposure-response function in cities with observed daily mortality 

data through a quasi-Poisson regression model accounting for non-linearity and lagged effects. Secondly, they created a predictive model by conducting a 

meta-regression of the first-stage ERF coefficients using age, regional indicator and city-specific characteristics. This meta-regression model can then be 

used to predict ERF for any age group and any city in Europe (1). 

Given that the risk estimates were built under the ERA5-LAND temperature dataset with a resolution of approximately 9 km, therefore covering rural areas, 

it was expected that the ERF temperature range was lower than the UrbClim temperature range. For that reason, we applied a city-specific correction to the 

UrbClim dataset as: 

Eq. (S1) Turbclim= α + β     * Tera5 

Where Turbclim is the mean UrbClim daily city-level temperature and Tera5 is the mean ERA5-LAND daily city-level temperature for 2015. 

We then ran Eq1´ at a grid cell-level with their corresponding city-specific coefficients. 

Eq. (S1´) Turbclim adjusted = (Turbclim - α) / β 

Table S2. Statistical distribution of Equation 1 coefficients and determinant coefficient (R2) 
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After adjusting the temperature dataset, there were still some days with temperature values falling out of the ERFs (ie, temperature values above the 

maximum temperature with an estimated risk). We chose a conservative approach and instead of extrapolating the ERFs above the maximum, we assigned 

to highest temperatures, the corresponding maximum temperature´ risk available (Table S3). 

 

 

 

Table S3. Maximum exposure-response function predictive values and maximum UrbClim values at a grid-cell level (250m). Adjustment equation applied to 

each city. 

City name City code 
Maximum ERF 

predictive 
values (ºC) 

Maximum 
summer 

temperature 
UrbClim 
(250m) 

Difference 
(ºC) 

Alfa Beta error R squared 

Wien AT001C1 28.885 32.28 3.395 -1.24 1.00 0.90 0.99 

Graz AT002C1 25.559 30.738 5.179 -2.35 1.00 0.76 0.99 
Bruxelles / 
Brussel 

BE001C1 26.563 29.928 3.365 
-1.22 0.98 0.77 0.98 

Antwerpen BE002C1 26.319 29.095 2.777 -0.84 0.98 0.73 0.98 

Gent BE003C1 26.815 28.863 2.047 -0.30 1.00 0.59 0.99 

Charleroi BE004C1 26.373 29.062 2.689 -0.67 0.97 0.74 0.98 

Liège BE005C1 26.904 31.338 4.433 -0.88 0.98 0.73 0.99 

Sofia BG001C1 31.871 30.58 -1.291 -2.57 1.03 1.03 0.99 

Varna BG003C1 30.402 31.39 0.987 -0.97 0.96 0.75 0.99 

Zürich CH001C1 27.747 32.652 4.906 -1.96 0.96 0.97 0.98 

Genève CH002C1 27.559 31.756 4.196 -3.40 1.04 1.03 0.98 

Basel CH003C1 24.628 32.582 7.954 -3.03 0.99 1.00 0.98 

Praha CZ001C1 28.369 32.19 3.821 -0.62 0.99 0.53 1.00 

Berlin DE001C1 27.598 33.055 5.457 -1.05 0.99 0.74 0.99 
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Hamburg DE002C1 26.425 29.404 2.979 -0.52 0.97 0.67 0.99 

München DE003C1 27.548 31.115 3.567 -1.85 0.98 1.28 0.97 

Köln DE004C1 28.414 31.656 3.242 -0.90 0.98 0.52 0.99 
Frankfurt am 
Main 

DE005C1 28.861 33.643 4.781 
-1.65 0.99 0.90 0.98 

Leipzig DE008C1 29.899 31.544 1.646 -0.50 0.96 0.77 0.99 

Düsseldorf DE011C1 28.448 31.057 2.609 -0.69 0.99 0.54 0.99 

København DK001C1 24.295 28.48 4.185 -0.67 0.96 0.61 0.99 

Tallinn EE001C1 25.308 22.725 -2.583 -0.41 0.99 0.40 1.00 

Tartu EE002C1 25.775 23.979 -1.797 -0.41 0.99 0.40 1.00 

Athina EL001C2 32.653 36.119 3.465 -2.31 0.95 1.32 0.97 

Thessaloniki EL002C2 32.336 33.997 1.661 -2.90 0.98 0.71 0.99 

Madrid ES001C1 26.26 35.15 8.89 -2.74 1.02 1.12 0.98 

Barcelona ES002C1 24.523 31.625 7.102 -2.04 1.00 0.50 0.99 

Valencia ES003C1 24.577 33.633 9.056 -1.97 1.01 0.70 0.99 

Sevilla ES004C1 25.198 35.719 10.521 -1.52 1.01 0.58 0.99 

Málaga ES006C1 26.504 36.295 9.791 -1.50 0.94 0.54 0.99 

Murcia ES007C1 27.01 34.025 7.015 -0.40 0.95 0.45 1.00 
Palma de 
Mallorca 

ES010C1 23.231 31.785 8.554 
-0.11 0.96 0.56 0.99 

Bilbao ES019C1 28.18 28.813 0.633 -0.10 0.91 0.61 0.98 
Alicante/Alacan
t 

ES021C1 31.628 32.547 0.919 
0.38 0.94 0.57 0.99 

Helsinki / 
Helsingfors 

FI001C2 24.962 23.247 -1.715 
-1.59 1.01 0.74 0.99 

Paris FR001C1 28.49 33.547 5.057 -2.75 0.99 1.13 0.97 

Lyon FR003C2 28.486 33.971 5.485 -2.12 1.02 0.96 0.98 

Toulouse FR004C2 29.287 30.758 1.472 -0.81 1.00 0.66 0.99 

Strasbourg FR006C2 27.683 35.122 7.44 -2.27 1.00 0.68 0.99 

Bordeaux FR007C1 30.57 32.196 1.626 -1.06 1.00 0.57 0.99 

Nantes FR008C1 28.628 29.779 1.15 0.02 0.96 0.53 0.99 

Lille FR009C1 29.83 29.613 -0.218 -0.76 0.99 0.67 0.99 
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Montpellier FR010C1 29.54 31.038 1.498 0.03 0.96 0.46 0.99 

Marseille FR203C1 30.115 30.696 0.581 0.03 0.94 0.54 0.99 

Nice FR205C2 27.434 33.97 6.536 -1.80 0.98 0.59 0.99 

Zagreb HR001C1 29.878 32.442 2.564 -1.11 0.99 0.62 0.99 

Split HR005C1 28.599 33.525 4.926 -1.72 0.96 0.62 0.99 

Budapest HU001C1 29.493 33.713 4.22 -1.51 0.99 0.84 0.99 

Miskolc HU002C1 29.547 33.466 3.919 -1.54 0.96 0.79 0.99 

Pécs HU004C1 28.859 31.722 2.863 -0.34 0.98 0.48 1.00 

Debrecen HU005C1 28.734 31.762 3.028 -0.07 0.98 0.43 1.00 

Szeged HU006C1 28.664 33.782 5.118 -0.77 0.97 0.70 0.99 

Gyõr HU007C1 30.218 33.047 2.829 -0.97 0.98 0.68 0.99 

Dublin IE001C1 22.212 23.891 1.679 -0.78 0.94 0.86 0.95 

Roma IT001C1 29.169 34.38 5.211 -0.52 0.95 0.74 0.99 

Milano IT002C1 30.059 33.856 3.797 -3.50 1.02 0.99 0.98 

Napoli IT003C1 29.774 34.572 4.798 -0.07 0.92 0.85 0.98 

Torino IT004C1 30.082 32.55 2.467 -3.93 1.02 1.09 0.98 

Palermo IT005C1 27.338 36.016 8.678 -2.23 0.94 0.90 0.98 

Genova IT006C1 26.849 33.256 6.407 -3.04 0.99 0.67 0.99 

Bari IT008C1 27.793 33.836 6.043 -0.70 0.94 0.77 0.99 

Bologna IT009C1 27.771 33.866 6.095 -2.00 1.03 0.71 0.99 

Trieste IT015C1 29.776 32.919 3.143 -1.72 1.00 0.67 0.99 

Padova IT028C1 31.631 34.937 3.307 -2.16 1.02 0.83 0.99 

Vilnius LT001C1 26.119 28.811 2.691 -0.47 0.98 0.59 0.99 

Klaipėda LT501C1 26.463 27.966 1.503 -0.52 0.97 0.55 0.99 

Luxembourg LU001C1 26.843 30.187 3.344 -0.88 0.99 0.52 0.99 

Rīga LV001C1 25.291 26.359 1.068 -0.15 0.97 0.43 1.00 
Greater 
Amsterdam      

NL002C2 24.888 28.699 3.812 
-0.73 0.96 0.77 0.98 

Greater 
Rotterdam         

NL003C2 25.525 29.644 4.118 
-0.78 0.96 0.77 0.98 
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Greater 
Utrecht               

NL004C2 26.183 29.343 3.161 
-0.74 0.97 0.80 0.98 

Oslo NO001C1 22.837 23.132 0.294 -2.37 1.05 0.81 0.99 

Warszawa PL001C1 26.733 31.411 4.678 -0.62 0.97 0.58 0.99 

Łódź PL002C1 27.318 30.509 3.192 -0.18 0.97 0.70 0.99 

Kraków PL003C1 24.891 31.403 6.512 -0.94 0.98 0.76 0.99 

Wrocław PL004C1 27.786 32.126 4.34 -0.40 0.98 0.59 0.99 

Gdańsk PL006C1 27.446 29.12 1.675 -0.65 1.00 0.70 0.99 

Lisboa PT001C1 26.688 28.863 2.176 0.22 0.92 0.52 0.98 

Porto PT002C1 28.915 29.236 0.321 -0.25 0.94 0.65 0.98 

Bucureşti RO001C1 29.772 32.411 2.64 -1.51 0.99 0.93 0.99 

Cluj-Napoca RO002C1 25.328 31.889 6.56 -2.32 0.97 1.06 0.99 

Braşov RO504C1 31.309 29.455 -1.854 -2.91 0.99 0.93 0.99 

Stockholm SE001C1 23.409 25.172 1.763 -0.46 0.97 0.57 0.99 

Göteborg SE002C1 24.863 24.815 -0.048 -0.46 0.97 0.57 0.99 

Ljubljana SI001C1 27.059 31.036 3.977 -2.65 1.02 0.84 0.99 

Bratislava SK001C1 29.355 32.998 3.642 -0.90 1.00 0.62 0.99 

Košice SK002C1 29.3 31.49 2.19 -1.41 1.01 0.64 0.99 
London Greater 
City 

UK001K1 21.207 28.2 6.993 
-0.87 0.99 0.57 0.98 

Birmingham UK002C1 21.682 26.538 4.856 -0.18 0.97 0.74 0.97 

Leeds UK003C1 21.123 25.804 4.682 -1.09 0.93 0.78 0.96 

Glasgow UK004C1 21.676 24.349 2.673 -1.16 0.96 0.82 0.96 

Edinburgh UK007C1 21.133 24.516 3.383 -0.45 0.95 0.75 0.97 
Newcastle upon 
Tyne 

UK013C1 21.031 23.787 2.757 
-1.84 0.99 0.73 0.98 
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Supplement E. Counterfactual scenarios. 

a) Urban Heat Island (UHI) 

We retrieved the mean day-time UHI and mean night-time UHI data at 100 m x 100 m resolution for 2015 summer season (ie, June - August) from the 

Copernicus UrbClim model application. This is the difference between the mean rural temperature (ie, represented by the rural classes of CORINE covering 

grassland, cropland, shrubland, woodland, broadleaf forest and needleleaf forest) and each of the urban grid cells, masking out the water bodies (13). 

We estimated the 250m grid cell mean 24hs UHI (ie, for each day) by averaging the day and night UHI 100 m grid cells with centroids within the spatial 

boundaries of each 250 m grid cell. For the grids with negative values we considered a null UHI. We have also calculated the average daytime and night-time 

UHI separately to understand the contribution of each to the mean 24hs UHI. Day-time UHI resulted in a mean city value of 0.6ºC, whereas night-time UHI 

was 1.9ºC. 
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Figure S5. (A) Day-time average urban heat island per grid cell. (B). Night-time average urban heat island per grid cell. (C) 24 hours average urban heat 

island per grid cell. 

 

B

C
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Minimum (%) Pct.1 25 (%) Median (%) Mean (%) Pct.1 75 (%) Maximum

UHId 0.00 5.94 11.67 17.96 23.49 80.07

UHIn 0.00 1.10 3.61 5.07 7.88 22.67
1. Pct.=percentile

Table S4. Distribution of the percentage of negative daily UHI values for day-time (UHId) and night-time (UHIn) 

 

  

 

 

 

We also estimated the population-weighted city-average by weighting the number of people in a city—divided by the grid—to the UHI exposure in each 

grid-cell. By summing up all grid-cells estimations, it is possible to have a more accurate measure of the exposure of the city population as it gives 

proportionately greater weight to the UHI exposure where most people live.  
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b) TC 30% 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Average tree cover density at a grid cell level by city. 

For each city, we analyzed the feasibility of achieving the 30% TC target. We estimated the percentage of open space in each city at a grid cell level where 

potentially trees could be planted according to the corresponding land use. For this purpose, we retrieved from the European Settlement Map (ESM) the 

open space (“BU area -open space”) and the green space (“BU - green NDVIx”; green spaces not included in the Urban Atlas (UA) green space classification, 

such as roadside vegetation, urban trees and pocket parks). We estimated the difference between the 30% target and the available open space at a grid cell 

level (Figue S7). We calculated the mean and the interquartile range at a city level in order to have the whole picture of the open space distribution (Table 

S5).  
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Table S5. Interquartile range of the difference between the 30% TC target and the open space by grid-cell. 
 

City code Quartile 1 Median Quartile 3 Mean   City code Quartile 1 Median Quartile 3 Mean 

AT001C1 0.00 0.00 0.00 2.09   HU001C1 0.00 0.00 0.00 0.91 

AT002C1 0.00 0.00 0.00 1.65   HU002C1 0.00 0.00 0.00 2.24 

BE001C1 0.00 0.00 12.33 6.18   HU004C1 0.00 0.00 0.00 1.30 

BE002C1 0.00 0.00 0.23 2.24   HU005C1 0.00 0.00 0.00 1.80 

BE003C1 0.00 0.00 0.85 2.48   HU006C1 0.00 0.00 0.00 1.90 

BE004C1 0.00 0.00 0.00 0.52   HU007C1 0.00 0.00 0.94 2.82 

BE005C1 0.00 0.00 0.00 1.11   IE001C1 0.00 0.00 0.00 0.12 

BG001C1 0.00 0.00 0.00 0.47   IT001C1 0.00 0.00 0.00 1.03 

BG003C1 0.00 0.00 0.00 1.07   IT002C1 0.00 0.00 0.00 1.71 

CH001C1 0.00 0.00 2.54 2.73   IT003C1 0.00 0.00 0.00 1.05 

CH002C1 0.00 0.00 6.23 3.50   IT004C1 0.00 0.00 0.00 1.11 

CH003C1 0.00 0.00 5.84 3.68   IT005C1 0.00 0.00 0.00 1.02 

CZ001C1 0.00 0.00 0.00 1.37   IT006C1 0.00 0.00 0.00 1.92 

DE001C1 0.00 0.00 0.00 1.99   IT008C1 0.00 0.00 0.00 0.95 

DE002C1 0.00 0.00 0.00 2.40   IT009C1 0.00 0.00 0.00 1.95 

DE003C1 0.00 0.00 0.00 0.71   IT015C1 0.00 0.00 0.00 1.92 

DE004C1 0.00 0.00 0.00 1.47   IT028C1 0.00 0.00 0.00 0.53 

DE005C1 0.00 0.00 5.91 3.45   LT001C1 0.00 0.00 0.00 1.58 

DE008C1 0.00 0.00 0.00 0.76   LT501C1 0.00 0.00 0.00 1.14 

DE011C1 0.00 0.00 0.00 1.56   LU001C1 0.00 0.00 1.95 2.74 

DK001C1 0.00 2.35 13.48 6.75   LV001C1 0.00 0.00 0.00 1.19 

EE001C1 0.00 0.00 0.00 0.41   NL002C2 0.00 0.00 3.53 3.18 

EE002C1 0.00 0.00 0.00 0.67   NL003C2 0.00 0.00 5.00 3.33 

EL001C2 0.00 0.00 1.69 1.24   NL004C2 0.00 0.00 6.54 3.97 

EL002C2 0.00 0.00 0.00 0.35   NO001C1 0.00 0.00 0.00 1.73 

ES001C1 0.00 0.00 0.00 1.65   PL001C1 0.00 0.00 0.00 1.02 

ES002C1 0.00 0.00 10.46 5.37   PL002C1 0.00 0.00 0.00 1.95 
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ES003C1 0.00 0.00 0.00 1.98   PL003C1 0.00 0.00 0.00 1.65 

ES004C1 0.00 0.00 4.49 3.47   PL004C1 0.00 0.00 0.00 2.16 

ES006C1 0.00 0.00 3.18 3.56   PL006C1 0.00 0.00 0.00 1.06 

ES007C1 0.00 0.00 0.00 1.47   PT001C1 0.00 0.00 6.46 3.70 

ES010C1 0.00 0.00 0.20 2.22   PT002C1 0.00 0.00 0.66 2.05 

ES019C1 0.00 0.00 11.06 5.78   RO001C1 0.00 0.00 0.00 1.33 

ES021C1 0.00 0.00 0.27 3.46   RO002C1 0.00 0.00 3.42 3.02 

FI001C2 0.00 0.00 0.00 0.19   RO504C1 0.00 0.00 4.27 3.98 

FR001C1 0.00 6.84 13.01 7.50   SE001C1 0.00 0.00 0.00 1.78 

FR003C2 0.00 0.00 0.00 1.62   SE002C1 0.00 0.00 4.12 3.26 

FR004C2 0.00 0.00 0.00 1.88   SI001C1 0.00 0.00 5.96 4.17 

FR006C2 0.00 0.00 0.00 1.71   SK001C1 0.00 0.00 3.10 2.89 

FR007C1 0.00 0.00 0.00 1.55   SK002C1 0.00 0.00 5.46 3.73 

FR008C1 0.00 0.00 6.38 3.83   UK001K2 0.00 0.00 0.00 2.85 

FR009C1 0.00 0.00 0.56 2.29   UK002C1 0.00 0.00 0.00 1.09 

FR010C1 0.00 0.00 3.40 3.20   UK003C1 0.00 0.00 4.94 4.45 

FR203C1 0.00 0.00 0.00 2.27   UK004C1 0.00 0.00 0.62 2.78 

FR205C2 0.00 0.00 0.00 2.63   UK007C1 0.00 0.00 15.00 7.66 

HR001C1 0.00 0.00 0.00 1.90   UK013C1 0.00 0.00 0.00 2.48 

HR005C1 0.00 0.00 0.00 0.52   
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Figure S7. Difference between 30% target and the open space at a grid cell level for each city.  

      

Table S6. Statistical distribution of Equation 2 coefficients and determinant coefficient (R2) 

β0e4 β1e4 β2e4 R2 

36.42 ± 5.50 -0.06 ± 0.003  -1.49 ± 1.01 0.41 ± 0.20 
 

 

Eq. 2 was built with an US air temperature dataset given that the existing network of weather stations in Europe has insufficient coverage. The dataset, 

compiled by the University of Colorado Denver, derived from NOAA (National Oceanic and Atmospheric Administration), consists of more than 6,500 

summer maximum air temperature records (June 15th to August 15th) from weather stations, including their latitude and the average of 1 km of 

neighbourhood LST buffer of each station.  The wide range of latitudes and biomes covered makes the associations suitable for extrapolation to Europe.       
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In order to test the model predictions, we used average summer (June–August 2015) air temperature at a city level to validate the air temperature 

estimated through the model. With this purpose we regressed each city-average value against the corresponding observed air temperature values. We 

calculated the adjusted R2, RMSE and model coefficients to assess the accuracy of the model. 

 

 

 

 

 

 

 

 

In order to estimate the LST corresponding to TC equal to 30%, 40% and 25%, we estimated the city-average Etree considering the grid cells with: (1) TC=28-

32% (Etree30) and, (2) TC=38-44% (Etree40), (3) TC=23-27% (Etree25), respectively. We considered an interval plus-minus 2º for avoiding NAs or low counts. 

For two cities (ie, Thessaloniki, Greece and Murcia, Spain) for which the maximum TC was 30% we computed the same mean evapotranspiration for 

TC=40%. 

Table S7. Distribution of the percentage of negative cooling estimations for TC=30% 

  Minimum (%) Pct.1 25 (%) Median (%) Mean (%) Pct.1 75 (%) Maximum (%) 

Cooling (TC=30%) 0.1 6.63 14.04 16.36 21.82 89.4 
1. Pct.=percentile             

Figure S8. Plot of the cooling 

model validation. The 

UrbClim temperature data 

used in the validation is the 

average maximum 

temperature from June to 

August 2015. Adjusted R2: 

0.66; RMSE: 2.03. Both 

intercept and slope are 

significant for p ≤ 0.05. 
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Model errors 

We estimated the uncertainty of the model by calculating the propagated error of the two regressions, for each city. We applied Eq. S1 based on Taylor el al 

method for accumulated prediction fractional uncertainties (14).  

 

(Eq. S4)   Error = √( δTa /|Ta| )2 + ( δLST /|LST| )2 + ( δTa30 / |Ta30| )2 + ( δLST30 /|LST30| )2 

 

Where δ is the error, Ta is the estimated air temperature, LST is the land surface temperature, and Ta30 and LST30 are the estimated air and surface 

temperature for TC=30% scenario, respectively. We calculated the errors (δ) by averaging the observed upper and lower confidence interval (alpha = 0.05) 

values from grid- cell-level predictions, 
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Supplementary F. Sensitivity analysis. 

a) Health impact assessment of urban heat island 
i) Exposure response function (Martinez-Solanas et al, 2021) 

 

 

 

 

 

 

 

 

 

ii)  Grid-cell-average summer UHI  
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iii) City-average UHI 

 

 

 

 

 

 

 

 

iv) Adjusted annual city mortality dataset 

 

 

 

 

 

 

 

 

 

 

 



29 
 

v) Non-adjusted annual city mortality dataset 
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b) Cooling estimation 
We conducted two sensitivity analysis of the cooling estimation for TC=30% changing the way the amount of water evaporated from trees (Etree30) was 

calculated. 

1) Linear regressions by city between the TC and Etree 
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2) Linear regression by biome between the TC and Etree 
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c) 30% TC health impact assessment 
i) Etree30 estimation: regression by city 

 

 

 

 

 

 

 

 

 

ii) Etree30 estimation: linear regression by biome 
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iii) City-average cooling 
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iv) Exposure response function (Martinez-Solanas et al, 2021) 

We applied the same methodology than for the main analysis.   

Given that the risk estimates were built under the E-obs dataset (15), we applied a city-specific correction to the UrbClim dataset as:  

 

Eq. (S5)   Turbclim= α + β3* TE-obs 

 

Where Turbclim is the mean UrbClim daily city-level temperature and TE-obs is the mean E-obs daily city-level temperature for 2015. 

After adjusting the temperature dataset, there were still some days with temperature values falling out of the ERFs (ie, temperature values above the 

maximum temperature with an estimated risk). We chose a conservative approach and instead of extrapolating the ERFs above the maximum, we assigned 

to highest temperatures, the corresponding maximum temperature´ risk available. 
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Supplementary analysis G. Uncertainty analyses. 

We conducted uncertainty analysis running 500 Monte Carlo simulations considering each of the parameter’s uncertainty separately. We considered the 

following sources of uncertainties: the ERFs (8), the UrbClim data error (16), the temperature adjustment model error, the UHI data error (16) and the 

cooling model error, accordingly. 

 

- Urban heat island health impact assessment 
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- 30% TC scenario health impact assessment 
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