

TA'LIMDAGI Ilmiy, ommabop Va ilmiy tadqiqot IShlari

AVLODLARI" ELEKTRON ILMIY JURNALI | ELECTRONIC SCIENTIFIC JOURNAL

NAMED AFTER MUHAMMAD AL-KHORAZMI

MUHAMMAD AL-XOBAZMIY NOMIDAGI TATU FARG'ONA FILIALI FERGANA BRANCH OF TUIT

O'ZBEKISTON RESPUBLIKASI RAQAMLI TEXNOLOGIYALAR VAZIRLIGI

MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI FARG'ONA FILIALI

Muassis: Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti Fargʻona filiali. **Chop etish tili:** Oʻzbek, ingliz, rus. Jurnal texnika fanlariga ixtisoslashgan boʻlib, barcha shu sohadagi matematika, fizika, axborot texnologiyalari yoʻnalishida maqolalar chop etib boradi. Учредитель: Ферганский филиал Ташкентского университета информационных технологий имени Мухаммада ал-Хоразми. Язык издания: узбекский, английский, русский. Журнал специализируется на технических науках и публикует статьи в области математики, физики и информационных технологий. Founder: Fergana branch of the Tashkent University of Information Technologies named after Muhammad al-Khorazmi. Language of publication: Uzbek, English, Russian. The magazine specializes in technical sciences and publishes articles in the field of mathematics, physics, and information technology.

2023 yil, Tom 1, №3 Vol.1, Iss.3, 2023 y

ELEKTRON ILMIY JURNALI

ELECTRONIC SCIENTIFIC JOURNAL

«Al-Fargʻoniy avlodlari» («The descendants of al-Fargani», «Potomki al-Fergani») Oʻzbekiston Respublikasi Prezidenti administratsiyasi huzuridagi Axborot va ommaviy kommunikatsiyalar agentligida 2022-yil 21 dekabrda 054493-son bilan roʻyxatdan oʻtgan.

Tahririyat manzili: 151100, Fargʻona sh., Aeroport koʻchasi 17-uy, 201A-xona Tel: (+99899) 998-01-42 e-mail: info@al-fargoniy.uz Qoʻlyozmalar taqrizlanmaydi va qaytarilmaydi.

FARG'ONA - 2023 YIL

TAHRIR HAY'ATI

Maxkamov Baxtiyor Shuxratovich,

Muhammad al-Žorazmiy nomidagi Toshkent axborot texnologiyalari universiteti rektori, iqtisodiyot fanlari doktori, professor

Muxtarov Farrux Muhammadovich,

Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti Farg'ona filiali direktori, texnika fanlari doktori

Arjannikov Andrey Vasilevich,

Rossiya Federatsiyasi Sibir davlat universiteti professori, fizikamatematika fanlari doktori

Satibayev Abdugani Djunusovich,

Qirg'iziston Respublikasi, Osh texnologiyalari universiteti, fizika-matematika fanlari doktori, professor

Rasulov Akbarali Maxamatovich,

Axborot texnologiyalari kafedrasi professori, fizika-matematika fanlari doktori

Yakubov Maksadxon Sultaniyazovich,

TATU «Axborot texnologiyalari» kafedrasi professori, t.f.d., professor, xalqaro axborotlashtirish fanlari Akademiyasi akademigi

Bo'taboyev Muhammadjon To'ychiyevich,

Farg'ona politexnika instituti, Iqtisod fanlari doktori, professor

Abdullayev Abdujabbor,

Andijon mashinosozlik instituti, Iqtisod fanlari doktori, professor

Qo'ldashev Abbosjon Hakimovich,

Oʻzbekiston milliy universiteti huzuridagi Yarimoʻtkazgichlar fizikasi va mikroelektronika ilmiy-tadqiqot instituti, texnika fanlari doktori, professor

Ergashev Sirojiddin Fayazovich,

Farg'ona politexnika instituti, elektronika va asbobsozlik kafedrasi professori, texnika fanlari doktori, professor

Qoraboyev Muhammadjon Qoraboevich,

Toshkent tibbiyot akademiyasi Fargʻona filiali fizika matematika fanlari doktori, professor, BMT ning maslaxatchisi maqomidagi xalqaro axborotlashtirish akademiyasi akademigi

Naymanboyev Raxmonali,

TATU FF Telekommunikatsiya kafedrasi faxriy dotsenti

Polvonov Baxtiyor Zaylobiddinovich,

TATU FF Ilmiy ishlar va innovatsiyalar bo'yicha direktor o'rinbosari

Zulunov Ravshanbek Mamatovich,

TATU FF «Dasturiy injiniringi» kafedrasi dotsenti, fizikamatematika fanlari nomzodi

Saliyev Nabijon, O'zbekiston jismoniy tarbiya va sport universiteti Farg'ona filiali dotsenti

G'ulomov Sherzod Rajaboyevich,

TATU Kiberxavfsizlik fakulteti dekani, Ph.D., dotsent

G'aniyev Abduxalil Abdujaliovich,

TATU Kiberxavfsizlik fakulteti, Axborot xavfsizligi kafedrasi t.f.n., dotsent

Zaynidinov Hakimjon Nasritdinovich,

TATU Kompyuter injiniringi fakulteti, Sun'iy intellect kafedrasi texnika fanlari doktori, professor

Abdullaev Temurbek Marufovich,

TATU Farg'ona filiali direktorining oʻquv ishlari boʻyicha oʻrinbosari, texnika fanlar boʻyicha falsafa doktori

Zokirov Sanjar Ikromjon oʻgʻli,

Ilmiy tadqiqotlar, innovatsiyalar va ilmiy pedagogik kadrlarni tayyorlash boʻlimi boshligʻi, fizika-matematika fanlari boʻyicha falsafa doktori

Otakulov Oybek Hamdamovich,

fakultet dekani, texnika fanlar nomzodi, dotsent

Daliyev Baxtiyor Sirojiddinovich,

fakultet dekani, fizika-matematika fanlari boʻyicha falsafa doktori

Teshaboev Muhiddin Ma'rufovich,

Ta'lim sifatini nazorat qilish bo'limi boshlig'i, falsafa fanlari bo'yicha falsafa doktori

Bilolov Inomjon O'ktamovich,

pedagogika fanlar nomzodi

Ibroximov Nodirbek Ikromjonovich,

kafedra mudiri, fizika-matematika fanlari boʻyicha falsafa doktori

Kochkorova Gulnora Dexkanbaevna, kafedra mudiri, falsafa fanlari nomzodi

Kadirov Abdumalik Matkarimovich, falsafa fanlar boʻyicha falsafa doktori

Nurdinova Raziyaxon Abdixalikovna, kafedra mudiri, texnika fanlari boʻyicha falsafa doktori, dotsent

Obidova Gulmira Kuziboyevna, kafedra mudiri, falsafa fanlari doktori

Rayimjonova Odinaxon Sodiqovna, kafedra mudiri, texnika fanlari boʻyicha falsafa doktori, dotsent

Sabirov Salim Satiyevich, Kafedra mudiri, fizika-matematika fanlari nomzodi, dotsent

Toʻxtasinov Dadaxon Farxodovich, Kafedra mudiri, pedagogika fanlari boʻyicha falsafa doktori

MUNDARIJA | ОГЛАВЛЕНИЕ | TABLE OF CONTENTS

F.Muxtarov, XAVF-XATARLARNI KELTIRIB CHIQARUVCHI OMILLAR,	5-9
XAVF-XATARLARNI ANIQLASH USULLARI, MUAMMO VA YECHIM	
Б.З.Полвонов, А.Ш.Уринбоев, СПЕЦИФИКА ЛЮМИНЕСЦЕНЦИИ ПОЛЯРИТОНОВ В	10-17
ПОЛУПРОВОДНИКОВЫХ СТРУКТУРАХ НА ОСНОВЕ ХАЛЬКОГЕНИДОВ КАДМИЯ	
Р.М.Зулунов, Б.Н.Солиев, ИСПОЛЬЗОВАНИЕ РҮТНОМ ДЛЯ ИСКУССТВЕННОГО ИН-	18-24
ТЕЛЛЕКТА И МАШИННОГО ОБУЧЕНИЯ	
D.X.Tojimatov, CISCO PACKET TRACER YORDAMIDA HUSUSIY KORXONALAR UCHUN	25-32
MAXSUS HIMOYALANGAN TARMOQ KANALI ISHINI LOYIHALASH	
А.Ж.Махмудова, Ш.М.Тошпулатов, Ф.М.Тошпулатова, МАТРИЧНЫЙ ФОТОПРИЁМНИК	33-37
ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ ДЛЯ ИЗМЕРЕНИЯ ЛЕЙКОЗА	
B.M.Polvonova, SO'Z QO'SHILMALARIDA VARIANTLILIK	38-41
I.I.Bakhoviddinov, SUSTAINABLE DEVELOPMENT IN THE DIGITAL ECONOMY:	42-50
BALANCING GROWTH AND ENVIRONMENTAL CONCERNS	
S.I.Abdurakhmonov, Sh.M.Ibragimov, USING VISUAL LEARNING ENVIRONMENTS IN	51-55
TEACHING OBJECT-ORIENTED PROGRAMMING	

СПЕЦИФИКА ЛЮМИНЕСЦЕНЦИИ ПОЛЯРИТОНОВ В ПОЛУПРОВОДНИКОВЫХ СТРУКТУРАХ НА ОСНОВЕ ХАЛЬКОГЕНИДОВ КАДМИЯ

Полвонов Бахтиёр Зайлобидинович,

доктор философии по физико-математическим наукам (PhD), доцент, Ферганского филиала ТУИТ им. Мухаммеда аль-Хорезми e-mail: bakhtiyorp@mail.ru

Уринбоев Алишер Шавкатжон угли,

студент Ферганского филиала ТУИТ им. Мухаммеда аль-Хорезми e-mail: orinboyevalisher02@gmail.com

Аннотация: Люминесценция поляритонов в полупроводниковых структурах привлекла значительное внимание благодаря своей способности раскрывать новые физические явления и обеспечивать инновационные оптоэлектронные приложения. Эта статья предлагает глубокое исследование характеристики люминесценции поляритонов в полупроводниковых структурах на основе халькогенидов кадмия. В ней рассматриваются фундаментальные принципы физики поляритонов, синтез материалов на основе халькогенидов кадмия, различные методы характеристики и последствия для будущих прогрессов в этой области.

Ключевые слова: поляритон, фотон, тонкая поликристаллическая пленка, теллурид кадмия, примеси, легирование, термическая обработка, аномальные фотовольтаические свойства, спектр фотолюминесценции, потенциальные барьеры, границы зерен.

Введение. В последние годы изучение поляритонов люминесценции R полупроводниковых структурах приобрело направление интересное исследований. Поляритоны _ это гибридные квазичастицы, возникающие из сильного взаимодействия между экситонами И фотонами В ограниченных Это взаимодействие приводит к структурах. образованию верхней нижней И ветвей поляритонов, что уникальным приводит К характеристикам дисперсии И усиленному взаимодействию света и материи. Эта статья фокусируется на характеристики люминесценции поляритонов в полупроводниковых структурах на основе ххалькогенидных соединений кадмия, которые показали значительный потенциал для развития нашего понимания физики поляритонов и достижения прорывов в оптоэлектронике.

На основе микроскопической теории поляритонной люминесценции (ПЛ) выполнен анализ известных экспериментальных спектров низкотемпературной фотолюминесценции (НТФЛ)

кристаллов CdTe для экситонного резонанса $A_{n=1}$. С помощью численных расчетов на компьютере получены теоретические спектры ПЛ и обсуждается механизм формирования экситонной люминесценции на языке поляритонов в зависимости от параметров кристалла. Предложен неразрушающий оптический новый метод полупроводниковых контроля и диагностики также, в области оптической материалов. Α спектроскопии полупроводников большое уделяется внимание исследованию ΗΤΦЛ кристаллов *CdTe* с целью усовершенствования методов неразрушающего контроля и диагностики кристаллических И поликристаллических полупроводниковых структур на их основе [1]. При этом особую важность приобретает анализ спектров экситонной люминесценции как наиболее чувствительного и прямого метода, позволяющего получить самую достоверную информацию о дефектах полупроводникового материала. Однако до сих пор, насколько нам известно, адекватный количественный анализ НТФЛ кристаллов *CdTe* в окрестности экситонных резонансов с учетом поляритонного эффекта и процессов затухания экситонов отсутствует. Настоящая работа посвящена восполнению этого пробела. В работе [2] была развита теория ПЛ для кристаллов типа *CdTe* с небольшими значениями продольно- $(\omega_{LT} \leq 1.0 \text{ мэВ}).$ поперечного расщепления B

10

отличие от ранних работ [3] с участием авторов предложена модель формирования ПЛ полупроводниковых кристаллов типа CdTe.излучающие согласно которой квантовые состояния поляритонов в окрестности «бутылочного горла» заселяются за счет рассеяния поляритонов нижней ветви 1 из области $\omega \ge \omega_L$ с достаточно большими k на акустических и оптических фононах, причем в ПЛ дают вклады упруго рассеянные на примесях в сторону поверхности кристалла поляритонные волны с верхними 2 и нижними 1 дисперсионными ветвями и их интерференция в вакууме (рис.1). Теория спектры парциальных рассчитать позволяет вкладов поляритонного излучения при конечных значениях затухания $\hbar\Gamma$ механических экситонов и случаях, когла критерии применимости в кинетического уравнения Больцмана для функции распределения поляритонов нарушаются [2]. Здесь приводятся результаты численных расчетов на компьютере спектров ПЛ и сопоставление их с экспериментальными известными спектрами НТФЛ кристаллов *CdTe*. Обсуждается механизм формирования экситонной люминесценции зависимости от значений оптических параметров кристалла для экситонного резонанса $A_{n=1}$.

Торетический расчет.

Халькогенидные соединения на основе такие CdS, CdSe CdTe, кадмия, как И предоставляют универсальную платформу для изучения поведения поляритонов. Эти материалы ценятся за возможность настройки ширины запрещенной зоны, высокую эффективность люминесценции и сильные экситонные переходы. Синтез материалов на основе халькогенидов кадмия включает методы, такие как химическое осаждение из паровой фазы, молекулярно-лучевая эпитаксия и коллоидный синтез. Возможность настраивать свойства материалов делает их идеальными кандидатами для создания активных поляритонных структур.

Исследуем спектральную интенсивность излучения $I_{\lambda}^{(0)}(\omega, \vec{\Omega})$ с поляризацией λ , распространяющегося в вакууме в направлении единичного вектора $\vec{\Omega}(\theta, \phi)$ (который лежит в плоскости уz, а внутренняя нормаль к границе

кристалла направлена вдоль оси z; $\lambda = s, p, r de s //x, p \perp x$):

$$I_{\lambda}^{(0)}\left(\omega,\vec{\Omega}\right) = \sum_{\beta} I_{\beta\lambda}^{(0)}\left(\omega,\vec{\Omega}\right).$$
(1)

Мы ограничиваемся рассмотрением ПЛ в sполяризации. Тогда $\beta = 1, 2, 12$ при $\lambda = s$. Предполагается, кристалл ЧТО непрерывно облучается светом частотой выше края с фундаментального поглощения. Возбуждаемые светом свободные носители тока термализуются и связываются в экситоны, в результате чего формируется неравновесная функция распределения $f_{1\vec{k}\,\lambda}(z)$ поляритонов ветви 1 выше (рис.1). Последовательное определение ω_L функции $f_{1\vec{k},i}(z)$ выходит за рамки данной работы и здесь эта функция считается заданной. При расчете мы для определенности будем полагать

$$f_{1\vec{k}\lambda}(z) = f_1(\omega_{\vec{k}_1}^{(T)}) \cdot \exp(-z/L), \quad (2)$$

где L – эффективная глубина распределения поляритонов ветви 1. Поэтому вклады $I_{\beta s}^{(o)}(\omega, \vec{\Omega})$ поляритонов ветви $\beta=1$, 2 в $I_{\lambda}^{(o)}$ можно рассматривать как результат однократного упругого и неупругого рассеяния в кристалле поляритонов ветви 1 выше частоты $\omega_{\rm L}$ с заданной функцией распределения $f_{1\vec{k}\lambda}(z)$ в состояния $\beta=1$,

2 (рис. 1) и превращения поляритонов β на границе кристалла в фотоны вторичного излучения в вакууме.

Рис.1. Схематические процессы термализации поляритонов нижней ветви 1 в области частот выше ω_L путем неупругого рассеяния на продольных акустических (LA), оптических (LO) фононах и упругого рассеяния на примесях (R) и формирование ПЛ в окрестности частот ω_0 и ω_L при конечном затухании экситона $\hbar\Gamma$.

k

Будем учитывать когерентные рассеяния $1 \rightarrow 1', 1 \rightarrow 2'$ и интерференционный вклад $I_{12\lambda}^{(0)}$ в $\Pi\Pi$ (1). Для расчета $I_{\beta s}^{(o)}(\omega, \vec{\Omega})$ при конечных значениях экситонного затухания $\hbar\Gamma$ мы воспользовались диаграммной техникой Келдыша [2] и получили

$$I_{\beta S}^{(o)}(\omega, \vec{\Omega}) = \frac{F(\omega, \vec{\Omega})}{2k_o \operatorname{Im} n_{\beta z} + L^{-1}} \left| \frac{t_{0\beta}^{(s)}}{n_{\beta z}} \right|^2, \quad \beta = 1, 2, \quad (3)$$
$$I_{12S}^{(o)}(\omega, \vec{\Omega}) = F(\omega, \vec{\Omega}) \cdot 2\operatorname{Re}\left(\frac{1}{-ik_o (n_{1z} - n_{2z}^*) + L^{-1}} \frac{t_{01}^{(s)} \cdot (t_{02}^{(s)})^*}{n_{1z} \cdot n_{2z}^*}\right), \quad (4)$$

$$F(\omega,\vec{\Omega}) = \frac{1}{(2\pi)^3} \frac{2M^2 c \varepsilon_b \omega_{LT} \cos\theta}{\hbar \tau_{\beta 1} |(n_1^2 - n_2^2)|^2} f_1(\omega) , \quad (5)$$

где $n_{\beta z} = (n_{\beta}^2 - \sin^2 \theta)^{1/2}$ и величины $t_{0\beta}^{(s)}$ и

 $n_{\scriptscriptstyle \beta}$ рассчитываются с учетом затухания Γ :

$$t_{0\beta}^{(S)}(\theta) = \frac{E_{\beta S}^{(i)}}{E_{\beta S}^{(i)}} = \frac{2n_{\beta z}}{\left(n_{0z} + \overline{n}_{S}\right) \cdot \cos \delta - i \sin \delta \cdot \left(\overline{n}_{z} + \frac{n_{0z}}{\overline{n}_{z}} \overline{n}_{S}\right)}$$
(6)
ГДе $n_{0z} = \cos \theta$,

 $\tilde{n}_z = \sqrt{\varepsilon_b - \sin^2 \theta}, \quad \delta = \sqrt{\varepsilon_b} k_0 \ell / \tilde{n}_z$ (ℓ -толщина «мертвого слоя») и

$$\overline{n}_{S} = \frac{n_{1z} \left(\varepsilon_{b} - n_{2}^{2}\right) + n_{2z} \left(n_{1}^{2} - \varepsilon_{b}\right)}{n_{1}^{2} - n_{2}^{2}} \quad . \tag{7}$$

Здесь комплексные показатели преломления *n*_в определяются формулами

$$n_{\beta}^{2} = \frac{1}{2} \left\{ \varepsilon_{b} + \frac{\omega + i\frac{\Gamma}{2} - \omega_{0}}{\omega_{M}} - (-1)^{\beta} \left[\left(\varepsilon_{b} - \frac{\omega + i\frac{\Gamma}{2} - \omega_{0}}{\omega_{M}} \right)^{2} + \frac{\Gamma_{c}^{2}}{4\omega_{M}} \right]^{\frac{1}{2}} \right\}, \quad (8)$$

где $\Gamma_c = 4\sqrt{\varepsilon_b \omega_{LT} \omega_M}$ - критическое значение затухания, при котором $n_1 = n_2$ на критической частоте $\omega_c = \omega_0 + \varepsilon_b \omega_M$; $\omega_M = \hbar k_0^2 / 2M$.

Таким образом, экситонную люминесценцию в окрестности резонансной частоты ω_0 при конечных значениях затухания экситонов $\hbar\Gamma$ теоретически описать можно с помощью поляритонной модели, согласно которой экспериментально регистрируемая ПЛ в вакууме рассматривается как сумма парциальных излучений отдельных поляритонных мод с учетом их интерференции.

Результаты численного расчета и сравнение с экспериментом.

Для численного расчета интегральной и парциальных $I^{(0)}_{\beta s}(\omega)$ спектральных $I_{s}^{(0)}(\omega)$ интенсивностей воспользовались формулами (1) и (3)-(5), как основными, а также вспомогательными формулами (6)-(8)для амплитудных коэффициентов пропускания $t_{0\beta}$ и показателей преломления n_{β} . Единственным варьирующим параметром теории является эффективная глубина распределения поляритонов L нижней ветви. Значение $\hbar\Gamma$ считаем известным из эксперимента, и мы его выбрали в интервале (0.1 - 3.0) мэВ, что соответствует для чистого кристалла CdTe температурному интервалу (2.0 - 100) К [4]. Для параметра *L* выбрали значения в промежутке (0.2 -3.0) мкм исходя из максимального совпадения экспериментальных и теоретических спектров, а также учитывая экспериментальные результаты работы [3]. Численные расчеты проводились при следующих значениях основных параметров экситонного резонанса $A_{n=1}$ кристалла CdTe : $\hbar \omega_0$ = 1,596 эВ, $\hbar \omega_{LT} = 1,0$ мэВ, $M_{ex} = 0,5 m_0 (m_0 - \text{масса})$ свободного электрона), фоновая диэлектрическая проницаемость $\varepsilon_b = 9,65$, толщина «мертвого слоя» $\ell = 65 \text{ \AA}$. Такие значения параметров хорошо согласуются с экспериментальными результатами по экситонному отражению света и экситонной

люминесценции [1-2]. интересуемся Поскольку ΜЫ узкой спектральной областью в окрестности резонансной частоты ω_0 с радиусом $\approx (2-3)\omega_{LT}$, то в первом приближении можно пренебречь плавной частотной зависимостью экситонного затухания $\Gamma \cong (2\tau_{\beta 1})^{-1}$, где $\tau_{\beta 1}$ - время жизни поляритона относительно ухода $\beta \rightarrow 1$. Также пренебрегаем частотной зависимостью функции распределения $f_1(\omega)$ поляритонов ветви 1 в области частот $\omega_L \leq \omega \leq \omega_0 + \omega_{LO}$.

При численном расчете на компьютере мы использовали в качестве математического обеспечения для программирования автоматизированной алгоритмической системой

https://doi.org/10.5281/zenodo.8317796

```
https://journals.index copernicus.com/search/article?articleId=3712372
```

«МАТLAВ», которая была очень удобной для работы с комплексными числами и матрицами. Рассматривался относительно широкий спектральный интервал ($\omega_L - 4\omega_{LT}$; $\omega_L + 4\omega_{LT}$), внутри которой брали 100 расчетных точек для определения значений интенсивности излучения, выходящего из кристалла под углом $\theta = 0^0$ (т.е. нормально к поверхности кристалла).

На рис. 2, а представлены теоретические спектры ПЛ, рассчитанные для параметров кристалла *CdTe* при $\hbar\Gamma = 0,45 \text{ м} \Rightarrow B$ и L = 0,5 мкм. Кривая 0 соответствует суммарной интенсивности $I_{s}^{(0)}(\omega)$, а кривые 1, 2 и 12 – парциальным интенсивностям $I^{(0)}_{\beta s}(\omega)$, т.е. вкладам нижней $I_{1s}^{(0)}(\omega)$, верхней $I_{2s}^{(0)}(\omega)$ поляритонных ветвей и их интерференционному $I_{12s}^{(0)}(\omega)$ вкладу результирующую ПЛ. По оси абсциссы отложена относительная частота излучения $(\omega - \omega_I)/\omega_{IT}$, а по оси ординаты – интенсивности излучения в относительном масштабе, причем нормировка для всех теоретических спектральных кривых рис.2 и рис.3 одна и та же. Треугольники на рис.2, а фрагмент экспериментального представляют спектра фотолюминесценции кристалла СdTe в интервале частот (1,593-1,597) эВ при температуре $T = 4.2 \ K$ по работе [1]. Видно, что теоретический спектр суммарной интенсивности ПЛ (кривая 0) хорошо совпадает с экспериментальным спектром. большое Относительно значение ħΓ при температуре $T = 4.2 \ K$ и малое значение L, повидимому, обусловлены высокими примесных центров концентрациями R исследованных образцах CdTe, на что указывают доминирующие линии D^0X . A^0X , D^+X b экспериментальном спектре $HT\Phi\Pi$ [2], связанные излучением экситонов, захваченных нейтральными акцепторами, донорами И а также ионизированными донорами. Заметим, что теоретический спектр ПЛ, также как И экспериментальный спектр, имеет дублетную тонкую структуру (максимумы находятся на частотах ω_0 и ω_L), отражающую своеобразные комбинации парциальных вкладов нижней и верхней поляритонных ветвей. При этом следует особо отметить, что главный максимум ПЛ на *ω*₀ в большей степени обусловлен частоте интерференционным вкладом $I_{12s}^{(0)}(\omega)$. Как видно

из рис 2, а, длинноволновой максимум (Ао-линия) формируется из вкладов $I_{1s}^{(0)}(\omega)$, $I_{12s}^{(0)}(\omega)$ и $I_{2s}^{(0)}(\omega)$ в отношениях 3:2:1, а в коротковолновом максимуме (А_L-линия) эти же вклады составляют отношение 4:1:9. Иначе говоря, при формировании Ао-линии большую роль играет поляритоны нижней ветви и интерференционный вклад, а A_Lлиния формируется основном В за счет поляритонов верхней ветви. В спектральной области вблизи А_L-линии максимальное отклонение теории от эксперимента составляет ~4 %. Из рисунка также видно, что в коротковолновой части спектра уже при $\omega \ge \omega_L + \omega_{LT}$ расхождение экспериментом теории с становится существенным. Это, по-видимому, связано с наличием частотной зависимости функции распределения $f_1(\omega)$ поляритонов нижней ветви и экситонного затухания $\hbar\Gamma(\omega)$, что не учтено предложенным в данной работе теоретическим расчетом.

Естественно, представляет большой интерес общая картина зависимости спектров кристаллов CdTe от параметра затухания $\hbar\Gamma$ для контроля диагностики И чистоты полупроводникового материала. C экспериментальной точки зрения, рост значения при низких температурах ($T \approx 2 \div 4 K$) ħΓ обусловлен увеличением концентрации различных дефектов кристалла, на которых рассеиваются экситоны, а для сверхчистых кристаллов увеличением роли фононов. С другой стороны с повышением значения $\hbar\Gamma$ уже при $\hbar\Gamma = 0,2$ мэВ роль поверхностностановится заметной радиационной волны 2 и её аномальной дисперсии. Для нас представляет интерес следить за тем, как отражается данные эффекты в спектрах ПЛ. Такой вопрос ранее при исследовании НТФЛ кристаллов *CdTe* в литературах не рассматривался. На рис.2, b, c, d, e, f приведены расчетные спектры ПЛ для параметров кристалла CdTe при $\hbar\Gamma = 0.6, 0.1, 0.2,$ 1.5, 3.0 мэВ, соответственно. При этом значения параметра L мы выбрали из условия наиболее совпадения теоретических хорошего экспериментальных спектральных кривых, где это было возможным.

Сразу же заметим, что как суммарное $I_s^{(0)}(\omega)$, так и парциальные $I_{\beta s}^{(0)}(\omega)$ ($\beta = 1, 2$) спектральные кривые претерпевают существенные

 $\hbar\Gamma$. Так, качественные изменения с ростом например, при $\Gamma < \Gamma_c$ (для параметров кристалла значение CdTe критическое экситонного затухания $\hbar \Gamma_c \approx 0.88 \text{ мэB}$) теоретический спектр $I_{s}^{(0)}(\omega)$ сохраняет дублетную структуру. При $\hbar \Gamma \leq 0.3$ мэВ относительно малых значениях А_L-линии интенсивность превышает интенсивности линии A_0 (см. рисунки 2, с и d). Однако с дальнейшим увеличением значения $\hbar\Gamma$ асимметричность дублетной структуры уменьшается, а затем эти линии испытывают инверсию по интенсивности (рисунки 1, *a* и b), в определяющую роль играет которой интерференционный вклад $I_{12s}^{(0)}(\omega)$, входящий в $I_{-}^{(0)}(\omega)$ с положительным знаком. Из всех рис. 2 интересно заметить, что спектральный контур $I_{12s}^{(0)}(\omega)$ в отличие от контуров $I_{s}^{(0)}(\omega)$ и $I_{\beta s}^{(0)}(\omega)$ вне зависимости от значения $\hbar\Gamma$ сохраняет симметричный лоренцевский вид, а его максимум, также как и максимум линии A_0 , находится на частоте ω_0 при всех значениях $\hbar\Gamma$. При $\Gamma \to \Gamma_c$ дублетная структура спектра ПЛ практически исчезает и доминирует линия A_0 , что обусловлено подавлением поляритонного эффекта при больших затуханиях механических экситонов $\hbar\Gamma$. Таким образом, дублетная структура линии НΤΦЛ CdTe. экспериментально кристаллов обнаруженная в спектральной области свободных экситонов в работах [2-4] (см. также цитированные литературы в [3]) явно связана поляритонными состояниями и эффектом интерференционной люминесценции, т.е. когерентным излучением различных поляритонных ветвей. При этом, исходя из теоретических кривых $I_{s}^{(0)}(\omega)$ на рисунках 2, с и d особо хочется отметить, что в спектрах ПЛ сверхчистых кристаллов CdTe (т.е. при $\Gamma \rightarrow 0$) максимум А_L-линии превосходит максимума A₀ –линии, что является надежным критерием оценки чистоты кристалла CdTe. При значениях $\Gamma \geq \Gamma_c$, как видно из рисунков 2, е и f, теоретическая спектральная линия $I_{s}^{(0)}(\omega)$ в соответствии с экспериментальными линиями экситонной люминесценции кристаллов CdTe: Fe [4] при T = 5 K и концентрациях легирующих

примесей $3.0 \cdot 10^{18} cm^{-3}$ и $3.5 \cdot 10^{19} cm^{-3}$ содержит один максимум.

Рис.2. Теоретические спектры ПЛ, рассчитанные для параметров кристалла СdTe : $\hbar \omega_0 = 1,596 \ \Im B, \ \hbar \omega_{LT} = 1,0 \ M \Im B, \ \varepsilon_s = 9,65,$

 $M_{ex}/m_0 = 0.5$, $\theta = 0^0 u$

ħГ = 0,45 (a); 0,6 (b); 0,1 (c); 0,2 (d); 15 (e); 3,0 (f) мэВ,
L = 0,5 (a); 0,4 (b); 0,85 (c); 0,7 (d); 0,3 (e); 0,2 (f) мкм
Кривая 0 – суммарная, а 1, 2 и 12 - парциальные интенсивности - вклады нижней, верхней поляритонных ветвей и их интерференционный вклад. По оси абсциссы отложена относительная частота излучения (ω – ω_L)/ω_{LT}, а по оси ординаты–интенсивности излучения в относительном масштабе. Треугольники-эксперимент [2(a), 11(e, f)].

Из рисунков 1, *е* и f также видим, что при $\hbar\Gamma = 1.5 \text{ мэB}$ спектральный контур $I_s^{(0)}(\omega)$ обладает ещё некоторой асимметрией, что отражает неполное подавление поляритонного эффекта сильным затуханием, а при $\hbar\Gamma = 3.0 \text{ мэB}$ форма линии $I_s^{(0)}(\omega)$ уже переходит почти в лоренцевский контур.

Рис.3. Теоретические спектры ПЛ для значений параметров $\hbar\Gamma: 0.7, 0.8, 0.88, 1.0, 2.0, 5.0 \text{ мэВ}$ и L: 0.4(a), 0.4(b), 0.3(c), 0.3(d), 0.2(e), 0.1(f) мкм. Значения остальных параметров кристалла CdTe и обозначения те же, что и на рис.2.

Теперь кратко рассмотрим роль поверхностно-радиационной волны 2 И eë аномальной дисперсии в формировании спектров $\Pi \Pi$ по рис. 2, а также по рис. 3, *a-f*, где для более представления получения полного дополнительно приведены теоретические спектры $\Pi\Pi$ для параметров кристалла *CdTe* при $\hbar\Gamma = 0.7$, 0.88, 1.0, 2.0, 5.0 мэВ (соответственно 0.8. L = 0.4, 0.4, 0.3, 0.3, 0.2, 0.1 MKM). Дисперсия поляритонов верхней ветви 2 с увеличением $\hbar\Gamma$ претерпевает сильные изменения в области частот $\omega < \omega_L$. Во-первых, волновое число k_{γ} приобретает вещественную добавку, что означает включение поверхностно-радиационной волны 2 в процесс переноса энергии экситонного возбуждения в кристалле. Во-вторых, в области продольно-поперечного расщепления (ω_0, ω_L) величина $\operatorname{Re} k_{2}$ обнаруживает аномальную дисперсию. Из рисунков 2 и 3 видно, что с ростом $\hbar\Gamma$ парциальный вклад $I_{2s}^{(0)}(\omega)$ (кривая 2) в области частот $\omega < \omega_L$ монотонно расширяется и ведет своеобразную частотную зависимость. Сначала в спектральной линии $I_{2s}^{(0)}(\omega)$ на частоте ω_0 обнаруживается при значениях $\hbar\Gamma \approx 0.2 - 0.4 \, M$ эВ изгиб (рис. 2, d), далее полочка (рис. 2, a), а затем при $\hbar\Gamma \approx 0.5 - 0.8 \, M$ эВ - явный максимум (рис. 2, b и 3, a, b), которые обусловлены аномальной дисперсией $\operatorname{Re} k_2$ и сближением дисперсионных кривых $\operatorname{Re} k_1$ и $\operatorname{Re} k_2$ при $\Gamma \to \Gamma_c$

В области значений Г≈0.6-1.2 мэВ парциальные вклады $I_{1s}^{(0)}(\omega)$, $I_{2s}^{(0)}(\omega)$ и $I_{12s}^{(0)}(\omega)$ на поперечной частоте ω_0 по порядку величины одинаковы, а при $\Gamma \approx \Gamma_c$ интерференционный вклад превышает $I_{1s}^{(0)}(\omega)$, $I_{2s}^{(0)}(\omega)$ каждые в отдельности, но, естественно, остается меньшим их суммы. Из рисунков 2 и 3 заметим, что интенсивность $I_s^{(0)}(\omega)$ $\Pi \Pi$ кристалла CdTe на частоте ω_0 с ростом $\hbar\Gamma$ плавно увеличивается, а спектральная полуширина Δ плавно уменьшается. $\Gamma \to \Gamma_c$ Однако при происходит резкое возрастание max $I_{s}^{(0)}(\omega)$ и сильное уменьшение Δ (рис. 3, *a*, *b*, *c*). Дальнейший рост $\hbar\Gamma$ в области $\Gamma > \Gamma_c$ приводит к тому, что максимальная интенсивность max $I_s^{(0)}(\omega)$ плавно уменьшается (Δ уширяется). Иначе говоря, функция max $I_s^0(\Gamma)$ имеет резкий максимум, а $\Delta(\Gamma)$ - провал при значении $\Gamma = \Gamma_c$ (рис.4). При $\Gamma >> \Gamma_c$ установится $\Delta \approx \Gamma$ (рис. 3, f), вклады $I_{2s}^{(0)}(\omega), I_{12s}^{(0)}(\omega) \rightarrow 0$ и спектр $\Pi \Pi = I_{s}^{(0)}(\omega)$ формируется из одной компоненты $I_{1s}^{(0)}(\omega)$ с лоренцевским контуром.

Рис.4. Теоретические зависимости спектральной полуширины (а) и максимальной интенсивности (b) ПЛ кристаллов CdTe от экситонного затухания ħГ.

Заключение. На основе микроскопической теории ПЛ и анализа теоретических спектров *НТФЛ* кристаллов *CdTe* со сравнением существующих экспериментов можно сделать следующие выводы:

1. Предложена модель формирования ПЛ полупроводниковых кристаллов типа *CdTe* с небольшим значением продольно-поперечного расщепления ω_{LT} при конечных затуханиях $\hbar\Gamma$ механических экситонов, согласно которой излучающие квантовые состояния поляритонов в окрестности «бутылочного горла» заселяются за счет рассеяния поляритонов нижней ветви 1 из области $\omega \ge \omega_L$ с достаточно большими \vec{k} на акустических и оптических фононах, причем в ПЛ дают вклады упруго рассеянные на примесях в сторону поверхности кристалла поляритонные верхними 2 нижними волны с И 1 дисперсионными ветвями и их интерференция в вакууме.

2. Разработан метод расчета парциальных спектров ПЛ кристаллов типа *CdTe* в

окрестности экситонного резонанса $A_{n=1}$ при конечных значениях $\hbar\Gamma$ с использованием диаграммной техники Келдыша для функции Грина экситонов, справедливый и в случаях, когда нарушается критерии применимости кинетического уравнения Больцмана для функции распределения поляритонов.

3. Теоретический спектр ПЛ кристаллов соответствие экспериментальным CdTeВ значениях спектром при $\hbar \Gamma < 0.6$ мэВ обнаруживает асимметричную дублетную тонкую структуру с максимумами окрестностях частот ω_0 (A_0 -линия) и ω_L (A_L линия), а при $\Gamma \geq \Gamma_c$ - синглетную линию с максимумом вблизи частоты ω_0 , причем для случаев $\Gamma >> \Gamma_c$ контур этой линии приобретает лоренцевский вид, что отражает полное подавление поляритонного эффекта сильным экситонным затуханием.

4. При относительно малых значениях $\hbar\Gamma < 0.3 \text{ мэB}$ интенсивность A_L -линии превышает интенсивности линии A_0 , с дальнейшим увеличением $\hbar\Gamma$ асимметричность дублетной структуры уменьшается и при $\hbar\Gamma \approx 0.3 \text{ мэB}$ эти линии испытывают инверсию по интенсивности, в которой определяющую роль играет интерференционный вклад $I_{12s}^{(0)}(\omega)$, входящий в $I_s^{(0)}(\omega)$ с положительным знаком. Спектральный контур $I_{12s}^{(0)}(\omega)$ в отличие от контуров $I_s^{(0)}(\omega)$ и $I_{\beta s}^{(0)}(\omega)$ сохраняет симметричный лоренцевский вид, а его максимум, также как и максимум линии A_0 , находится на частоте ω_0 при всех значениях $\hbar\Gamma$.

5. С ростом $\hbar\Gamma$ парциальный вклад $I_{2s}^{(0)}(\omega)$ в области частот $\omega < \omega_L$ монотонно расширяется и на частоте ω_0 обнаруживается при значениях $\hbar\Gamma \approx 0.2 - 0.4 \text{ мэB}$ изгиб, далее полочка, а затем при $\hbar\Gamma \approx 0.5 - 0.8 \text{ мэB}$ - явный максимум, которые обусловлены аномальной дисперсией Re k_2 и сближением дисперсионных кривых Re $k_1(\omega)$ и Re $k_2(\omega)$ при $\Gamma \rightarrow \Gamma_c$. В области значений $\Gamma \approx 0.6 - 1.2 \text{ мэB}$ парциальные вклады $I_{1s}^{(0)}(\omega)$, $I_{2s}^{(0)}(\omega)$ и $I_{12s}^{(0)}(\omega)$

на поперечной частоте ω_0 по порядку величины одинаковы, а при $\Gamma \approx \Gamma_c$ интерференционный вклад превышает $I_{1s}^{(0)}(\omega)$, $I_{2s}^{(0)}(\omega)$ каждый в отдельности, оставаясь меньшим их суммы.

Таким образом, при конечных значениях $\hbar\Gamma$ поляритонные моды типа 2 - 2' и их интерференция с модами 1 - 1' [5] в области частот $\omega < \omega_1$ дают весьма заметный вклад в $\Pi \Pi$ *CdTe*, который в привычной картине ПЛ (в приближении) кинетическом ранее, как правило, вообще не рассматривался, а в области частот $\omega > \omega_L$ вклад поляритонов верхней ветви $I_{2s}^{(0)}(\omega)$ является определяющим. Предложенный здесь метод расчета и анализа может быть использован для спектров ПЛ интерпретации правильной особенностей спектров НТФЛ кристаллов типа *CdTe* с относительно небольшими значениями продольно-поперечного расщепления $\omega_{IT} \leq 1.0 \text{ мэВ}$ в области экситонных резонансов открывает И новые возможности для неразрушающего контроля диагностики И кристаллических И поликристаллических полупроводниковых структур.

6. Изучение люминесценции поляритонов в полупроводниковых структурах на основе халькогенилных соединений калмия пересечение представляет увлекательное фундаментальной физики и технологической инновации. С помощью тщательного понимания поведения поляритонов и передовых методов характеристики исследователи готовы раскрыть потенциал этих квазичастиц для следующего оптоэлектронных устройств поколения И квантовых технологий. По мере развития этой области можно ожидать дополнительных прорывов, которые сформируют будущее как фундаментальных, так прикладных И исследований.

Список литературы

1. Багаев В.С., Клевков Ю.В., Колосов С.А., Кривобок В.С., Онищенко Е.Е., Шепель А.А. Фотолюминесценция *CdTe*, выращенного при значительном отклонении от термодинамического равновесия // ФТП. - 2011. - Т. 45, вып. 7. - С. 908-915.

2. Багаев В.С., Клевков Ю.В., Колосов С.А., Кривобок В.С., Шепель А.А. Оптические и электрофизические свойства дефектов в высокочистом *CdTe* // ФТТ. - 2010. - Т. 52, вып. 1. - С. 37-42.

3. Парфенюк О.А., Илащук М.И., Уляницкий К.С., Фочук П.М., Стрильчук О.М., Крилюк С.П., Корбутяк Д.В. Электрофизические свойства и низкотемпературная фотолюминесценция монокристаллов *CdTe*, легированных Si // ФТП. - 2006. Т. 40, вып. 2. - С.148-152.

4. Polvonov B.Z.,Nasirov M.X.,Mirzaev V.T.,Razikov J. "Diagnostika poluprovodnikovix materialov metodom polyaritonnoy lyuminessensii" *General question of world science Collection of scientific papers on materials VII International Scientific Conference*. Izdatelstvo:"Nauka Rossii" 2.(2019):39

B.Z.Polvonov. Yu.I.Gafurov. 5. U.A.Otajonov, M.X.Nasirov, B.B.Zaylobiddinov, The specificity of photoluminescence n-CdS/p-CdTe semiconductor heterostructures// in International Journal of Mathematics and Physics(Al-Farabi Kazakh National University) Print ISSN: 2218-7987, Online ISSN: 2409-5508 Vol 14 No 2 (2022)