

Big Data technologies and extreme-scale analytics

Multimodal Extreme Scale Data Analytics for Smart Cities Environments

D5.6: MARVEL Integrated framework – final version †

Abstract: This deliverable showcases the final version of the MARVEL Integrated

framework (R2), as well as all the underlying integration activities carried out towards its

realisation. R2 is designed to address ten use cases across the three MARVEL pilots. The

deliverable first presents the plan and methodology that were followed for the integration of

MARVEL components into R2, followed by a description of these components and their role.

Subsequently, a detailed presentation of the design and specifications of the MARVEL R2

framework and its application in the use cases is provided, along with the associated I/O

interfaces, data models and UI/UX, while giving an account of the employed infrastructure.

Then, the deliverable discusses the main challenges and issues encountered, presents the main

achievements of R2 and its contribution to the overall MARVEL goals, and ends with the next

steps and a summary of the conclusions.

Contractual Date of Delivery 30/06/2023

Actual Date of Delivery 21/07/2023

Deliverable Security Class Public

Editor Tassos Kanellos (ITML)

Contributors ITML, FORTH, IFAG, AU, ATOS, CNR, INTRA, FBK,

AUD, TAU, STS, MT, UNS, GRN, ZELUS, PSNC

Quality Assurance Ilias Seitanidis (INTRA)

Claudio Cicconetti (CNR)

† The research leading to these results has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 957337.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 2 - 21 July, 2023

The MARVEL Consortium

Part.

No.
Participant organisation name

Participant

Short Name
Role Country

1

FOUNDATION FOR

RESEARCH AND

TECHNOLOGY HELLAS

FORTH Coordinator EL

2
INFINEON TECHNOLOGIES

AG
IFAG Principal Contractor DE

3 AARHUS UNIVERSITET AU Principal Contractor DK

4 ATOS SPAIN SA ATOS Principal Contractor ES

5
CONSIGLIO NAZIONALE

DELLE RICERCHE
CNR Principal Contractor IT

6
INTRASOFT INTERNATIONAL

S.A.
INTRA Principal Contractor LU

7
FONDAZIONE BRUNO

KESSLER
FBK Principal Contractor IT

8 AUDEERING GMBH AUD Principal Contractor DE

9 TAMPERE UNIVERSITY TAU Principal Contractor FI

10 PRIVANOVA SAS PN Principal Contractor FR

11
SPHYNX TECHNOLOGY

SOLUTIONS AG
STS Principal Contractor CH

12 COMUNE DI TRENTO MT Principal Contractor IT

13

UNIVERZITET U NOVOM

SADU FAKULTET TEHNICKIH

NAUKA

UNS Principal Contractor RS

14

INFORMATION

TECHNOLOGY FOR MARKET

LEADERSHIP

ITML Principal Contractor EL

15 GREENROADS LIMITED GRN Principal Contractor MT

16 ZELUS IKE ZELUS Principal Contractor EL

17

INSTYTUT CHEMII

BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK

PSNC Principal Contractor PL

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 3 - 21 July, 2023

Document Revisions & Quality Assurance

Internal Reviewers

1. Ilias Seitanidis (INTRA)

2. Claudio Cicconetti (CNR)

Revisions

Version Date By Overview

1.0.0 21/07/2023 Tassos Kanellos (ITML)
Final version ready for

submission to the EC

0.8.0 20/07/2023 Despina Kopanaki (FORTH)
Final version approved by the

PC

0.7.0 11/07/2023 Tassos Kanellos (ITML)
Final draft approved by

internal reviewers

0.6.0 10/07/2023 Tassos Kanellos (ITML)

Pre-final draft for final

approval by internal

reviewers

0.5.5 06/07/2023
Ilias Seitanidis (INTRA)

Claudio Cicconetti (CNR)
Comments on complete draft

0.5.0 03/07/2023 Tassos Kanellos (ITML)
Complete draft released for

internal review

0.4.0 12/06/2022
ITML, FORTH, IFAG, AU, ATOS, CNR,

INTRA, FBK, AUD, TAU, STS, MT, UNS,

GRN, ZELUS, PSNC

Updated contributions

integrated

0.3.0 29/05/2022
ITML, FORTH, IFAG, AU, ATOS, CNR,

INTRA, FBK, AUD, TAU, STS, MT, UNS,

GRN, ZELUS, PSNC

Initial contributions

integrated

0.2.0 05/05/2023 Tassos Kanellos (ITML) Revised ToC

0.1.5 02/05/2023
Manolis Falelakis (INTRA)

Dragana Bajovic (UNS)
Comments on ToC

0.1.0 21/04/2023 Tassos Kanellos Initial ToC.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 4 - 21 July, 2023

Disclaimer

The work described in this document has been conducted within the MARVEL project. This project has
received funding from the European Union’s Horizon 2020 research and innovation programme under

grant agreement No 957337. This document does not reflect the opinion of the European Union, and

the European Union is not responsible for any use that might be made of the information contained

therein.

This document contains information that is proprietary to the MARVEL Consortium partners. Neither
this document nor the information contained herein shall be used, duplicated or communicated by any

means to any third party, in whole or in parts, except with prior written consent of the MARVEL

Consortium.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 5 - 21 July, 2023

Table of Contents

THE MARVEL CONSORTIUM ... 2

DOCUMENT REVISIONS & QUALITY ASSURANCE .. 3

TABLE OF CONTENTS ... 5

LIST OF TABLES .. 8

LIST OF FIGURES .. 9

LIST OF ABBREVIATIONS .. 11

EXECUTIVE SUMMARY .. 14

1 INTRODUCTION... 15

1.1 PURPOSE AND SCOPE OF THIS DOCUMENT ... 15
1.2 INTENDED READERSHIP ... 15
1.3 CONTRIBUTION TO WP5 AND PROJECT OBJECTIVES .. 15
1.4 RELATION TO OTHER WPS AND DELIVERABLES .. 17
1.5 STRUCTURE OF THE DOCUMENT .. 18

2 R2 OVERVIEW AND USE CASES .. 19

2.1 R2 OVERVIEW AND OBJECTIVES ... 19
2.2 R2 USE CASES ... 21

2.2.1 GRN Use Case 1 – Safer roads .. 22
2.2.2 GRN Use Case 2 – Road user behaviour ... 22
2.2.3 GRN Use Case 3 – Traffic Conditions and Anomalous Events .. 23
2.2.4 GRN Use Case 4 – Junction Traffic Trajectory Collection .. 23
2.2.5 MT Use Case 1 – Monitoring of crowded areas .. 24
2.2.6 MT Use Case 2 – Detecting criminal/anti-social behaviours .. 24
2.2.7 MT Use Case 3 – Monitoring of parking places .. 25
2.2.8 MT Use Case 4 – Analysis of a specific area ... 25
2.2.9 UNS Use Case 1 – Drone experiment .. 26
2.2.10 UNS Use Case 2 – Localising audio events in crowds ... 26

3 R2 INTEGRATION PLAN AND METHODOLOGY .. 28

3.1 TECHNICAL PROJECT ORGANISATION ... 28
3.1.1 Time Plan.. 29
3.1.2 Recurring Technical Integration Meetings .. 32
3.1.3 Integration Board ... 33

3.2 R2 DESIGN APPROACH .. 33
3.3 INFRASTRUCTURE SIZING .. 35
3.4 SOURCE VERSION CONTROL SYSTEM ... 37
3.5 ISSUE TRACKING SYSTEM ... 38
3.6 SPECIFICATION DOCUMENTATION ... 41
3.7 COMPONENT DEPLOYMENT (CI/CD) ... 43
3.8 QUALITY ASSURANCE... 49

3.8.1 Unit Testing .. 49
3.8.2 Partial Integration Testing ... 50
3.8.3 End-to-End Integration Testing .. 50
3.8.4 Technical Validation Testing .. 56

4 SUBSYSTEMS AND COMPONENTS INTEGRATED IN R2.. 57

4.1 SENSING AND PERCEPTION SUBSYSTEM .. 60
4.1.1 MEMS microphone IM69D130 .. 60
4.1.2 AVDrone ... 61
4.1.3 AV Registry ... 62

4.2 SECURITY, PRIVACY AND DATA PROTECTION SUBSYSTEM ... 63
4.2.1 VideoAnony ... 63
4.2.2 AudioAnony .. 64
4.2.3 Voice Activity Detection (VAD) – devAIce ... 64

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 6 - 21 July, 2023

4.2.4 EdgeSec VPN .. 65
4.2.5 EdgeSec Trusted Execution Environment (TEE) .. 67

4.3 DATA MANAGEMENT AND DISTRIBUTION SUBSYSTEM ... 68
4.3.1 DatAna .. 68
4.3.2 Data Fusion Bus ... 71
4.3.3 StreamHandler ... 74
4.3.4 Hierarchical Data Distribution (HDD).. 77

4.4 AUDIO, VISUAL AND MULTIMODAL AI SUBSYSTEM .. 78
4.4.1 CATFlow... 78
4.4.2 Text Anomaly Detection (TAD) .. 80
4.4.3 Visual Anomaly Detection (ViAD) .. 81
4.4.4 Audio-Visual Anomaly Detection (AVAD) ... 82
4.4.5 Visual Crowd Counting (VCC) ... 83
4.4.6 Audio-Visual Crowd Counting (AVCC) ... 84
4.4.7 Sound Event Detection (SED) .. 86
4.4.8 Audio Tagging (AT) .. 87
4.4.9 Automated audio captioning (AAC) ... 88
4.4.10 Sound event localisation and detection (SELD) ... 89
4.4.11 YOLO-SED ... 90
4.4.12 Rule-Based Anomaly Detection (RBAD) .. 93

4.5 OPTIMISED E2F2C PROCESSING AND DEPLOYMENT SUBSYSTEM ... 94
4.5.1 GPURegex .. 94
4.5.2 DynHP .. 95
4.5.3 FedL .. 97
4.5.4 MARVDash ... 98

4.6 E2F2C INFRASTRUCTURE ... 100
4.6.1 HPC infrastructure ... 100
4.6.2 Management and orchestration of HPC resources .. 101

4.7 USER INTERACTIONS AND DECISION-MAKING TOOLKIT .. 102
4.7.1 SmartViz ... 102
4.7.2 MARVEL Data Corpus-as-a-Service .. 103

5 R2 DESIGN AND SPECIFICATIONS ... 106

5.1 ‘AI INFERENCE PIPELINE’ REFERENCE ARCHITECTURE ... 106
5.2 I/O INTERFACES - APIS ... 112

5.2.1 Onboard AV access .. 118
5.2.2 AV Registry access ... 118
5.2.3 AV streaming .. 119
5.2.4 DatAna: AI inference result publication .. 120
5.2.5 DatAna: AI result consumption .. 121
5.2.6 DatAna Inter-Agent Communication .. 121
5.2.7 DatAna - DFB... 122
5.2.8 DFB - SmartViz .. 122
5.2.9 StreamHandler - DFB .. 123
5.2.10 StreamHandler - SmartViz ... 124
5.2.11 StreamHandler MinIO AV Data access ... 126
5.2.12 DFB - HDD .. 126
5.2.13 AI Model Repository access ... 128
5.2.14 DataCorpus: AI training .. 129
5.2.15 FedL Server – FedL Client ... 130
5.2.16 DFB - DataCorpus ... 130

5.3 DATA MODELS .. 131
5.3.1 AV Source Data Model (Camera) .. 133
5.3.2 SDM-compliant AI Inference Result Data Models (MediaEvent, Alert, Anomaly) 134
5.3.3 Raw AI Inference Result Data Models ... 136
5.3.4 MLModel Data Model .. 139
5.3.5 Inference Verification Message Data Model .. 140

5.4 R2 ARCHITECTURE INSTANTIATION PER USE CASE ... 140
5.4.1 GRN1 – Safer roads: AI Inference runtime and deployment view ... 140
5.4.2 GRN2 – Road user behaviour: AI Inference runtime and deployment view 144

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 7 - 21 July, 2023

5.4.3 GRN3 – Traffic Anomalous Events: AI Inference runtime and deployment view 147
5.4.4 GRN4 – Junction Traffic Trajectory: AI Inference runtime and deployment view 150
5.4.5 MT1 – Monitoring of crowded areas: AI Inference runtime and deployment view 154
5.4.6 MT2 – Detecting criminal/anti-social behaviours: AI Inference runtime and deployment view . 157
5.4.7 MT3 – Monitoring of parking places: AI Inference runtime and deployment view 162
5.4.8 MT4 – Analysis of a specific area: AI Inference runtime and deployment view 166
5.4.9 UNS1 – Drone Experiment: AI Inference runtime and deployment view..................................... 170
5.4.10 UNS2 – Localising audio events in crowds: AI Inference runtime and deployment view............ 174
5.4.11 AI Training runtime and deployment view ... 177
5.4.12 Data Corpus Data Aggregation runtime and deployment view ... 179

5.5 UI/UX DESIGN.. 181
5.5.1 Weather Information .. 181
5.5.2 Sound Localisation Map ... 182
5.5.3 Alerts... 183
5.5.4 Comparison .. 183
5.5.5 Download Data (JSON) ... 184
5.5.6 Download PDF Report ... 184
5.5.7 Word Cloud .. 184
5.5.8 Audio Player ... 185
5.5.9 Police Intervention ... 185
5.5.10 Service Management .. 186

5.6 INFRASTRUCTURE ... 188
5.6.1 GRN Infrastructure ... 188
5.6.2 MT/FBK Infrastructure .. 191
5.6.3 UNS Infrastructure ... 194
5.6.4 PSNC Cloud Infrastructure .. 196

6 MAIN CHALLENGES, ISSUES ENCOUNTERED AND RESOLUTION 197

7 R2 MAIN ACHIEVEMENTS AND CONTRIBUTION TO MARVEL GOALS 202

7.1 R2 MAIN ACHIEVEMENTS .. 202
7.2 CONTRIBUTION OF R2 TO MARVEL GOALS ... 205

8 FUTURE WORK .. 207

9 CONCLUSIONS ... 208

APPENDIX A: R2 TECHNICAL VALIDATION TEST REPORT ... 209

APPENDIX B: R2 DATA MODEL SPECIFICATIONS ... 223

“CAMERA” SDM-COMPLIANT DATA MODEL FOR AV SOURCES .. 223
“MEDIAEVENT” SDM-COMPLIANT INFERENCE RESULT DATA MODEL ... 226
“ALERT” SDM-COMPLIANT INFERENCE RESULT DATA MODEL .. 229
“ANOMALY” SDM-COMPLIANT INFERENCE RESULT DATA MODEL .. 232
“MLMODEL” SDM-COMPLIANT DATA MODEL FOR AI MODEL DESCRIPTORS ... 235
CATFLOW-VEHICLES RAW INFERENCE RESULT DATA MODEL .. 241
CATFLOW-PEDESTRIANS RAW INFERENCE RESULT DATA MODEL ... 245
TAD RAW INFERENCE RESULT DATA MODEL ... 248
VIAD / AVAD RAW INFERENCE RESULT DATA MODEL ... 251
VCC / AVCC RAW INFERENCE RESULT DATA MODEL ... 253
SED RAW INFERENCE RESULT DATA MODEL .. 255
AT RAW INFERENCE RESULT DATA MODEL .. 257
AAC RAW INFERENCE RESULT DATA MODEL ... 259
SELD RAW INFERENCE RESULT DATA MODEL ... 261
VAD RAW INFERENCE RESULT DATA MODEL ... 263
YOLO-SED RAW INFERENCE RESULT DATA MODEL ... 265
RBAD RAW INFERENCE RESULT DATA MODEL .. 267
GPUREGEX RAW INFERENCE RESULT DATA MODEL .. 269
INFERENCE RESULT VERIFICATION MESSAGE DATA MODEL ... 271

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 8 - 21 July, 2023

List of Tables

Table 1: R2 Integration Rolling Milestones .. 31
Table 2: Collected component requirement estimations for infrastructure sizing 36
Table 3: List of components integrated in R2 and main achievements / updates 57
Table 4. StreamHandler's Service-Functionality ... 75
Table 5: Deployment option prioritisation for components in the ‘AI Inference Pipeline’ 111
Table 6: MARVEL R2 I/O Interface Types .. 115
Table 7: Time/Date fields used in the MARVEL Inference Result Data Models and presence in original

SDM data models ... 135
Table 8: MARVEL architectural components for GRN1 – Safer roads ... 143
Table 9: MARVEL architectural components for GRN2 – Road user behaviour 146
Table 10: MARVEL architectural components for GRN3: Traffic Conditions and Anomalous Events

 .. 149
Table 11: MARVEL architectural components for GRN4: Junction Traffic Trajectory Collection .. 153
Table 12: MARVEL architectural components for MT1: Monitoring of crowded areas 156
Table 13: MARVEL architectural components for MT2 – Detecting criminal/anti-social behaviours

 .. 161
Table 14: MARVEL architectural components for MT3: Monitoring of parking places 165
Table 15: MARVEL architectural components for MT4 – Analysis of a specific area...................... 169
Table 16: MARVEL architectural components for UNS1: Drone Experiment 173
Table 17: MARVEL architectural components for UNS1: Drone Experiment 176
Table 18: MARVEL architectural components for AI Training ... 179
Table 19: MARVEL architectural components for Data Corpus .. 181
Table 20: DMT Widgets’ mapping to R2 use cases of GRN .. 186
Table 21: DMT Widgets’ mapping to R2 use cases of MT .. 187
Table 22: DMT Widgets’ mapping to R2 use cases of UNS .. 187
Table 23: Specifications for GRN IP Cameras ... 188
Table 24: GRN Edge PC 1 (GRN E1) specifications.. 189
Table 25: GRN Edge PC 2 (GRN E2) specifications.. 189
Table 26: GRN Edge Jetson Device specifications ... 189
Table 27: GRN Traffic LED sign simulator .. 190
Table 28: GRN Fog server node specifications .. 190
Table 29: MT Edge Infrastructure in R2 ... 192
Table 30: MT3 E2 Edge Jetson Device specifications .. 193
Table 31: MT Fog workstation specifications... 194
Table 32: UNS Edge infrastructure specifications .. 195
Table 33: UNS Fog server specifications .. 195
Table 34: Comparison of main achievements in each MARVEL framework release 204

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 9 - 21 July, 2023

List of Figures

Figure 1: Week-based time plan in the form of a Gantt chart for organising R2 integration activities . 29
Figure 2: MARVEL component requirements regarding AV data .. 34
Figure 3: MARVEL component mapping to use cases and deployment location at infrastructure layers

 .. 35
Figure 4: Service allocation plan to specific PSNC HPC VMs to ensure resource availability 37
Figure 5: Commits in the main branch of the repository used for integration of the MARVEL framework

 .. 38
Figure 6: Generation of a new issue in the GitLab Issue Tracking System using the GitLab Flavoured

Markdown (GLFM) syntax and specifying associated issue metadata .. 40
Figure 7: An active discussion thread opened under a specific issue .. 40
Figure 8: List view of open issues in the MARVEL Integration Issue Tracking System 41
Figure 9: Board view (Kanban) of open issues in the MARVEL Integration Issue Tracking System .. 41
Figure 10: The mark-down specification document for the I/O interface between DatAna and DFB

hosted in the MARVEL GitLab repository .. 42
Figure 11: The mark-down specification document for the data model of the inference results produced

by the VAD component, hosted in the MARVEL GitLab repository.. 43
Figure 12: MARVEL Kubernetes Cluster with the use of EdgeSec VPN ... 44
Figure 13: Snippet from a NGINX YAML template file ... 46
Figure 14: Part of spreadsheet for supporting the deployment process of MARVEL components in R2

 .. 48
Figure 15: SonarQube automated static code analysis results for the DFB ES-Connector service 50
Figure 16: Kubebox terminal and associated Ubuntu OS command line .. 52
Figure 17: DatAna NiFi GUI ... 52
Figure 18: DFB Kafka topic traffic monitoring ... 53
Figure 19: DFB Elastic Search GUI (Kibana) ... 53
Figure 20: MARVdash monitoring dashboard: Compute Resources per namespace 54
Figure 21: MARVdash monitoring dashboard: Service Logs.. 55
Figure 22: MARVdash monitoring dashboard: MQTT broker status .. 55
Figure 23: MARVEL infrastructure monitoring tool based on Zabbix ... 56
Figure 24: MARVEL E2F2C Network Architecture ... 66
Figure 25: MARVEL E2F2C Architecture with VPN ... 67
Figure 26: DatAna topologies for R2 ... 71
Figure 27: DFB internal architecture and interactions for the MARVEL R2 .. 73
Figure 28. StreamHandler's Monolithic-Microservices Architectures .. 75
Figure 29. StreamHandler R2 implementation .. 76
Figure 30: Screenshot of video processed by CATFlow ... 80
Figure 31: ViAD model architecture.. 81
Figure 32: AVAD model architecture .. 83
Figure 33: Architecture of the AudioCSRNet .. 85
Figure 34: Overview of a sound event detection ... 86
Figure 35: Overview of processes in the real-time sound event detection component 87
Figure 36: Illustration of an audio tagging system that can recognise simultaneously class related to

traffic amount and class related to overall traffic speed .. 88
Figure 37 Overview of automates audio captioning system .. 89
Figure 38: Sound event localisation and detection system .. 90
Figure 39: Structure of YOLOSED.. 92
Figure 40: Example pedestrian allowed presence map. ... 93
Figure 41: RBAD architecture ... 94
Figure 42: MARVdash UI .. 99
Figure 43: Connection between cloud and HPC infrastructure ... 101
Figure 44: Internal architecture for the core storage of the MARVEL Data Corpus 104
Figure 45: The private and the public GUIS of the Data Corpus... 104

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 10 - 21 July, 2023

Figure 46: MARVEL conceptual architecture ... 106
Figure 47: MARVEL ‘AI Inference Pipeline’ reference architecture diagram 108
Figure 48: MARVEL component connectivity matrix for I/O interface specification, including

indication of bidirectional/unidirectional connections and directionality of unidirectional connections

 .. 113
Figure 49: MARVEL component pairwise interaction mapping to I/O Interface Types and architectures

 .. 114
Figure 50: A mark-down specification document for the AV Registry REST API............................. 118
Figure 51: DatAna – Communication between NiFi instances via output ports and S2S 122
Figure 52: DatAna – From NiFi to the Kafka of the DFB ... 122
Figure 53: Indicative input data structure for StreamHandler's dfb-processor service 124
Figure 54: StreamHandler URL for the API in each pilot ... 125
Figure 55: On-demand API endpoint example .. 125
Figure 56: Event-based API endpoint example ... 126
Figure 57: A mark-down specification document for the MediaEvent data model 133
Figure 58: MARVEL R2 deployment and runtime view of the MARVEL architecture for GRN1 – Safer

roads (annotation label descriptions in Table 6, Section 5.2) ... 141
Figure 59: MARVEL R2 deployment and runtime view of the MARVEL architecture for GRN2 – Road

user behaviour (annotation label descriptions in Table 6, Section 5.2)... 144
Figure 60: MARVEL R2 deployment and runtime view of the MARVEL architecture for GRN3: Traffic

Conditions and Anomalous Events (annotation label descriptions in Table 6, Section 5.2) 147
Figure 61: MARVEL R2 deployment and runtime view of the MARVEL architecture for GRN4:

Junction Traffic Trajectory Collection (annotation label descriptions in Table 6, Section 5.2) 151
Figure 62: MARVEL R2 deployment and runtime view of the MARVEL architecture for ΜΤ1:

Monitoring of crowded areas (annotation label descriptions in Table 6, Section 5.2) 154
Figure 63: MARVEL R2 deployment and runtime view of the MARVEL architecture for MT2 –

Detecting criminal/anti-social behaviours (annotation label descriptions in Table 6, Section 5.2) 158
Figure 64: MARVEL R2 deployment and runtime view of the MARVEL architecture for MT3:

Monitoring of parking places (annotation label descriptions in Table 6, Section 5.2) 162
Figure 65: MARVEL R2 deployment and runtime view of the MARVEL architecture for MT4 –

Analysis of a specific area (annotation label descriptions in Table 6, Section 5.2) 166
Figure 66: MARVEL R2 deployment and runtime view of the MARVEL architecture for UNS1: Drone

Experiment (annotation label descriptions in Table 6, Section 5.2).. 171
Figure 67: MARVEL R2 deployment and runtime view of the MARVEL architecture for UNS2 –

Localising audio events in crowds (annotation label descriptions in Table 6, Section 5.2)................ 174
Figure 68: MARVEL R2 deployment and runtime view of the MARVEL architecture for AI Training

(annotation label descriptions in Table 6, Section 5.2) ... 177
Figure 69: MARVEL R2 deployment and runtime view of the MARVEL architecture for Data

Aggregation at the Data Corpus (annotation label descriptions in Table 6, Section 5.2 180
Figure 70: Weather widget ... 182
Figure 71: Sound Localisation Map widget ... 182
Figure 72: Alerts widget... 183
Figure 73: Comparison functionality ... 184
Figure 74: Word Cloud widget .. 185
Figure 75: Audio player widget ... 185
Figure 76: Police Intervention functionality .. 186
Figure 77: Service Management functionality ... 186
Figure 78: Infrastructure of the MT FOG, implemented at FBK premises ... 193

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 11 - 21 July, 2023

List of Abbreviations

AAC Automated Audio Captioning

AI Artificial Intelligence

ADC Αnalog-to-digital converter

ALSA Advanced Linux Sound Architecture

ASIC Αpplication-specific integrated circuit

API Application Programming Interface

AT Audio Tagging

AV Audio-Visual

AVAD Audio Visual Anomaly Detection

AVCC Audio Visual Crowd Counting

CCTV Closed-circuit television

CI/CD Continuous Integration / Continuous Delivery

CPU Central processing unit

dBSPL Decibel Sound Pressure Level

DFB Data Fusion Bus

DMP Data Management Platform

DMT Decision-Making Toolkit

DNS Domain Name System

E2E End-To-End

E2F2C Edge-to-Fog-to-Cloud

EC European Commission

ELK Elasticsearch Logstash Kibana

FFMPEG Fast Forward MPEG

GAN Generative adversarial network

GUI Graphical User Interface

HDD Hierarchical Data Distribution

HDFS Hadoop Distributed Files System

HLS HTTP Live Streaming

HPC High Performance Computing

HTTPS Hypertext Transfer Protocol Secure

ICT Information and communications technology

I/O Input/Output

IoT Internet of Things

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 12 - 21 July, 2023

ISO International Organisation for Standardisation

ITS Issue Tracking System

IP Internet Protocol

JSON JavaScript Object Notation

KPI Key Performance Indicator

LPC Linear predictive coding

LSTM Long Short-Term Memory

MEMS Micro Electro-Mechanical Systems

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MVP Minimum Viable Product

NAT Νetwork address translation

NUC Next Unit of Computing

OLAP Online Analytical Processing

OS Operating system

PDM Pulse Density Modulation

PFLOPS Peta Floating-Point Operations Per Second

POE Power Over Ethernet

QA Quality Assurance

RAM Random Access Memory

RBAD Rule-Based Anomaly Detection

REST Representational State Transfer

RTSP Real-Time Streaming Protocol

R1 1st (initial) Release of the MARVEL Integrated framework

R2 2nd (final) Release of the MARVEL Integrated framework

SCONE Secure Container Environment

SDK Software Development Kit

SDM Smart Data Models

SED Sound Event Detection

SELD Sound Event Localisation and Detection

SGX Software Guard Extensions

SLURM Simple Linux Utility for Resource Management

SNR Signal-to-Noise Ratio

SSH Secure Socket Shell

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 13 - 21 July, 2023

SSO Single Sign-On

TAD Text Anomaly Detection

TB Terabyte

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TRL Technology Readiness Level

UAV Unmanned Aerial Vehicle

UC Use Cases

UDP User Datagram Protocol

UI User Interface

UJ User Journey

URL Uniform Resource Locator

USB Universal Serial Bus

UTC Coordinated Universal Time

UX User experience

VAD Voice Activity Detection

VCC Visual Crowd Counting

VCS Version Control System

VGG Visual Geometry Group

ViAD Visual Anomaly Detection

VM Virtual Machine

VPN Virtual Private Network

WP Work Package

WS Workstation

YOLO You Only Look Once (Real-time object detector)

YOLO-SED You Only Look Once – Sound Event Detection

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 14 - 21 July, 2023

Executive Summary

This deliverable showcases the final version of the MARVEL Integrated framework (also

referred to as 2nd Release or R2), as well as all underlying integration activities carried out

towards its realisation. Following the release of the MARVEL Minimum Viable Product

(MVP) in M12 and the initial version of the MARVEL Integrated framework (R1) in M18,

the MARVEL project aims for a final release of a complete, end-to-end demonstrator that can

operate under real-life conditions, serving the purpose of a technical validation of the

overarching goals of MARVEL and displaying the potentials of the proposed solution. The

deliverable has been developed in the context of Task T5.3 ‘Continuous integration towards

MARVEL’s framework realisation’ within WP5 ‘Infrastructure Management and Integration’,

under Grant Agreement No. 957337.

The work presented in this report embarks from previously submitted deliverables D1.2

‘MARVEL’s Experimental protocol’ and D1.3 ‘Architecture definition for MARVEL

framework’, which define in detail the MARVEL pilot use cases and the refined framework

architecture, respectively. It also builds upon the former MARVEL MVP release, which was

presented in the submitted deliverable D5.1 ‘MARVEL Minimum Viable Product’ and can be

considered as an update to the initial version of the MARVEL Integrated framework (R1),

presented in the submitted deliverable D5.4 ‘MARVEL Integrated framework – initial version’.

This preceding work forms the foundations for the development of R2.

Ten use cases are addressed by R2 in the three MARVEL pilots (Malta, Trento, Novi Sad),

being the complete set of foreseen MARVEL use cases and comprising five new use cases that

were introduced after R1. A detailed plan was constructed at the outset of the R2 integration

activities that led the mapping of components to the new use cases, as well as the design and

specification of the architecture, interfaces and data models to be implemented, and eventually

the deployment, demonstration and validation of R2. R2 marks a considerable progress beyond

the MVP and R1, delivering the full set of MARVEL components seamlessly integrated and

deployed across all layers of the E2F2C continuum to provide an efficient system that can

operate under real-life conditions and address the selected use cases while demonstrating the

added value of MARVEL.

This report provides a comprehensive documentation of all the participating components and

technologies offered by the MARVEL partners, including functionality and role of each

component within R2. The report also covers a complete documentation of all interfaces, APIs

and data models that facilitate communication and integration between components, the

architecture and implementation details of the R2 framework in the addressed use cases, a

description of the main UI/UX design and a detailed presentation of the allocated infrastructure

that supports the implementation of R2.

In addition, this deliverable discusses the main challenges and issues that were encountered

during integration activities and how they were addressed. Furthermore, this report presents the

main achievement of R2 and how R2 contributes to specific WP5 and overall project goals, and

its function as a solid foundation for a future, large-scale deployment and operation of

MARVEL in real-world settings after the lifetime of the project. Finally, the future work being

considered is presented, followed by the main conclusions of this report.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 15 - 21 July, 2023

1 Introduction

1.1 Purpose and scope of this document

The purpose of this deliverable is to describe the scope, design rationale, technical details, and

integration activities for the final version of the MARVEL Integrated framework (also

referred to as 2nd Release or R2). Within the context of the MARVEL project, R2 is the final

release of the integrated framework, achieving a complete operational status and addressing all

ten foreseen use cases, while offering new features and achieving improvements in comparison

to R1 in terms of system stability, consistency, performance. R2 serves final validation purposes

for the project’s main objectives, offering a functional and fully operational demonstration in

terms of end-to-end integration and delivery of value to the end-user.

In terms of design rationale, technical details, and integration activities, this deliverable

explains how the MARVEL Consortium has selected representative use cases that connect all

layers of the MARVEL architecture and mapped a series of components to them in order to

demonstrate coherent instantiations of MARVEL as an integrated operational solution that

collects, manages, processes, transfers, and visualises data across all architectural layers in an

efficient pipeline to provide meaningful information to the end-user. A parallel objective was

to demonstrate the versatility and adaptability of MARVEL for addressing diversified cases and

complying with varying requirements and available infrastructure resources.

To complement the design and technical activities, this deliverable also lists the WP5 and

project objectives that R2 addresses (Sections 1.3 and 7.2) and how it serves as a steppingstone

towards the release of real-world and large-scale version of the MARVEL framework for a

long-term sustainability of the results after the end of the project.

1.2 Intended readership

Deliverable D5.6 ‘MARVEL Integrated framework – final version’ is a public document that

accompanies the public demonstrator of the MARVEL framework. This document is addressed

to all relevant stakeholders, potential users of the framework and communities working in the

fields of IoT, AI, and Smart Cities in order to show the feasibility of the MARVEL premises,

the validity of the services provided, and a comprehensive documentation of the technical

solution and the methodology that was implemented to develop it.

This report also serves the purpose of orienting parties interested in the technical aspects of

MARVEL to the entire MARVEL technical documentation. Since D5.6 is meant to

comprehensively present the entire MARVEL framework, its constituent components and

internal operation, it can act as an introductory document that can lead the reader to more

specialised reports that refer to specific subsystems, components or other technical aspects of

MARVEL in more detail.

Additionally, this document is expected to serve as a reference to any activities related to future

integrated releases of the MARVEL framework that will build upon R2 and potentially

comprise larger-scale implementations, incorporating additional features, introducing

performance and stability improvements and addressing new use cases.

1.3 Contribution to WP5 and project objectives

This deliverable has been composed within the context of WP5 ‘Infrastructure Management

and Integration’, and more specifically, it constitutes the second major output of Task 5.3

‘Continuous integration towards MARVEL’s framework realisation’. The Description of

Action (DoA) states the objectives of WP5 as such:

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 16 - 21 July, 2023

WP5 main objective is to ensure successful E2F2C framework delivery for distributed

extreme-scale audio analytics. The framework allows for powerful, scalable, and real-

time processing of multimodal audio-visual data on top of distributed deployment of

MARVEL ML models. In detail, WP5 aims to ensure:

(i) provision and configuration of a powerful HPC infrastructure;

(ii) orchestration of infrastructure resource management and optimised automatic

usage of external computational and storage resources;

(iii) seamless integration and quality assurance of software releases;

(iv) quantifiable progress against societal, academic and industry validated

benchmarks;

(v) real-life experimentation and validation at large scale; and

(vi) continuous alignment with the responsible AI planning and guidelines set out in

T1.3.

The final version of the MARVEL Integrated framework (also referred to as 2nd Release or

R2) constitutes an important milestone towards achieving the objectives of this work package,

by providing a complete, operational version of the envisioned framework that addresses and

incorporates all mentioned attributes of this framework, including (i) provision of the required

infrastructure (Section 5.6), (ii) infrastructure resource management (Section 4.6.2) and

optimised automatic usage of external computational and storage resources (Section 4.5), (iii)

integration of offered technologies (Section 5), (iv) tools for monitoring and measuring

performance (Section 3.8.3), (v) experimentation and validation under operational conditions

(Section 3.8), (vi) updated approach regarding responsible AI planning (Sections 4.2, 4.7, 5.4.4-

5.4.7).

Specifically, for Task T5.3, the DoA states that:

Task 5.3 will implement and deploy the MARVEL integrated framework that realises

the technology convergence defined in the MARVEL architecture specification T1.4.

The MARVEL E2F2C Framework bridges Big Data technologies to IoT,

Edge/Fog/Cloud computing and HPC, to allow real-time decision making and

monitoring of multimodal smart cities environments. This task realises societal and

industrial opportunities in the smart-city domain (T6.2) by ensuring a smooth and

effective integration of the separate MARVEL components. Aspects like interoperability,

scalability, accountability, transparency, responsibility, and performance will be

considered, as well as a continuous delivery approach, to achieve quality assurance in

software releases. Releasing software frequently will not only respect the natural

evolution of the technologies developed within the project but it will also allow

developers to react promptly to the continuous data providers feedback. Reliability of

these developments is also increased following this strategy as recurrent releases

usually involve lesser and harmless changes. According to the plan (Sect.3.1.1), this

task will describe in detail the MARVEL releases namely a proof-of-concept

demonstration (Minimum Viable Product (MVP)) - M12, the 1st complete prototype –

M18 and the 2nd Final prototype – M30.

This deliverable describes R2, which is the third output of task T5.3. R2 builds upon the MVP

(D5.11) and R1 (D5.42) to establish the final complete and integrated version of the MARVEL

framework that operates under real-life conditions and addresses all the fundamental notions

1 "D5.1: MARVEL Minimum Viable Product" Project MARVEL, 2021. https://doi.org/10.5281/zenodo.5833310

2 "D5.4: MARVEL Integrated framework – initial version” Project MARVEL, 2022. Not publicly released (confidential)

https://doi.org/10.5281/zenodo.5833310

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 17 - 21 July, 2023

mentioned above, paving the way for future large-scale deployments of the MARVEL

framework. R2 marks the achievement of considerable progress beyond R1 by incorporating

additional technologies, addressing additional use cases, improving stability, deploying on

extended infrastructure and adding new input/output devices (sensors/actuators).

R2 is based on a revised approach towards the convergence of diverse technologies, effectively

integrated under a common scheme that is based on a reference ‘AI inference pipeline’

architecture, coupled with comprehensive APIs, I/O interfaces and data model specifications

that ensure efficient communications between multiple component endpoints.

R2 delivers a demonstration of real-time interaction with the end-user under real-life

operational conditions, provided by the MARVEL pilots. R2 design and development addresses

issues of interoperability, scalability (Sections 4.3.4, 5.1, 5.2, 5.3), accountability, transparency,

responsibility (Section 3.5, 4.5), and performance (Sections 4.5, 5.4, 5.4.11, 3.8.3) and has been

based on a continuous integration/continuous delivery (CI/CD) approach (Section 3.7).

1.4 Relation to other WPs and deliverables

This deliverable relies on the foundational work conducted within WP1 ‘Setting the scene:

Project setup’. More specifically, the selection of use cases for demonstration draws from the

detailed material on Use Case descriptions of deliverable D1.2 ‘MARVEL’s Experimental

protocol’. Additionally, deliverable D1.3 ‘Architecture definition for MARVEL framework’3 is

an important source for this work, as it contains the refined architecture, which is the blueprint

for this release, as well as subsequent releases. D1.3 also provides useful information that D5.6

builds upon, as for example the description of the available MARVEL components and their

TRL, the grouping of components into building blocks (Subsystems according to their

functional role in the platform), and the outline of integration processes that need to be applied.

This deliverable is also coupled with work in progress within the context of WP2 ‘MARVEL

multimodal data Corpus-as-a-Service for smart cities’, WP3 ‘AI-based distributed algorithms

for multimodal perception and situational awareness’, and WP4 ‘MARVEL E2F2C distributed

ubiquitous computing framework’. More specifically:

• From WP2, integral parts of R2 are the Data management and distribution platform

(T2.2), and the MARVEL Corpus-as-a-Service (T2.4).

• From WP3, R2 includes AI-based methods for audio-visual data privacy (T3.1), AI

algorithms for Audio-Visual (AV) intelligence (T3.3), federated learning approaches

(T3.2), adaptive E2F2C distribution and optimisation of AI tasks (T3.4) and Edge-

optimal ML/DL deployment (T3.5).

• From WP4, draws outputs from the optimised audio capturing (T4.1), audio

anonymisation (T4.2), security in the complete E2F2C (T4.3) and the Decision-Making

Toolkit (T4.4).

Within WP5, there has been a close collaboration with T5.1 and T5.2, with regards to the

underlying infrastructure and resource management, respectively. Additionally, there is a close

connection to T5.4 that aims to set the benchmarks to validate R2 results.

D5.6 is an extension of D5.1 ‘MARVEL Minimum Viable Product’, which set the stage for the

subsequent releases and especially of D5.4 ‘MARVEL Integrated framework – initial version’,

which formed the main foundation on top of which D5.6 was developed. Specifically, R2 of

3 "D1.3: Architecture definition for MARVEL framework," Project MARVEL, 2020. https://doi.org/10.5281/zenodo.5463897

https://doi.org/10.5281/zenodo.5463897

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 18 - 21 July, 2023

D5.6 builds upon the design, development and integration approach established for the MVP

of D5.1 and for R1 of D5.4 as well as on the lessons learnt from them.

D5.4 was marked as a confidential deliverable and referred to an initial version of the

MARVEL integrated framework. D5.6 is marked as a public deliverable and aims to present

the complete and final version of the MARVEL integrated framework. Therefore, information

from D5.4 is partially re-used in D5.6 and revised where necessary, while new information

introduced during R2 activities is appended.

This deliverable will also serve as a reference to the upcoming deliverable D5.7 ‘MARVEL’s

framework large scale deployment’ that will describe the possibilities of the application of the

MARVEL integrated framework in large-scale deployments. The R2 demonstrator will provide

the data for the evaluation that will be part of D5.5 ‘Technical evaluation and progress against

benchmarks’.

Finally, a considerable part of the work for WP6 ‘Real-life societal experiments in smart cities

environment’ refers to information contained in this deliverable and most notably deliverable

D6.3 ‘Demonstrators execution – final version’.

1.5 Structure of the document

The structure of this document is as follows:

• Section 1 introduces the reader to this report and links the related work to the overall

project context.

• Section 2 provides an overview of R2 and its objectives as well as the use cases that

R2 addresses.

• Section 3 discusses the plan and methodology for integration activities that have been

applied for the development of the final integrated prototype of the MARVEL

framework (R2).

• Section 4 provides a comprehensive list of MARVEL components that have been

integrated in the use cases of R2.

• Section 5 presents the Design and Specifications of R2, including the architecture,

the I/O interfaces (APIs), the Data Models, the UI/UX design, and the infrastructure.

• Section 6 describes the main challenges and issues encountered throughout the R2

integration activities as well as the ways in which they were resolved.

• Section 7 links the results presented in previous sections to the overall MARVEL goals

and objectives and presents the main R2 achievements.

• Section 8 refers to plans for the further development of the MARVEL Integrated

framework in the future.

• Section 9 summarises and concludes this document.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 19 - 21 July, 2023

2 R2 Overview and Use Cases

In this section, we set the scope and goals of the MARVEL integrated framework considering

both releases, i.e., the initial version (1st Release – R1) and the final version (2nd Release –

R2). An overview of the integrated framework and its objectives is provided, followed by a

description of the MARVEL use cases, and the rationale behind their implementation.

2.1 R2 Overview and Objectives

The MARVEL project adopted a highly practical and systematic approach to release a system

that is demonstrated and validated in real-life operational environments of Smart Cities.

Towards this final goal, the R2 milestone, MS7 ‘MARVEL integrated version (2nd release)’,

is set to ensure the convergence and seamless integration of MARVEL subsystems and

components as well as the successful framework operation within the selected MARVEL use

cases, building upon the achievements of the R1 milestone, MS3 ‘MARVEL Minimum Viable

Product (MVP)’ on M12 and of the MVP milestone MS4 ‘MARVEL integrated version (1st

release)’ on M18.

The MVP release (D5.1) served as the groundwork for all subsequent development and

integration activities. Even though the MVP focused on a limited part of the overall MARVEL

framework (e.g., one use case from one pilot addressed, involvement of a small subset of

MARVEL components, limited infrastructure, partial automation, offline input data), it proved

beneficial in streamlining the methodological approach for the integration activities. The MVP

was also crucial for identifying the main next steps and challenges. The MVP managed to

successfully achieve its goals and delivered a functional product that demonstrated the value of

the MARVEL framework in the selected use case.

Following the MVP release and the lessons learnt from it, there was a phase of re-evaluation of

the approach that would be adopted for the development and integration of the initial integrated

prototype of the MARVEL framework (R1). In R1, the complexity significantly increased, as

a larger subset of components was integrated, five use cases were addressed, infrastructure

resources from three pilot sites were used and a comprehensive system architecture design was

established, including the specification and documentation of necessary APIs and data models.

In R1, live input data were used, security and privacy protection measures were taken, data

management was organised, and more thorough integration and deployment methods and

practices were employed. R1 delivered an initial integrated framework that was successfully

tested and demonstrated, meeting its goals for the addressed use cases.

R2 builds upon the MVP (D5.14) and R1 (D5.45) to establish the final complete and integrated

version of the MARVEL framework that operates under real-life conditions and addresses all

the fundamental notions mentioned above, paving the way for large-scale deployments of the

MARVEL framework. Specifically, the R2 objectives are as follows:

• Implement the MARVEL framework in all the ten (10) foreseen use cases in the three

(3) MARVEL pilots.

• Integrate in a seamless manner all the MARVEL technological assets (Section 4), as

defined in D1.3. In R2, the complete set of the MARVEL components needs to be

4 "D5.1: MARVEL Minimum Viable Product" Project MARVEL, 2021. https://doi.org/10.5281/zenodo.5833310

5 "D5.4: MARVEL Integrated framework – initial version” Project MARVEL, 2022. Not publicly released (confidential).

https://doi.org/10.5281/zenodo.5833310

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 20 - 21 July, 2023

represented across the addressed R2 use cases and needs to be carefully mapped to use

cases, E/F/C layers and infrastructure nodes.

• Define the component and framework configurations according to the needs of the use

cases, demonstrating the versatility of MARVEL to adapt to diverse use cases, while

maintaining a consistent and coherent architectural approach that can be applied

universally.

• Showcase scalable and real-time efficient management and processing of live feeds

of multimodal audio-visual data.

• Achieve a distributed E2F2C deployment of ML models and other relevant

technologies, ensuring access to data and maintaining privacy preservation and

alignment with the responsible AI guidelines as set out in D1.2.

• Demonstrate configuration, orchestration and automated provision of the

infrastructure.

• Deploy and successfully operate the framework on the target infrastructure of R2

use cases, involving multiple nodes and under a unified deployment environment

(Kubernetes cluster).

• Demonstrate real-time decision-making and monitoring of multimodal smart city

environments within each of the R2 use cases.

• Implement and extend CI/CD processes that were established for R1.

• Configure the R2 framework to enable its benchmarking.

• Implement performance improvements and more efficient use of computational

resources in R2.

• Add features for improving centralised system monitoring including resource

consumption.

• Improve and expand R2 computational infrastructure beyond the one used for R1.

• Support additional AV sources and actuator devices in R2.

• Shift computation closer to the edge in new use cases introduced for R2.

• Implement overall system stability improvements and increase resilience to AV

stream intermittency and content corruption.

• Ensure timely and successful component deployment, integration, and testing.

The design, development and integration of R2 was driven, first and foremost, by the use cases

it was called to address, presented in the next Section 2.2.

The delivery of R2 was achieved through meticulous planning and depended on the

organisational mechanisms that were established, namely the detailed integration time plan (see

Section 3.1.1), the realisation of technical integration meetings (see Section 3.1.2), the

establishment of an Integration Board (see Section 3.1.3) and the implementation of other

support tools, mechanisms and methods described in Section 3 (e.g., version control system,

issue tracking system, specification documentation, infrastructure sizing).

An up-to-date description of the technological components that were integrated in R2 is

presented in Section 4.

The complete design and specifications of the R2 release are presented in Section 5.

R2 was successfully delivered, following the deployment of the MARVEL components under

a unified environment (Kubernetes cluster), bridging multiple infrastructure nodes that were

available across the three pilots with the help of the MARVdash tool. R2 was thoroughly tested

following planned Quality Assurance procedures (Section 3.8).

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 21 - 21 July, 2023

R2 is the final milestone in the development and delivery of the overall MARVEL framework.

in the context of the project.

2.2 R2 Use cases

As described in detail in deliverable D1.2 ‘MARVEL’s Experimental protocol’, there are three

real-life experiments designed to be implemented and executed in pilots for three cities, Malta

(GRN pilot), Trento (MT pilot) and Novi Sad (UNS pilot). For the first two, eight (8) different

use cases are defined to support the real-life experiments, while for the latter pilot, two (2) use

cases are defined. These use cases cover a wide range of activities to be monitored and potential

events to be detected, analysed, and mitigated.

In the context of the MVP, a single use case was selected from the GRN pilot, namely use case

‘GRN4 – Junction Traffic Trajectory Collection’. The delivery of the MVP successfully

addressed this use case on an initial level and set a significant precedent that paved the way for

subsequent development and integration activities.

In the context of R1, five (5) use cases were selected to be addressed. The selection process

for the R1 leveraged the experience gained from the MVP. It followed the same principles that

were established in the MVP but was also further elaborated. More specifically, the selection

process was based on several criteria that were discussed during the pilot-focused meetings,

including (i) maturity of the use cases, (ii) infrastructure availability, (iii) data availability, (iv)

feasibility of completion within the given timeframe, (v) readiness of technological components

that would be needed and (vi) demonstrating diversity among the chosen use cases.

The result of this process was the selection of the following five use cases for R1:

• use case ‘GRN3 – Traffic Conditions and Anomalous Events’ of the Malta (GRN) pilot.

• use case ‘GRN4 – Junction Traffic Trajectory Collection’ of the Malta (GRN) pilot.

• use case ‘MT1 – Monitoring of crowded areas’ of the Trento (MT) pilot.

• use case ‘MT3 – Monitoring of parking places’ of the Trento (MT) pilot.

• use case ‘UNS1 – Drone experiment’ of the Novi Sad (UNS) pilot.

R2 sets out to address the complete set of the ten (10) foreseen MARVEL use cases, continuing

to be applicable for the five use cases that were introduced in R1 and covering five (5) new use

cases that are introduced in R2:

• use case ‘GRN1 – Safer Roads’ of the Malta (GRN) pilot.

• use case ‘GRN2 – Road user behaviour’ of the Malta (GRN) pilot.

• use case ‘MT2 – Detecting criminal/anti-social behaviours’ of the Trento (MT) pilot.

• use case ‘MT4 – Analysis of a specific area’ of the Trento (MT) pilot.

• use case ‘UNS2 – Localising audio events in crowds’ of the Novi Sad (UNS) pilot.

R2 demonstrates a wider spectrum of possibilities that can be enabled by MARVEL through

the ten addressed use cases. In this context, a wide variety of inputs and outputs is offered that

can be managed and processed by R2, including vehicle and pedestrian identification and

trajectories, sound event detection, characterisation and localisation, voice activity detection,

crowd counting, anomaly detection, control of on-site devices (actuators), inference result post-

processing, audio and video anonymisation and enhanced security. R2 showcases the full

potential of MARVEL’s AI functionalities while providing the end-user with an immediate

view of the events and current state happening at the street level.

The R2 use cases expose all the most critical technical challenges in terms of orchestration and

integration of components and demonstrate the variability and versatility of the MARVEL

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 22 - 21 July, 2023

framework for meeting diverse requirements. The use cases are a very representative sample of

real-world scenarios that can be brought forward by Smart Cities.

2.2.1 GRN Use Case 1 – Safer roads

This use case addresses the need to increase safety on urban roads for vulnerable road users,

with the aim of encouraging the uptake of active travel modes in Malta. More specifically, this

use case targets cycling and walking. Malta has witnessed a significant effort, from both the

authorities and the bicycle commuting lobby, in encouraging cycling and walking, mainly

through infrastructural changes. This use case takes this effort further and aims at detecting

cyclists, including e-bikes and pedestrians, exiting a junction and alert car and motorised-

vehicle drivers of their presence via variable message signs in the hope that car drivers take

greater care and concentrate more in such circumstances.

In addition, detecting cyclists is a particularly interesting task in low visibility conditions

because it is both more dangerous for these entities and more challenging from a technology

point of view.

From an AI task point of view, this use case requires detectors for traffic entities (typically

cycles and pedestrians) that are typically present at a junction. It is also necessary to resolve the

exit carriageway taken by the vulnerable road users such that the respective message boards on

that carriageway are triggered whilst avoiding false positives, the occurrence of which can

reduce the system’s impact in the long term. This can be achieved by sampling the entrance to

the road. However, it will also increase the system response time.

The detection and classification of entities are typically implemented using computer vision

techniques. Detecting the cyclist is a known hard problem, and intuitively, the addition of the

audio signal would not help. However, sound cues may potentially disambiguate a bicycle from

a motorcycle or moped. In addition, audio-visual models may differentiate between bicycles

and motorised bicycles, which is also a desired function.

These objectives will be attained with a YOLO-SED model. To simplify the YOLO

implementation, CATFlow weights and parameters are used, and SED is applied to differentiate

between motorbikes and bicycles. To minimise latency, YOLO-SED were implemented on the

Jetson edge device to enable the installation of the edge device closer to the camera and

associated sign point. An LED array driven by an Arduino board was used to replace the

variable message sign intended to alert drivers. Messages from the detector are also forwarded

to the UI to allow remote monitoring of junctions.

This use case should contribute towards an increase in the perceived safety on the roads and

will therefore encourage commuters to consider cycling as an alternative mode of

transportation. To determine the impact of this use case, surveys to gauge citizens' perceptions

of safety with this device will be conducted.

2.2.2 GRN Use Case 2 – Road user behaviour

This use case addresses the need to monitor the behaviour of road users at a junction. This use

case demonstrates tools that are useful in law enforcement and education campaigns targeting

responsible driving, cycling, and other uses of the roads. Malta has experienced fast changes in

the transport landscape to which human response often lags behind technical progress.

Educational campaigns are one way to close this gap and have demonstrated their effectiveness

in the past. This use case involves the classification of actions into a spectrum of examples

demonstrating good to bad behaviour. This use case will not be implementing the latter

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 23 - 21 July, 2023

campaigns or policies; however, it could be tried in different places and its output could be

observed. Surveys will be used to find how this tool will be able to help local authorities.

Examples of actions include the way pedestrians cross over the intended crossings, whether

cyclists dismount at pedestrian crossings, and whether car drivers stop in the delineated zone at

junctions. The system will be able to count the number of times bad behaviour is detected before

and after the execution of education campaigns or policy changes.

This use case uses the TAD component to detect anomalous trajectories and a rule-based

anomaly detector that takes the output of CATFlow to detect buses not on time, bicycles not on

path, large vehicles during rush hours and pedestrians jaywalking. In addition, SED is used to

detect vehicle horns. The data are then collected by the UI where a local authority can compare

the data before and after an educational campaign or a traffic calming measure to assess the

success of the efforts. The impact of this use case will be measured through interviews with

authorities or other third parties to determine if this tool will help them evaluate their

campaigns.

2.2.3 GRN Use Case 3 – Traffic Conditions and Anomalous Events

This use case refers to monitoring traffic conditions and detecting anomalous events, such as

traffic jams, accidents, congested cars obstructing a junction, very slow vehicles and service

vehicles parked on the side or obstructing a carriageway.

The latter event is frequent in Malta’s narrow one-way urban streets, often causing cascading

effects that extend beyond the immediate area. In general, this output would find application in

systems intended to inform drivers near the detected anomaly or to infer possible issues in

adjacent areas, thus informing drivers of obstacles ahead. In addition, the detection of

anomalous events alerts personnel stationed at traffic management control rooms, who can then

interpret the data and take the necessary actions.

The aim of this use case, as described in deliverable D1.2, is to detect anomalous road

conditions which may be related directly or indirectly to obstructions. In terms of evaluation

metrics, accuracy and detection time are two crucial features of the use case and these can be

used to benchmark the system as follows:

• Correct detection of the cause of obstructions on the road 70% of the time, as verified

by manual inspection.

• Detection of anomalous events within 2 minutes from their start, as verified by manual

inspection.

The implementation of this use case in R1 was designed to address both these goals by flagging

an anomaly to traffic personnel in the control room and providing visual insight into the

anomaly. The users of the system are intended to be traffic managers who can give directives

to authorities to react to a traffic incident.

In R2, the major updates in this use case, following the R1 integration, are improvements to the

used infrastructure and associated component deployment, to the AI models used and to the

visualisation aspects of the UI.

2.2.4 GRN Use Case 4 – Junction Traffic Trajectory Collection

Junction Traffic Trajectory data collection is focused on the requirement of long-term data

analytics that shed light on both the behaviour of road users (e.g., car drivers, motorcyclists,

cyclists, pedestrians, etc.) and gathering traffic statistics at road network junctions. This use

case is of interest for long-term transport planning and evaluation, particularly in studying

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 24 - 21 July, 2023

active travel modes, such as cycling, walking, and micro-mobility more generally. The

innovation envisaged is the construction of a queryable database that can be used to look up

historical data on the vehicles and pedestrians in two junctions, with sufficient accuracy to

detect anomalous patterns autonomously 50% of the time. The trajectories and data generated

from the CATFlow, TAD, SED, and AVCC components are persistently stored on the DFB

such that the data can be accessed and processed by the end-user at a time.

In R2, the major updates in this use case, following the R1 integration, are improvements in the

used infrastructure and associated component deployment, to the AI models used and to the

visualisation aspects of the UI.

2.2.5 MT Use Case 1 – Monitoring of crowded areas

The goal of this use case is to select views of relevant areas for reasons such as exceptional

crowd, suspect or unusual crowd movements, etc.

As an organiser of a large public event like the "Christmas Markets" in Trento, it is indeed

crucial to have a system in place that can select relevant views of areas based on various factors

such as crowd size, suspect behaviour, and unusual crowd movements. The MARVEL

framework, integrated with the existing camera infrastructure, can fulfil these requirements and

help prevent emergency situations.

By deploying the MARVEL framework, the system continuously analyses the visual data

streams from the cameras installed in the squares hosting the "Christmas Markets" (Piazza Fiera

and Piazza Duomo). It can accurately estimate the number of visitors in different areas of the

event and provide real-time information about their locations. This data is valuable for event

organisers to monitor crowd density and make informed decisions regarding crowd

management and safety measures.

Furthermore, the MARVEL framework excels at detecting anomalous behaviour within the

crowd. It can identify suspicious activities or unusual crowd movements, alerting the control

room managed by the local police in real-time. This enables the authorities to take immediate

action, if necessary, to prevent any potential emergencies or address emerging issues promptly.

By having this early warning system in place, you can ensure that people are alerted, and

relevant services are promptly dispatched to handle the situation, especially in overcrowded

areas where access to emergency services might be more challenging and slower.

The major improvements in this use case after R1 are related to the AI models used and

improvements to the visualisation aspects in SmartViz.

2.2.6 MT Use Case 2 – Detecting criminal/anti-social behaviours

The goal of this use case is to monitor and detect criminal or anti-social behaviours in a

proactive approach to ensuring public safety. The integration of visual and audio data streams

from existing cameras allows for real-time analysis and timely response to potentially

dangerous situations.

When the MARVEL framework identifies a potentially dangerous situation, it triggers an alarm

and provides a custom view for further analysis. The system promptly notifies the local police

operational centre, providing them with the necessary information to assess the situation and

take appropriate action. The local police can dispatch a squad to the location to address the

reported incident swiftly.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 25 - 21 July, 2023

Furthermore, the system ensures that the visual and audio data streams are saved on the local

server of the local police. This enables the police to conduct thorough investigations and gather

evidence for any necessary legal proceedings or future reference. The stored data serve as a

valuable resource for law enforcement agencies to analyse patterns, identify suspects, or gather

additional information related to criminal activities.

By implementing the MARVEL framework in S. Maria Maggiore, the local authorities can

enhance their surveillance capabilities and improve public safety. The integration of advanced

technology assists law enforcement in their efforts to detect and prevent criminal or antisocial

behaviours, ultimately creating a safer environment for residents and visitors alike.

This use case adopts the AAC component to describe what is happening in the audio signal,

SED to detect sound events and their temporal location and AVAD to detect anomalies like

gatherings, robberies, aggressions, people screaming and drug dealing.

2.2.7 MT Use Case 3 – Monitoring of parking places

In this use case, the MARVEL framework is deployed for audio-visual monitoring of the "Ex

Zuffo" Parking Area in Trento. With around 1000 parking places, this parking lot serves as a

crucial facility for citizens who utilise public transportation, bike-sharing services, or e-scooters

to move around the city centre. The goal is to enhance security and prevent incidents such as

car robberies, damages to parked cars, obstructions, and other potential issues through

comprehensive analysis of the audio and visual data captured by the existing cameras and

microphones installed as part of the MARVEL project.

The MARVEL framework leverages its audio-visual analysis capabilities to monitor and detect

various scenarios in real-time. It can analyse the trajectories of cars entering and exiting the

parking slots, ensuring that vehicles stay within their designated areas. Any deviations or cars

parked outside of the designated slots can be flagged as a potential issue, allowing for timely

intervention to address the situation.

Moreover, the system can detect car damages, whether intentional or accidental. By analysing

the visual data, the MARVEL framework can identify any signs of vandalism or collisions,

promptly notifying the relevant authorities. This enables a swift response to prevent further

damage and assist the affected car owners.

The prevention of car robberies is also a crucial aspect of this use case. The MARVEL

framework's audio-visual analysis capabilities can detect suspicious activities or individuals

near parked cars. It can identify potential theft attempts or unusual behaviour, triggering

immediate alerts to the monitoring personnel. This proactive approach helps deter criminals

and provides a higher level of security for the parked vehicles.

The major improvements in this use case are related to the AI models used and improvements

to the visualisation aspects in SmartViz.

2.2.8 MT Use Case 4 – Analysis of a specific area

By deploying the MARVEL framework in this context, the municipality can gather valuable

data and insights to support decision-making and facilitate the development of sustainable

mobility and energy plans.

The MARVEL framework's capabilities allow for the counting and tracking of various entities

such as persons, cars, buses, taxis, and bikes. By analysing the visual data streams and

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 26 - 21 July, 2023

trajectories, the system can provide accurate and real-time information regarding the movement

and distribution of these entities throughout the city. These data can be crucial for understanding

traffic patterns, identifying congestion hotspots, and optimising transportation infrastructure

and services.

Furthermore, the MARVEL framework can calculate notable events within a specific

timeframe. This includes detecting unusual traffic congestion, accidents, or any significant

occurrences that may impact the city's operations or require immediate attention. By having

access to this information, the municipality can proactively respond to such events, mitigate

their impact, and improve overall safety and efficiency within the urban environment.

The framework can provide valuable insights on traffic flows, usage patterns of various

transportation modes, and the impact of energy consumption in different areas of the city. This

information serves as a solid foundation for the development and monitoring of sustainable

mobility plans and energy transition strategies.

The framework will contribute to the effective monitoring and planning of urban systems,

ultimately leading to a more sustainable and liveable city environment.

This use case adopts the CATFlow component for counting persons, cars, buses, taxis, and

bikes and determining their trajectories, AVAD and SED components to describe what is

happening in the audio and video signal and for detecting anomalies like gatherings, robberies,

aggressions, people screaming, and drug dealing.

2.2.9 UNS Use Case 1 – Drone experiment

The aim of this use case is to assess the potential use of drones in monitoring large public events

held in open spaces. Monitoring and surveillance at large public events can pose challenges due

to insufficient infrastructure and the occasionally unpredictable nature of crowds. Fixed street

cameras may offer frontal views of the crowd, but they are not able to accurately capture finer

details. Overcrowded places are potentially dangerous zones because in the event of an

accident, emergency services cannot respond quickly, and people can panic. This motivated us

to place visual crowd counting in the core of the UNS1 use case.

Additionally, there are areas or sections in the vicinity of large public events that remain

unmonitored due to the lack of fixed cameras and unpredicted presence of people. The presence

of people in such areas could be quickly detected using the IFAG MEMS microphones and

VAD component while a drone could be sent for inspection, which is supported using defined

architecture.

2.2.10 UNS Use Case 2 – Localising audio events in crowds

Monitoring and ensuring safety in rapidly expanding urban city areas as well as public events

present complex and demanding tasks, particularly when it comes to promptly responding to

anomalous incidents. The conventional approach typically involves the use of fixed cameras

for surveillance purposes. While drone cameras and MEMS microphones offer valuable

insights, that were analysed within UNS Use Case 1, limitations of video monitoring in

scenarios characterised by low visibility or an inadequate number or poor quality of cameras,

could be solved using a different approach. In such situations, video monitoring alone is

insufficient in providing comprehensive surveillance coverage. As part of this particular use

case, our focus shifts to evaluating the potential of implementing microphone array boards for

monitoring public events. By harnessing the capabilities of microphone arrays, it becomes

possible to detect target sound events and determine the direction of sound propagation. This

innovative approach can greatly aid in localising anomalous events, thereby strengthening

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 27 - 21 July, 2023

overall safety measures. By quickly identifying accidents or other forms of abnormal incidents,

such a system would significantly enhance the efficiency and effectiveness of event monitoring

and response protocols. For such detection, the SELD component is developed within

MARVEL and represents a core component within the UNS Use Case 2.

We have defined an experiment consisting of 3 different anomalous sound events (gunshot and

gunfire, boom and shatter), combined with a chatter class of events. All data are recorded within

staged recording process, using samples from the FSD50K dataset, that are further mixed in

order to simulate anomalies in crowds.

Current state-of-the-art sound event localisation and detection components are trained using

data simulated and recorded in laboratory conditions, whereas the UNS Use Case 2 included

data recording outdoors, which is much closer to the real scenario. Detailed description of data

recording process within UNS Use Case 2 is provided in D6.3.

Finally, it should be noted that the use case “Localising audio events in crowds” replaces

the one that had been previously defined for UNS2 (“Audio-visual emotion recognition”).

The rationale for this change was based on the ethical challenges identified in the old UNS2

use case and, on the other hand, on the need to develop a novel component for sound event

localisation and detection and an accompanying use case. The details of this change can be

found in D6.3, Section 2.2.3.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 28 - 21 July, 2023

3 R2 Integration Plan and Methodology

During R1 integration activities, a series of challenges were identified that led to the

establishment of an integration methodology documented in D5.4. In the framework of R2,

many of the same challenges persisted, while a series of new challenges were added, as a result

of the R2 objectives (Section 2.1). The overall plan and methodology applied in R1 were found

to meet their goals and were therefore re-applied in R2, following modifications to better meet

the specific requirements of R2.

In order to address the challenges of R2, a combination of two elements was applied:

(i) An overarching management mechanism comprising a hybrid time plan and

monitoring mechanisms of the integration activities. The benefits of an agile

approach and incremental development and integration continued to be very

relevant, as it was expected that changing, convoluted, and conflicting requirements

as well as emergent issues would need to be addressed during the development and

integration process. However, it was also recognised that project deadlines would

need to be respected and multiple parties from participating project partners would

need to be coordinated and remain in sync during the development and integration

stages. It was therefore deemed necessary to complement the overall approach with

elements of the waterfall method to ensure that a global, phased plan with specific

milestones would be followed by all relevant parties to align individual efforts.

(ii) Methods, practices and tools of agile development and Continuous Integration /

Continuous Delivery (CI/CD). CI/CD allowed for a continuous re-evaluation of

specifications to address changing requirements and emerging issues. This approach

respects the natural, incremental way of developing complex systems while enabling

stakeholders to monitor the implementation progress, give early feedback, and react

promptly to potential technical or other obstacles that may arise. Finally, with

continuous integration, qualitative, non-functional aspects of the developed

platform are considered early on, including interoperability, scalability,

accountability, transparency, responsibility, and performance, thus achieving

quality assurance in system development iterations and releases.

This section describes the main concepts, methods and tools that were implemented for the

development and integration of R2.

3.1 Technical Project Organisation

The organisation of the R2 integration activities needed to deal with the inherent complexity of

the need to:

• integrate multiple components (32) belonging to 15 partners,

• address 10 use cases belonging to 3 pilots with different system designs,

• access and manage 17 AV data sources from the 3 pilot sites,

• manage the computational infrastructure resources at each pilot distributed across 3

layers (Edge-Fog-Cloud), including 11 infrastructure nodes at the edge, 3 infrastructure

nodes at the fog and more than 10 VMs at the cloud,

• perform frequent component deployment, corresponding to managing more than 120

services within the MARVEL Kubernetes cluster,

• carry out thorough testing activities for the aforementioned deployments.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 29 - 21 July, 2023

It was therefore deemed essential to establish a very clear plan to organise the overall

integration activities and streamline them with other parallel project activities. It was also

necessary to apply efficient management procedures for closely monitoring the progress in the

implementation of the plan and quickly resolving arising issues. This section refers to the

overall organisation for the technical planning and management of the R2 integration activities.

3.1.1 Time Plan

In order to structure the various integration activities and deliver R2 as an operational prototype

within the allocated time frame, an initial high-level plan was prepared in the form of a roadmap

to set the key intermediate milestones that would need to be reached and the main associated

activities.

Subsequently, the high-level plan was further elaborated and a more fine-grained, low-level

time plan was established in the form of a Gantt Chart (Figure 1). This Gantt Chart was based

on the unit of weeks and provided more details on the necessary actions that would need to be

carried out and their positioning in time. It adopted a waterfall approach combined with

elements of agile development in the following sense: initial design activities were planned to

deliver a concrete preliminary design early on so that they could drive the subsequent

development and integration activities. However, in the context of the actual development and

integration activities, a more agile approach was followed that allowed a continuous revision

of design and integration aspects according to arising issues and feedback from end-users. The

agile approach was enabled through other complementary integration tools and methods (e.g.,

weekly integration meetings, issue tracking system, specification documentation system, etc).

Furthermore, in R2, the concept of rolling milestones was introduced which is explained later

in this section.

Figure 1: Week-based time plan in the form of a Gantt chart for organising R2 integration activities

The activities in the Gantt Chart were organised in 4 main groups:

1. R2 System Design and preparation

• A1.1 Use case scenario / User journey definition

• A1.2 Component mapping to scenarios / user journeys

• A1.3 System Architecture specification

• A1.4 I/O Interface and Data Model specification

• A1.5 UI Wireframes/Mockups (SmartViz)

• A1.6 Infrastructure sizing

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 30 - 21 July, 2023

The activities in this group initially focused on achieving a clear definition of the new 5 use

cases and associated user journeys from the side of pilot end-users and eliciting the

requirements that would drive the R2 system design, following the principles that had already

been established in R1. The R2 system design started by mapping components to the defined

use cases and Edge-Fog-Cloud layers, also with a view to achieve a representation of all

components in R2 and demonstrate the versatility of MARVEL in complying with diverse

Edge-Fog-Cloud configurations. The design led to the production of specific system

architectures for each addressed use case, as well as API specifications for the communication

between components. The approach was complemented with the preparation of UI wireframes

and mockups for the MARVEL front-end component (SmartViz). In parallel, an assessment of

required infrastructure resources and the intention to use available infrastructure resources

efficiently iteratively drove design decisions.

2. Individual component development

• A2.1 Component development

• A2.2 AI component training / model update

• A2.3 I/O Interface and Data Model implementation

This group of activities focused on the development and configuration of individual

components. Initially, efforts were made to ensure that all components that were foreseen to be

involved in R2, were appropriately configured to be delivered in a containerised form, suitable

for deployment in a Kubernetes cluster environment through the MARVdash tool. Further

development and optimisation of individual components for achieving the necessary

functionalities for R2 took place throughout the entire period of R2 integration activities.

Following the specification of APIs and data schemas for communications between

components, efforts were also allocated to implementing the associated interfaces and data

models at the level of individual components. In parallel, activities included training of the ML

models of MARVEL AI components that were applicable in R2, using datasets that were

provided by pilot owners.

3. Infrastructure configuration and deployment

• A3.1 Infrastructure configuration and monitoring

• A3.2 Deployment

This group of activities focused on operations associated with the deployment of components

to the MARVEL Kubernetes cluster, used for bridging the infrastructure nodes of all pilots and

across all layers (Edge, Fog, Cloud) with the support of the MARVdash tool. In the context of

these activities, efforts were made to properly configure all infrastructure devices to be

seamlessly added to the Kubernetes cluster and host the MARVEL services. In parallel, issues

related to data privacy and security concerns were resolved, especially in cases of configuring

Edge and Fog host devices. Finally, MARVEL technical partners were active in preparing and

updating the container images of their components as well as providing necessary configuration

documents to achieve the deployment of the respective services, which was facilitated by

MARVdash.

4. Quality Assurance

• A4.1 Unit Testing (Component Internal testing)

• A4.2 Integration Testing

• A4.4 Validation Testing (Factory Acceptance Test)

• A4.5 Documentation

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 31 - 21 July, 2023

During the development of individual components and implementation of the foreseen APIs,

component providers performed rigorous unit testing of the code belonging to each component.

Furthermore, a dedicated static code analysis service was established within the common

project code repository to assist in this process. Following the implementation of the APIs by

individual components, a phase of partial integration testing was initiated, where pairs and

groups of components were tested in unison to ensure the foreseen functionality for

communications and data exchange between components. These tests were combined with

infrastructure stress testing to evaluate the capacity of the infrastructure to host the foreseen

components and these tests influenced design decisions. Towards the end of the integration

activities, end-to-end integration testing sessions were planned to test the functionality of the

entire pipelines and workflows. The R2 integration activities were concluded with the execution

of validation tests that comprised formal end-to-end integration tests (Factory Acceptance

Tests). Subsequently, R2 integration activities were thoroughly documented in the current D5.6

report.

The time plan was complemented with a series of rolling milestones that were associated with

specific activities to ensure the timely delivery of certain results, facilitate cross-dependencies

between the various activities and comply with the overall time constraints. These rolling

milestones were aligned with the agile methodology that was more closely followed in R2

integration activities, essentially corresponding to iterative updates to the milestones. The

integration rolling milestones that were set up and monitored are presented in the following

Table 1.

Table 1: R2 Integration Rolling Milestones

MS # Integration milestone title Week

MS 1.1.2 Use case scenarios & User journeys defined W6

MS 1.1.2
Components mapped to scenarios / user

journeys
W6

MS X.1.3 System Architecture specification revisions W9, W13

MS X.1.4
I/O Interface and Data Model specification

revisions
W13, W17, W20

MS X.1.5 UI Wireframes/Mockups revisions W9, W13, W17

MS X.1.6 Infrastructure sizing revisions W13, W17, W20

MS X.2.1
Component (internal functions) version

delivery

W13, 17, W20, W22,

W24, W26

MS X.2.2 AI model training version W13, W17, W20, W22

MS X.2.3
I/O Interface and Data Model

implementation version

W17, W20, W22, W24,

W26, W28, W30

MS X.3.1 Infrastructure configuration versions

W9, W13, W17, W20,

W22, W24, W26, W28,

W30

MS X.3.2 Component version deployment

W9, W13, W17, W20,

W22, W24, W26, W28,

W30

MS X.4.1 Component version Unit Testing execution
W13, W17, W20, W22,

W24, W26

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 32 - 21 July, 2023

MS X.4.2 Integration Testing Iterations
W17, W20, W22, W24,

W26, W28, W30

MS 11.4.4 R2 Tested and Qualified W33

MS 12.4.4 R2 Test Results Documented W35

3.1.2 Recurring Technical Integration Meetings

In order to deal with the inherent complexity and significant challenges of the integration of the

MARVEL framework in R2, the series of recurring meetings that had been originally

introduced and established for R1 were resumed. These ‘R2 Technical Integration Meetings’

focused on the coordination of integration activities from a technical perspective. They were

held less frequently than in R1 (on a bi-weekly instead of a weekly basis) because there was a

higher demand for E2E integration tests in R2 and therefore testing sessions were organised in

the time slot reserved for the integration meetings every two weeks.

The purpose of this series of meetings was to:

• assist in aligning the efforts of technical partners contributing technologies to be

integrated into the 2nd Release of the MARVEL Integrated framework (R2),

• track the progress of the integration process,

• identify and resolve issues that would potentially arise.

In these meetings, the participation of technical staff who were directly involved in the

development of the MARVEL technological components was promoted.

The goal of these meetings was not to engage in open discussions to resolve peripheral issues

in detail, but rather to assist in identifying open issues that would need to be followed up offline

or through other focused meetings of the relevant partners.

In total, ten (10) R2 Integration Technical Meetings took place between February and June

2023. The MARVEL Integration Manager organised and moderated this series of meetings.

The initial set of meetings focused on establishing the roadmap and detailed time plan of

integration activities. Subsequently, meetings were focused on the definition of the new use

cases introduced for R2 and requirement elicitation. In parallel, meetings were referring to

design activities, which followed an iterative approach and evolved hand-in-hand with the

gradual definition of the new use cases and requirement elicitation. The next set of meetings

focused on the specification of APIs and I/O interfaces, data model definition, infrastructure

sizing and other implementation specific issues that needed to be addressed, which also affected

design decisions (e.g., re-mapping components to other infrastructure nodes based on the stress

tests). The focus in the last set of meetings transitioned from issues related to the deployment

of specific component service instances to integration testing and issue resolution and bug

fixing.

As the R2 Technical Integration meetings progressed, their structure gradually gained greater

dependency upon the issue tracking system that was implemented (Section 3.5). Eventually,

meetings were entirely organised around the monitoring of the progress of the active issues

listed in the issue tracking system, with clear reference to the index of these issues and the

offline discourse and progress reported in that system. Meeting discussions at the more mature

stages were only focusing on critical issues that were difficult to resolve offline or affected the

majority of partners.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 33 - 21 July, 2023

3.1.3 Integration Board

The ‘Integration Board’ management body was introduced during R1 integration activities to

assist in achieving more efficient management of integration activities. During the R2

integration activities, the ‘Integration Board’ continued to operate. Its purpose was to take a

leading role and initiatives in the integration activities and help in swiftly resolving central

issues that would arise without needing to involve all technical partners, whenever possible.

The Integration Board was composed of the following members:

• Tassos Kanellos, as a representative of ITML, being the Leader of T5.3 ‘Continuous

integration towards MARVEL’s framework realisation’ and Integration Manager.

• Manolis Falelakis, as a representative of INTRA, being the WP5 Leader.

• Dragana Bajovic, as a representative of UNS, being the Scientific and Technical Project

Manager (STPM).

• Manos Papoutsakis, as a representative of FORTH, being the Project Coordinator and

provider of MARVdash, which is pivotal for the integration and deployment of the

MARVEL components.

• Tomás Pariente Lobo, as a representative of ATOS, being the Leader of T5.4

‘Quantifiable progress against societal, academic and industry validated benchmarks’,

as benchmarking is tightly coupled with integration and also being the provider of

DatAna, which is pivotal for the integration of multiple components and data exchange.

The Integration Board was chaired by the Integration Manager (ITML representative). The

Integration Board members maintained an open communication channel throughout the R2

integration activities in order to prioritise and organise the necessary actions at each stage, after

reviewing the achieved progress and evaluating it against objectives that would need to be met.

In addition, the Integration Board made organisational decisions and contributed to the overall

integration efforts by taking initiatives to propose design solutions and technical configurations

that could resolve central issues. Furthermore, the Integration Board performed ad hoc

meetings, whenever a high risk was encountered or critical issues arose that could affect

multiple integration activities and/or components. These teleconference meetings allowed a

more complete understanding of the problems, the identification of mitigation measures and

solutions and the prioritisation of actions.

3.2 R2 Design approach

In order to define the function, structure, and form of R2, the R2 integration activities included

a track that focused on the design of R2.

The design activities were more intensive at the start of R2 integration and continued until the

final stages of integration, gradually decreasing in intensity, in line with the gradual reduction

of the initial volatility of the R2 specification.

The design of R2 adopted a dynamic approach, being iteratively revised and optimised during

the R2 development and integration activities.

The design activities started with the analysis of the R2 use cases (Section 2.2) and of the

available infrastructure.

Regarding the new use cases that were introduced in R2 (GRN1, GRN2, MT2, MT4, UNS2),

the analysis led to provisional mappings of components to use cases and infrastructure layers

and nodes, in an attempt to meet use case requirements while conforming to the available

infrastructure resources. This process gave way to the definition of distinct system architectures

for each use case, which was coupled with the identification, specification and documentation

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 34 - 21 July, 2023

of the necessary protocols, I/O interfaces and data models to ensure communication between

components. In parallel, the user interfaces and overall user experience was designed, tailored

to the needs of the involved end-users in the R2 use cases. At each step, the various aspects of

design (e.g., meeting use case requirements, infrastructure sizing, component mapping,

interface, and data model specification, UI/UX) were juxtaposed against each other to ensure

that all necessary sides of R2 design were being considered and addressed. The process was

also influenced by the experience gained from R1 and the relevant technical solutions and

conclusions that had been established.

Regarding the use cases that had been addressed by R1, the same design was maintained in R2

to a large extent. The changes that were introduced in these use cases (GRN3, GRN4, MT1,

MT3, UNS1) took place to address identified issues, consider changes in the available

infrastructure, incorporate some new components and align the approach with the one for the

new use cases.

During the design process, the various possibilities were represented using architectural

diagrams. Separate diagrams were prepared for the AI inference pipeline of each addressed use

case, while a single diagram was prepared for the AI training pipeline, which referred to all use

cases. The diagrams were regularly updated, as the R2 design was progressing to provide a

common ground for all parties involved in the design process.

The design process was also supported and complemented by a series of central online

spreadsheet documents, which were used to document requirements, components, interface,

and data model specifications and deployment configurations among other aspects of design in

a tabular format. Figure 2 and Figure 3 illustrate some indicative examples.

Figure 2: MARVEL component requirements regarding AV data

GR N 3:

T raff ic

A no mal

o us

Events

GR N 4:

T rajecto

ries

M T 1:

C ro wd

M o nito ri

ng

M T 3:

P arking

Lo t

UN S1:

D ro ne

C ro wd

C lassif ic

at io n

Y Y Y Y Y

Y Y N Y Y

IFAG Advanced MEMS microphones YES NO N N N Y Y

GRN CATFlow NO YES Y Y Y Y N

GRN GRNEdge YES NO N N N N N

UNS AVDrone YES NO N N N N Y

FBK VideoAnony YES YES Y Y Y Y Y

FBK AudioAnony YES NO N N N Y Y

AUD Voice Activity Detection (VAD) - devAIce NO YES N N N Y Y

INTRA StreamHandler YES YES Y Y Y Y Y

AU Visual anomaly detection (ViAD) NO YES N N Y N N

AU Audio-Visual anomaly detection (AVAD) NO YES Y N N Y N

AU Visual crowd counting (VCC) NO YES N N Y N N

AU Audio-Visual crowd counting (AVCC) NO YES N Y N N Y

TAU Automated audio captioning (AAC) NO YES N N N N N

TAU Sound event detection (SED) NO YES N Y N Y N

TAU Acoustic scene classification (ASC) NO YES N N N N N

TAU Audio Tagging NO YES Y N N Y N

ZELUS SmartViz NO YES Y Y Y Y Y

STS MARVEL Data corpus as a service YES YES Y Y Y Y Y

UNS FedL (Clients) NO YES Y N Y N Y

Video Source Available

Audio Source Available

Partner Component
Produces

AV data

Consumes

 AV Data

Use cases

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 35 - 21 July, 2023

Figure 3: MARVEL component mapping to use cases and deployment location at infrastructure layers

3.3 Infrastructure sizing

In order to achieve a functional operation of the MARVEL system, it was required to allocate

the necessary infrastructure resources that could support the foreseen system design and

guarantee an uninterruptable system operation. For the most part, the infrastructure resources

refer to the devices that could be attached to the MARVEL Kubernetes cluster and host the

services that were to be deployed. It was therefore necessary to perform certain estimations

regarding the infrastructure resources in terms of computational power (CPU and GPU cores),

memory capacity (RAM and VRAM size), hard disk capacity and performance, and network

performance.

A dual process was followed to perform the estimations for infrastructure resources. On one

hand, the MARVEL partners attempted to estimate the requirements of each component that

was foreseen to be deployed in the context of R2. On the other hand, the MARVEL Consortium

carefully examined and documented the specifications of the infrastructure devices that could

potentially be made available. During the initial stages of the system design, both aspects were

taken into consideration in order to design a system that could (a) meet the end-user

requirements derived from the specified use cases and (b) fit the components under

consideration to the infrastructure resources that could be allocated. Therefore, the MARVEL

Consortium attempted to select and map the available components to the foreseen use cases, to

the 3 EFC layers and to specific available devices, while also considering the payload as a

variable, e.g., how many data sources would need to be processed in each case. This was an

Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud Edge Fog Cloud

IFAG Advanced MEMS microphones N N N N N N N N N Y N N Y N N

FBK SED@Edge N N N N N N N N N N N N N N N

GRN CATFlow Y Y N Y N N Y N N N Y N N N N

GRN Text Anomaly Detection (TAD) Y Y N Y N N Y N N N Y N N N N

GRN GRNEdge N N N N N N N N N N N N N N N

UNS AVDrone N N N N N N N N N N N N Y N N

AUD sensMiner N N N N N N N N N N N N N N N

FORTH EdgeSec VPN Y Y Y Y Y Y N Y Y Y Y Y Y Y Y

FORTH EdgeSec TEE M N N M N N N N N N N N Y N N

FBK VideoAnony Y Y N Y N N N Y N N Y N Y N N

FBK AudioAnony N N N N N N N N N Y N N Y N N

AUD Voice Activity Detection (VAD) - devAIce N N N N N N N N N Y N N Y N N

ITML Data Fusion Bus (DFB) N N Y N N Y N N Y N N Y N Y N

ITML AV Registry N Y N N Y N N Y N N Y N N Y N

INTRA StreamHandler N Y N N Y N N Y N N Y N N Y N

ATOS DatAna Cloud N N Y N N Y N N Y N N Y N N N

ATOS DatAna Fog N Y N N Y N N Y N N Y N N Y N

ATOS DatAna Edge Y N N Y N N Y N N M N N M N N

ATOS DatAna Registry N N Y N N Y N N Y N N Y N M N

CNR Hierarchical Data Distribution (HDD) N N Y N N Y N N Y N N Y N N Y

AU Visual anomaly detection (ViAD) N N N N N N N N Y N N N N N N

AU Audio-Visual anomaly detection (AVAD) N N Y N N N N N N N N Y N N N

AU Visual crowd counting (VCC) N N N N N N N N Y N N N N N N

AU Audio-Visual crowd counting (AVCC) N N N N N Y N N N N N N N Y N

TAU Automated audio captioning (AAC) N N N N N N N N N N N N N N N

TAU Sound event detection (SED) N N N N N Y N N N N N Y N N N

TAU Acoustic scene classification (ASC) N N N N N N N N N N N N N N N

TAU Audio Tagging N N Y N N N N N N N N Y N N N

TAU Sound event localization and detection (SELD) N N N N N N N N N N N N N N N

AUD devAIce N N N N N N N N N N N N N N N

FORTH GPURegex N N N N N N N N N N N N N N N

CNR DynHP N N N N N Y N N Y N N N N Y N

UNS FedL Server N N Y N N N N N Y N N N N Y N

UNS FedL Client N Y Y N N N N Y Y N N N N Y N

FORTH MARVdash Y Y Y Y Y Y N Y Y Y Y Y Y Y Y

PSNC HPC N N Y N N Y N N Y N N Y N N N

PSNC HPC management & orchestration N N Y N N Y N N Y N N Y N N N

ZELUS SmartViz N N Y N N Y N N Y N N Y N Y N

STS MARVEL Data corpus as a service N N Y N N Y N N Y N N Y N N Y

GRN3: Traffic

Anomalous Events

HPC

User

interaction

GRN4: Trajectories
MT1: Crowd

Monitoring

Sensing

and

perception

Security,

Privacy

and data

protection

Data

Manageme

nt toolkits

Audio,

visual and

multimoda

l AI

Optimized

E2F2C

processing

and

deployme

MT3: Parking Lot
UNS1: Drone Crowd

Classification

Sub-

system
Partner Component

Use cases / Deployment Host Location

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 36 - 21 July, 2023

iterative process that was also continued after the initial design had been concluded, as more

information became available (e.g., benchmark test results, possibilities to increase the

infrastructure resources). The objective was to balance conflicting requirements making

efficient compromises that would allow an effective demonstration of the capabilities of

MARVEL in addressing the use cases as a unified system.

Information on the estimation of required infrastructure resources for each component was

collected using a central tabular document in the format that can be seen in Table 2.

Table 2: Collected component requirement estimations for infrastructure sizing

Compone

nt name

Operatio

n Mode

Compatible

host device

type

Require

d CPU

cores

Require

d RAM

(GB)

GPU

require

d

Required

VRAM

(GB)

Require

d

Storage

(GB)

Nominal

payload

reference

Requireme

nt Scaling

 • Inferenc

e

• Training

• Nvidia

Jetson

• Windows

OS PC

• Linux OS

PC

• Fog Server

• HPC

Infrastructu

re

Number

of CPU

cores

Amount

of RAM

in GB

• Yes

• No

Amount

of VRAM

in GB (if

applicabl

e)

Amount

of

storage

in GB

The

assumptio

ns used to

make the

estimation

s (e.g.,

process 1

FHD video

source)

Any

indications

for the type

of scaling of

requirement

s according

to payload

(e.g., linear

or speedup

metrics).

The collected information referred to single component instances. In cases where additional

component service instances would need to be deployed on the same host device (e.g., when

processing multiple input sources), the aggregate requirements would be estimated, taking into

consideration the nominal payload reference that was used to produce the estimations for each

instance and any information related to how the service requirements were expected to scale

depending on the payload (e.g., speedup metrics).

In the case of the Cloud HPC infrastructure, where multiple components and their instances

were foreseen to be deployed, an aggregation of requirements per use case was performed to

ensure that the necessary resources could be allocated for the VMs that would host the

MARVEL Kubernetes cluster and deployed services.

In R2, it was also attempted to prepare a plan for allocating specific MARVEL services to

specific VMs on the Cloud HPC to ensure that services would have access to the necessary

resources. An example of such a plan that considers the GRN3 and GRN4 AI components can

be seen in Figure 4. However, eventually, it was found that the inherent automated load

balancing mechanisms of the Kubernetes framework can successfully manage the service

allocation to available VMs without any issues arising and therefore the hard-coded allocation

plans were maintained as backups.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 37 - 21 July, 2023

Figure 4: Service allocation plan to specific PSNC HPC VMs to ensure resource availability

3.4 Source version control system

A GitLab6 repository had been set up in the context of R1 development and integration activities

at a VM hosted at the PSNC HPC infrastructure that acted as the main MARVEL source version

control system. This repository continued to be used during R2 development.

Individual projects had been set up within the repository for each MARVEL component and

user accounts for all participating partner members. The repository was available to all partners

wishing to use it for version control of the code of their component that was under development.

In addition, a SonarQube7 service was deployed and integrated with the GitLab repository. The

service was made available to all partners for static code analysis and automated unit testing in

the context of Quality Assurance (see Section 3.8).

A project that was used exclusively for integration purposes was also created within the GitLab

repository. This project hosted:

• The central issue tracking system for monitoring and resolving integration issues (see

Section 3.5).

• A repository of open-source code that was useful to multiple parties using version

control.

• Documentation of the integration specifications (API and data model specifications)

using version control (see Section 3.6)

• Up-to-date data stores and operational information that was required by individual

components (e.g., Camera JSON objects for each pilot for the AV Registry component)

using version control.

By the end of R2 integration activities, more than 300 commits had been registered in the main

branch of the central project (Figure 5).

6 https://gitlab.com/

7 https://www.sonarqube.org/

https://gitlab.com/
https://www.sonarqube.org/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 38 - 21 July, 2023

Figure 5: Commits in the main branch of the repository used for integration of the MARVEL framework

3.5 Issue Tracking system

The integration activities were supported from the early stages of R1 by a dedicated Issue

Tracking System (ITS) that was established. This ITS continued to be used more extensively

during the R2 integration. The ITS was hosted within the MARVEL GitLab repository (see

Section 3.4 and was accessible by all partners.

The purpose of the ITS was to:

• Document open issues that required actions from single or multiple parties. The

topics of issues varied considerably and included aspects of design, documentation,

deployment, test preparation and bug fixing among others. Each issue was assigned a

title and an index that could be cross-referenced among the listed issues. Each issue also

contained a text description, formatted with the GitLab Flavored Markdown (GLFM)

syntax (Figure 6).

• Assign issues with actionable items to specific partners/persons. Each issue was

assigned to a single or multiple parties and required specific actions to be taken. Results

were required to be reported under the original issue description. In addition, relevant

parties were also associated with issues using a monitoring status so that they could be

aware of the progress and actions taken for resolving it and provide feedback when

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 39 - 21 July, 2023

necessary. The overall procedure for managing issues through the ITS contributed to

increased accountability, transparency, and responsibility, in line with the Task T5.3

objectives.

• Serve as a communication channel, in cases of issues that required actions by multiple

parties or collaborative efforts. The GitLab ITS allows the maintenance of discussion

threads with comments and responses that are attached sequentially to original issue

descriptions (Figure 7). This facilitated asynchronous communication and exchange of

information related to specific issues at a central shared location. This process ensured

continuity and the formation of a common, persistent knowledge base, where

information can be tracked and re-visited, thus presenting clear advantages over other

communication methods (e.g., disparate email exchanges).

• Organise and prioritise issues, including deadlines and association with milestones.

The GitLab ITS labelling feature was used to annotate issues and provide the means for

categorising, filtering, and quickly retrieving the necessary information. The labels that

were implemented referred to the pilots related to the issue, the issue priority (low,

medium, high), and the issue status (backlog, open, closed). Each issue was also given

a deadline for carrying out the necessary actions and was associated with a milestone

corresponding to the weeks allocated for integration activities according to the overall

time plan.

• Monitor and manage the progress of integration activities. The ITS allowed the

close monitoring of the progress in multiple, parallel issues and a more efficient

management of integration activities through the prioritisation of relevant issues. GitLab

allows a comprehensive view of all issues in a list (Figure 8) that is helpful for reviewing

issues in relation to the associated deadline and milestone. It also allows a ‘board view’

(Figure 9), typically associated with Kanban agile methods, which was helpful in the

continuous re-evaluation of objectives and prioritisation of issues in the context of the

MARVEL integration activities.

• Maintain a backlog of unresolved items for long-term planning. The GitLab ITS

was also useful for documenting issues for future reference, in the form of a backlog.

This process allowed to quickly generate new issues in the form of notes with minimal

information, ensuring the documentation and maintenance of items that would be

necessary to be addressed at a later date. When the overall integration conditions and

priorities were suitable, the issue would receive a more detailed description and would

be transferred from the backlog to a status of ongoing tasks.

• Link issues with parts of code, API, and data model specifications, hosted in the

GitLab repository. Since the MARVEL GitLab repository hosting the ITS also hosted

version-controlled code as well as API and data model specifications, it was particularly

easy to cross-reference such items within issues.

The ITS was maintained and managed by the Integration Manager, opening new issues and

regularly updating existing ones.

By the end of the R2 integration activities, more than 120 issues had been registered. Several

issues led to discussion threads with more than 10 comments and responses exchanged between

relevant parties.

The ITS was also closely coupled with the R2 Technical Integration Meetings (Section 3.1.2),

whose main purpose after the initial integration stages was to collectively review the status of

open issues registered in the ITS to organise the next steps.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 40 - 21 July, 2023

Figure 6: Generation of a new issue in the GitLab Issue Tracking System using the GitLab Flavoured

Markdown (GLFM) syntax and specifying associated issue metadata

Figure 7: An active discussion thread opened under a specific issue

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 41 - 21 July, 2023

Figure 8: List view of open issues in the MARVEL Integration Issue Tracking System

Figure 9: Board view (Kanban) of open issues in the MARVEL Integration Issue Tracking System

3.6 Specification documentation

The integration of multiple components in the context of the MARVEL R2 relied to a great

extent on the successful inter-communication between these components. This meant that all

components would need to have well-defined and well documented I/O interfaces for

exchanging data with other components and that the structure of the exchanged data would need

to be specified in advance and made available to the relevant components.

Following the identification of the possible pairs of components that would need to

communicate with each other and the consolidation of the necessary interfaces and data models

into specific interface and data model types that would serve the needs of multiple pairwise

interactions, there was a need to specify these interfaces and data models in detail and maintain

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 42 - 21 July, 2023

an always up-to-date specification documentation. The MARVEL GitLab repository was found

to be highly suitable for this purpose.

Through issues registered in the ITS, MARVEL partners were requested to develop and

maintain specification documents for the I/O interfaces (Figure 10) and data models (Figure

11) related to their components. The specification documents were hosted in the MARVEL

GitLab repository in the form of mark-down (.md) documents. The version control features of

GitLab allowed the secure updating of the documented information to align it with changing

demands, while preserving a complete version history and allowing to roll back to previous

versions if necessary. Using a central shared location for the maintenance of the most up-to-

date specification documentation was efficient for all relevant parties to track and retrieve the

necessary information. In addition, this approach allowed the use of inherent cross-references

between issues listed in the ITS and specification documents.

The overall approach was established in R1 and was re-iterated for R2.

Figure 10: The mark-down specification document for the I/O interface between DatAna and DFB hosted in the

MARVEL GitLab repository

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 43 - 21 July, 2023

Figure 11: The mark-down specification document for the data model of the inference results produced by the

VAD component, hosted in the MARVEL GitLab repository

3.7 Component deployment (CI/CD)

MARVEL adopted an iterative approach for the development and integration of the technical

framework it intends to deliver. At each iteration, a functional subset of the platform was

delivered for testing and demonstration purposes.

As integration advanced, the delivered platform contained an increasing number of components

and services, gradually reaching the complete version of MARVEL.

The final version of the MARVEL integrated framework (R2) managed to seamlessly integrate

32 distinct components that spanned across host devices residing at the Edge, Fog, and Cloud.

This was a notable progress over the achievements of R1 and the MVP, where 26 and 12

components had been integrated respectively.

These components were deployed in the form of microservices (pods) within a Kubernetes

cluster. Some of these components were internally composed of multiple microservices (e.g., a

single instance of the DFB is composed of 8 microservices). Additionally, in many cases,

multiple instances of a single component were required to be deployed (e.g., 8 instances of

DatAna MQTT and 10 instances of SED were deployed across all infrastructure nodes). At the

end of R2, more than 120 services (pods) were deployed across all infrastructure nodes of the

Kubernetes cluster, as part of the MARVEL integrated framework.

In addition, the components and corresponding services needed to be deployed across multiple

infrastructure nodes. In R2, there were 11 nodes at the edge (6 of these part of the Kubernetes

cluster), 4 nodes at the fog (3 of these part of the Kubernetes cluster) and 8 nodes (VMs) at the

cloud (6 of these part of the Kubernetes cluster), distributed across the three pilots.

In order to facilitate the Continuous Integration / Continuous Delivery (CI/CD) procedure, the

MARVdash component (Section 4.5.4) was used. MARVdash has been exclusively developed

for the deployment of all the MARVEL components. The target deployment environment of

these components comprises a Kubernetes cluster with nodes hosting containers in three layers,

Edge, Fog, and Cloud.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 44 - 21 July, 2023

In the context of the MVP, very few selected components had been deployed with the use of

MARVdash. In that early release, most components were deployed at the host infrastructure

devices using manual or semi-automated ways. In the case of R1, all components were deployed

through MARVdash, which offered an automated way for the deployment procedure. Technical

partners used MARVdash to provide the executables of their components in the form of docker

container images as well as the necessary configuration information that controlled the

deployment location and specific parameters related to the deployment of each service instance.

MARVdash allowed partners to easily initialise their services in the form of pods within the

available unified Kubernetes cluster that had been configured to join all available infrastructure

nodes and host all services.

During R2 development and integration, MARVdash was used extensively and repetitively for

deploying updated versions of component services. For example, this occurred very frequently

in cases where an updated version of a component would be deployed to address issues and fix

bugs that had been detected in preceding testing activities.

MARVdash serves as a dashboard that allows the creation of orchestrated containers to

facilitate the deployment of E2F2C services. It offers a consolidated and user-friendly approach

to managing distributed services across the entire execution-site continuum, ranging from the

Edge to the Cloud. With its web-based graphical interface, MARVdash enables coordinated

access to the E2F2C execution platform, facilitates the execution of services using predefined

container templates, and provides seamless interaction with data collections that are

automatically accessible to application containers upon launch. Moreover, MARVdash is

designed to simplify user interaction with Kubernetes-based environments. It acts as a gateway

for users, providing them with a landing page to access the platform. Through this user-friendly

interface, users can effortlessly launch services, design workflows, request resources, and

define various execution parameters.

In Kubernetes, there are two types of nodes: control-plane nodes responsible for managing the

cluster, housing containers such as the API server and scheduler, and worker nodes where the

containers are executed. All these nodes must be part of the same network. In MARVEL's

Kubernetes cluster, the master node is installed on a virtual machine (VM) deployed on PSNC's

OpenStack infrastructure. Worker nodes consist of hosts in every available layer, ranging from

Edge to Fog, owned by all the MARVEL pilots. The integration of the worker nodes is

facilitated by EdgeSec-VPN, which is initiated on each of them, establishing a private network

as depicted in Figure 12.

Figure 12: MARVEL Kubernetes Cluster with the use of EdgeSec VPN

Following the Kubernetes deployment paradigm, every time a new MARVEL component is to

be deployed, a number of Kubernetes Pods are created with the corresponding service

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 45 - 21 July, 2023

containers inside them. These pods are then assigned to individual worker nodes. MARVEL

Kubernetes cluster utilises techniques such as 'Taints and Tolerations' and 'Node affinity' to

allocate Pods to specific worker nodes, thereby achieving an E2F2C continuum. Node affinity

is a characteristic of Pods that attracts them to a predefined set of nodes, either as a preference

or a strict requirement. On the other hand, taints enable a node to discourage certain Pods from

being scheduled onto it. To facilitate this, tolerations are applied to Pods, allowing them to be

scheduled onto nodes with matching taints, but without enforcing it. By using taints and

tolerations together, it is ensured that Pods are not scheduled onto unsuitable nodes. Worker

nodes in the cluster are marked with one or more taints, indicating that they should not accept

any Pods that cannot tolerate those taints.

MARVdash offers users a convenient method to configure and initiate services through the

integration of a user-friendly service templating mechanism. This mechanism essentially

utilises YAML files with customisable variables. Users can define execution parameters via the

dashboard prior to deployment, and MARVdash takes care of configuring other internal

platform settings, such as the location of the private container registry and external DNS name.

Additionally, MARVdash efficiently handles service naming when multiple services are

launched from the same template, while also providing the option for 'singleton' services that

can only be deployed once per user.

A YAML template file includes:

• one “Template” section must be included, specifying variable names, their default

values, and optional help text.

• one “Service” section identified by the variable NAME. If the template comprises

multiple services, MARVdash will utilise the first one by default.

• one “Ingress” section that points to the corresponding service. In such cases, the

MARVdash dashboard will provide a link to the hostname assigned to the ingress, if

available.

During the R1 development, MARVdash end users had to include in their components template

files information about 'Taints and Tolerations' and 'Node affinity'. However, in the R2 version

of MARVdash, the templates have been further simplified by removing the need for tolerations

and labelling in YAML. Instead, these aspects have been replaced by a dropdown menu during

the service creation process, resulting in more user-friendly and streamlined interaction.

MARVdash transforms such YAML templates to service containers taking advantage of the

MARVdash private docker registry hosting container images. The newly created containers are

placed into Pods and deployed to target worker nodes.

Figure 13 presents a snippet of a NGINX YAML template file. All “Template”, “Service”, and

“Ingress” sections are present to allow the exposure of the NGINX functionality outside of the

MARVEL Kubernetes cluster.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 46 - 21 July, 2023

Figure 13: Snippet from a NGINX YAML template file

Lastly, to facilitate the monitoring of the deployment process and document crucial information

and deployment status, an online spreadsheet was created and shared with all component

providers and managers involved in the pilot infrastructure (Figure 14). This spreadsheet

contained detailed information on:

• Infrastructure node ids and specifications

• Component instance (service) id

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 47 - 21 July, 2023

• Component instance (service) deployment location (infrastructure node)

• Component instance (service) deployment status

• Component instance (service) name in the Kubernetes cluster (URL)

• Component instance (service) open port

• Component instance (service) connection to other services

• Component instance (service) input AV sources

• Component instance (service) association with Use Cases

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 48 - 21 July, 2023

Figure 14: Part of spreadsheet for supporting the deployment process of MARVEL components in R2

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 49 - 21 July, 2023

3.8 Quality Assurance

In general, it is important to guarantee that each delivered increment meets high standards of

quality both in terms of design and code implementation, as well as in terms of execution

reliability, performance, and interoperability with other components. It was therefore necessary

to devise a Quality Assurance Plan for the R2 prototype that would ensure that individual

components and the complete MARVEL integrated framework meet adequate quality

standards.

To that end, and in line with the procedures that had been established in R1, a high-level Quality

Assurance plan was prepared for R2 that comprised the following stages:

1. Unit Testing.

2. Partial Integration Testing.

3. End-To-End Integration Testing.

4. Technical validation Testing.

Quality Assurance activities took place throughout the period of R2 development and

integration. In the initial stages, follow-up E2E integration testing sessions were organised to

fix bugs and improve stability in the use cases that had been addressed by R1. Furthermore,

regarding the new use cases that were introduced in R2, as previously described in Section 3.8,

a Quality Assurance Plan was prepared and followed during the R2 integration activities. This

section refers to the tests that were performed in each stage of the Quality Assurance Plan and

associated results.

3.8.1 Unit Testing

Regarding unit testing, providers of MARVEL components were responsible to carry out

individual analysis and testing activities of the code that was being developed to ensure that the

delivered component operates as expected, i.e., test that the component can receive the foreseen

input, process it and produce the expected output. A SonarQube8 service was deployed at a VM

of the PSNC HPC and integrated with the project GitLab repository (Section 3.4). Instructions

were provided to partners for running the SonarQube automated static code analysis tests on

their code. Partners were responsible for conducting unit testing using their own resources or

the provided SonarQube service on GitLab. For example, Figure 15 illustrates an indicative

SonarQube test result for a DFB service.

8 https://www.sonarqube.org/

https://www.sonarqube.org/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 50 - 21 July, 2023

Figure 15: SonarQube automated static code analysis results for the DFB ES-Connector service

3.8.2 Partial Integration Testing

This stage was responsible for performing preliminary integration tests.

During R1 development, the Partial Integration Testing stage started in M17 and partners were

initially requested to carry out tests between individual components in pairs. In order to

facilitate the process, all pairs of components that were required to interact with each other were

documented in a tabular format, following the structure that had been used for documenting all

component pairwise I/O interfaces (presented in Figure 49, Section 5.2). In addition, each I/O

Interface type (Section 5.2) was associated with a partner who would lead the relevant

specification and testing activities. Each partner leading an I/O Interface type took initiatives to

reach out to other partners whose components implemented the specific interface and organise

partial integration tests. An online shared spreadsheet that contained an exhaustive list of the

possible pairwise interactions between components and the associated integration tests was

used for organisational and documentation purposes and for tracking the testing progress.

Initially, tests were conducted between services that were not necessarily deployed at the

foreseen infrastructure node according to the R1 use case specifications. Instead, staging

infrastructure environments that were accessible by MARVEL partners were initially employed

to perform quick, provisional tests. Subsequently, as components were maturing after

addressing issues that emerged from the initial tests, components gradually started to be

deployed at the foreseen MARVEL infrastructure nodes via MARVdash. In parallel, partial

integration tests started to involve larger groups of components that were linked together in data

exchange chains as parts of the overall R1 ‘AI inference Pipeline’.

Gradually, as the number of components that were being deployed through MARVdash was

increasing and the joint operation of larger component groups was being tested, it was possible

to initiate the next Quality Assurance stage.

In the context of the R2 development, partial integration testing was limited since most of the

I/O interfaces and APIs had already been established and mostly some revisions were only

introduced. Instead, partial integration tests in R2 were mainly focused on new components that

were introduced or integrated in R2 (AAC, GPURegex, EdgeSec TEE, YOLO-SED, RBAD,

SELD, Arduino Proxy), for which the R1 procedure was adopted.

3.8.3 End-to-End Integration Testing

This stage is responsible for performing complete tests of the entire pipeline towards the

delivery of the Release under development.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 51 - 21 July, 2023

During the R1 development and integration, activities related to complete end-to-end (E2E)

integration tests started in parallel to partial integration tests, but gradually the focus shifted to

the E2E. In the last phase of R1 development, two (2) recurring meetings were scheduled every

week in 2-hour slots. Furthermore, specialised integration groups were formed in the form of

tracks for resolving issues related to specific topics, i.e., (1) AV data stream management, (2)

Raw inference result management, (3) Post-processed inference result management, (4) AI

Training and AI Model Repository, (5) AI Training and AI Model Repository, (6) Support on

deployment with MARVdash. The partners involved in each track were focused on resolving

the problems related to the track by coordinating during E2E integration tests, regularly

communicating and carrying out partial integration tests.

E2E integration testing continued from the early stages of R2 integration activities, with a focus

on fixing bugs and improving the stability and performance of the integrated framework in the

use cases that had been addressed in R1. To that end, twelve (12) E2E integration testing

sessions were organised in the first half of R2 activities.

In the second half of the R2 integration period, the focus of E2E integration tests shifted from

improving the use cases from R1 to testing the new use cases that were introduced in R2. The

E2E integration testing sessions were realised in the same way, as described above. Eighteen

(18) E2E integration testing sessions were realised in the second half of R2.

Each E2E integration testing session was usually addressing one or more use cases and was

typically associated with a test plan that was drafted by the Integration Manager in advance. In

each E2E integration test, the participation of partners that were responsible for the

infrastructure or involved software components was required. Each session would typically

start with a status check of the required infrastructure, AV sources and the components/services

that would be required. After ensuring that all infrastructure, AV sources and services were

found to be operational and properly configured, the inference pipeline steps would be tested

according to the test plan. In most cases, this consisted of verifying that the necessary data was

being properly generated and propagated through the inference pipeline via each intermediate

node, eventually reaching the front-end application (SmartViz). In cases where problems were

identified, actions were taken during the testing session to resolve them, whenever this was

possible. When this occurred, it was attempted to re-arrange the order of tests and parallelise

them in order to use the time of the session more efficiently (e.g., one partner focusing on

resolving an issue while another continuing with other tests). During the testing session, the

Integration Manager documented the test results. Identified issues that could not be resolved

during the testing session would typically lead to the generation of a corresponding ticket in the

MARVEL Issue Tracking System (Section 3.5).

In R2, many of the E2E testing sessions comprised stress tests of the host infrastructure at the

edge, fog and cloud. As insufficient infrastructure resources (CPU, RAM, GPU, VRAM) often

led to instability issues, it was of paramount importance to properly assess the capacity of

infrastructure nodes to host foreseen services. During such stress tests, the load was generated

by running the services that would need to be hosted on an infrastructure node in typical

scenarios and the resources of the infrastructure node would be monitored. These stress tests

were very useful as they drove design choices in the specification of the architecture for the R2

architecture (e.g., mapping components to available infrastructure nodes) and contributed to the

optimisation of certain components in terms of resource efficiency.

During the end-to-end integration testing sessions, a series of tools were used to monitor (i) the

inference pipeline and the successful completion of each intermediate step and (ii) the

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 52 - 21 July, 2023

consumed and available infrastructure resources (e.g., CPU, RAM, GPU, VRAM, DISK). The

main tools used were the following:

• Kubebox (command line terminal for Kubernetes). A Kubebox service was available

to all MARVdash users, which could be used to run a command line terminal based on

the Ubuntu OS and monitor the status and activity of deployed services (Figure 16).

Figure 16: Kubebox terminal and associated Ubuntu OS command line

• DatAna NiFi GUI. Being an integral part of DatAna, this tool was used to monitor and

configure the data flows of raw AI inference results that were published to the DatAna

MQTT brokers, perform data validation tasks, transformation into the SDM-compliant

AI Inference Result data models and relay data to higher DatAna layers and ultimately

to the DFB (Figure 17).

Figure 17: DatAna NiFi GUI

• DFB Kafka GUI for monitoring (Grafana). The DFB Kafka monitoring tool built with

Grafana was used to monitor the traffic on Kafka topics and other performance

parameters of the DFB Kafka brokers (Figure 18).

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 53 - 21 July, 2023

Figure 18: DFB Kafka topic traffic monitoring

• DFB ES GUI for monitoring (Kibana). A Kibana service was used to monitor the data

that was being ingested into the DFB ES repository (Figure 19).

Figure 19: DFB Elastic Search GUI (Kibana)

• SmartViz. Being the main front-end component of the MARVEL framework, SmartViz

was used for checking the quality of the data consumed through the use of the dedicated

GUI widgets it incorporates.

• MARVdash monitoring tool. During R2 activities, a dedicated monitoring tool for

MARVdash was developed that acted as a central portal for monitoring many aspects

of the running MARVEL framework through a GUI. This tool was based on the

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 54 - 21 July, 2023

Prometheus9, Grafana10, and Loki11 technologies and offered multiple pre-built

dashboards that visualised different aspects of the MARVEL framework. For example,

some of the dashboards refer to monitoring the computational resources consumed by

each running Kubernetes pod, organised by infrastructure node or by user namespace

(Figure 20). Another notable example is a dashboard for monitoring the log output that

is generated by any individual component instance that is running as a pod in the

Kubernetes cluster via MARVdash (Figure 21). This was particularly useful for

monitoring the internal status of individual components and for debugging purposes.

Another very useful dashboard presented the status of multiple DatAna MQTT brokers

simultaneously (Figure 22). Since MQTT brokers were deployed on most infrastructure

nodes and they all performed a pivotal role in the collection and propagation of inference

results in the inference pipeline, it was important to be able to quickly understand if any

of these brokers or a component connected to them was facing an issue.

Figure 20: MARVdash monitoring dashboard: Compute Resources per namespace

9 https://prometheus.io/

10 https://grafana.com/

11 https://grafana.com/oss/loki/

https://prometheus.io/
https://grafana.com/
https://grafana.com/oss/loki/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 55 - 21 July, 2023

Figure 21: MARVdash monitoring dashboard: Service Logs

Figure 22: MARVdash monitoring dashboard: MQTT broker status

• MARVEL infrastructure monitoring tool. During R2 integration activities, another

dedicated tool was implemented and employed to further reinforce the capabilities for

monitoring the MARVEL framework. This tool was based on the Zabbix12 technology

stack and was primarily focused on monitoring the infrastructure and its resources using

GUIs that comprise dashboards, while it is also able to generate alerts and reports. This

tool was used to provide a comprehensive presentation of each infrastructure node that

is attached to the MARVEL Kubernetes cluster, including a live visualisation of the

most significant metrics, i.e., CPU, RAM, GPU, DISK USAGE, Network speed (Figure

23). This functionality was particularly useful during stress tests that were carried out

as part of the E2E integration testing activities.

12 https://www.zabbix.com/

https://www.zabbix.com/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 56 - 21 July, 2023

Figure 23: MARVEL infrastructure monitoring tool based on Zabbix

3.8.4 Technical Validation Testing

This is the final and formal end-to-end integration test that was performed to validate the

expected operation of a release of the entire MARVEL framework when applied in each use

case that needs to be addressed.

At the end of the R2 integration activities in M30, end-to-end integration tests were planned for

performing a technical validation of the MARVEL prototype operation in all addressed use

cases. In this context, components were deployed at the foreseen infrastructure node according

to the R2 use case requirements and foreseen system design specifications. An exhaustive list

of all pairwise integration tests for each use case was prepared according to the component

allocation to each use case and foreseen interactions between them. This list was used to

document the result of each integration test, serving the purposes of technical validation. In the

last month of R2 integration activities, a two-day technical meeting was organised at Aarhus,

Denmark with the exclusive purpose of carrying out the R2 validation tests. The resulting

R2 Technical Validation Test Report is attached in Appendix A.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 57 - 21 July, 2023

4 Subsystems and Components integrated in R2

In this section, we provide technical information about the components that take part in one or

more use cases for R2, grouped under the respective subsystem each belongs to. For each

component, we provide a description, the technologies employed, and the role of that

component in R2. Up-to-date information is provided reflecting the state of components as they

were implemented in R2.

Table 3 below presents a comprehensive view of all the components that are integrated in R2

alongside with their main achievements and updates and the use cases where they are applied

in the R2 phase.

Table 3: List of components integrated in R2 and main achievements / updates

Sub

syst

em

Component Partner
MVP

Status

R1

Status

Main achievements / updates in R2

(after R1)

Applicable R2

use cases

S
en

si
n
g
 a

n
d
 p

er
ce

p
ti

o
n

Advanced

MEMS

microphones

IFAG

Partial

ly

integra

ted

Integrat

ed
 New interface

MT2, MT3,

MT4, UNS1,

UNS2

AVDrone UNS N/A
Integrat

ed

Rasberry Pi version 4 was implemented

instead of Rasberry Pi version 3 as a

computational device for processing audio

signals due to malfunctioning caused due to

continuous work for several months.

UNS1

AV Registry ITML

Not

forese

en

Integrat

ed
Updated hosted information on AV sources ALL

S
ec

u
ri

ty
,
P

ri
v
ac

y
 a

n
d
 d

at
a

p
ro

te
ct

io
n

EdgeSec

VPN
FORTH N/A

Integrat

ed

Installed EdgeSec VPN in new nodes:

worker2, worker3, worker4, worker-GPU,

Zabbix server, grnedge2, grnedge3,

grnedge4, grnfog2, unsedge3

ALL

EdgeSec

TEE
FORTH N/A

Qualifie

d and

deploye

d, but

not

integrat

ed/teste
d

• EdgeSec TEE is deployed on UNSEDGE1

(Intel NUC) and configured for the needs of

UNS1, i.e., exchange data with the

VideoAnony instance hosted on the same

node over a REST protocol.

• VideoAnony on UNSEDGE1 is

appropriately configured to exchange data

with EdgeSec TEE over a REST protocol.
• Created a MARVdash YAML template

with all related containers to deploy in

UNSEdge1.

UNS1

VideoAnony FBK

Partial

ly

integra

ted

Integrat

ed

no updates wrt R1 (except some minor

fixing)

GRN1, GRN2,

GRN3, GRN4,

MT1, MT2,

MT3, MT4,

UNS1

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 58 - 21 July, 2023

AudioAnony FBK N/A
Integrat

ed

Updates:

- deployment on 6 devices in MT and 2

devices in UNS

- different voice conversion strategy

- automatic reset of the device

MT2, MT3,

MT4, UNS1,

UNS2

Voice

Activity

Detection

(VAD) -

devAIce

AUD N/A
Integrat

ed
 No updates

MT2, MT3,

MT4, UNS1,

UNS2

D
at

a
M

an
ag

em
en

t
to

o
lk

it
s

Data Fusion

Bus (DFB)
ITML

Integr

ated

Integrat

ed

- Updated fusion service for ViAD, AVAD

and extended it to support SED, AT

- Improved performance measurement and

monitoring features

- Updated ES-proxy service

ALL

StreamHandl

er
INTRA N/A

Integrat

ed

 - Updated Architecture and functionality

(based on microservices)

- New service introduced (DFB-SH)

GRN1, GRN2,

GRN3, MT1,

MT2, MT3,

MT4, UNS1,

UNS2

DatAna ATOS
Integr

ated

Integrat

ed

- Deployment of new nodes in the use cases

- Support for all use cases

- Added data flows for the new inference

models (YOLO-SED, RBAD, SELD,

GPURegex)

Support for versioning of data flows using

the NiFi Registry

ALL

Hierarchical

Data

Distribution

(HDD)

CNR N/A
Integrat

ed
No updates. ALL

A
u
d
io

,
v
is

u
al

 a
n
d
 m

u
lt

im
o
d
al

 A
I

CATFlow GRN
Integr

ated

Integrat

ed

Changes were done to the Configurator–

which is responsible for configuring and

deploying CATFlow, i.e., to accept

parameter input on MARVdash for setting
the MQTT host and port.

GRN2, GRN3,

GRN4, MT1,

MT4

Text

Anomaly

Detection

(TAD)

GRN

Not

forese

en

Integrat

ed

The TAD component was updated for R2

integration to be able to distinguish between

detector errors which give anomalous

speeds and real anomalous speeds. In

addition, the speed per path taken by

vehicle was taken into account.

GRN2, GRN3,

GRN4

Visual

anomaly

detection

(ViAD)

AU N/A
Integrat

ed

A weekly-supervised visual anomaly

detection method was developed. This

method was integrated to the ViAD

component in the MARVEL framework.

MT1

Audio-

Visual

anomaly

detection

(AVAD)

AU N/A
Integrat

ed

New methodology was developed and

tested on the new audio-visual anomaly

detection dataset created by MARVEL.

This method was integrated to the AVAD

component in the MARVEL framework.

GRN3, MT2,

MT3, MT4

Visual crowd

counting

(VCC)

AU N/A
Integrat

ed
No updates. MT1, UNS1

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 59 - 21 July, 2023

Audio-

Visual crowd

counting

(AVCC)

AU
Integr

ated

Integrat

ed
No updates. GRN4

Automated

audio

captioning

(AAC)

TAU N/A N/A
- AAC component was first released in R2

for MT2 use case
MT2

Sound event

detection

(SED)

TAU
Integr

ated

Integrat

ed

- SED component was applied in GRN2,

GRN4, MT2, MT3 and MT4 use cases.

- AI model training process extended with

transfer learning-based process to increase

the generalisation ability of the model

GRM2, GRN4,

MT2, MT3,

MT4

Audio

Tagging

(AT)

TAU

Not

forese

en

Integrat

ed

- AT component was applied in MT2 and

MT4.

- AI model training process extended with

transfer learning-based process to increase

the generalisation ability of the model

GRN3, MT2,

MT3

Sound event

localization

and detection

(SELD)

TAU N/A N/A
- SELD component was first released in R2

for UNS2 use case
UNS2

YOLO-SED
AU-

TAU

Not

forese

en

Not

foresee

n

New component developed for R2 GRN1

Rule-Based

Anomaly

Detection

(RBAD)

AU

Not

forese

en

Not

foresee

n

New component developed for R2 GRN2

O
p
ti

m
is

ed
 E

2
F

2
C

 p
ro

ce
ss

in
g
 a

n
d
 d

ep
lo

y
m

en
t GPURegex FORTH N/A

Qualifie

d and

deploye

d, but

not

integrat

ed/teste

d

1) new image for NVIDIA GPU - 2)

deployed on MTFOG2 - 3) integrated with

MARVEL (receives input from AAC, sends

output alerts to SmartViz, communication

through DatAna) - 4) will be used in MT2

MT2

DynHP CNR N/A
Integrat

ed

- refactored the code

- applied to AVCC and VCC model

- Applied to MT1 data

AI Training

(see Section

5.4.11)

FedL UNS N/A
Integrat

ed

- incorporated new model for audio-visual

emotion recognition

AI Training

(see Section

5.4.11)

MARVdash FORTH
Integr

ated

Integrat

ed

• Installed Prometheus, Loki, Grafana and

included them in the menu

• Optimised the creation of services to put

less effort to the user

• Installed Kubernetes tools to all new

nodes at all layers

• Provided continued support for all the

services deployed through MARVdash to

Kubernetes cluster

ALL

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 60 - 21 July, 2023

H
P

C

HPC PSNC
Integr

ated

Integrat

ed

- extension of cloud resources to include

BST region (in R1 only the DCW region

was used)

- providing VM equipped with GPUs to

enable deployment of components that

require constant access to GPU

ALL

HPC

management

&

orchestration

PSNC
Integr

ated

Integrat

ed

- providing zabbix monitoring dedicated to

MARVEL
ALL

U
se

r
in

te
ra

ct
io

n
s

an
d
 d

ec
is

io
n
 m

ak
in

g
 t

o
o
lk

it

SmartViz ZELUS
Integr

ated

Integrat

ed

- applied for all 10 use cases

- new support for GPURegex, RBAD,

YOLO-SED, SELD, AAC, ViAD, fused

results

- MARVdash selvice to initialise and

terminate a deployed component

- new widgets and functionalities (sound

map localisation, comparison etc.)

- filtering options

ALL

MARVEL

Data Corpus

as a service

STS
Integr

ated

Integrat

ed

- Native installation of Hadoop Distributed

system (HDFS) on all implicated/available

nodes of Data Corpus.

- Deployment of several REST APIS to

facilitate the download capability for

individual injected snippets.

- Deployment of advanced filtering for the

available injected datasets to the Corpus.

- Deployment of an additional GUI for the

Data Corpus in order to show the public

available datasets.

Data

Aggregation

(see Section

5.4.12)

4.1 Sensing and perception Subsystem

4.1.1 MEMS microphone IM69D130

4.1.1.1 Overview

The XENSIVTM IM69D130 MEMS microphone is the basis of the audio data acquisition. All

evaluation Kits feature the latest state-of-the-art IM69D130 MEMS microphone. It is the

newest MEMS microphone technology produced by IFAG for consumer electronics. It presents

significative improvement in operating parameters, frequency response, performance and other

acoustic features with respect to the state of the art (i.e., IFAG IM69D120).

4.1.1.2 Internal Operation & Technologies

Infineon’s Dual Backplate MEMS technology is based on a miniaturised symmetrical

microphone design, similar to studio condenser microphones, and results in high linearity of

the output signal within a dynamic range of 105 dB. The microphone distortion does not exceed

1 percent even at sound pressure levels of 128 dBSPL. The flat frequency response (28 Hz low-

frequency roll-off) and tight manufacturing tolerance result in close phase matching of the

microphones, which is important for multi-microphone (array) applications.

The digital microphone ASIC contains an extremely low-noise preamplifier and a high-

performance sigma-delta ADC. Different power modes can be selected in order to suit specific

current consumption requirements. Each IM69D130 microphone is trimmed with an advanced

IFAG calibration algorithm, resulting in small sensitivity tolerances (±1 dB). The phase

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 61 - 21 July, 2023

response is tightly matched (± 2°) between microphones, in order to support beamforming

applications.

4.1.1.3 Role in R2 and associated use cases

For the MT use cases, IFAG provided the devices to acquire the audio. In particular, Audiohub

Nano and Audiohub 8-microphone versions have been distributed to the pilot owner. Together

with FBK and AUD, the boards have been integrated in the anonymisation pipeline, to provide

audio data removing sensible information from the public. This data can be further used by the

rest of the partners to work on the sound event detection and localisation (i.e., by the SED

component developed by TAU).

4.1.2 AVDrone

4.1.2.1 Overview

AVDrone represents an Edge-based data capturing and streaming component, that is used for

audio and video monitoring of public events. The component is designed and tested according

to the needs of UNS Use Case 1. The goal of the component is to enable target users to detect

the number of people at a public event, providing a faster response in the case of reaching a

user-defined threshold, hence preventing overcrowding, which could lead to dangerous

situations, and helping to preserve public safety. The innovative setup includes video capturing

from the drone and audio capturing from ground-based MEMS microphone, which serves as a

supporting hardware for determining human presence by detecting voice activity, helping to

localise the event. Data is stored locally but also streamed in real-time to an external IP address

using Wi-Fi connection.

4.1.2.2 Internal Operation & Technologies

The AVDrone component encompasses two distinct groups of data capturing devices. Firstly,

it incorporates a DJI M600 Pro13 drone equipped with a GoPro camera to facilitate aerial video

recording. Secondly, an IFAG MEMS microphone is deployed on the ground to facilitate

additional data collection, specifically supporting voice activity detection. For data processing,

an Intel NUC Mini PC serves as the computational device on the drone platform, while a

Raspberry Pi v4 board is employed on the ground to process audio signals. The Intel NUC

operates the VideoAnony software, enabling anonymisation of video data, while the Raspberry

Pi board hosts AudioAnony, VAD, and DataAna Edge (MQTT).

4.1.2.3 Role in R2 and associated use cases

The AVDrone component is implemented within UNS1 use case – Drone experiment. The role of

the component in R2 is to support real-time audio-visual intelligence by providing hardware with

supporting software for data recording and streaming within UNS1 use case. The distinct features
of AVDrone, with respect to the AV source produced, are bird-eye view video as well as the

possibility of varying and controllable field of view enabled by the drone mobility and flight control.

The component will not be implemented within other use cases.

Within R2, the component configuration will include only one microphone board at the ground, to

support real-time inspection of the audio at the user request. For future implementations,

deployment and synchronised streaming from several ground-based microphone boards is planned

to enable SELD.

13 https://www.dji.com/gr/matrice600-pro

https://www.dji.com/gr/matrice600-pro

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 62 - 21 July, 2023

4.1.3 AV Registry

4.1.3.1 Overview

This component was not originally foreseen as part of the MARVEL framework. Following the

analysis of system integration requirements for R1, it was acknowledged that certain necessary

functionalities related to the reception, analysis, and monitoring of live AV data streams were

not being supported. In order to overcome this gap, it was decided that the AV Registry

component should be developed by ITML and added to the MARVEL framework.

The purpose of the AV Registry is to host metadata information related to AV sources that

describe their characteristics (e.g., name, type, URL, encoding, video resolution, video

framerate, audio channels, etc) and to expose this information to other MARVEL components

during runtime.

4.1.3.2 Internal Operation & Technologies

The AV Registry hosts a data store of documents that describe the AV sources that have been

added to a deployment of the MARVEL framework. The AV sources can be cameras (possibly

with built-in microphones) and microphones, but also instances of the MARVEL VideoAnony

and AudioAnony components that provide anonymised AV data streams and act as AV sources

as far as other MARVEL components are concerned.

Each AV source is described in a JSON document. A relevant data model from the Smart Data

Models (SDM) 14 initiative was selected for describing all MARVEL AV sources to comply

with industry standards. Specifically, the SDM “Camera”15 data model was selected. This data

model was extended by adding more fields to account for MARVEL-specific aspects of AV

sources (Section 5.3.1). However, this extension did not break the compliance with the SDM

standard, as the original fields were preserved and used for the purposes of MARVEL, wherever

possible. The mandatory fields specified by SDM are considered mandatory in the revised data

model that was created for MARVEL. In addition, the “Camera” data model was revised to

include a specification of additional mandatory fields for the context of MARVEL in order to

meet integration and other requirements. A complete specification of the revised “Camera” data

model was produced in a mark-down (.md) format and was regularly updated during the R1

and R2 integration activities. The data model specification was hosted on the project’s GitLab

repository for version control. The complete Camera data model specification can be found in

Appendix B of this report.

The AV Registry exposes two REST API calls for retrieving the complete set of hosted AV

source documents and for retrieving a specific AV source document by providing the AV source

id (Section 5.2.2).

4.1.3.3 Role in R2 and associated use cases

The AV Registry was initially developed for the integration needs of the R1 use cases and was

applied in all ten R2 use cases. Each AV Registry instance was foreseen to contain information

on the AV sources that are available for a particular use case. Due to this close coupling with

use cases, different AV Registry instances were deployed for each pilot (GRN, MT, UNS) at

the respective pilot’s infrastructure Fog nodes. Each AV Registry instance hosted JSON

documents that corresponded to the AV sources of the respective pilot. In each use case, AV

14 https://github.com/smart-data-models

15 https://github.com/smart-data-models/dataModel.Device/tree/master/Camera

https://github.com/smart-data-models
https://github.com/smart-data-models/dataModel.Device/tree/master/Camera

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 63 - 21 July, 2023

Registry served the needs of all components deployed on all layers and infrastructure nodes that

required metadata information of available AV sources. In the case of AI components and

StreamHandler, during initialisation, they were required to access the AV Registry to receive

the information of the AV sources they would need to connect to and process. In the case of

SmartViz, it could query the information for a particular AV source from AV Registry upon

demand, when a user would want to monitor the live stream of a particular AV source.

During R2 integration activities, the JSON documents hosted by the AV Registry instances

were updated to incorporate revised information about all the active AV sources used across

the ten use cases, including multiple AV sources that were introduced in R2. Furthermore, small

revisions were also made to the data model describing AV sources.

4.2 Security, Privacy and data protection Subsystem

4.2.1 VideoAnony

4.2.1.1 Overview

The goal of VideoAnony is to anonymise the detected faces and car plates from raw video feeds

coming from the CCTV cameras from each pilot site. The anonymisation is performed via

image redaction methods, starting from classic image processing techniques, such as blurring,

towards the more advanced GAN-based face-swapping techniques, which are under

development within the MARVEL project. The component receives the incoming raw video

stream either via RTSP or direct cable access and processes it with the face/car plate detection

and anonymisation modules and finally streams the anonymised videos via a customised RTSP

server (see Section 5.2.3 - AV streaming). The component will be deployed in a Fog machine,

or an Edge device given sufficient on-board processing power to allow real-time processing.

4.2.1.2 Internal Operation & Technologies

The current deployable version of VideoAnony employs the YOLOv5 detector for face and car

plate detection which is finetuned with related public datasets and pilot-provided annotations.

Once the regions of interest are detected, the component then blurs them. On top of that, we are

also developing a lighter version of the advanced GAN-based face-swapping model based on

state-of-the-art methods. In the early phase, we particularly addressed the challenges of pose

preservation and varying size of the detected faces from CCTV videos, while in the current

phase, we are focusing on reducing the computational complexity of the model.

4.2.1.3 Role in R2 and associated use cases

The role of this component is to anonymise video streams from pilot sites that will expose car

plates and faces of citizens. The component was used in the MVP for providing anonymised

videos into the Data Corpus in an offline manner. VideoAnony is implemented in all use cases,

over each of the AV streams with presence of video modality. The component is deployed on

devices that either operate at the Fog layer (MT) or Edge layer (GRN and UNS use cases),

depending on the specifics of the use case. In GRN the component is deployed on GRNEDGE1,

GRNEDGE2. In MT it is deployed on MTFOG1 (outside the Kubernetes cluster) and on a

Jetson device for MT3. In UNS it is deployed on UNSEDGE1.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 64 - 21 July, 2023

4.2.2 AudioAnony

4.2.2.1 Overview

The goal of AudioAnony is to manipulate speech segments captured by the microphones in

order to mask the speaker identity and preserve the privacy of the citizens. The component reads

an audio stream, processes it and publishes the anonymised audio stream via an RSTP server

(see Section 5.2.3 - AV streaming for more details about the RSTP server).

The AudioAnony component is coupled with the Voice Activity Detection (VAD) component

to limit the anonymisation process to speech segments only. Given the very limited

computational requirements of the current version, it will be deployed on Edge devices, getting

the audio stream directly from the microphones.

4.2.2.2 Internal Operation & Technologies

The first version of the tool employs McAdams coefficients, shifting the poles on the speech

LPC representation. Segments classified as speech by the VAD component are converted into

their LPC representation. Poles are shifted using a random coefficient and then time domain

signals are reconstructed. The final implementation of the AudioAnony component deployed

in the inference pipeline employs a set of signal-processing based transformations of the audio

signal to mask the speaker identity. The code uses the “Parselmouth” Python library for the

Praat software16. The transformations are those described in ContentVec17. The AudioAnony

component works in combination with VAD and is deployed on the Raspberry PI collecting the

audio signals from the microphones so that audio is anonymised at the source. The audio stream

captured by the microphone is imported using the ALSA API and processed in segments of

predefined length (default=250ms). Note that besides the signal-processing based component

for the inference pipeline, a voice conversion audio anonymisation tool has been developed for

the offline processing of recorded data.

4.2.2.3 Role in R2 and associated use cases

The goal of the component is to anonymise audio streams at the source to comply with data

processing restrictions introduced by the data providers, mostly for privacy issues. The

component is therefore used in MT2, MT3, MT4, UNS1, and UNS2. GRN is not expecting any

relevant speech signal, so AudioAnony is not deployed there. In MT the component is deployed

on a Raspberry Pi device, on which the microphones are mounted. The devices are installed on

lamp poles near the cameras selected for the use cases. In UNS the component is deployed as a

docker container via MARVDash and reads a multi-channel audio stream made available via

an RTSP server. The component publishes 1 single anonymised stream to an RTSP server for

further processing.

4.2.3 Voice Activity Detection (VAD) – devAIce

4.2.3.1 Overview

devAIce is a software development kit wrapping AUD’s intelligent audio analytics modules.

devAIce contains various modules that can be used for different use cases and in different

deployments environments, from powerful computing nodes to edge devices. One of these

16 https://parselmouth.readthedocs.io/en/stable/

17 https://github.com/auspicious3000/contentvec

https://parselmouth.readthedocs.io/en/stable/
https://github.com/auspicious3000/contentvec

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 65 - 21 July, 2023

modules is the Voice Activity Detection (VAD) module, which represents one of the core

components in the MARVEL audio anonymisation pipeline, allowing the detection of sensitive

audio data in noisy conditions which will be anonymised in the next stages of the pipeline.

4.2.3.2 Internal Operation & Technologies

The current VAD model in the SDK has been subject to multiple upgrades and improvements,

in order to be more suitable for the MARVEL use cases. One of the core upgrades is retraining

according to a novel state-of-the-art architecture. This architecture is inspired by a research

paper published by Lee et al.18, where a new approach is adopted. This new approach introduces

the use of Convolutional Layers as an attention mechanism on top of the Recurrent Neural

Networks (RNN) layers, which is a Long-Short Term Memory (LSTM) layer in our case.

Moreover, this attention mechanism focuses not only on the temporal domain like the most

commonly used Artificial Neural Network (ANN) based attention modules, but also on the

frequential domain, which helps to achieve better modelling of the dependencies between the

consecutive frames within an audio signal, by focusing on the parts that contain the most

relevant information for Voice Activity, and this on both time and frequency domain. This

concept is called Dual Attention. Moreover, this VAD module can now also detect music as

well as voice activity. Further details on the attention module, the overall architecture as well

as the most recent developments can be found in D4.119 and D4.420.

4.2.3.3 Role in R2 and associated use cases

As stated previously, devAIce VAD module makes up, together with AudioAnony the audio

anonymisation pipeline. The VAD module, once audio data is consumed in real-time, will

analyse the ingested audio streams, detect speech data in it if existing which will be anonymised

right away with AudioAnony. The anonymised audio streams are later forwarded to the rest of

the MARVEL AI components for further analysis. Furthermore, the VAD boundaries as well

as the music boundaries, are forwarded through an MQTT broker to be stored in the MARVEL

elastic search databases which will be visualised in later stages by the SmartViz.

This audio anonymisation pipeline is used in the MT and UNS use cases and was deployed on

the corresponding edge devices. It was recently upgraded to support the anonymisation of 8-

channels recording, using the recent version of the MEMS microphone for audio ingestion.

4.2.4 EdgeSec VPN

4.2.4.1 Overview

By implementing EdgeSec VPN, each physical or virtual host running the EdgeSec VPN

software will join a peer-to-peer VPN network, enabling comprehensive encryption of network

communication throughout the entire E2F2C architecture. EdgeSec VPN primarily aims to

secure network traffic by encrypting it, safeguarding against unauthorised access, preserving

the confidentiality and integrity of data during transit, and preventing any unknown or

potentially malicious entities from gaining access to the associated host.

18 Lee, J., Jung, Y. and Kim, H., 2020. “Dual Attention in Time and Frequency Domain for Voice Activity Detection”.

INTERSPEECH 2020, (pp. 3670-3674).

19 “D4.1: Optimal audio-visual capturing, analysis and voice anonymisation – initial version,” Project MARVEL, 2021.

https://doi.org/10.5281/zenodo.5833277.

20 “D4.4: Optimal audio-visual capturing, analysis and voice anonymization,” Project MARVEL, 2022.

https://doi.org/10.5281/zenodo.7541704.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 66 - 21 July, 2023

4.2.4.2 Internal Operation & Technologies

EdgeSec is a suite of components and the component that is referred as EdgeSec-VPN is the

software n2n21 from ntop. The n2n is a lightweight VPN, designed to create virtual networks

that bypass intermediate firewalls with ease. To utilise n2n, two essential elements are required.

The first element is a supernode responsible for enabling Edge nodes to announce and discover

other nodes. This supernode needs to have a publicly accessible port on the internet. The second

element comprises the Edge nodes that become part of the virtual network.

n2n seamlessly handles the encryption and decryption of data during host-to-host

communication. Users of this component do not require any specific interface or connection,

as these operations occur transparently. Upon deployment, each host is assigned a unique

private IP address, and all communication between this host and other hosts within the E2F2C

architecture is tunnelled directly through this private IP address.

The n2n supernode is currently installed on a virtual machine deployed on PSNC's OpenStack

infrastructure.

4.2.4.3 Role in R2 and associated use cases

EdgeSec-VPN plays a crucial role in integrating each host within the E2F2C framework into

the Kubernetes cluster, thereby enabling seamless accessibility through MARVdash. These

hosts are machines owned by the MARVEL pilots that need to become part of the MARVEL

E2F2C cluster as worker nodes. Each joined host becomes visible to MARVdash and becomes

available as target deployment environment for the MARVEL components, through the

automated deployment method offered by MARVdash. MARVEL E2F2C architecture exhibits

a complex topology involving network address translation (NAT), as illustrated in Figure 24.

Figure 24: MARVEL E2F2C Network Architecture

By installing EdgeSec-VPN, participating hosts in the Kubernetes cluster can effectively

traverse NAT and firewalls, making them reachable as if they were part of the same network

(Figure 25). As a result, firewalls no longer impede direct IP-level communication.

21 https://www.ntop.org/products/n2n/

https://www.ntop.org/products/n2n/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 67 - 21 July, 2023

Figure 25: MARVEL E2F2C Architecture with VPN

For further details please refer to D4.522.

4.2.5 EdgeSec Trusted Execution Environment (TEE)

4.2.5.1 Overview

EdgeSec Trusted Execution Environment (TEE) aims to provide secure and confidential

execution for sensitive data processing applications and components within MARVEL. It

leverages Intel Software Guard Extensions (SGX) technology, which is supported by a subset

of Intel processors. To ensure secure execution even within containers, EdgeSec TEE is

integrated with Secure Container Environment (SCONE), a software platform designed to

protect the data and code of applications running in Linux containers.

Secure containers are necessary when application or data owners lack trust in the container

hosts. For example, according to the threat model of Intel SGX and TEEs in general, there is

no requirement to trust the OS, hypervisors, or BIOS. SCONE assumes the presence of a

powerful adversary with superuser access to the system, including access to the physical

hardware and control over the entire software stack, such as the container engine and the OS

kernel.

4.2.5.2 Internal Operation & Technologies

EdgeSec TEE is built upon the Intel SGX technology, which allows the protection of specific

code and data from unauthorised access and modifications. With Intel SGX, application

developers can divide their applications into two parts: the sensitive portion that requires

integrity and data protection, and the remaining non-sensitive part. Intel SGX achieves trusted

execution by isolating the sensitive code within encrypted memory regions called memory

enclaves. Additionally, Intel SGX provides remote attestation, a security feature that verifies

the integrity of the enclave before transmitting data to it. To extend trusted execution to

containerised environments, EdgeSec TEE utilises SCONE, a secure container technology for

Docker that leverages the trusted execution capabilities of Intel processors with SGX support.

SCONE safeguards container applications from external attacks.

To utilise EdgeSec TEE, Docker and an Intel SGX-enabled processor are required. The

EdgeSec TEE (v0) can be obtained from the MARVEL image registry.

22 “D4.5 - Security assurance and acceleration in E2F2C framework – final version,” Project MARVEL, 2023.

https://doi.org/10.5281/zenodo.8147058.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 68 - 21 July, 2023

4.2.5.3 Role in R2 and associated use cases

In R2, the EdgeSec TEE is combined with VideoAnony since it handles sensitive data such as

URL, username and password of camera feeds. At its initial implementation, VideoAnony

accepts as a parameter a string with all the aforementioned sensitive data. This sensitive string

is stored as a Kubernetes Secret so it is protected in the YAML template that is stored in

MARVdash. However, if an unauthorised user gets access to the host machine that VideoAnony

is finally deployed, then he is able to see that sensitive string simply by issuing the Linux top

command. Additionally, if the unauthorised user gets access to the container itself then he is

also able to view the information provided by the Kubernetes Secret because they are stored in

environmental variables accessible via the printenv command.

To address the above issues, we needed to take several actions. Firstly, to tackle the issue that

the information in the sensitive string is visible via the htop command, we needed to change the

way VideoAnony receives this information. To that end, we created a simple HTTP service

based on python flask that its endpoints provide the sensitive information to VideoAnony. This

interaction removes the sensitive information from the htop command. Additionally, the

Kubernetes Secrets were not used, so the unauthorised user cannot access this information via

the environmental variables.

The EdgeSec TEE concept is applied to the HTTP service mentioned. With the process of

sconification, the container that runs the HTTP service is executed at protected private regions

of memory, called enclaves. Even if an authorised user manages to get access to the container

itself, he will not be able to see the content of the Python code because it will be scrambled.

The host machine that meets the hardware requirements for the use of EdgeSec TEE is an Intel

NUC used in the use case UNS1 “Drone experiment”.

For further details please refer to D4.5 ‘Security assurance and acceleration in E2F2C

framework – final version’.

4.3 Data Management and distribution Subsystem

4.3.1 DatAna

4.3.1.1 Overview

DatAna is a component that allows performing data ingestion, transformation, enrichment and

movement across the computing continuum. DatAna enables users to define data flows in a

graphical and easy manner, with almost zero code and a soft learning curve. DatAna may output

their results and ingest data to/from a high variety of systems, many of them already built-in in

NiFi, which makes it ideal as middleware for data handling and transformation. It works both

with static data (i.e., from files in different formats, databases) or data streams (i.e., MQTT or

Apache Kafka topics).

4.3.1.2 Internal Operation & Technologies

DatAna is an Apache NiFi-based component that can be deployed in the different layers of the

system. The underlying technologies of DatAna (mainly Apache NiFi) provide non-functional

properties to the DMP such as data provenance tracking, scalability, high throughput, low

latency, backpressure (managing internal queues to avoid being overrun by data), and the

possibility of changing the data flows at runtime, among others.

The main components of DatAna used in MARVEL are the following:

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 69 - 21 July, 2023

• Apache NiFi: DatAna relies on the functionality of the Apache NiFi ecosystem (version

1.15.3). In MARVEL, Apache NiFi has been prepared to work within the MARVEL

Kubernetes cluster as a set of services in MARVdash located in each of the layers of the

architecture (edge, fog and cloud) for each of the pilots. To do so, yaml configuration

files have been provided and adapted for the project needs.

• Apache NiFi Registry: DatAna uses a NiFi Registry located at the MARVEL cloud,

deployed in Kubernetes using MARVdash, to keep track of the different versions of the

data flows designed for all the use cases. The use of the registry avoids code and data

flow design repetition. This is very handy in MARVEL, as many of the data flows

designed to handle the different ML inference model outputs have several common

blocks. Moreover, the inference components run in different infrastructures and layers

for the same or different use cases (e.g., CATFlow runs for MT and GRN use cases).

Therefore, the use of the Registry allows easy deployment of data flows, avoiding the

duplication of code and thus minimising errors.

• MQTT: MQTT brokers (Mosquitto MQTT) serve as communication hubs between the

inference models and DatAna. This allows the decoupling of the functionality of the

ML inference models and the data management platform, therefore isolating their

functionality and facilitating the integration of the different modules.

For secure communication between the different layers of the computing continuum,

DatAna uses NiFi TLS security. In this way, the different NiFi services in Kubernetes

located in the infrastructure provided for the pilots (edge, fog and cloud) are connected via

the NiFi Site-to-Site (S2S) protocol in a secured manner, allowing the creation of NiFi

topologies to communicate and move data throughout the layers adapted for the use cases.

4.3.1.3 Role in R2 and associated use cases

The main functionality provided by DatAna in the MARVEL project is acting as a central bus

for the inference pipelines data outputs processing and transformation for all the use cases. This

was the case since the MVP, where DatAna was used only in the cloud, but also for R1 with

the main building blocks (except the NiFi Registry) already in place.

DatAna is an integral part of the data inference pipeline for all R1 and R2 use cases. The use of

DatAna for the R2 release is therefore the following:

• An inference model, regardless of where it is deployed (edge, fog or cloud), during

runtime provides its output as a stream of messages to the nearest MQTT broker,

typically deployed in the same layer infrastructure, using a designated topic for each

inference model (e.g., the SED model output their messages to a topic in MQTT called

“sed”).

• The nearest NiFi of DatAna subscribes to the MQTT topics expected for the use cases

and receives the messages.

• Depending on the nature and format of the messages provided by the inference model,

DatAna processes those messages and transforms them to comply with the specific data

models.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 70 - 21 July, 2023

o The agreed data models in MARVEL are based on and extend the Smart Data

Models 23 for Media Events, Alerts, or Anomalies defined for R1 and kept in R2

(see section 5.3.2), thus making the inference data stored in MARVEL

compliant with ad-hoc standards and therefore easy to interoperate with.

o DatAna relies on some key attributes to ensure the traceability of the data for the

specific use cases, such as the usage of absolute timestamps, or pointers to the

source streams (cameras or microphones), among others.

• Once transformed to the agreed data models, if the inference occurs at the edge or at the

fog layers, DatAna reroutes them to the cloud instance.

• Once in the cloud, DatAna forward the messages to specific agreed Kafka topics (e.g.,

for the messages coming from the SED model to a topic called “sed” in Kafka) of the

DFB for further fusion, processing and storage.

In particular, in MARVEL, DatAna provides the following topologies for data management, as

depicted in Figure 26:

• One instance of DatAna Cloud, consisting of the NiFi Registry, a common (master)

NiFi and a Mosquitto MQTT deployed in the MARVEL Cloud via MARVdash. The

NiFi in the cloud is connected via the NiFi S2S protocol to the rest of the NiFis residing

at the Fog layers of the use cases.

• Instances of DatAna Fog, at least one per pilot, consisting of NiFi instances deployed

via MARVdash in the different Fog servers of MT, GRN, and UNS, along with the

corresponding MQTT brokers.

• Several instances of DatAna Edge, as required by the pilots and connected to their

respective DatAna at the Fog. This will be at least MQTT brokers and in some cases

NiFi instances deployed at the Edge.

o It is important to point out that in the second iteration a decision was made to

not use Apache MiNiFi at the edge. MiNiFi was initially foreseen as the DatAna

deployment in edge devices (except for the PCs located at the edge in the GRN

use cases), due to its lower footprint compared to NiFi. However, to avoid a

negative impact on those devices, already supporting the execution of several

inference models, anonymisation, or AV stream handling, the use of MQTT in

combination with Apache NiFi at the fog has been proposed.

o Different strategies may be used to ensure this communication, depending on

the availability of the edge device in the Kubernetes cluster, etc. In the usual

case, the inference models send their outputs to the MQTT at the edge and the

nearest DatAna (NiFi) at the fog subscribe to those MQTT queues.

o As a result, the messages arrive to the NiFi at the fog layer where they are

handled by DatAna.

All this process is done in real time in a stream fashion due to the ability of NiFi of processing

multiple concurrent data flows. DatAna topologies depicting the steps explained above for all

covering the DatAna infrastructure released for R2 can be seen in Figure 26.

23 https://smartdatamodels.org/

https://smartdatamodels.org/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 71 - 21 July, 2023

Figure 26: DatAna topologies for R2

Besides the central role in the inference pipelines, DatAna could also enable the possibility to

perform other processes, such as enriching the data, examining thresholds based on the data

received, or receiving control signals from different components. These possibilities have not

been carried out in MARVEL but are extensibility points for future enhancements.

4.3.2 Data Fusion Bus

4.3.2.1 Overview

The Data Fusion Bus (DFB) is a customisable component that implements a trustworthy way

of transferring large volumes of heterogeneous data between several connected components

and a permanent storage. It comprises a collection of dockerised, open-source components

which allow easy deployment and configuration as needed.

DFB’s architectural design addresses several challenges that are raised by both the large volume

and the heterogeneous nature of data from different sources, taking into consideration the needs

and restrictions of the employed components. The main addressed challenges include:

• seamless aggregation of data with different structures or formats;

• an organisational threat to the components due to the quantity of the input data;

• access to data through a common, safe, accessible interface.

Inherent to DFBs design is the efficient handling of the enormous volume of data that needs

storage and manipulation, as well as mechanisms to remediate potential bottlenecks, lag, or

high demand on network traffic. These design decisions enable horizontal scalability while

providing a solution that is Cloud-native with stateless components capable of being deployed

with flexibility. DFB follows the middleware approach by aligning data streams for time and

granularity and creating a user interface that serves as the interface of the platform, customised

to aggregate multiple streams, thereby allowing seamless service of data to the network analysis

and visualisation.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 72 - 21 July, 2023

Within MARVEL, the DFB has a pivotal role in the Data Management Platform (DMP) and in

the inference pipeline. Its main objectives are:

• Aggregate streamed inference results that originate from MARVEL AI components and

are relayed by DatAna and expose them in real time to SmartViz, StreamHandler and

Data Corpus.

• Permanently store the incoming inference results and make them accessible to SmartViz

via a query system.

• Fuse incoming inference results from selected AI components (AVAD, ViAD, SED,

AT) in real time and expose them to SmartViz.

• Allow SmartViz users to verify the validity of inference results that are stored in the

DFB.

• Monitor real-time data traffic and visualise stored inference result data.

• Serve as an interface of the MARVEL framework towards third-party tools (outside of

the MARVEL framework) that may need to send data (e.g., external databases or third-

party, non-integrated AI components) or to receive data (e.g., third-party data post-

processing and data visualisation tools).

The DFB is presented in more detail in the WP2 deliverables, i.e., D2.224 and D2.425.

4.3.2.2 Internal Operation & Technologies

The DFB has been customised and adapted for MARVEL with added services to meet the

expected objectives. The key modules of DFB are:

a. Apache Kafka, an open-source framework for stream processing based on the publish-

subscribe messaging pattern.

b. Elasticsearch, a distributed, multitenant-capable, data repository and search engine.

c. ES-Connector service, responsible for ingesting the messages received at the Kafka

broker and permanently storing them on Elasticsearch

d. ES-Proxy, a REST API service that is accessed by SmartViz for performing data queries

in the Elasticsearch repository, customised for the needs of MARVEL.

e. DFB Core & UI, implementation of a REST API and a client GUI, respectively, for

management and monitoring of the DFB components.

f. Visualisation tool based on Grafana for monitoring the status, health and performance

of the Kafka cluster.

g. Visualisation tool based on Kibana for inspecting, querying and visualising the data

stored in the Elasticsearch repository

h. Inference result fusion service

The main inbound interface for DFB is Kafka’s messaging system, which is based on the

publish-subscribe pattern. More specifically, any component producing text-based data can

connect to the DFB and publish its data to a specific, predefined topic.

Regarding outbound interfaces, in the general case, any data-consuming component can

subscribe to a topic and receive instant updates on published data.

24 “D2.2: Management and distribution Toolkit – initial version,” Project MARVEL, 2022.

https://doi.org/10.5281/zenodo.6821195

25 D2.4 - Management and distribution Toolkit – final version,” Project MARVEL, 2023.

https://doi.org/10.5281/zenodo.8147109.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 73 - 21 July, 2023

Within the context of MARVEL, data collected from the DFB Kafka brokers is subsequently

passed onto an Elasticsearch Logstash Kibana (ELK) stack for storage and further processing

and visualisation. Although DFB offers its own graphical UI for the visualisation of aggregated

data based on the Kibana platform, collected streamed and stored data are made available to

MARVEL’s Decision Making Toolkit (SmartViz).

DFB is typically foreseen to be deployed on the Cloud. It is designed and optimised for handling

non-binary data that is streamed to the Kafka interfaces in real time.

Figure 27 illustrates the specific implementation of DFB that was performed for the needs of

the MARVEL integrated framework, initially for R1 and revised for R2.

Figure 27: DFB internal architecture and interactions for the MARVEL R2

4.3.2.3 Role in R2 and associated use cases

In terms of the overall architecture of the MARVEL framework, the DFB is applied in all R2

use cases as it is considered a central hub for aggregating all inference results and relaying them

to other components (SmartViz, DataCorpus). Therefore, the DFB is deployed in the Cloud at

the PSNC HPC, and the same component instance is used for all use cases in order to collect

the data and persistently store them. The DFB receives inference results from an instance of

DatAna at the Cloud, which publishes inference results to Kafka topics of the DFB after

transforming them into an SDM-compliant format.

Following the release of the MARVEL MVP and R1, the DFB was designed to accommodate

the needs of the ten (10) use cases that were defined for implementation in the context of the

final version of the MARVEL Integrated framework (R2). During R1 and R2 development and

integration activities, the DFB functionalities were further elaborated, refined, and extended

through the following activities:

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 74 - 21 July, 2023

• Configuration for receiving inference results in an SDM-compliant data models

(MediaEvent, Alert and Anomaly) from DatAna.

• Configuration of an individual Kafka pub/sub-topic for each inference result type

according to the AI producer component.

• Implementation of inference result verification process, i.e., accept inference result

verification messages from SmartViz on a Kafka topic configured for this purpose and

update corresponding entries in the Elastic Search (ES).

• Implementation and iterative revisions of a data fusion process for inference results that

refer to single instants in time. Consecutive repetitive incoming results from the same

AI producer (e.g., anomaly detection) that refer to a single time instant are identified

and fused together to form a composite result that refers to a period of time. The start of

the time period corresponds to the first occurrence of a repetitive event and the end of

the time period corresponds to the last occurrence of that event.

• Revisions of the REST API implemented for performing ES queries (ES-proxy) based

on updated requirements from SmartViz.

• Registering the time of arrival of each inference result at the Kafka broker and at the

Elasticsearch data store for benchmarking purposes in dedicated time fields, present in

the inference result data models.

• Implementation of the DFB monitoring stack.

• Connection with HDD to send Kafka topic partition data and receive optimised partition

allocations recommended by HDD.

• Persistent volumes and enhanced retention policies implemented for storing DFB health

and performance data.

• Fine-tuning and bug fixing following iterative participation in E2E integration testing

activities.

4.3.3 StreamHandler

4.3.3.1 Overview

INTRA’s StreamHandler Platform provides the hooks for interconnecting, storing,

transforming, and processing data as well as training, testing, and executing machine learning

and artificial intelligence algorithms, resulting in a full Big Data solution.

To provide meaningful insights (services), a generic big data solution consists of four main

components; data sources, data storage (databases), data streaming, and big data management

(processing, analytics, visualisation and business intelligence).

INTRA’s StreamHandler Platform is a high-performance (low latency and high throughput)

distributed streaming platform for handling real-time data based on Apache Kafka. It can

efficiently ingest and handle massive amounts of data into processing pipelines, for both real-

time and batch processing. The platform and its underlying technologies can support any type

of data-intensive ICT services (Artificial Intelligence, Business Intelligence, etc.) from Cloud

to Edge.

The key capabilities and features offered by the platform are:

• Real-time monitoring and event processing.

• Interoperability with all modern data storage technologies and popular data sources.

• Distributed messaging system.

• High fault-tolerance - Resiliency to node failures and support of automatic recovery

• Elasticity - High scalability.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 75 - 21 July, 2023

• Security (encryption, authentication, authorisation

In this deliverable, the main focus will be given to the changes from an architectural perspective

as well as the new components’ interconnections introduced in R2.

The StreamHandler Platform consists of several components; however, the core functionality

component was recently restructured. This restructure was made in order to enhance

StreamHandler’s efficiency and robustness. In Figure 28, can be seen how the core functionality

has been divided into smaller services following the principles of the Microservice

Architecture, the explanation of each service can be found in Table 4.

Figure 28. StreamHandler's Monolithic-Microservices Architectures

Table 4. StreamHandler's Service-Functionality

S
tr

e
a
m

H
a
n

d
le

r
 c

o
r
e

fu
n

c
ti

o
n

a
li

ty

Service Name Functionality

Service 1 Receive and store live streams in binary format.

Service 2
Provide access to the stored audio-visual files to external components through a

REST API.

Service 3

Receive the information of an occurred event, retrieve from the storage

component the audio-visual segments required and store in a binary format the

event’s audio-visual context.

Service 4
Storage component; it is used for storing, retrieving and sharing the produced

audio-visual files in binary format.

As presented in Figure 28, the core functionality of StreamHandler has been divided in four

independent services. This guarantees that if a potential bottleneck occurs in the future due to

a high processing load (e.g., higher resolution streams, more audio-visual sources), the platform

can scale up by just replicating a parallel instance of this service. In addition to the

StreamHandler’s core reconstruction, a new interconnection with another component was

introduced in R2. In R1, the StreamHandler was producing an audio-video file on-demand

based on the stored audio-visual files, while in R2 the functionality of an event-based audio-

video file production is added. This is achieved by interconnecting the StreamHandler with the

DFB component described in Section 4.3.2.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 76 - 21 July, 2023

4.3.3.2 Internal Operation & Technologies

The initial implementation of StreamHandler in R1 was based on Python and low-level system

commands in a monolithic architecture with low scalability degree. The current implementation

of the modules of StreamHandler in R2 is totally reconstructed compared to the one presented

in R1. As presented in Section 4.3.3.1 of this document, the version deployed in R2 is based on

microservice architecture providing more flexibility and stability over the monolithic approach

in R1. The basic components of this newer version are:

• Java26

• SpringBoot27

• MinIO28

• Docker29

• REST API30

• Kafka31

Figure 29. StreamHandler R2 implementation

As presented in Figure 29, the main tasks presented in Section 4.3.3.2 in D2.4 remain the same.

In addition to them, one more task is added to the R2 version. This new task allows

communication between the DFB component and StreamHandler. The main difference between

R1 and R2 versions is the architecture used that decouples the relation between the several

26 https://dev.java/

27 https://spring.io/

28 https://min.io/

29 https://www.docker.com/

30 https://restfulapi.net/

31 https://kafka.apache.org/

https://dev.java/
https://spring.io/
https://min.io/
https://www.docker.com/
https://restfulapi.net/
https://kafka.apache.org/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 77 - 21 July, 2023

services, with the only point of interaction of each service being the storage component. In

detail:

• Service 1 is responsible for retrieving the IDs of the audio-visual components from

AVRegistry and initiating the segmentation procedure of each stream.

• Service 2 is responsible for providing the requested video to SmartViz through a REST

API call. The service provides three REST endpoints, a) an on-demand audio-video

creation, b) on-event audio-video creation and c) a list of segmented files. In the first

case, the audio-visual segments from the storage component are retrieved and a new

audio-video file is produced at that time. The input parameters of this endpoint are: (i)

sourceID (ii) timestamFrom, and (iii) timestampTo. In the second case, the endpoint

receives the event ID and retrieves from the storage component the video produced by

Service 3. The input parameter of this endpoint is: media_event_id. The response of

both endpoints is the link of the produced file in the storage component. The last

endpoint returns a JSON formatted response of the segmented file names for a specific

audio-video source. The input parameter of this endpoint is sourceID.

• Service 3 is responsible for constructing audio-video files based on events. This is

achieved by listening to the Kafka messages sent when an event occurs. Then, the

service based on the values shared (cameraId, startTime, endTime and timestamp if

startTime, endTime are not present) constructs a new audio-video file.

• Service 4 is the storage component. This service is responsible for storing the audio-

visual files produced by Service 1 and Service 3. In addition, the SmartViz component

is directly retrieving from the storage component the audio-video file through a shared

link from Service 2.

4.3.3.3 Role in R2 and associated use cases

StreamHandler was not implemented in the MVP, as its new functionalities were still under

development at the time. In the context of R1, a different instance of StreamHandler is deployed

for each pilot at the respective Fog node. The role of StreamHandler in R2 is similar to its role

in R1. StreamHandler is deployed in the Fog layer in order to ensure that sensitive data will be

stored as close as possible to the audio-video sources. This ensures that the aspect of data

privacy is guaranteed while eliminating the possibility of data leak in unauthorised entities. As

StreamHandler operates in the Fog layer, a per pilot deployment in the R2 phase is necessary.

Currently, the new version of StreamHandler has been deployed in all three pilots, namely GRN

Fog, MT Fog and UNS Fog servers.

4.3.4 Hierarchical Data Distribution (HDD)

4.3.4.1 Overview

HDD is a component which aims at facilitating the MARVEL distributed data delivery and

access algorithmic schemes to guarantee delay and resource usage application requirements in

internetworked environments. To do so, HDD has been tailored to suit the MARVEL data

distribution technologies, and with a focus on providing optimisation recommendations on

efficient data topic partitioning of Apache Kafka widely used by other MARVEL data

distribution components (DFB). Even though Apache Kafka provides some out-of-the-box

optimisations, it does not strictly define how each data topic shall be efficiently divided into

partitions. The well-formulated fine-tuning that is needed to improve a Kafka cluster

performance is still an open research problem and the main contribution of HDD. There are

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 78 - 21 July, 2023

contrasting forces defining the number of partitions to be used, so choosing the “right” number

of partitions per topic requires knowledge of many factors. Increasing the partition density (the

number of partitions per broker) adds an overhead related to metadata operations and per

partition request/response between the partition leader and its followers. Increasing the number

of partitions in a cluster though will lead to increased parallelism of message consumption,

which in turn improves the throughput of a Kafka cluster; however, the time required to

replicate data across replica sets will also increase. The complete presentation of HDD’s current

design and operational parameters are presented in detail in MARVEL’s D2.2.

4.3.4.2 Internal Operation & Technologies

The component first models the Apache Kafka topic partitioning process for given topics. Then,

given the set of brokers and suitable application constraints and requirements (such as

throughput, OS load, replication latency, and unavailability), formulates the optimisation

problem of finding how many partitions are needed. It should be noted that this is a

computationally in-tractable problem, as its form is that of an integer program. Therefore, the

design of an exact, polynomial-time solution for any given instance of the problem is not

feasible (unless “P=NP”).

The running version of HDD incorporates two algorithms, both of which respect the hard and

soft application constraints and requirements. The first algorithm targets at maximising the

number of partitions needed for the given data topic allocation, while keeping the usage of the

available brokers to a minimum extent. The second algorithm targets at maximising the number

of partitions, while also maximising the usage of the available brokers. HDD is currently

implemented in Octave SW suite32. This choice was made due to its open-source nature

compared to commercial alternatives and its computational power when it comes to

mathematical programming applications.

4.3.4.3 Role in R2 and associated use cases

In R1, HDD was focusing on performing some initial tests of updating offline selected topic

partitions. During the initial end-to-end integration tests, HDD is fed with the required input

and metrics from the DFB Kafka cluster. Then, HDD delivers a recommended partition table

to be applied and tested during the final integration tests. Since it is burdensome to update and

change the Kafka topic partitions when the system is live and operational, as this could

compromise general system stability and Kafka brokers may be unable to serve

producers/consumers, the periodical updates are intended to take place while the system

services are not operational.

In R2, HDD is focusing on performing tests of updating selected topic partitions, with the final

tests aimed at demonstrating the high scalability that the system can achieve, by highlighting

the performance of selected parameters.

4.4 Audio, visual and multimodal AI Subsystem

4.4.1 CATFlow

4.4.1.1 Overview

CATFlow is a software asset developed by GRN, where the input is a video stream and the

output is a list of traffic objects tracked over the camera field of view. The CATFlow component

32 https://octave.org/

https://octave.org/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 79 - 21 July, 2023

was updated to dynamically select the MQTT host and port from MARVdash for the

Configurator.

4.4.1.2 Internal Operation & Technologies

CATFlow was already fully functional in the previous MARVEL release (MVP) and R1

integration. CATFlow was integrated in the MARVEL framework for R1. This effort mainly

required containerisation of the CATFlow component. No changes were made to the internal

operation of CATflow since the R1 integration. However, changes were done to the

Configurator–which is responsible for configuring and deploying CATFlow, i.e.to accept

parameter input on MARVdash for setting the MQTT host and port.

4.4.1.3 Role in R2 and associated use cases

CATFlow classifies vehicles in six different classes: car, bus, light goods vehicles, heavy goods

vehicles, bicycle, and motorcycle. In addition, each object (e.g., vehicle or pedestrian) is tracked

across the camera view and its trajectory is extracted and stored for visualisation or further

processing. Pedestrians can also be detected and tracked. CATFlow is used in many of the MT

and GRN use cases due to its ability to provide good performance across a variety of camera

sources without the need to retrain the model. For each camera, the GRN developers only need

to configure the vehicle/object entry and exit lines, along with location information pertinent to

the camera.

• GRN1: The CATFlow detector model weights were used in the implementation of

YOLO-SED. The detector weights allowed the use of the YOLO model without the

need of any more data.

• GRN2: The CATFlow component was used to generate trajectories for the TAD

component to detect anomalous trajectories in the data. The CATFlow data were also

used by the RBAD component to detect anomalies such as jaywalking and buses not on

time.

• GRN3: CATFlow is used to extract an estimate of the vehicle’s speed. This information

is then passed onto the TAD component such that vehicles driving at anomalous low or

high speed could be flagged.

• GRN4: CATFlow is used to detect and track the different types of vehicles and

pedestrians. In addition, CATFlow outputs the trajectories of each vehicle as well as the

entry and exit point within the camera field of view. All these data are then used in

transport studies, e.g., to observe how the junction or road segment that is being

monitored is used by pedestrians and vehicles.

• MT1: CATFlow was identified to be a good component to track pedestrians for the

Piazza Fiera camera. Following some tests, CATFlow would also be able to provide the

trajectories of these pedestrians. Another camera, deployed in this use case at Piazza

Duomo, is characterised by a less than ideal angle and distance from the pedestrians.

This may present a challenge for CATFlow to accurately detect pedestrians. Figure 30

shows CATFlow detecting pedestrians from the Piazza Fierra video stream.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 80 - 21 July, 2023

Figure 30: Screenshot of video processed by CATFlow

• MT4: The CATFlow component was used to analyse the areas by detecting the number

of persons, number of cars, number of buses, number of bikes and the associated

trajectories.

The CATFlow software used in every use case is the same, i.e., the same data model is used for

the generated output and the user will have access to the fields that are required for the use case

in hand. For each stream processed by CATFlow, a new configuration file needs to be created.

This configuration contains information to set up the algorithm, i.e., the entry and exit lines on

the video stream.

4.4.2 Text Anomaly Detection (TAD)

4.4.2.1 Overview

Text Anomaly Detection (TAD) is a component that automatically detects anomalous events in

data, for example, anomalous vehicle velocities and trajectories. TAD takes as input the JSON

messages outputted from CATFlow, and, after processing them, flags any anomalous

behaviour. The TAD component was updated for R2 integration to be able to distinguish

between detector errors which give anomalous speeds and real anomalous speeds. In addition,

the speed per path taken by vehicle was taken into account.

4.4.2.2 Internal Operation & Technologies

Anomalous trajectories traced by drivers often exhibit unusually high or low speed. Using this

assumption TAD is able to detect anomalous trajectories such as vehicles performing U-Turns

and stopping on the road, as well as vehicles moving at dangerously high speeds. Instead of the

Z-score, the TAD component makes use of the 98th and 2nd percentile to find anonymously

high speeds. This statistical anomaly detection method is more robust to large outliers in the

data than the previously used z-score. The normal ranges for speeds were also determined per

path taken since it is common that at junctions the side roads will have lower average speed

than the main road. Finally, the TAD component was fitted with a detector error metric, which

reduces the number of false detections due to ID switches from the detector. This metric is

based on the average distance between each point taken by the detector, normalised to account

for perspective. The live update strategy for the TAD was not used for the R2 integration as the

normal speed range was found to not change significantly whilst the update strategy slowed

down the component. More information about the TAD component and its live update strategy

in R1 is included in Section 4.4.2.2 of D5.4.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 81 - 21 July, 2023

4.4.2.3 Role in R2 and associated use cases

The TAD component will be used in three of the four use cases implemented in the GRN pilot.

• GRN2: The TAD component will use the CATFlow output to detect trajectories with

anomalous speeds.

• GRN3 use case will make use of TAD to monitor the traffic state and infer anomalous

events in real time (contributing to reaching the goal of detecting anomalous events

within 2 minutes of the events taking place).

• GRN4 use case will make use of the TAD for its anomalous vehicle speed detection

component and collect long term data on anomalous speeds from vehicles.

4.4.3 Visual Anomaly Detection (ViAD)

4.4.3.1 Overview

The visual anomaly detection component detects situations that are either considered novel for

a visual scene based on a sequence of frames or belong to a set of anomalies predefined in the

training set. As an input, it takes a sequence of video frames and produces a label for that

sequence, declaring it normal or anomalous. Additionally, it could be configured to provide an

anomaly heatmap.

The ViAD component is present in the MT1 use case. The model is trained for a specific

camera, and it can recognise different kinds of events as anomalies, based on the data and

requirements provided by each use case owner. In the weakly-supervised training, the data is

provided in the form of various length clips that are classified in their entirety as a certain event.

This approach, while more time-consuming for the data providers, generally leads to improved

performance. Depending on the required operational speed, the component can run on a system

with a dedicated GPU, which provides for faster operation, or on a CPU.

4.4.3.2 Internal Operation & Technologies

The ViAD component is a deep neural network trained in a weakly-supervised learning manner.

The data pre-processing within the component is the same as in YOLO-SED (Section 4.4.11).

The model is implemented in Python using PyTorch and PyTorch Lightning frameworks and

is based on the Anomaly Regression Net (AR-Net)33. The model architecture is presented in

Figure 31.

Figure 31: ViAD model architecture

During the training procedure, the model is presented with normal and anomalous situations. It

learns to distinguish between them by employing two loss functions: Dynamic Multiple-

33 Wan, B., Fang, Y., Xia, X., & Mei, J. (2020). Weakly supervised video anomaly detection via center-guided discriminative

learning. Proceedings - IEEE International Conference on Multimedia and Expo, 2020-July

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 82 - 21 July, 2023

Instance Learning Loss (DMIL) and Center Loss (CL). The DMIL aims to enlarge the inter-

class distance between normal and anomalous situations, while CL minimises the intra-class

representations of normal instances. In other words, the DMIL helps the model to differentiate

between the different types of anomalies and normal instances, while CL makes sure that the

representations of normal situations are kept close to each other. In this way, the ViAD model

is able to learn a solid understanding of what constitutes normal situations and, at the same

time, tries to maximise the difference between them and any potential anomalies it encounters.

The SlowFast visual backbone is not trained, i.e., a pre-trained, publicly available model is used

as a feature extractor from the input sequence.

4.4.3.3 Role in R2 and associated use cases

In R2, a weekly-supervised visual anomaly detection method was developed. This method was

integrated to the ViAD component in the MARVEL framework.

ViAD is used in the MT1 use case.

4.4.4 Audio-Visual Anomaly Detection (AVAD)

4.4.4.1 Overview

The audio-visual anomaly detection component detects situations that are considered novel for

a visual scene based on a sequence of frames and audio. As an input, it takes a window of video

frames together with the corresponding audio snippet and produces the scores indicating how

likely it is for each frame to include a novelty. Additionally, it could be configured to provide

an anomaly heatmap.

The AVAD component is present in multiple MARVEL use cases. In all of them, it works in

the same way, the only difference being that for each use case, a tailor-made model is created.

These models are each trained for a specific camera, and they can recognise different kinds of

events as anomalies, based on the data and requirements provided by each use case owner.

The component has been built and implemented with a weakly-supervised model. This means

that the visual part of the model is largely similar to ViAD, described in Section 4.4.3.1. The

pre-processing within the component is the same as YOLO-SED (Section 4.4.11). The main

enhancement upon the ViAD model stems from the AVAD’s ability to ingest both visual and

auditory data. The data are provided to the model in the form of a sequence of frames, along

with corresponding audio snippets. Those audio snippets have a length of 1 second, and they

contain the auditory information preceding, and including, their corresponding frame timing.

4.4.4.2 Internal Operation & Technologies

The model is implemented in Python using PyTorch and PyTorch Lightning frameworks. Its

implementation is based on the works by Wan et al.34 and Chumachenko et al.35.The model

architecture is presented in Figure 32.

34 Wan, B., Fang, Y., Xia, X., & Mei, J. (2020). Weakly supervised video anomaly detection via center-guided discriminative

learning. Proceedings - IEEE International Conference on Multimedia and Expo, 2020-July

35 Chumachenko, K., Iosifidis, A., & Gabbouj, M. (2022). Self-attention fusion for audiovisual emotion recognition with

incomplete data. Proceedings - International Conference on Pattern Recognition, 2022-Augus, 2822–2828.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 83 - 21 July, 2023

Figure 32: AVAD model architecture

AVAD introduces a parallel audio track to the ViAD architecture, as well as a couple of

transformers that fuse the information from the audio and visual modalities. The transformers

help the model to decide which parts of the visual input should pay attention to which parts of

the audio input, and vice versa. Then those paths are concatenated, and a final label is produced

for the incoming data. The training procedure is the same as for the ViAD model (Section

4.4.3.2). The visual backbone is not trained, as in ViAD (Section 4.4.3.3). Similarly, for the

VGGish backbone a pre-trained public model is used.

4.4.4.3 Role in R2 and associated use cases

In R2, a new methodology was developed and tested on the new audio-visual anomaly

detection dataset created by MARVEL. This method was integrated to the AVAD component

in the MARVEL framework.

The AVAD component is applied to use cases GRN3 and MT3.

4.4.5 Visual Crowd Counting (VCC)

4.4.5.1 Overview

The visual crowd counting component estimates the number of people present in a scene, based

on a single image (or video frame) as an input. Additionally, it is capable of producing a

heatmap depicting the localisation of the detected people.

The VCC component is present in multiple MARVEL use cases. In all of them, it works in the

same way, the only difference being that for each use case, a tailor-made model is created.

These models are each trained for a specific camera, to optimise their performance for the

specific camera positions and recorded scenes.

The VCC component is trained in a supervised manner. It requires fully labelled data, i.e.,

frames that represent as varied operational environment as possible, each annotated with points

marking the centre of head of each person present in the frame.

Depending on the required operational speed, the component can run on a system with a

dedicated GPU, when it is faster, or a system without one. In the case of VCC, the impact of

the lack of GPU is quite significant.

4.4.5.2 Internal Operation & Technologies

The VCC component is based on deep learning. It is a deep neural network which is trained in

a supervised learning manner. The current implementation is using neural network (backbone)

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 84 - 21 July, 2023

architecture called VGG16 network. The network is implemented in Python in Keras and

Tensorflow or in Pytorch.

Currently, VCC is implemented using the AVCC architecture (Section 4.4.6), with a tensor

filled with zeros acting as the audio input.

The component spawns 3 processes during its operation as of M16: one process takes care of

receiving and queuing incoming RTSP data, one process prepares the received visual data to

match required format, and the last spawned process runs the model inference.

The pre-processing within the component is the same as YOLO-SED (Section 4.4.11). The

inference results for each frame are sent in an appropriately formatted manner as a JSON file

to the corresponding MQTT broker.

4.4.5.3 Role in R2 and associated use cases

The component is applied in the MT1 use case, where it is deployed in the Cloud. VCC is also

applied in the UNS1 use case, where it is deployed at the Fog. VCC is connected with other

components as follows:

• VCC receives data from the Data Corpus;

• VCC can be trained using DynHP;

• VCC sends its output to DatAna and SmartViz.

VCC’s contribution to the applicable use cases is the estimation of number of people per video

frame in real or near real-time.

4.4.6 Audio-Visual Crowd Counting (AVCC)

4.4.6.1 Overview

The audio-visual crowd counting component estimates the number of people present in a scene,

based on a single image (or video frame) and a 1-second audio snippet as an input. Additionally,

it is capable of producing a heatmap depicting the localisation of the detected people.

The AVCC component is present in multiple MARVEL use cases. In all of them, it works in

the same way, the only difference being that for each use case, a tailor-made model is created.

These models are each trained for a specific camera, to optimise their performance for the

specific camera positions and recorded scenes.

The AVCC component is trained in a supervised manner. It requires fully labelled data, i.e.,

frames that represent as varied operational environment as possible, each annotated with points

marking the centre of head of each person present in the frame.

Depending on the required operational speed, the component can run on a system with a

dedicated GPU, when it is faster, or a system without one. In the case of AVCC, the impact of

the lack of GPU is quite significant.

4.4.6.2 Internal Operation & Technologies

The AVCC component is based on deep learning. It is a deep neural network which is trained

in a supervised learning manner. The AVCC component’s visual backbone is based on VGG16

network36. The audio backbone uses VGG-ish network for feature extraction. Additionally, a

36 https://neurohive.io/en/popular-networks/vgg16/

https://neurohive.io/en/popular-networks/vgg16/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 85 - 21 July, 2023

fusion block, using 2D convolutions, is applied to merge the outputs of the video and audio

paths before making the final prediction. The network is implemented in Keras and Tensorflow.

The currently implemented AVCC model is based on the AudioCSRNet 37(Hu, 2020). The

method utilises the first 10 layers of the pre-trained VGG for the visual path and VGGish

network as the backbones of the visual and audio paths. The features extracted by those

networks are then fused using six dilated convolution layers. By using pre-trained backbones,

the network is able to be finetuned using audio-visual datasets that tend to be much smaller than

purely visual or audio datasets. The architecture of AudioCSRNet is presented in Figure 33.

Figure 33: Architecture of the AudioCSRNet

The component spawns 4 processes during its operation as of M16: one process takes care of

receiving and queuing incoming RTSP data, two processes prepare the received audio-visual

data to match required format, and the last spawned process runs the model inference.

The pre-processing within the component is the same as YOLO-SED (Section 4.4.11). The

inference results for each frame are sent in an appropriately formatted manner as a JSON file

to the corresponding MQTT broker.

4.4.6.3 Role in R2 and associated use cases

The component is unchanged since the MVP. Once labelled data are available, it can be trained

or finetuned for specific use cases.

The component is applied in the GRN4 use case, where it is deployed at the Cloud. AVCC is

connected with other components as follows:

• AVCC receives data from the Data Corpus;

• AVCC can be trained using DynHP;

• AVCC can be trained using FedL;

• AVCC sends its output to DatAna and SmartViz.

AVCC’s contribution to the GRN4 use case is the estimation of number of people per video

frame in real or near real-time.

37 Hu, D., Mou, L., Wang, Q., Gao, J., Hua, Y., Dou, D., & Zhu, X. (2020). Ambient Sound Helps: Audiovisual Crowd Counting

in Extreme Conditions. ArXiv, abs/2005.07097.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 86 - 21 July, 2023

4.4.7 Sound Event Detection (SED)

4.4.7.1 Overview

The sound event detection (SED) component enables the detection of sound events and their

temporal location in the audio signal. Acoustic environments in smart cities are full of sounds

which provide important information for understanding what is happening in the environment.

Humans have formed tight associations between events in the scene and the sounds these events

produce. These associations are called sound events and they are represented as a textual label.

Sound event detection is used in the various use cases of MARVEL to offer the ability to detect

actions and events based on captured audio signal. The targeted sound events are selected based

on the requirements of the use cases. The detection of these sound events can be used as

standalone information in the scene analysis or as complementary information to other systems

to gain deeper understanding of the scene. SED provides the ability of detecting activities in

the scene, which is a core functionality of the audio perception in MARVEL. An overview of

the sound event detection process is shown in Figure 34.

For R2, the component has been extended from R1 by adding transfer learning stage into the

training process to increase the generalisation ability of the model.

Figure 34: Overview of a sound event detection

The input for this component is an audio signal, and the component provides activity prediction

of the sound events in pre-specified units of time in the output. To train the component, a

strongly labelled audio dataset recorded in each specific use case environment is required. The

dataset should contain examples from all sound events targeted in the use case. The component

was developed to run on all levels of the MARVEL infrastructure, in a high-performance CPUs

in cloud computing layers as well as in nodes in fog and edge layer with GPU. The component

was designed to operate in real time setup continuously consuming real-time audio-visual

stream.

4.4.7.2 Internal Operation & Technologies

The SED component is implemented in Python language, and the AI functionality is built on

the PyTorch machine learning framework. All audio AI components from TAU (SED, AT,

AAC, and SELD) share the same code base, and they contain mostly similar data processing

steps. Component-specific processing steps are added to the default data processing pipeline.

Overview of the component released in R1 was given in D5.4 (Section 4.4.7.2), and in R2 the

component internal operation was updated to allow deployment to GPU-enabled nodes in the

MARVEL infrastructure.

The component is designed to work with continuous audio stream in real-time setting, and thus

the component has three processes working in parallel in a multi-threaded manner. The receiver

process is responsible for receiving and extracting audio segments from the real-time audio-

visual stream (RTSP stream), and the AI process is responsible for applying sound event

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 87 - 21 July, 2023

detection for an audio segment. The transmitter process is responsible for preparing the

detection output along with meta-information about the source and AI model and transmitting

information in a JSON structure to the receiving MQTT broker. The receiver process is using

FFMPEG software to consume the RTSP stream and extract audio from the stream. Extracted

audio is moved to the receiver process through Linux STDOUT pipe (standard output). An

overview of the internal structure of the component is shown in Figure 35.

Figure 35: Overview of processes in the real-time sound event detection component

The audio AI process is loading an AI model trained with use case specific data using a

supervised learning approach. The AI model is a neural network based on an architecture with

four convolutional layers and two fully connected layers. Detection is applied in 1-second

analysis segments. Further details on audio AI subsystem can be found in D3.138 and D3.5.

4.4.7.3 Role in R2 and associated use cases

The SED component is applied in the R2 release in GRN2, GRN4, MT2, MT3, and MT4 use

cases. The AI model for the component was trained with use case specific data from Data

Corpus, and the trained models were stored in the AI Model Repository. In the inference phase,

the pre-trained AI model is loaded into the component from the AI Model Repository. The

sound event detection output from the component is sent to DatAna.

4.4.8 Audio Tagging (AT)

4.4.8.1 Overview

The audio tagging (AT) component enables the recognition of the sound source activity inside

audio segments with predefined fixed lengths. This functionality is used in the use cases of

MARVEL to offer the ability to recognise sounds related to actions or events with coarse time

resolution. The sound classes to be recognised are dependent on each use case’s specifications.

The information about the sound class activity can be used as standalone information or as

complementary information to other systems to gain deeper understanding of the scene. An

overview of the audio tagging system is shown in Figure 36.

For R2, the component has been extended from R1 by adding transfer learning stage into the

training process to increase the generalisation ability of the model.

38 “D3.1: Multimodal and privacy-aware audio-visual intelligence – initial version,” Project MARVEL, 2022.

https://doi.org/10.5281/zenodo.6821318.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 88 - 21 July, 2023

Figure 36: Illustration of an audio tagging system that can recognise simultaneously class related to traffic

amount and class related to overall traffic speed

4.4.8.2 Internal Operation & Technologies

The audio tagging component shares the code base with all audio AI components from TAU.

The structure of the component was explained in Section 4.4.7. The component uses an AI

model trained with use case specific data from Data Corpus using a supervised learning

approach. The AI model is a neural network based on an architecture with four convolutional

layers and two fully connected layers. The data processing pipeline is very similar to the SED

component; however, audio tagging is producing sound activity aligned with the 5-second

analysis segment boundaries. Overview of the component released in R1 was given in D5.4

(Section 4.4.7.2), and in R2 the component internal operation was updated to allow deployment

to GPU-enabled nodes in the MARVEL infrastructure. Further details on audio AI subsystem

can be found in D3.1 and D3.5.

4.4.8.3 Role in R2 and associated use cases

The AT component had been applied in GRN2 in the R1 release and in R2, it is additionally

applied in the MT2 and MT3 use cases. The AI model for the component was trained with

usecase specific data from Data Corpus, and the trained models were stored in the AI Model

Repository. In the inference phase, the pre-trained AI model is loaded into the component from

the AI Model Repository. The sound event detection output from the component is sent to

DatAna.

4.4.9 Automated audio captioning (AAC)

4.4.9.1 Overview

The automated audio captioning (AAC) component creates textual description with full

sentences for each audio segment. The caption will describe what is happening in the audio

signal, for example, “people yelling while siren wails”. These captions can be used as a direct

description for humans accessing audio-visual streams, as well as for further text-based analysis

to assist the decision-making process. This component is used in the monitoring use cases in

the MARVEL project to provide descriptive captions of audio-visual segments accessed by the

monitoring system users. An overview of the audio tagging system is shown in Figure 37.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 89 - 21 July, 2023

Figure 37 Overview of automates audio captioning system

4.4.9.2 Internal Operation & Technologies

The automated audio captioning component shares the code base with all audio AI components

from TAU. The structure of the component was explained in Section 4.4.7. The component

uses an AI model trained with use case specific data from Data Corpus using a supervised

learning approach. The AI model is a neural network based on an architecture with

convolutional encoder and a transformer decoder. The data processing pipeline is very similar

to AT component; however, AAC is producing captions that are aligned with the 5-second

analysis segment boundaries. Further details on audio AI subsystem can be found in D3.1 and

D3.5.

4.4.9.3 Role in R2 and associated use cases

The AAC component is applied in the R2 release in MT2 use case. The AI model for the

component was trained with use-case specific data from Data Corpus, and the trained models

were stored in the AI Model Repository. In the inference phase, the pre-trained AI model is

loaded into the component from the AI Model Repository. The captioning output from the

component is sent to DatAna and used by the GPURegex component for further text-based

analysis.

4.4.10 Sound event localisation and detection (SELD)

4.4.10.1 Overview

Sound event localisation and detection (SELD) task is a joint task where a system jointly

performs sound event localisation and sound event detection. The localisation detects the

directional characteristics of the sound events by outputting the azimuth and elevation of the

direction of arrival of the sound that is classified as belonging to a sound event. The localisation

is performed with respect to the microphone position and orientation. The SELD system can be

used to produce an in-depth view of the auditory scene in MARVEL use cases where sound

localisation is an important aspect. An overview of the system is shown in Figure 38.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 90 - 21 July, 2023

Figure 38: Sound event localisation and detection system

4.4.10.2 Internal Operation & Technologies

The sound event localisation and detection component share the code base with all audio AI

components from TAU. The structure of the component was explained in Section 4.4.7. The

component uses an AI model trained with use case specific data from Data Corpus using a

supervised learning approach. The AI model is a neural network based on an architecture with

convolutional layers, recurrent layers, and multi-head self-attention blocks. The data processing

pipeline is very similar to the SED component, but the SELD component is producing per event

also azimuth and elevation estimates. Further details on audio AI subsystem can be found in

D3.5.

4.4.10.3 Role in R2 and associated use cases

The SELD component is applied in the R2 release in UNS2 use case. The AI model for the

component was trained with use case specific data from Data Corpus, and the trained models

were stored in the AI Model Repository. In the inference phase, the pre-trained AI model is

loaded into the component from the AI Model Repository. The sound event localisation and

detection output from the component is sent to DatAna.

4.4.11 YOLO-SED

4.4.11.1 Overview

The YOLO-SED component is a part of the GRN1 use case, aimed at analysing audio-visual

data on the edge and detecting anomalies using YOLO object detector and SED audio analysis

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 91 - 21 July, 2023

module. The outputs of these modules are fused together, and the anomaly prediction is sent to

an MQTT broker. The SED subsystem detects sound event activity from the given audio

segment.

4.4.11.2 Internal Operation & Technologies

The operation of the component should be performed on an NVIDIA Jetson NX platform with

6 CPU cores, 8 GB shared VRAM/RAM and JetPack 4.6.2. The Python interpreter available

on this device is Python 3.6. The YOLO-SED component can be deployed directly on the

device, or in a containerised form using Docker.

The structure of YOLO-SED is presented in Figure 39. YOLO-SED receives two RTSP streams

for video and audio. Both streams are consumed by an FFmpeg sub-process and piped inside

Python with process-level communication. For each stream, there are two pipes that are used:

one for the data and another one for the timestamps. This ensures that the timestamps are clock-

independent and synchronised with data. In case of a failure of any of the RTSP streams, the

corresponding message is sent to a controller thread which stops and restarts all the streams.

New streams have an additional timestamp offset which ensures that old and new data cannot

be processed together. After video and audio data samples are created by the corresponding

readers, they are consumed by a pre-processing thread which pairs each image with a

corresponding 1s audio clip and applies pre-processing for these samples. Video pre-processing

includes image cropping and resizing, while audio pre-processing creates a PyTorch tensor of

a Numpy audio sample.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 92 - 21 July, 2023

Figure 39: Structure of YOLOSED

After pre-processing, each audio-visual pair is identified by the same unique id and split to be

processed by both YOLO and SED in corresponding machine learning threads. The YOLO

thread consumes images and outputs object detections, filtered out based on the vulnerability

status of each class. The correct class may not be detected perfectly for similar classes. For this

reason, the SED component analyses audio samples and outputs predicted classes from audio.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 93 - 21 July, 2023

The predictions are combined together to provide more certain class and vulnerability

predictions. The anomaly is detected if at least one vulnerable object is detected.

In the SED subsystem, the processing pipeline and the model architecture are similar to the

SED component (see Section 4.4.7). The SED subsystem uses an AI model trained with use

case specific data from the Data Corpus using a supervised learning approach. The trained

model is stored in the AI Model Repository and loaded when the YOLO-SED component is

started.

4.4.11.3 Role in R2 and associated use cases

The YOLO-SED component is a part of the GRN1 use case. It is deployed on the GRNEDGE3

device and sends data to a DatAna edge node which communicates with an LED sign via

Arduino.

4.4.12 Rule-Based Anomaly Detection (RBAD)

4.4.12.1 Overview

The RBAD is a lightweight, logic-based anomaly detector implemented in Python. It employs

a predefined ruleset to detect very specific anomalies, based on the input messages coming from

the CATFlow component, as described in Section 4.4.1. The input messages contain

information about the objects detected in the video frame, as well as their location and time of

detection. Based on this information, combined with the predefined rules, RBAD is able to

create a specific anomaly alert. RBAD has been set up to detect the following situations:

pedestrians jaywalking, buses arriving not on schedule, heavy-weight vehicles presence during

rush hours, and bikers using the pavement.

4.4.12.2 Internal Operation & Technologies

For all of the anomalous situations, described in the previous section, a human expert creates

the required rules. For the pedestrians and bikers, a map, of which example can be seen in

Figure 40, is produced. It defines the locations in the scene where bikers or/and pedestrians are

allowed to be. If CATFlow detects the corresponding class in an undesired location, an anomaly

alert is created.

Figure 40: Example pedestrian allowed presence map.

In case of bus anomaly, RBAD contains the bus schedules from the bus stops present in the

scene and compares the bus arrival times with the expectations. If the difference is bigger than

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 94 - 21 July, 2023

some predefined amount of time, the situation is recognised as an anomaly. Similarly, the rush

hours are defined by a human expert, and any heavy-weight vehicles detected during those

hours raise an anomaly alert. The RBAD architecture is illustrated in Figure 41.

Figure 41: RBAD architecture

RBAD does not require any training, however, it does require input from the end user to help

define the rules for the implemented anomaly types.

4.4.12.3 Role in R2 and associated use cases

RBAD was developed and integrated in the context of R2 for the needs of GRN2.

4.5 Optimised E2F2C processing and deployment Subsystem

4.5.1 GPURegex

4.5.1.1 Overview

GPURegex is a GPU-accelerated pattern-matching engine. GPURegex leverages the

parallelism properties of general-purpose GPUs (GPGPUs) to accelerate the process of string

or regular expression matching. This component was originally designed and implemented in

order to accelerate the pattern-matching mechanism that is the core operation of typical

networking applications such as network intrusion detection, firewall and filtering Layer 7 from

the OSI stack. Now, in the context of the MARVEL project, GPURegex will be used to

accelerate the processing of text-based input originating from audio/video (such as captions),

against a number of predefined patterns (i.e., keywords). This procedure will be used for near

real-time event detection in public environments.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 95 - 21 July, 2023

4.5.1.2 Internal Operation & Technologies

GPURegex uses the characteristics of graphics processors to offer parallelism in computing,

with ultimate goal the processing acceleration of the workload. To deploy GPURegex, an

OpenCL-enabled graphics processor unit is required. The GPU can be either a dedicated,

discrete GPU (e.g., a NVIDIA GPU) or an integrated chip within the CPU die (e.g., Intel HD

Graphics). Moreover, in the case of GPU absence, the parallelism properties of any OpenCL-

enabled CPU could be leveraged. In CPUs, OpenCL takes advantage of the processor’s

vectorisation instruction set extensions (such as SSE and AVX) offering abundant processing

performance, comparable to the performance of a GPU. Apart from the hardware requirements

and the need for Docker, OpenCL version 1.2 or newer is required, as well as a new version of

CUDA software development kit if the accelerator is provided by NVIDIA.

In addition, GPURegex is based on the Aho-Corasick string searching algorithm39 and thus,

GPURegex performs simultaneous multi-pattern matching against text-based input. The

patterns can be either fixed strings or regular expressions.

Different versions of GPURegex can be found in the MARVEL image registry, offering the

possibility of deployment in different hardware setups. The first image contains a version of

GPURegex that can be executed on an integrated HD Graphics GPU, while the second image

enables the execution of GPURegex utilising a CPU (destined for hardware setups that do not

contain a discrete GPU). An additional image has been created and uploaded to the MARVEL

registry that targets NVIDIA Graphics Processing Units (GPUs).

4.5.1.3 Role in R2 and associated use cases

In R2, GPURegex resides in the fog layer of the MARVEL platform and operates in the context

of the MT2 “Detecting criminal/anti-social behaviours” use case. Specifically, GPURegex

participates in a pipeline, receiving input from the AAC component and sending its output to

SmartViz.

In this pipeline, audio streams originating from the MT microphones are forwarded to AAC for

captioning. The resulting captions are published to the DatAna MQTT broker. As GPURegex

is subscribed to the corresponding topic, it consumes the output of AAC, right after it is

published to DatAna. GPURegex searches for certain keywords as specified by MT, against the

AAC captions. GPURegex is intended to detect criminal and anti-social actions that take place

in public, in near real-time, using hardware accelerators and parallel processing. When a

keyword is matched against the input, GPURegex creates an alert, which is then published to

DatAna, with all the required data that describe the event. The output of GPURegex is then

visualised by the SmartViz component of MARVEL.

For more information about GPURegex, the reader can also refer to D4.5 ‘Security assurance

and acceleration in E2F2C framework – final version’.

4.5.2 DynHP

4.5.2.1 Overview

DynHP is a methodology for pruning deep neural network models at training time. DynHP

performs structured pruning in an incremental fashion, i.e., during the training process it

explores which groups of parameters are “less informative” and it switches them off

39 https://dl.acm.org/doi/10.1145/360825.360855

https://dl.acm.org/doi/10.1145/360825.360855

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 96 - 21 July, 2023

permanently. This kind of “incremental hard pruning” makes this approach suitable for training

DNNs on resource constrained devices. Precisely, it is possible to remove the zeroed groups of

parameters from the network by re-instantiating it by keeping only the non-zero ones before

continuing the training. This allows a real saving in terms of memory during the process. Since

the structured hard pruning processes might degrade the performance of the training, DynHP

adopts a strategy to contrast it. Precisely, it tunes adaptively the size of the minibatches

depending on gradient-related information and the amount of available memory.

Clearly, this process can be used to stop the pruning at any point in time while keeping the

training active in order to meet the required performance (e.g. accuracy).

4.5.2.2 Internal Operation & Technologies

DynHP related software library is developed in Python 3 and it significantly relies on the

PyTorch Framework.

The creation of a compressed model through DynHP very much resembles the normal training

procedure of a DNN.

• Model definition: the model to be compressed is defined using the DynHP primitives,

i.e., the layers equipped with the extra parameters used to control the pruning process.

In a nutshell, in DynHP we associate to each neuron/filter a gate, i.e., a trainable

parameter that ranges. Such a parameter controls the activation probability of the

corresponding gate, and the associated probability distribution is the Hard-Concrete

distribution40 (a continuous and differentiable approximation of the Bernoulli

distribution). When the activation probability of a gate goes to zero, the gate is

considered permanently off, and the associated group of weights can be removed from

the DNN.

• Standard Training: the instrumented model is trained and pruned. The output of this

process is a pruned DNN model where all the unnecessary parameters are set to zero.

The overall workflow

With respect to R1, it has been redesigned and completely ported for being compatible with

Pytorch-lightning, which is a widely used framework for developing, testing and training Deep

Neural Network models. In this version, it is possible to set the minimum number of nonzero

parameters that should remain active in the network and monitor in real time this quantity. Once

a layer reaches the minimum size set during the configuration, the pruning stops for it, while

continues for the rest of the network. However, the weights are continuously updated for fine-

tuning. In principle, the very same approach can be applied to an already trained model,

provided the availability of its definition. Specifically, it is possible to import the parameters of

a trained model and use the gates to identify which of them can be pruned. This approach is

combined with low bit representation for consistently reducing the footprint of the model.

Finally, the model can be exported without all the additional parameters needed by DynHP for

being further deployed using the standard procedures and formats typically used for the

deployment of models, (e.g., Torchscript)

40 Lorenzo Valerio, Franco Maria Nardini, Andrea Passarella, Raffaele Perego, "Dynamic hard pruning of Neural Networks at

the edge of the internet," Journal of Network and Computer Applications, Volume 200, 2022, 103330,

https://doi.org/10.1016/j.jnca.2021.103330.

https://doi.org/10.1016/j.jnca.2021.103330

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 97 - 21 July, 2023

4.5.2.3 Role in R2 and associated use cases

In R1, the main focus was on consolidating the methodology, applying it to publicly available

benchmarks and, defining a way for interacting with the rest of the MARVEL platform, i.e.,

DynHP is not meant for being an online service, it needs human interaction for the model

definition and instrumentation. The interaction occurs as follows:

• DynHP interacts with the AI Model Repository, retrieving the original model definition.

• Through DynHP, a suitable compression is found. the final compressed model is

released. More specifically, the model definition, its parameters and the necessary meta-

information are uploaded to the AI Model Repository.

• Finally, all the AI components that want to use the compressed model can download it

and use it.

This procedure is persistent regardless of the specific use case, since the only aspects that

changes are the data used to train the model and the specification of the model itself.

In R2, DynHP has been applied to Crowd-counting task on the AVCC and VCC models. Since

it is an offline tool and it is not meant as a service, it is not directly included in the use cases

supported by R2. The performance evaluation performed on benchmark datasets demonstrated

that a combined compression based on pruning and mixed precision training produced a model

60% smaller while limiting the performance degradation to 3% over the original model. Such

compression allows a significant speedup at inference time (i.e., 4.5x)

4.5.3 FedL

4.5.3.1 Overview

FedL is a component developed by UNS for the MARVEL project’s architecture. FedL contains

an implementation of a high-performance Federated Learning training model for Deep Learning

models. Federated Learning allows for distributed privacy-preserving training of Machine

Learning models. In Federated learning, the data never leaves its source, and the training is

performed at the data source. Typically, there are multiple Federated Learning clients which

perform the training with the local data and a central orchestration point – Federated Learning

server which is used to average all the models and provide a global model which is created by

combining all the client models. In that way, we obtain a model similar to a model which is

trained on all the available client data, but the client data never leave their source. Only the

parameters of the Machine Learning models are shared with the server and not the training/input

data.

For the needs of the MARVEL project, the FedL component also develops a custom Federated

Learning strategy which optimises the learning process for flaky client-server communication.

This issue with communication is expected in large heterogeneous systems and the custom

model merging strategy is to address it. The custom strategy (names NUS – non-uniform

sampling strategy) allows for clients to be temporarily unavailable during learning. It also only

requests client training results if the client data are valuable to the global model, based on

several metrics such as: number of client data points, model metrics such as accuracy, model

gradient variance, client availability history, and others.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 98 - 21 July, 2023

4.5.3.2 Internal Operation & Technologies

FedL component is written in Python. It uses the flwr41 Federated Learning framework as a

stable baseline. It provides an API for client-server communication which can be extended to

our needs, and this also includes the definition of custom strategies. The baseline strategy

Federated Averaging (FedAvg) is used as a baseline for model performance/data throughput

testing.

In Federated Learning with FedL gRPC socket communication is used for client-server

communication. This way of communication is useful for its stateful nature and tracking of

client availability through time (one of metrics used for client sampling).

FedL component is compatible with all major Deep Learning frameworks (e.g., TensorFlow,

PyTorch, MXNet) and all the models which can be defined with these frameworks. To enable

federated learning only the training loop code needs to be modified, and not the model

architecture.

4.5.3.3 Role in R2 and associated use cases

FedL is implemented in the previously defined UNS2 use case Audio-Visual emotion

recognition, planned for realisation within the MARVEL R2, with the results reported in D3.5.

4.5.4 MARVDash

4.5.4.1 Overview

MARVdash, a Kubernetes dashboard, simplifies the interaction of domain experts with

resources within the E2F2C MARVEL platform by providing a user-friendly and intuitive

interface. Instead of directly executing processing tasks, MARVdash focuses on offering

efficient deployment mechanisms. It employs a service templating mechanism that allows users

to configure and initiate services. Each service is defined by a set of variables, and users can

specify values for these variables as execution parameters through the dashboard before

deployment. Moreover, MARVdash takes care of configuring various "internal" platform

settings, such as the location of a private Docker registry, external DNS name, and other

relevant configurations.

4.5.4.2 Internal Operation & Technologies

MARVdash is implemented in Python using the Django framework and is developed and tested

on Kubernetes versions ranging from 1.19.x to 1.21.x. It is installed on a virtual machine (VM)

deployed on PSNC's OpenStack infrastructure. The VM is equipped with 8 vCPUs, 16 GB

RAM, and 512 GB of block storage. It runs on Ubuntu 20.04.1 LTS Linux and utilises

Kubernetes version 1.19.8. This VM is situated on the "Cloud" side of the E2F2C platform. For

demonstration purposes, the VM is upgraded to 32 vCPUs, 64 GB RAM, and 2 TB of block

storage.

MARVdash requires a functional Kubernetes environment with specific features. One essential

feature is the certificate management controller, cert-manager, responsible for generating

certificates for the admission webhooks. Another necessary feature is an ingress controller that

responds to a domain name and its wildcard. Additionally, for storing MARVdash's state, either

an existing persistent volume claim or a directory in a shared filesystem mounted at the same

41 https://flower.dev/

https://flower.dev/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 99 - 21 July, 2023

path must be accessible across all Kubernetes nodes. Lastly, a shared filesystem is needed for

handling files, similar to the one used for storing the configuration.

To establish a unified Kubernetes cluster comprising nodes from all three layers (Edge, Fog,

Cloud), it is crucial for all clients to be connected through a virtual private network, such as

EdgeSec-VPN, as described in Section 4.2.4. This setup enables E2F2C communication

through MARVdash.

The most recent additions of MARVdash, include Grafana, Prometheus and Loki. Grafana

enriches the capabilities of the Kubernetes dashboard by providing a comprehensive set of

features. As a robust data visualisation and analytics platform, Grafana empowers users to

monitor and analyse the performance and health of their Kubernetes cluster effectively. It offers

a diverse collection of customisable dashboards, enabling users to create visually appealing

representations of essential metrics such as CPU usage, memory utilisation, and network traffic.

Prometheus is a metrics monitoring tool and Loki serves as a powerful log aggregation system

that brings notable advantages to MARVdash. It facilitates efficient and centralised collection,

indexing, and exploration of logs generated by various components within a cluster. With Loki,

MARVdash users can easily search, visualise, and analyse log data originating from different

Kubernetes pods, nodes, or namespaces.

MARVdash allows its users to manage the deployment of their components through a UI built

for this purpose (Figure 42).

Figure 42: MARVdash UI

4.5.4.3 Role in R2 and associated use cases

MARVdash serves as a central orchestrator in R2 and all use cases, facilitating the deployment

and execution of data management platforms, AI components, and other software components

within the E2F2C testbed. It also manages external access to services requiring exposure outside

the MARVEL infrastructure while considering connectivity and authentication requirements.

MARVdash allows the deployment of all the components of the Data Management and

Distribution (DMP) subsystem of the MARVEL framework. DatAna (Apache NiFi, Mosquitto

MQTT, and NiFiRegistry), Data Fusion Bus (Kafka, Elastic Search, Kibana), StreamHandler,

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 100 - 21 July, 2023

Hierarchical Data Distribution (HDD) are deployed in different layers (edge, fog, cloud) and

targeted worker nodes.

Regarding the User interactions and decision-making subsystem, MARVdash eases the

deployment of SmartViz and Data Corpus. The integration of web proxy services was necessary

for HTTPS-compliant URLs ensuring the encryption of the exchanged data. Moreover, the

authentication mechanism of MARVdash was utilised.

As far as the Audio, Visual, and Multimodal AI subsystem is concerned, the whole set of AI

MARVEL components is deployed through MARVdash. The simplified deployment

mechanism that is offered, allows the component owners to select their installation target based

on their needs on CPU/GPU availability. It also offers private and shared files for model

storage.

Our goal regarding MARVdash functionality was to ease the deployment of every MARVEL

component of every MARVEL subsystem, in any cluster layer, in any MARVEL use case. The

only prerequisite is the target deployment environment to be a node that is part of the MARVEL

Kubernetes cluster.

For further details please refer to D3.6 ‘Efficient deployment of AI-optimised ML/DL models–

final version’.

4.6 E2F2C Infrastructure

4.6.1 HPC infrastructure

4.6.1.1 Overview

The main goal of this component is to ensure the high performance of data processing in the

last level of the E2F2C stack. In the MARVEL project, this is provided by PSNC, which offers

novel HPC infrastructure (Eagle cluster) and virtualised private cloud (LabITaaS) with an

OpenStack web interface tool allowing for a flexible allocation of computing resources and

various class storage services connected with the HPC system. Details were already presented

in D5.3, which was a report on the HPC infrastructure and resource management aspects for

the first integrated version of the MARVEL framework. The final version of HPC Infrastructure

will be described at the end of the project in D5.8.

4.6.1.2 Internal Operation & Technologies

From MARVEL's perspective, the essential part of the HPC infrastructure is virtualised private

cloud, which serves as a base for deploying software stack and storing project data. Cloud

resources come from two geographically distributed regions of PSNC – DCW and BST. To

sum up, resources available exclusively for the MARVEL project include nearly 350 VCPUs,

more than 500GB of RAM and about 1PB of storage. Apart from that, PSNC offers the Eagle

supercomputer with tens of NVIDIA V100 GPUs. Compared to R1, the significant

improvement is the development of a direct connection between cloud infrastructure and Eagle

supercomputer, which enables extending the MARVEL Kubernetes cluster to the GPU node.

To this end, one of Eagle nodes has been dedicated to MARVEL and VM (with direct access

to the graphics cards) has been installed on it using the libvirt toolkit. The provided solution

enables the deployment of components that require constant access to a GPU and allows for

two-sided direct data access between MARVEL components deployed on different

infrastructures.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 101 - 21 July, 2023

Figure 43: Connection between cloud and HPC infrastructure

4.6.1.3 Role in R2 and associated use cases

Provided infrastructure plays an important role in R2 as it enables efficient deployment of the

cloud layer of the MARVEL E2F2C framework. Consequently, it applies to all use cases where

architecture requires running some component instances in the cloud layer. Furthermore,

delivered infrastructure allows for storing significant amounts of data collected by the

MARVEL Data Corpus.

4.6.2 Management and orchestration of HPC resources

4.6.2.1 Overview

The task of this component is to ensure high performance of computing, storage and network

resources provided by PSNC. Details were already presented in D5.3, which was a report on

the HPC infrastructure and resource management aspects for the first integrated version of the

MARVEL framework. The final version of the management and orchestration of HPC

resources will be described at the end of the project in D5.8.

4.6.2.2 Internal Operation & Technologies

The aspects of management and orchestration refer to actions taken by PSNC specialists from

various IT fields to ensure the efficiency of the delivered HPC resources. PSNC contributes to

the MARVEL framework development process by providing technical support from experts in

the areas of HPC, cloud, storage and security.

From a technological point of view, an important tool for MARVEL administrators is the

OpenStack web interface which is deployed as Infrastructure-as-a-Service and allows for a

flexible allocation of computing resources and various class storage services connected with

the HPC system. Apart from that, all MARVEL project participants can use Eagle with the

SLURM queuing system to perform tasks that require high computing power, e.g., to train AI

models with the support of GPUs.

After R1, PSNC collaborated with FORTH to develop the Zabbix monitoring system dedicated

to the MARVEL project. The delivered solution enables the collection of detailed statistics

related to individual components of the MARVEL project. PSNC also disposes of a set of tools

to monitor the general availability of Cloud and Eagle infrastructure, which has already been

described in Section 8.6. of D6.242.

42 “D6.2: Evaluation Report,” Project MARVEL, 2022. https://doi.org/10.5281/zenodo.7296312.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 102 - 21 July, 2023

4.6.2.3 Role in R2 and associated use cases

As a technology partner, PSNC provides technical support, ensures the proper functioning of

offered services, and resolves any technical issues arising during the MARVEL framework

deployment on PSNC infrastructure.

4.7 User interactions and decision-making toolkit

4.7.1 SmartViz

4.7.1.1 Overview

SmartViz is a data visualisation toolkit that constitutes the User Interface (UI) of the Decision-

Making Toolkit (DMT). It provides the means to visualise numerous incoming detected events

and anomalies deriving from the analysis and the evaluation of data of all the MARVEL use

cases. SmartViz consists of a set of visualisation tools developed to allow exploratory analysis

of data by using interactive representations, features, and visualisation widgets.

In this deliverable, the focus regarding SmartViz will be given to the differences and additions

from an UI perspective introduced in R2. For further details regarding the toolkit please refer

to Section 2.3 in D4.643.

4.7.1.2 Internal Operation & Technologies

The DMT is designed to handle various types of data from different workflows and pipelines.

This data can have different characteristics such as velocity, format, and type, and it can be

delivered through live or batch streams. SmartViz, as part of the toolkit, accepts and transforms

the input data into meaningful visualisations based on their nature and format. The primary goal

of the SmartViz toolkit is to effectively support and accommodate all these different data

scenarios while meeting the needs of end-users and facilitating decision-making processes.

The internal architecture and underlying technologies of SmartViz have largely remained the

same at a high-level perspective since R1. However, significant enhancements have been made

in R2 to introduce new visualisation widgets and dashboards for the new use cases. The R1 use

cases have also been enriched with filters and the support of new component visualisations,

based on the valuable user feedback.

To facilitate the enhancements along with the new visualisations, SmartViz has established

connections with additional components beyond what was available in R1. These connections

are showcased within the DMT dashboards. To support these connections, the necessary

mechanisms were developed, and new libraries written in Typescript and JavaScript were

integrated into the toolkit. These additions have expanded the range of visualisation widgets

available. For further details regarding SmartViz please refer to Section 3.2 in D4.6.

4.7.1.3 Role in R2 and associated use cases

SmartViz serves as the final component in the MARVEL pipeline and plays a crucial role in

providing meaningful insights and interactive capabilities to end-users, thereby facilitating

urban planning, safety, and other objectives outlined by the MARVEL pilots.

SmartViz was deployed as well in the R1 and served as the UI of the DMT catering to the

visualisation requirements of all R1 use cases and user scenarios specified by the pilots. Since

43 D4.6 - MARVEL's decision-making toolkit – final version,” Project MARVEL, 2023.

https://doi.org/10.5281/zenodo.8147077.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 103 - 21 July, 2023

the R1 release, more visualisation widgets have been developed and released to satisfy the

specified user journeys and needs, but also to properly represent the incoming data. The

visualisation widgets are complemented by a range of filtering options which have been

expanded and enhanced in R2.

SmartViz is utilised across all R2 use cases and it carries out the visualisation needs of all the

undertaken use cases that are described in Section 2. The pool of visualisation widgets includes

simple charts and graphs, complex timeline representations, geospatial depictions, audio and

visual representation of historical and real-time feeds, and real-time rendering of data. For the

final version, we have completed the widget pool and selected appropriate widgets that align

with the user requirements and the respective data. Since R1, there have been no changes in the

deployment of SmartViz which remains at the cloud. For further details regarding SmartViz

please refer to Section 2.3 in D4.6

4.7.2 MARVEL Data Corpus-as-a-Service

This subsection briefly presents the MARVEL Data Corpus, its main technologies, and its use

under R2.

4.7.2.1 Overview

The aim of the MARVEL Data Corpus is to provide Machine Learning datasets to the relevant

scientific and industrial communities. It obtains anonymised and annotated video and audio

data from the MARVEL pilots and stores it in the Corpus. Besides offering data to the external

communities, the Corpus can also be utilised by MARVEL’s internal operations by allowing

its Cloud/back-end’s Artificial Intelligence elements to access the datasets and utilise them to

train and assess ML models.

4.7.2.2 Internal Operation & Technologies

Several technologies have been employed in the creation of the Corpus. These include server-

side technologies for storing the core data, client applications that allow other users or

components to interface with the Corpus, such as with graphical user interfaces (GUIs), along

with a series of REST APIs that can be used ad-hoc by the relevant users. A native installation

of Hadoop Distributed File System (HDFS)44 among the Corpus nodes is responsible for saving

the data files while it keeps multiple copies of data across low-cost machines, thereby providing

a large bandwidth for accessing them and increased resilience to hardware failures. In addition,

HBase45, an open-source, non-relational, distributed database, takes care of managing the

relationship of the data based on a non-schema less approach. Zookeeper is the administrative

application on which the HBase distributed database is based. This module is open-source and

provides management services such as keeping track of configurations, providing naming and

distributed synchronisation. Accessing these services can be done through Ambar's web

interface which provides an uncomplicated Hadoop management solution with a webpage and

RESTful APIs.

44 https://hadoop.apache.org/

45 https://hbase.apache.org

https://hadoop.apache.org/
https://hbase.apache.org/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 104 - 21 July, 2023

Figure 44: Internal architecture for the core storage of the MARVEL Data Corpus

Furthermore, applications in JAVA have been developed that permit the server-side APIs to be

called programmatically and interact with the repository. One example is an application that

can move files from a folder and put them into the Corpus, as well as a program that links

specified Kafka topics and ingests the inference results released from the MARVEL AI

components.

Finally, two GUIs have been implemented providing two different levels of access to the end

user of the Corpus. The first one, which requires user authentication, includes all the datasets

and snippets that have been injected to the Data Corpus, providing full access to them in terms

of update and delete actions. The second one, which is publicly available and does not require

any user authentication, includes datasets that have been marked as “complete and public” while

the users cannot perform update or delete actions to the relative records. In both GUIs, there is

the capability of performing simple and advanced queries to the stored datasets while both

interfaces provide the capability of downloading the datasets/snippets locally.

Figure 45: The private and the public GUIS of the Data Corpus

Underneath, an Elastic Search-Logstash-Kibana (ELK) stack has been deployed in order to

monitor the requests of the exposed REST APIs along with the overall status of the Data

Corpus.

4.7.2.3 Role in R2 and associated use cases

The purpose of the Corpus is threefold. Firstly, it stores anonymised and annotated datasets

from the pilots. Interfaces have been created to make this process easier, and these consist of

both programmatic and graphical elements. Additionally, the Corpus can automatically ingest

data, such as video/audio, which have been sent by the StreamHandler component, as well as

inference results which are published by the DFB Kafka topics.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 105 - 21 July, 2023

As a result, the internal MARVEL elements in the cloud can obtain and use these sets of data.

AI parts can access the relevant information and train their ML models. For more information

about the ML processes being carried out, please look at the subsections related to these

components. Additionally, the datasets can either be obtained programmatically or downloaded

through the graphical user interface.

In conclusion, the Corpus makes available the ingested datasets to external users (both scientific

and industrial) in an accessible way. Currently, there are multiple datasets from the pilots

available to be accessed. As the project progresses, the amount of this data is expected to

increase as more data from pilots are anonymised and labelled.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 106 - 21 July, 2023

5 R2 Design and Specifications

This section presents the results of the integration and deployment activities for the final version

of the MARVEL Integrated framework (R2), i.e., the final design and specifications of the R2

release. Initially, the ‘AI Inference pipeline’ reference architecture is presented along with

its design rationale. This reference architecture is the backbone of the R2 framework and

drove the architecture instantiations in all R2 use cases. Subsequently, Sections 5.2 and 5.3

present the implemented I/O interfaces - APIs and Data Models respectively. These form the

two main integration pillars of the MARVEL framework. Finally, the UI/UX approach that

was adopted is described, followed by a presentation of the infrastructure that was used for

the R2 release.

5.1 ‘AI Inference pipeline’ reference architecture

The MARVEL conceptual architecture, presented in Figure 1 of D1.3, was used to steer the

design of the specific architectural configurations for addressing the use cases selected for R2.

For completeness, a revised version of the MARVEL conceptual architecture is also presented

below in Figure 46. Details of the revisions of the MARVEL conceptual architecture since D1.3

(M08) are reported in D6.1.

Figure 46: MARVEL conceptual architecture

Furthermore, the experience gained from the MVP (D5.1 ‘MARVEL Minimum Viable Product’)

and from R1 (D5.4 ‘MARVEL Integrated framework – initial version’) was leveraged for the

design of R2, which built upon these previous outcomes.

As already explained in Section 3.2, the R2 design process started with the analysis of the use

cases that R2 would address (Section 2.2). This process was complemented by simultaneous

activities for analysing the available infrastructure at the three pilot sites and provisional

mappings of the MARVEL components to the use cases and infrastructure nodes. In parallel,

the I/O interfaces and data models, as well as UI/UX aspects, were elaborated and considered

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 107 - 21 July, 2023

in the investigations of architectural configuration options. Another factor that played a crucial

role in the architectural design was the attempt to consolidate as much as possible the necessary

I/O interfaces and data models and streamline them into unified interface and data model types

that could serve the needs of multiple components in order to reduce integration complexity.

During these activities, tentative architectural diagrams were prepared to illustrate the various

possible options that were being considered.

Common functional requirements. The analysis of the use cases that were to be addressed by

R2 led to the determination of a common theme that referred to the need of analysing source

multimodal audio-visual (AV) data to extract meaningful inference results and deliver them to

the user. More specifically, the common functional requirements that were identified are:

• Access live feeds of AV sources.

• Anonymise streamed AV data as close to the source as possible.

• Provide live AV data to AI components for analysis so that they can produce live

inference results.

• Collect the inference results from all AI components.

• Homogenise the inference results.

• Persistently store the inference results.

• Provide real-time and historical inference results to the user with dedicated

visualisations.

• Persistently store AV data.

• Provide real-time and historical AV data to the user.

The analysis of this set of common requirements led to the conclusion that a universal reference

architecture scheme was required that could be applied to all R2 use cases with suitable

adaptations on a case-by-case basis. This reference architecture was the outcome of the

distillation of all requirements and ensures that there is a consistent and coherent approach in

all applications of MARVEL for extracting and delivering inference results from the analysis

of multimodal AV data. Following multiple iterations and revisions, the MARVEL Consortium

produced such a reference architecture, which is also referred to as the ‘AI Inference Pipeline’,

illustrated in Figure 47 below.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 108 - 21 July, 2023

Figure 47: MARVEL ‘AI Inference Pipeline’ reference architecture diagram

The ‘AI Inference Pipeline’ reference architecture diagram contains abstractions for certain

components with similar functionalities that are grouped together. More specifically, the

Anonymisation components refer to the AudioAnony, VAD, and VideoAnony components and

the AI components refer to the CATFlow, TAD, VAD, ViAD, AVAD, VCC, AVCC, AT, SED,

AAC, YOLO-SED, RBAD, and SELD components. A full description of all components

referenced in the ‘AI Inference Pipeline’ is provided in Section 4.

The main interactions between the components in the ‘AI Inference Pipeline’ can be described

as follows:

• Anonymisation components receive AV data streams from raw AV sources (cameras

and microphones). [interface #03].

• AI components request the metadata of available AV sources (including anonymisation

components) from the AV Registry. [interface #02].

• AI components receive anonymised AV data streams from the Anonymisation

components. [interface #03].

• AI components publish their raw inference results to dedicated topics on the DatAna

MQTT broker which is hosted on the same layer (E/F/C) as the AI components.

[interface #04]. A DatAna NiFi node receives the raw inference results from the DatAna

MQTT broker, which is hosted on the same layer (E/F/C) as the DatAna NiFi node.

DatAna NiFi nodes transform the raw inference results they collect to SDM-compliant

inference results and push them to a DatAna NiFi node at a higher layer (DatAna NiFi

Edge pushes results to DatAna NiFi Fog and DatAna NiFi Fog pushes results to DatAna

NiFi Cloud).

• DatAna NiFi (Cloud node) publishes the SDM-compliant inference results it collects

to a topic on a Kafka broker of the DFB. The DFB persistently stores the received results

on an Elastic Search (ES) database. [interface #07].

• SmartViz accesses the incoming inference results at the DFB in real time by

subscribing to the Kafka topics where they are published by DatAna. SmartViz also

accesses the historical inference result data stored in the ES database of the DFB.

SmartViz displays the inference results to the user through appropriate visualisations.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 109 - 21 July, 2023

SmartViz also allows the user to verify the displayed inference results and this

verification information is fed back to the DFB by being published to a dedicated Kafka

topic. [interface #08]

In parallel, the following interactions take place for SmartViz to gain access to AV data:

• SmartViz and StreamHandler request the metadata of available AV sources

(including anonymisation components) from the AV Registry. [interface #02].

• StreamHandler receives anonymised AV data streams from the Anonymisation

components. [interface #03] StreamHandler segments and stores the anonymised AV

data in a MinIO repository for subsequent access.

• StreamHandler accesses the incoming inference results at the DFB in real time by

subscribing to the Kafka topics where they are published by DatAna [interface #09] to

produce AV files that correspond to these results.

• SmartViz requests and receives AV data from StreamHandler that refer to a particular

inference result. [interfaces #10, #11].

• SmartViz receives an anonymised AV data stream from an Anonymisation

component upon user demand. [interface #03] The connection is not continuous and is

initiated only when a user requests a live AV feed from the location where an event has

previously been detected.

The ‘AI Inference Pipeline’ operation is also complemented by the following interaction that

serves the purposes of performance optimisation:

• The HDD receives the current Kafka topic partition configuration from the DFB and

returns a recommendation for an optimised Kafka topic partition configuration.

[interface #12].

In terms of component mapping to the E/F/C layers, the ‘AI Inference Pipeline’ architecture

proposes specific deployment layers for certain components but also incorporates an inherent

flexibility as far as other components are concerned. The following aspects were considered for

the determination of the possible variations of the E/F/C layer to which each component could

be deployed:

• Use case requirements;

• Nature of the component;

• Needs for direct interaction with other components;

• Data privacy and security issues;

• Bandwidth preservation aspects;

• Performance and accuracy aspects;

• Available infrastructure.

For some of the components, the possibilities of deployment layer were more limited due to

their nature. Specifically, these were:

• AV sources (microphones, cameras). Due to their nature of capturing data from the real

world, AV sources are located at the Edge.

• DatAna. Due to its pervasive nature, DatAna is foreseen to span across all three layers

(Edge, Fog, and Cloud). Separate DataAna MQTT brokers and DatAna NiFi nodes can

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 110 - 21 July, 2023

reside on any infrastructure node at any layer, if an AI component that produces

inference results also resides there.

Regarding the other components that are present in the ‘AI Inference Pipeline’, the deployment

possibilities were determined by considering the aforementioned aspects. Specifically

regarding (i) Data privacy and security, (ii) Bandwidth preservation, and (iii) Performance and

security, the impact that the E2F2C deployment layer of a component would have on these three

aspects was assessed. In this impact assessment analysis, components were considered in

groups of components with similar roles. A rating scheme (Low, Medium, High) was assigned

to the impact of each deployment option for each component group towards the three considered

aspects. In this sense, it was assumed that the Edge layer provides a high degree of data privacy

and security and bandwidth preservation, as data can be processed close to their source, but also

a low performance and accuracy (e.g., for AI components), as the infrastructure at the Edge

typically has lower computational resources. The Cloud layer provides a low degree of data

privacy and security and bandwidth preservation, as data have to be transferred from the Edge

to the Cloud, but also a high performance and accuracy (e.g., for AI components), as the

infrastructure at the Cloud (e.g., HPC) can provide abundant computational resources. The Fog

layer was seen as a middle ground, providing increased data privacy and security and bandwidth

preservation compared to the Cloud layer and increased performance and accuracy compared

to the Edge layer. Some options for the deployment layer were ruled out as unsuitable for certain

component groups. The ratings that were assigned to the deployment options guided the

decisions on the EFC layers that would be suitable for the deployment of each component group

along with the remaining aspects under consideration and especially the infrastructure that was

available at the MARVEL pilots.

The following Table 5 presents the aforementioned impact assessment analysis that was

performed as well as the possible deployment layer options that were eventually promoted for

each R2 component group.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 111 - 21 July, 2023

Table 5: Deployment option prioritisation for components in the ‘AI Inference Pipeline’

Deployment options

Component Group Considered aspects

Impact rating by EFC layer Promoted R2

Deployment

layer options Edge Fog Cloud

Anonymisation

Components

(AudioAnony, VAD,

VideoAnony)

Data Privacy / Security HIGH MEDIUM N/A

Edge / Fog Bandwidth preservation HIGH MEDIUM N/A

Performance / Accuracy LOW MEDIUM N/A

AI Components

(CATFlow, TAD, VAD,

ViAD, AVAD, VCC,

AVCC, AT, SED, AAC,

GPURegex, YOLO-

SED, RBAD, SELD)

Data Privacy / Security HIGH MEDIUM LOW

Edge / Fog /

Cloud

Bandwidth preservation HIGH MEDIUM LOW

Performance / Accuracy LOW MEDIUM HIGH

AV Management

Components

(AV Registry,

StreamHandler)

Data Privacy / Security N/A HIGH LOW

Fog Bandwidth preservation N/A HIGH LOW

Performance / Accuracy N/A MEDIUM HIGH

Inference result

storage and

visualisation (DFB,

SmartViz, HDD)

Data Privacy / Security N/A HIGH MEDIUM

Cloud Bandwidth preservation N/A MEDIUM LOW

Performance / Accuracy N/A LOW HIGH

The ‘AI Inference Pipeline’ reference architecture was used as a basis to specify the exact

architecture instantiation for each use case. The specific configuration of each instantiation was

determined by the following factors:

Use case requirements, as distilled from the user journeys described in D4.6, but also functional

and non-functional requirements from D2.1 and their refinements in D6.1 and D6.3.

AV sources that are planned or need to be employed by the use case.

Anonymisation components that would need to be involved, depending on the data modalities

present in the use case AV sources (audio, video).

AI components that would need to be involved to address the specific (AI) tasks of the use case.

Available infrastructure at each pilot for hosting the MARVEL components.

The design choices that were made for the architecture that was implemented for each use case

were also affected by an attempt to maximise the representation of individual MARVEL

components and to demonstrate a variance between the different configurations to validate the

capability ofMARVEL to conform to the needs of diverse use cases.

In R2, several steps were taken towards shifting the positioning of anonymisation and AI

models as close to the Edge as possible. To that end, additional edge devices were secured in

all pilots, including NVidia Jetson, Raspberry Pi and PC devices. In addition, the fog server of

GRN was significantly upgraded, allowing it to host AI models that would otherwise be

positioned at the cloud. These additional resources were considered when designing the five

new use cases that were introduced for R2 (GRN1, GRN2, MT2, MT4, UNS2) and allowed to

host anonymisation and AI models closer to the edge. Furthermore, the architecture for some

use cases that had been applied in R1 (GRN3, GRN4), was partially revised due to the

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 112 - 21 July, 2023

availability of the new infrastructure and allowed to shift some AI and anonymisation

components to the edge and fog layers.

Nevertheless, limitations were still present in the infrastructure at the edge and fog layers and

an efficient allocation of the available resources was required to accommodate the needs of all

ten R2 use cases. GPU acceleration was enabled for the inference calculations in most of the

AI models so that the corresponding resources on the host devices could be fully exploited.

Wherever it was not possible to host all AI components at the edge and fog layers, the cloud

layer was used, where resources were more abundantly available.

Furthermore, in some cases, the architecture configuration and component deployment

locations were also largely affected by imposed network security restrictions and data privacy

issues. Such was the case in the MT pilot (MT1, MT2, MT3 and MT4 use cases), where

customised solutions needed to be devised to fit the exact use case requirements.

The next sub-section 5.4 presents the specific instantiations of the MARVEL ‘AI Inference

Pipeline’ architecture that were implemented for the use cases addressed by R2. Each sub-

section presents a table with the exact components that were applied and the infrastructure

nodes on which they were deployed. Each sub-section also presents a diagram of the respective

system architecture that also incorporates information related to deployment, as it depicts the

exact component instances (services) that were deployed in relation to the infrastructure nodes.

The diagrams also feature a unified annotation with labels that refers to the consolidated I/O

interface types that were implemented (described in detail in Section 5.2). Thin arrows represent

the exchange of text-based data and thick arrows represent the exchange of AV (binary) data.

Finally, it is noted that the architecture that was specified for AI Training and the operation of

the Data Corpus are presented in separate sub-sections (Sections 5.4.11 and 5.4.12

respectively), as these were applicable to all R2 use cases.

5.2 I/O Interfaces - APIs

The specification of I/O Interfaces and Data Models are the two main pillars in the integration

of multiple components into a unified system to ensure its successful operation. This section

presents the first pillar, i.e., the specification of I/O Interfaces – APIs.

During the design of the reference inference pipeline architecture and the specific

implementation of the R1 and R2 use cases, the I/O interfaces that would be required to support

the communication between individual components were considered. The strategy for the

specification of the I/O interfaces and APIs was based on the following objectives:

• Distil the data exchange requirements of the MARVEL components to consolidate the

necessary I/O interfaces as much as possible and consequently reduce integration

complexity.

• Decouple as much as possible the direct data exchange between pairs of individual

component instances to reduce integration complexity, i.e., avoid the use of REST APIs

wherever possible and promote the use of pub/sub distributed messaging systems.

• Implement open, industry-standard approaches for increased interoperability,

scalability and expandability.

Following the analysis of the data exchange requirements of individual components, an attempt

was made to map the pairwise communication needs between individual components. This

process led to the identification of similarities between the requirements of different

components, which were leveraged in order to streamline the various pairwise communication

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 113 - 21 July, 2023

needs into universal I/O interface types that could be shared between groups of components and

implemented across the entire MARVEL framework. Figure 48 illustrates a connectivity matrix

that was used to map out the pairwise communication needs between the individual MARVEL

components, including information on the directionality of each identified pairwise

communication need.

Figure 48: MARVEL component connectivity matrix for I/O interface specification, including indication of

bidirectional/unidirectional connections and directionality of unidirectional connections

Meanwhile, the foreseen pairwise interactions between MARVEL components were mapped

to the MARVEL use cases by means of a matrix depicted in Figure 49. This tabular organisation

of the information assisted in distilling the possible I/O Interface types and consolidating them

to ones that could serve the needs of multiple components.

Partner Component

A
V

 R
e

gi
st

ry
ITML AV Registry

IFAG MEMS

FBK VideoAnony ⮨

FBK/AUD AudioAnony - VAD ⮨

GRN CATFlow ⮨ ⮨

GRN TAD

AU ViAD ⮨ ⮨

AU AVAD ⮨ ⮨ ⮨

AU VCC ⮨ ⮨

AU AVCC ⮨ ⮨ ⮨

TAU SED ⮨ ⮨

TAU AT ⮨ ⮨

TAU AAC ⮨ ⮨

TAU SELD ⮨ ⮨

AU YOLO-SED ⮨

AU RBAD

FORTH GPURegex

INTRA StreamHandler ⮨ ⮨ ⮨

ATOS DatAna ⮨ ⮨ ⤢ ⮨ ⮨ ⮨ ⮨ ⮨ ⮨ ⮨ ⮨ ⮨ ⤢ ⤢ ⤢

ITML DFB ⮨

CNR HDD ⤢

ZELUS SmartViz ⮨ ⮨ ⮨ ⤢ ⤢

CNR DynHP ⤢ ⤢

UNS FedL ⤢ ⤢

CNR AI Model Repo ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢ ⤢

STS Data corpus ⮭ ⮭ ⮭ ⮭ ⮭ ⮭ ⮭ ⮭ ⮭ ⮭ ⮭ ⮭ ⮭ ⮨ ⮨ ⮭ ⮭ ⤢

G
P

U
R

e
ge

x

St
re

am
H

an
d

le
r

A
I M

o
d

e
l R

e
p

o

D
at

a
co

rp
u

s

A
V

C
C

SE
D

A
A

C

SE
LD

Y
O

LO
-S

ED

R
B

A
D

TA
D

V
iA

D

A
V

A
D

V
C

C

D
FB

H
D

D

Sm
ar

tV
iz

D
yn

H
P

Fe
d

L

A
T

D
at

A
n

a

M
EM

S

V
id

e
o

A
n

o
n

y

A
u

d
io

A
n

o
n

y
-

V
A

D

C
A

TF
lo

w

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 114 - 21 July, 2023

Figure 49: MARVEL component pairwise interaction mapping to I/O Interface Types and architectures

Component A Direction Component B

I/O

Interface

Type

GRN3: Traffic

Anomalous

Events

GRN4:

Trajectories

MT1: Crowd

Monitoring

MT3: Parking

Lot

UNS1: Drone

Crowd

Classification

AI Training

Data Corpus

Data

Aggregation

AV Registry CATFlow 2 Y Y Y N N N N

AV Registry ViAD 2 N N Y N N N N

AV Registry AVAD 2 Y N N Y N N N

AV Registry VCC 2 N N Y N Y N N

AV Registry AVCC 2 N Y N N N N N

AV Registry SED 2 N Y N Y N N N

AV Registry ΑΤ 2 Y N N Y N N N

AV Registry StreamHandler 2 Y Y Y Y Y N N

AV Registry SmartViz 2 Y Y Y Y Y N N

MEMS AudioAnony - VAD 1 N N N Y Y N N

VideoAnony CATFlow 3 Y Y Y N N N N

VideoAnony ViAD 3 N N Y N N N N

VideoAnony AVAD 3 Y N N Y N N N

VideoAnony VCC 3 N N Y N Y N N

VideoAnony AVCC 3 N Y N N N N N

VideoAnony SED 3 N Y N N N N N

VideoAnony ΑΤ 3 Y N N N N N N

VideoAnony StreamHandler 3 Y Y Y Y Y N N

VideoAnony AI Model Repository 13 N N N N N Y N

VideoAnony Data corpus 14 N N N N N Y N

AudioAnony - VAD AVAD 3 N N N Y N N N

AudioAnony - VAD AVCC 3 N N N N N N N

AudioAnony - VAD SED 3 N N N Y N N N

AudioAnony - VAD ΑΤ 3 N N N Y N N N

AudioAnony - VAD StreamHandler 3 N N N Y Y N N

AudioAnony - VAD SmartViz 3 N N N Y Y N N

AudioAnony AI Model Repository 13 N N N N N Y N

AudioAnony Data corpus 14 N N N N N Y N

CATFlow DatAna 4 Y Y Y Y N N N

TAD DatAna 4 Y Y N N N N N

TAD DatAna 5 Y Y N N N N N

TAD AI Model Repository 13 N N N N N Y N

TAD Data corpus 14 N N N N N Y N

ViAD DatAna 4 N N Y N N N N

ViAD AI Model Repository 13 N N N N N Y N

ViAD Data corpus 14 N N N N N Y N

AVAD DatAna 4 Y N N Y N N N

AVAD AI Model Repository 13 N N N N N Y N

AVAD Data corpus 14 N N N N N Y N

VCC DatAna 4 N N Y N Y N N

VCC AI Model Repository 13 N N N N N Y N

VCC Data corpus 14 N N N N N Y N

AVCC DatAna 4 N Y N N N N N

AVCC AI Model Repository 13 N N N N N Y N

AVCC Data corpus 14 N N N N N Y N

SED DatAna 4 N Y N Y N N N

SED AI Model Repository 13 N N N N N Y N

SED Data corpus 14 N N N N N Y N

AT DatAna 4 Y N N Y N N N

AT AI Model Repository 13 N N N N N Y N

AT Data corpus 14 N N N N N Y N

StreamHandler SmartViz 10 Y Y Y Y Y N N

StreamHandler Data corpus 11 Y Y Y Y Y N Y

DatAna DFB 7 Y Y Y Y Y N N

DFB HDD 12 Y Y Y Y Y N N

DFB SmartViz 8 Y Y Y Y Y N N

DFB Data corpus 9 Y Y Y Y Y N Y

DynHP AI Model Repository 13 N N N N N Y N

DynHP Data corpus 14 N N N N N Y N

FedL VCC Server FedL VCC client 15 N N N N N Y N

FedL AI Model Repository 13 N N N N N Y N

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 115 - 21 July, 2023

This mapping and associated analysis gave way to the determination of 16 MARVEL I/O

interface types that were used universally in the MARVEL integrated framework. They are

presented in Table 6 and elaborated in more detail in the following Sections 5.2.1 - 5.2.16.

They are divided in 3 categories:

• I/O Interface Types #01 - #12: Applied in the ‘AI Inference Pipeline’ architecture for

the 10 R2 use cases (Sections 5.2.1 - 5.2.12)

• I/O Interface Types #13 - #15: Applied in the ‘AI Training’ architecture (Section 5.2.13

- 5.2.15)

• I/O Interface Types #11 and #16: Applied in the Data Corpus Data Aggregation

architecture (Sections 5.2.11, 5.2.16)

The numerical indices used to number the I/O interface types in Table 6 are also used in every

graphic depiction of architecture diagrams as annotation labels for describing the interactions

between the components included in each diagram.

Table 6: MARVEL R2 I/O Interface Types

Ind

ex

I/O Interface

Type title
I/O Interface Type description

API/Prot

ocol

Relevant

components

Relevant

Data

Models

1

Onboard AV

source access

(Inference

Pipeline)

A component (AudioAnony-VAD,

VideoAnony, SELD) accesses an AV

source that is hosted on the same device

(e.g., MEMS microphone, GoPro

camera)

OS driver

MEMS,

AudioAnony-VAD,

VideoAnony, SELD

N/A

2

AV Registry

access

(Inference

Pipeline)

Α component (CATFlow, ViAD,

AVAD, VCC, AVCC, SED, AT, AAC,

StreamHandler, SmartViz) accesses the

AV Registry REST API to receive

metadata for a specific AV source id.

The metadata include the AV source

stream URL that can be used to access

the AV data stream (interface type #03).

REST

API

AV Registry,

CATFlow, ViAD,

AVAD, VCC,

AVCC, SED, AT,

AAC

StreamHandler,

SmartViz

Camera

entity

3

AV streaming

(Inference

Pipeline)

A component (VideoAnony,

AudioAnony-VAD, CATFlow, ViAD,

AVAD, VCC, AVCC, SED, AT, AAC,

YOLO-SED, StreamHandler, SmartViz)

receives the AV stream from an AV

source (CCTV IP Camera, VideoAnony,

AudioAnony-VAD) using RTSP.

RTSP

VideoAnony,

AudioAnony-VAD,

CATFlow, ViAD,

AVAD, VCC,

AVCC, SED, AT,

AAC, YOLO-SED,

StreamHandler,

SmartViz

Camera

entity

4

DatAna: AI

inference result

publication

(Inference

Pipeline)

An AI component (CATFlow, TAD,

VAD, ViAD, AVAD, VCC, AVCC,

SED, AT, AAC, YOLO-SED, RBAD,

GPURegex, SELD) publishes inference

results to a dedicated topic on a DatAna

MQTT broker that resides on the same

infrastructure node. A DatAna NiFi node

on the same infrastructure node receives

the inference results by subscribing to

the same topic on the DatAna MQTT

broker.

MQTT

publish,

MQTT

subscribe

DatAna MQTT,

CATFlow, TAD,

VAD, ViAD,

AVAD, VCC,

AVCC, SED, AT,

AAC, YOLO-SED,

RBAD, GPURegex,

SELD

each AI

component

uses a

different data

model to

structure its

own raw

inference

results

5

DatAna: AI

inference result

consumption

A MARVEL component consumes raw

inference results produced by an AI

component in real time by subscribing to

MQTT

subscribe

DatAna MQTT,

CATFlow, TAD,

RBAD, AAC,

CATFlow,

AAC and

YOLO-SED

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 116 - 21 July, 2023

(Inference

Pipeline)

the topic of the DatAna MQTT broker,

where the AI component publishes its

inference results.

GPURegex,

Arduino Proxy

(GRN1)

raw

inference

result data

models

6

DatAna Inter-

Agent

Communication

(Inference

Pipeline)

DataAna NiFi inter-agent

communication to relay inference results

from NiFi nodes on lower EFC layers to

NiFi nodes on higher EFC layers:

(a) DatAna NiFi Edge forwards

information to DatAna NiFi Fog

(b) DataAna NiFi Fog forwards

information to DatAna NiFi Cloud

NiFi

communi

cation

DatAna NiFi

N/A (NiFi

Site-to-Site

communicati

on, enabled

via

configuration

files and the

NiFi UI data

flows)

7

DatAna – DFB

interaction

(Inference

Pipeline)

DataAna NiFi Cloud publishes

transformed inference results (SDM-

compliant) to the DFB Kafka brokers for

persistent storage. Each inference result

is published to a dedicated Kafka topic

according to the AI component that

produced the original result.

Kafka

publish
DatAna, DFB

Alert,

Anomaly,

MediaEvent

entities

8

DFB – SmartViz

interaction

(Inference

Pipeline)

(a) SmartViz receives inference results

in real time by subscribing to the

dedicated DFB Kafka topics where

transformed (SDM-compliant) AI

inference results are being published by

DatAna.

(b) SmartViz accesses historical

inference results from the Elastic Search

(ES) database using a REST API (DFB

ES-Proxy service)

(c) When a user of SmartViz verifies an

inference result, SmartViz publishes a

message to a dedicated topic on the DFB

Kafka brokers with the verification

information. The DFB updates the

corresponding inference result entry

accordingly in the ES database.

(a) Kafka

subscribe,

(b) REST

API, (c)

Kafka

publish

DFB, SmartViz

Alert,

Anomaly,

MediaEvent,

InferenceVer

ification

entities

9

DFB –

StreamHandler

interaction

(Inference

Pipeline)

StreamHandler receives inference results

in real time by subscribing to the

dedicated DFB Kafka topics where

transformed (SDM-compliant) AI

inference results are being published by

DatAna.

Kafka

subscribe

DFB,

StreamHandler

Alert,

Anomaly,

MediaEvent

entities

10

StreamHandler –

SmartViz

interaction

(Inference

Pipeline)

SmartViz requests AV data from

StreamHandler by providing the id of an

inference result. StreamHandler returns

the filename of the requested AV data.

REST

API

StreamHandler,

SmartViz
N/A

11

StreamHandler

MinIO AV Data

access

(Inference

Pipeline, Data

Corpus Data

Aggregation)

SmartViz and Data Corpus receive AV

data from StreamHandler by accessing

the files stored in its MinIO database.

DB I/O

StreamHandler,

SmartViz, Data

Corpus

N/A

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 117 - 21 July, 2023

12

DFB – HDD

(Inference

Pipeline)

HDD receives the current Kafka topic

partition configuration from the DFB

and returns a recommendation for an

optimised Kafka topic partition

configuration.

REST

API
DFB, HDD

Kafka Topic

Partition

Allocation

13

AI Model

Repository

(AI Training)

DynHP, FedL and AI components store

and retrieve ML models in the Cloud-

based AI Model Repository based on

MinIO.

DB I/O

AudioAnony,

VideoAnony, TAD,

SED, AT, ViAD,

AVAD, VCC,

AVCC, DynHP,

FedL

MLModel

entity

14

AV Dataset

reception

(AI Training)

An AI component (training mode)

receives annotated AV data from the

Data Corpus or from a local repository

and performs ML/DL training with the

received dataset.

REST

API, DB

I/O

DataCorpus,

AudioAnony,

VideoAnony, TAD,

SED, AT, ViAD,

AVAD, VCC,

AVCC, DynHP

N/A

15

FedL VCC

Server - FedL

VCC Client

(AI Training)

The FedL VCC server exchanges

information bidirectionally with the

FedL VCC client to process a

compressed/optimised AI model and

update it after performing federated

learning.

Federated

Learning

API

(based on

gRPC)

FedL, VCC

None,

internal raw

communicati

on model

16

DFB –

DataCorpus

(Data Corpus Data

Aggregation)

(a) The Data Corpus receives inference

results in real time by subscribing to the

dedicated DFB Kafka topics where

transformed (SDM-compliant) AI

inference results are being published by

DatAna.

(b) The Data Corpus also receives user

verification information about specific

inference results by subscribing to the

dedicated DFB Kafka topic, where they

are published by SmartViz.

Kafka

subscribe
DFB, DataCorpus

Alert,

Anomaly,

MediaEvent,

InferenceVer

ification

entities

The I/O Interface type protocols that were selected were consistent with the overall objectives

guiding the design of the interfaces. In particular, the DatAna and DFB components implement

a distributed messaging system (MQTT and Kafka respectively). These publication /

subscription messaging systems based on brokers are now considered to be industry standards

with multiple advantages. Most importantly, they allow the decoupling of direct communication

between pairs of components and enabling a common interface to be used by multiple

endpoints. In other cases (e.g., AV Registry, StreamHandler, DFB ES-Proxy, DFB-HDD, Data

Corpus), RESTful APIs have been implemented, conforming to the best practices followed by

the industry. In some cases, direct IO operations in data repositories have been implemented,

in conjunction with specific naming and information organisation conventions. Such are the

cases of the MinIO data store implemented by the StreamHandler and the AI Model Repository.

Finally, for each I/O interface type, a dedicated mark-down document with the specification of

the interface was created in the MARVEL GitLab Repository (Sections 3.4 and 3.6) and was

regularly updated (Figure 50).

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 118 - 21 July, 2023

Figure 50: A mark-down specification document for the AV Registry REST API

5.2.1 Onboard AV access

IFAG has developed an 8-microphone version of the Audiohub – Nano to meet the requirements

needed by the MARVEL project partners. It is a dual-PCB stacked design. It consists of 8

IM69D130 MEMS microphones that are arranged in a circular pattern to allow for optimal

direction finding.

It has the following features:

• Power source: USB connector

• 8x IM69D130 microphones

• Up to 48 kHz frequency sampling.

• Up to 24bit sampling resolution.

• Audio Data streaming via Wi-Fi

• Wi-Fi Module (Murata 1DX Wi-Fi-Module)

• PSoC 64 processing board

• SD card

Since the microphone board is connected via a header, it is very flexible, and different

microphone configurations and geometries can be evaluated by developing additional boards.

The PSoC 64 is the processing unit. It will be delivered with a default firmware streaming the

raw 8-channel audio data via Wi-Fi to an external cloud. The signal acquired from the 8

microphones can be also stored in an external micro-SD card (i.e., there is no Wi-Fi connection

available). The firmware capabilities of this board can be further programmed and debugged

for extended functionality via JTAG or SWD. D4.4 presents a detailed description of the board.

5.2.2 AV Registry access

The AV Registry component exposes a REST API that is accessible by all services deployed in

the MARVEL Kubernetes cluster. It allows them to retrieve information related to available

AV sources in each MARVEL use case / deployment. The REST API foresees two calls that

can be used to (1) retrieve all stored AV source documents as a JSON array and (2) retrieve a

specific AV source document as a JSON object by referring to a particular AV source id.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 119 - 21 July, 2023

Example for retrieving all AV source documents as a JSON array:

curl avregistrypod.svc:3000/sources/

Example for retrieving a specific AV source JSON object by providing the Camera object id:

curl avregistrypod.svc:3000/sources/"id"

The REST API returns the requested information in the form of JSON documents that follows

the specification of the Camera data model (Section 5.3.2.1).

5.2.3 AV streaming

MARVEL relies on the analysis of multimodal AV data to provide real-time inference results

to its users. The AV data are typically produced by AV sources at the Edge, i.e., microphone

and camera devices that are connected to the internet and provide a live streaming service of

the AV data. After analysing the available industry-standard protocols for live streaming of AV

data, the MARVEL Consortium nominated the Real-Time Streaming Protocol (RTSP) as the

protocol to be universally used for all needs of live streaming of AV data in the MARVEL

framework. The standard for RTSP has been published as RFC236 in 1998 by the Multiparty

Multimedia Session Control Working Group (MMUSIC WG) of the Internet Engineering Task

Force (IETF) in 1998 46.

According to the RFC236 standard, RTSP is an application-layer protocol for the setup and

control of the delivery of data with real-time properties. RTSP provides an extensible

framework to enable controlled, on-demand delivery of real-time data, such as audio and video.

Sources of data can include both live data feeds and stored clips. This protocol is intended to

control multiple data delivery sessions; provide a means for choosing delivery channels such

as UDP, multicast UDP, and TCP; and provide a means for choosing delivery mechanisms

based upon RTP.

Even though it is not one of the most recent protocols for live AV streaming, RTSP is still

widely used in the industry and also allows backwards compatibility with the majority of

commercial CCTV camera models, since it has been adopted by most manufacturers during the

last decades. This is a very important aspect in the context of MARVEL, as its business case

foresees the use of existing surveillance infrastructure of cities.

Τhe transmission of the anonymised live stream takes place in two stages: (1) the non-

anonymised audio or video live stream from the IP cameras or microphones is read and

processed by the VideoAnony/AudioAnony component, and (2) the anonymised audio or video

stream is published via an RTSP server so that other MARVEL services that need to consume

live AV data streams (e.g., AI components) can establish a connection to the server and start

consuming the anonymised live stream.

Specifically, the VideoAnony/AudioAnony component will read the visual/audio stream from

either IP sensors with RTSP or directly from the live stream if the sensors are installed on the

same device, perform the anonymisation algorithms and send the anonymised video/audio

stream to a public server implementing the RTSP protocol 47.

In the case of VideoAnony reading from IP sensors, it reads the RTSP streaming data from an

IP camera using OpenCV and then performs face and number plate detection and

anonymisation using deep learning models. With OpenCV compiled with the GStreamer

46 https://datatracker.ietf.org/doc/html/rfc2326

47 https://github.com/aler9/rtsp-simple-server

https://datatracker.ietf.org/doc/html/rfc2326
https://github.com/aler9/rtsp-simple-server

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 120 - 21 July, 2023

support, VideoAnony then sends the anonymised visual stream to the server at

“rtsp://ip:8554/anonystream”, where ip:8554 is the address of the TCP/RTSP listener. When

the server receives an RTP packet, it extends the RTP packet header by adding a one-byte

extension, as defined in Section 5.3.1 of [RFC3550] 48, with the absolute timestamp of when

this packet was processed by the server. A similar procedure applies to AudioAnony too, while

AudioAudio can directly access the microphone stream as it is installed on Edge devices in R2.

Clients that want to read the anonymised live visual stream must establish a connection with

the server. The particular transport protocol (i.e., UDP, TCP, or UDP multicast) is chosen by

the client while handshaking with the server. The transmission of the anonymised video

between the clients and the server takes place via a push-based protocol. Once a client

establishes a connection with the server, the RTSP server transmits packets to the client until

the latter ends the session.

5.2.4 DatAna: AI inference result publication

As explained in section 4.3.1, the process of publishing the results of the AI inference models

is done as messages in specific topics in MQTT brokers located typically in the same

infrastructure where the models are running (edge, fog or cloud). The inference models

subscribe to the AV streams and after the processing, they output the results in their respective

topics in MQTT (named as per the acronym of the component in MARVEL, e.g., “SED” topic

for the SED component). This way the inference models are decoupled from the rest of the

components of the pipeline facilitating their integration. The output of each inference model

can be different and communicated to the DatAna developers to allow further transformation,

although some specific fields must be part of the output:

• “id”: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for

the specific event can be automatically assigned by component.

• “topic”: This field indicates the name of the queue the message is intended to.

• “owner”: A field containing a JSON encoded sequence of characters referencing the

unique Ids of the owner(s). In the case of MARVEL, it is the use case name (e.g., MT1).

• “type”: The type of the entity. It must be one of the following values: "MediaEvent",

“Alert” or “Anomaly”.

• “timestamp” or “startTime” / ”endTime”: Absolute timestamp for the event start/end (if

the event is within a time span, or a single timestamp if it is a single time). Following

the ISO8601 UTC format.

• “dateProcessed”: Timestamp of the processing of the entity by the inference model.

• “detectedBy”: Name of the MARVEL infrastructure node (edge, fog or cloud) that hosts

the AI component that produces the detected event.

• “cameraId”: Unique identifier of the AV device (e.g., camera or microphone) from

where the AV stream was taken as in the AV registry.

• “MLModelId”: The id of the MLModel that generated this event. It must be one of the

models defined in the AV Registry.

48 https://datatracker.ietf.org/doc/html/rfc3550#section-5.3.1

https://datatracker.ietf.org/doc/html/rfc3550#section-5.3.1

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 121 - 21 July, 2023

5.2.5 DatAna: AI result consumption

This I/O Interface type refers to cases where a MARVEL component needs to consume raw

inference results from an AI component that resides on the same infrastructure node. This local

interaction between the components is not direct but decoupled and it is enabled by the DatAna

MQTT broker that is also hosted on the same infrastructure node. More specifically, the AI

component publishes its inference results on a dedicated topic on the DatAna MQTT broker.

The component that needs to consume the inference results subscribes to this topic of the

DatAna MQTT broker and receives the results in real time as MQTT messages.

In R2, this is applicable to the interaction between (i) CATFlow and TAD, (ii) CATFlow and

RBAD, (iii) AAC and GPURegex and (iv) YOLO-SED and Arduino Proxy (GRN1).

5.2.6 DatAna Inter-Agent Communication

Once the inference models provide their outputs to the nearest MQTT broker, DatAna provides

specific data flows for each inference result to read these data and transform it to the required

input by MARVEL in the form of the Smart Data Models for Alert, Anomaly or MediaEvent.

In order to do that, DatAna provides data flows deployed at the nearest NiFi instance to where

the inference is running (edge, fog or cloud) that subscribe to each of the MQTT topics for each

specific queue, retrieve the message in a streaming fashion and process them to make the

necessary transformation and enrichment (e.g., adding timestamps, normalising some values

and moving the inference results-specific fields to a common “data” field of the resulting

output.

Once processed in the previous step, the final result of the DatAna processing in each layer

(edge, fog or cloud) is a set of messages in the agreed Smart Data Model format for the Alert,

Anomaly or MediaEvent data models. These messages are routed using the NiFi Site-to-Site

protocol (S2S) to the upper NiFi in the topology (e.g., from to the DatAna at the Edge to the

DatAna at the Fog and then to the DatAna at the cloud) as presented in Figure 51.

The data from these remote instances (typically from other fog servers or edge devices) are

directed to the NiFi in the cloud via specific NiFi output ports, as shown in the last Nifi

processor depicted in Figure 51. In this depiction, which is a partial screenshot taken from one

of the data flows deployed at the NiFi instance at the fog server located at GRN, the last

processor is a NiFi Remote Process Group. This processor acts as an output port pointing to the

URL of the NiFi instance in the cloud, thus enabling communication with the cloud layer.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 122 - 21 July, 2023

Figure 51: DatAna – Communication between NiFi instances via output ports and S2S

The last step in the communication of messages is the reception of the messages at the cloud

layer. The first processor depicted in Figure 51 (FogToCloud) is an input port located in the

NiFi service deployed in the cloud, which allows receiving the incoming secured S2S

communication between different NiFi instances using TLS. The messages do not suffer any

alteration during the transfer between layers.

5.2.7 DatAna - DFB

Once in the cloud, DatAna forwards the messages to the DFB via the established Kafka topics

of the same name as the field “topic” retrieved from the original output of the models. This is

done via a specific NiFi processor that publishes to the specific topic of Kafka

(PublsihKafkaRecord), as shown in the middle of Figure 52. Kafka is deployed as a service of

the DFB in the Kubernetes cluster, ensuring the communication between the cloud NiFi and

Kafka services.

Figure 52: DatAna – From NiFi to the Kafka of the DFB

5.2.8 DFB - SmartViz

The DFB interacts with SmartViz in three different ways.

(a) SmartViz real-time access to AI inference results aggregated at the DFB. SmartViz

needs to access the inference results that are being received by the DFB in real time in

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 123 - 21 July, 2023

order to deliver them to the user. This is achieved through the subscription of SmartViz

to the DFB Kafka topics, to which DatAna NiFi Cloud publishes all the collected AI

inference results that have been transformed into the SDM-compliant MediaEvent,

Anomaly and Alert data models.

(b) SmartViz access to historical AI inference results aggregated at the DFB. SmartViz

needs to retrieve AI inference results that have been persistently stored at the DFB

Elastic Search (ES) repository in order to deliver them to the user. For this purpose, a

service has been developed for the DFB named “ES-Proxy” that exposes a REST API,

which supports specific data queries to be made to the ES database. The supported

queries return JSON documents and include the following indicative examples:

• Filter the AI inference results from a specific AI component in a specific time range.
curl -i -u -XPOST https://datafusion-es-proxy.marvel-
platform.eu/data/range/ -H "Content-Type: application/json; charset=utf-
8" -d '{ "index": "catflow-v", "start": "2021-11-26T15:32:00Z", "end":
"2021-11-26 15:32:45", "path": "vehicle.entry.ts" }'

• Filter the AI inference results from CATFlow in a specific time range and refer to a

specific road lane to return information on the vehicles that were associated with the

road lane.
curl -u -POST https://datafusion-es-proxy.marvel-platform.eu/data/lane/ -
H "Content-Type: application/json; charset=utf-8" -d '{ "start": "2021-
11-26 15:32:00", "end": "2021-11-26 15:32:45", "lane": "Mgarr - Triq iz-
Zebbiegh - Westwards" }'

(c) Update historical AI inference results at the DFB when verified by the SmartViz

user. SmartViz provides the option to the user to verify the accuracy of the AI inference

results that are presented. This is particularly useful for collecting data labels for further

AI training and optimisation of the MARVEL AI models. When a user of SmartViz

verifies an AI inference result, SmartViz publishes a message to a dedicated topic

(“InferenceVerification”) on the DFB Kafka broker with the verification information

that refers to a specific inference result id (Section 5.3.5). The DFB updates the

corresponding inference result entry in the ES database according to the received

information.

5.2.9 StreamHandler - DFB

StreamHandler subscribes to the DFB Kafka topics and consumes the AI inference results that

are published by DatAna.

Based on information contained in each inference result (i.e., cameraId, startTime, endTime

and timestamp if startTime, endTime are not present), StreamHandler constructs an AV file and

stores it in the MinIO storage component. This AV file can be accessed by SmartViz upon

request through the dedicated I/O Interface (Sections 5.2.10, 5.2.11) and by providing the

corresponding inference result id.

An indicative message received from the DFB is presented in Figure 53.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 124 - 21 July, 2023

Figure 53: Indicative input data structure for StreamHandler's dfb-processor service

5.2.10 StreamHandler - SmartViz

The interaction between SmartViz and StreamHandler occurs through the REST API exposed

by StreamHandler.

The URLs that SmartViz needs to use to access the REST APIs of the StreamHandler instances

deployed at each pilot are presented in Figure 54.

Figure 55 and Figure 56 demonstrate the two endpoints that SmartViz can use to interact with

StreamHandler and request AV data segments that refer to a specific inference result that has

been delivered to the user:

a) On-demand video request, where SmartViz provides the AV source ID and the

start/end timestamps. In this case, the AV source ID refers to the AV source (Camera

data model, Section 5.3.1), whose stream was analysed by the AI component to produce

an inference result. The start/end timestamps refer to the absolute time period that the

inference results correspond to.

b) Event-based video request, where SmartViz provides the event ID of an inference

result, as published by DFB (described in subsection 5.2.9).

In the first case, StreamHandler produces an AV data segment that matches the requested time

period by using the AV data that has already been stored in its storage component (MinIO) from

the relevant segmented AV data files. StreamHandler stores the newly created AV data segment

that it produces for the request also within the MinIO repository, then it returns a response to

SmartViz that contains a URL, where the requested AV data segment can be accessed from.

In the second case, StreamHandler directly searches in the MinIO filesystem for a file with the

provided event ID and then returns the URL of that file to SmartViz.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 125 - 21 July, 2023

Figure 54: StreamHandler URL for the API in each pilot

Figure 55: On-demand API endpoint example

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 126 - 21 July, 2023

Figure 56: Event-based API endpoint example

5.2.11 StreamHandler MinIO AV Data access

MinIO is used to store the AV files created by StreamHandler. The origin of the data stored in

MinIO can be from:

• Processing and segmenting live AV data streams from the AV sources. The

segmentation process is based on a stable time interval that is configurable (e.g., every

10, 20, 30 seconds). The created files are stored in the MinIO in the format

SourceID_start-timestamp_end_timestamp.fileType, where filetype is mp4 for the

videos and mp3 for the audio streams. The definition of the fields SourceID,

start_timestamp and end_timestamp have been explained in subsection 5.2.10.

• Requests to REST API/DFB-processor services. In both cases, the relevant components

access the AV files stored in the MinIO, perform the necessary changes (AV segments’

combination) and store the newly created AV file back in the MinIO. The newly created

files path is later shared with SmartViz for remote access.

5.2.12 DFB - HDD

HDD provides optimisation recommendations to DFB, as per the application settings. More

than one producers in Apache Kafka can be supported., with one Kafka topic per each AI

component. Also, more than one consumer can be supported. Consumers subscribe to the topics

where inference data results are published. In order to handle those application settings as input,

but also to provide back the optimised outputs, HDD interfaces with DFB and mutually

exchange the data required for the operation in the JSON format. DFB is communicating to

HDD the application setting inputs and, after the optimisation, HDD returns back to DFB the

updated setting configuration as output. The HDD receives periodically the current Kafka topic

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 127 - 21 July, 2023

partition configuration from the DFB and returns a recommendation for an optimised Kafka

topic partition configuration. The running example of a file excerpt to be exchanged is the

following:

[
 {
 "name": "topic1",
 "internal": false,
 "partitions": {
 "partition": 0,
 "leader": {
 "id": 2,
 "idString": "2",
 "host": "broker1.provider.com",
 "port": 9094,
 "rack": null
 },
 "replicas": {
 "id": 2,
 "idString": "2",
 "host": "broker1.provider.com",
 "port": 9094,
 "rack": null
 },
 "isr": {
 "id": 2,
 "idString": "2",
 "host": "broker1.provider.com",
 "port": 9094,
 "rack": null
 }
 }
 },
 {
 "name": "topic2",
 "internal": false,
 "partitions": {
 "partition": 0,
 "leader": {
 "id": 1,
 "idString": "1",
 "host": "broker2.provider.com",
 "port": 9094,
 "rack": null
 },
 "replicas": {
 "id": 1,
 "idString": "1",
 "host": "broker2.provider.com",
 "port": 9094,
 "rack": null
 },
 "isr": {
 "id": 1,
 "idString": "1",
 "host": "broker2.provider.com",
 "port": 9094,
 "rack": null

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 128 - 21 July, 2023

 }
 }
 }
]

Where name is the topic name, internal denotes whether the given topic is an internal topic

or not, partitions are the running partitions for the given topic, partition is the

partition number, leader is the leader partition, replicas are the replica partitions, id is

the partition id, idString is the partition id in string format, isr are the in-sync replicas,

host is the broker host, port is the host port, and rack is the host rack.

HDD exposes a REST API to facilitate the data exchange between DFB and HDD. The REST

API supports:

• A POST request that can be used by the DFB to dispatch the current Kafka topic

partition configuration document to HDD. Indicative example:

curl -XPOST -d@partitions.json -H "cookie: $COOKIE" https://hddv1.svc/

The command requires that the attachment `partitions.json` is available in the directory

from which curl is called.

After processing the input the service will send back a string saying "Input file saved"

• A GET request that can be used by the DFB to retrieve the optimised Kafka topic

partition configuration document that is recommended by the HDD. Indicative example:

curl -XGET -H https://hddv1.svc/ | python -m json.tool

The expected output of this request is the same `partitions.json` file with modified

content. Once this output is returned to the DFB, it is subsequently deleted from the

HDD. If another GET request is issued, the service returns a "No output present"

message.

Considering that it is not possible to update the DFB Kafka partitions during system operation

since such an action could cause a disruption or failure of the DFB service, the following semi-

automated pipeline is envisaged for updating the DFB Kafka topic partitions:

1. The DFB periodically retrieves the document that refers to the Kafka topic partition

configuration that is currently applied.

2. The DFB issues a POST request to the HDD REST API to send the current partition

configuration document to the HDD.

3. The DFB issues a GET request to the HDD REST API to receive the recommended

partition configuration document from the HDD.

4. The DFB compares the original document to the one that has been recommended and

returned by the HDD.

5. If the two partition configuration documents are found to be different, an email alert is

generated by the DFB that is received by the DFB administrator.

6. The DFB administrator can proceed with manual actions to update the DFB Kafka

partitions.

5.2.13 AI Model Repository access

The AI Model Repository (AIMR) is an internal service offering a common sharing point where

all the models produced by the AI Training Pipeline. Specifically, all the AI models produced

are stored on the AIMR such that they are accessible by the AI components running on the

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 129 - 21 July, 2023

MARVEL platform. The AIMR is based on MinIO and its internal organisation reflects the

several use cases considered in MARVEL, i.e., each use case is associated with a bucket holding

the model and a human-readable definition describing the main properties of the specific model.

In this way, once a new or updated AI model is ready for a specific component, the component

can download it from the AIMR. The AIMR serves also in the training and compression

pipeline: when a compressed model is ready for deployment, it is uploaded on the AIMR and

made available to the components that would need it.

It was deemed necessary that each AI model/weights saved on the AI Model Repository is

coupled with metadata, packed into a JSON file that is called Model Descriptor. The Model

Descriptor may contain information like the model’s reference performance, its size, the

minimum specs for running the model, etc. Its internal structure follows the MLModel data

model (Section 5.3.4). These documents are human-readable, and their objective is to assist in

selecting one of the AI models stored in the repository that fits for the specific purpose. The id

referenced in an MLModel is also injected in all inference results that are produced through the

use of the associated AI model.

Both the AI model’s filename and the Model Descriptor (MLModel) have the same name, but

the .json suffix needs to be attached to the latter.

Example

File containing the model: avcc-headcount-au-full-v0.1

File containing the model descriptor: avcc-headcount-au-full-v0.1.json

The interaction and management of the AIMR is done through the standard MinIO APIs. An

example of how the AIMR interacts with some of the MARVEL components is provided in

Section 5.1.12.

5.2.14 DataCorpus: AI training

The ingested datasets in the Data Corpus can be retrieved by the AI components that are

deployed at the MARVEL Kubernetes cluster, facilitating their ML training and testing

procedures. This interaction can involve two REST APIs to: i) retrieve a specific dataset based

on the dataset ID, or ii) retrieve a specific snippet based on the snippet’s ID.

In general, the following naming scheme is applied for the datasets’ IDs.

DatasetID = <Project>.<DataProvider> [optional] _ <Device_id>.<Category (Video,

Audio, or Video-Audio)>.<Annotated (Yes/No)>.<Anonymized (Yes/No)>.<Original data

or Augmentation method><Date (dd-mm-yyyy)>.<Incrementing number starting from ‘1’>

Example ID: MARVEL.GRN_Device1.Video.Y.Y.OriginalData.18-05-2022_1

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 130 - 21 July, 2023

The datasets are composed of a list of snippets. Each snippet may have the core data file (video

or audio), a file with annotation results, and/or a file with inference results. Similarly with

datasets, the following naming scheme is used.

Therefore, the first API receives a dataset ID and returns a list with the underlying snippet IDs.

If the dataset does not exist or if the dataset does not contain any snippets at the moment, an

empty list is returned.

The second API receives a snippet ID and returns a list with the underlying file objects. Again,

if the snippet does not exist or if the snippet does not contain any files at the moment, an empty

list is returned.

In the typical AI Training data flow, an AI component: i) asks for a dataset based on its ID, ii)

retrieves the snippets list, and iii) iteratively retrieves the snippets’ files.

5.2.15 FedL Server – FedL Client

The client and the server use gRPC protocol to communicate and exchange model parameters.

The data model used is defined by the underlying flower 49 Federated Learning library. The

data shared is a compressed numpy 50 array.

In addition to the model parameters, we use multiple metrics relevant to MARVEL-developed

non-uniform sampling Federated Learning strategy designed with flaky communication in

mind. Several model metrics (such as performance, number of relevant training data points,

model gradient variance etc.) are provided by clients to the server so that the server can decide

which updates to use. This also allows for varying asynchronous learning, since the frequency

of the data can differ from client to client (e.g., real-time streaming data vs. batch processing of

couple of days/weeks worth of data).

5.2.16 DFB - DataCorpus

The AI components can process data collected from the R2 pilot use cases at runtime with

trained ML models and produce inference results. The user can also verify some of these results

when they are delivered through SmartViz. In all cases, information is published on dedicated

Kafka topics at the DFB. The scheme of these results complies with the data models in which

49 https://flower.dev/

50 https://numpy.org/

SnippetID = DatasetID__<Incrementing number starting from ‘1’>

Example ID: MARVEL.GRN_Device1.Video.Y.Y.OriginalData.18-05-2022_1__1

Example of Snippet Files naming:

• Main data file:

o MARVEL.GRN_Device1.Video.Y.Y.OriginalData.18-05-2022_1__1.mpeg

• Annotation file:

o MARVEL.GRN_Device1.Video.Y.Y.OriginalData.18-05-2022_1__1.txt

• Inference resutlts file:

o MARVEL.GRN_Device1.Video.Y.Y.OriginalData.18-05-2022_1__1.score

https://flower.dev/
https://numpy.org/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 131 - 21 July, 2023

AI inference results are formatted by DatAna (MediaEvent, Alert, Anomaly), presented in

Section 5.3.2.

At the Data Corpus end, a JAVA application is implemented to consume this information from

the DFB Kafka and ingest it in its repository. Based on the device/source ID incorporated in the

inference results (please refer to the Camera data model in Section 5.3.2.1) and the date of the

timestamps in the MediaEvent, Alert, Anomaly data models, the Corpus can map the data to an

existing AV dataset (i.e., we consider that there is a single dataset with the original recordings

for each pilot device for each day), and based on the start and end timestamps, the Corpus can

map the AV snippet file produced by StreamHandler to the relevant snippet entry within the

dataset.

5.3 Data Models

The specification of I/O Interfaces and Data Models are the two main pillars in the integration

of multiple components into a unified system to ensure its successful operation. This section

presents the second pillar, i.e., the specification of Data Models.

The Data Models that have been specified and implemented for R2 ensure that there is a uniform

and consistent way of structuring data that needs to be exchanged between MARVEL

components or stored for subsequent access. The MARVEL R2 Data Models complement the

I/O interfaces specified in Table 6 of Section 5.2. Table 6 also provides the associations between

I/O Interfaces and Data Models.

In order to improve the visibility and acceptance of MARVEL results, we have made an attempt

to align the data models we use for storage and handling of data to existing standardisation

initiatives. One of the most promising initiatives is the Smart Data Models (SDM) program 51,

started initially by FIWARE and now promoted by the FIWARE Foundation, TM Forum and

IUDX, among others. This is one of the de-facto standards for data models in Europe and covers

aspects related to smart applications, including Smart Cities, mobility and others relevant to

MARVEL.

The SDM program52 is a joint collaborative program to provide multisector, agile, standardised,

free and open-licensed data models based on actual use cases and open standards, which is key

for creating a global digital single market of interoperable and replicable (portable) smart

solutions in multiple domains (e.g., smart cities, smart agrifood, smart utilities, smart industry).

The SDM program is led by the FIWARE Foundation, TM Forum, IUDX, and is open to other

entities to join. All data models are public and royalty-free nature of specifications. The SDM

specification is hosted in GitHub 53 and contains JSON Schemas and documentation on Smart

Data Models for different Smart Domains. For each Domain (industrial sector), there is a

repository containing as submodules the link to the Subjects containing all the data models

related. For each Vertical (Subject) there is a repository containing the data models related to

that vertical.

The general principles of the SDM program are:

1. Driven-by-implementation approach: Specifications will be considered stable as soon

as enough end-user organisations (e.g., cities) have validated them in practice.

51 https://smartdatamodels.org/

52 https://smartdatamodels.org/index.php/governance/

53 https://github.com/smart-data-models/

https://smartdatamodels.org/
https://smartdatamodels.org/index.php/governance/
https://github.com/smart-data-models/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 132 - 21 July, 2023

2. Open-closed. Breaking changes to already approved specs is not allowed. Instead, new

versions shall deprecate attributes, add new attributes, extend enumerations, etc.

3. Open contribution. Contributions open to anybody (not only members), while final

decision-making corresponds to the administrators of the domains and Subjects.

Management (currently TM Forum, FIWARE Foundation, and IUDX) could oppose

some contributions if it does not meet coding guidelines.

The SDM program has been particularly active in the domain of Smart Cities, providing a series

of data models that are applicable to IoT and AI technologies. In this context, during the early

stages of integration and design activities of the MARVEL framework, it was decided that it

would conform to and adopt the Smart Data Models (SDM) standard for its data modelling

needs, wherever possible, as this approach was found to provide a strategic advantage to

MARVEL.

To that extent, the data models provided by SDM and in particular the ones within the SDM

Smart City Domain were carefully examined to identify the ones that could most closely match

the specific needs of MARVEL. The following SDM data models were promoted for use in the

MARVEL framework:

• Camera (Section 5.3.1) This data model was selected for describing all MARVEL AV

sources.

• MediaEvent (Section 5.3.2). This data model was selected for describing all MARVEL

general-purpose AI inference results produced by AI components.

• Alert (Section 5.3.2). This data model was selected for describing all MARVEL AI

inference results produced by the MARVEL AI components that assume the form of an

alert for MARVEL users.

• Anomaly (Section 5.3.2). This data model was selected for describing all MARVEL AI

inference results produced by the MARVEL AI components that assume the form of a

detected anomaly.

• MLModel (Section 5.3.4). This data model was selected for describing all MARVEL

AI models.

These SDM data models were found to be the most relevant for the needs of the MARVEL

project, but the original specifications did not fully address all needs being considered.

Therefore, it was found necessary to extend the specifications of these data models by re-

purposing existing and adding new fields that could serve all remaining requirements. This was

carefully performed so as not to break the compliance with the SDM standard.

The specifications of all SDM data models are structured as JSON documents and include a set

of fields, which are categorised as optional and mandatory. The adaptations of the selected

SDM data models that were performed for MARVEL preserved the original data model names

and all optional and mandatory fields. Wherever the original definition of SDM data model

fields was not sufficient to address all MARVEL requirements, an attempt was made to re-

purpose existing fields by specifying the exact context in which they should be used within

MARVEL. Such cases were explicitly categorised in the MARVEL data model specifications

as “Properties that are modified for MARVEL”. In cases, where this was not possible, the new

fields that were added for the needs of MARVEL were also categorised as optional (for use in

MARVEL) and mandatory (for use in MARVEL). This process ensured that SDM-compliance

is maintained and that all the essential information that is required for the successful operation

of all MARVEL components is included in the MARVEL data models. In addition, all SDM

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 133 - 21 July, 2023

conventions were implemented in the definition of new fields and in the specification of the

field value types, syntax and format.

Finally, for each MARVEL data model, a dedicated mark-down document with the

specification of the data model was created maintained in the MARVEL GitLab Repository

(Sections 3.4 and 3.6, Figure 57).

Figure 57: A mark-down specification document for the MediaEvent data model

The following sections 5.3.1– 5.3.5 describe the implemented MARVEL data models in more

detail. A complete documentation of the MARVEL data model specifications can be found in

Appendix B.

5.3.1 AV Source Data Model (Camera)

The MARVEL Camera data model is a specialisation of the original SDM Camera data model
54 that was implemented to describe all AV data sources in MARVEL, including cameras,

microphones and anonymisation components (VideoAnony, AudioAnony). Although

microphones and anonymisation components do not match the context of the original SDM data

model, the Camera data model was the only SDM data model that was relevant enough to

describe all MARVEL AV sources. It was decided not to propose the generation of other,

completely new, dedicated data models, but rather try to extend the Camera data model

definition to account for such cases in order to preserve SDM compliance.

This data model was used for the definition of documents that describe the AV sources in each

pilot (GRN, MT, UNS), which are managed by the AV Registry component (Section 4.1.3).

The MARVEL Camera data model includes fields that refer to the id, the type, the

georeferenced position, the live RTSP stream URL, the video resolution, the video framerate,

the audio channels and the type of encoding of the AV source among others.

The most notable fields, which are essential to the operation of the AI components are the

following:

54 https://github.com/smart-data-models/dataModel.Device/tree/master/Camera

https://github.com/smart-data-models/dataModel.Device/tree/master/Camera

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 134 - 21 July, 2023

• id: This is a unique id that is assigned to each MARVEL AV source. AI components

are required to reference this id in each inference result they produce so that it is possible

to subsequently associate each inference result to the AV source, whose streaming data

were used by the AI component to generate the specific inference result.

• streamURL: This is the complete network path to the live RTSP-based AV stream of

the corresponding AV source, which is required by AI components, StreamHandler and

SmartViz to access the necessary AV data.

A complete documentation of the specification of the MARVEL Camera data model is provided

in Appendix B.

5.3.2 SDM-compliant AI Inference Result Data Models (MediaEvent, Alert, Anomaly)

A crucial aspect of the ‘AI Inference Pipeline’ is the production, transmission, storage and

consumption of AI inference results. Therefore, it was of paramount importance to specify data

models for efficiently structuring these results to maintain interoperability across the MARVEL

components that manage such data. Three data models are specified by MARVEL for this

purpose, namely the MediaEvent, Alert and Anomaly data models, which are specialisations of

their original SDM data model counterparts with the same names.

All raw AI inference results produced by the MARVEL AI components in the ‘AI Inference

Pipeline’ are collected by DatAna. DatAna is responsible for transforming these raw inference

results into the three SDM-compliant aforementioned data models (MediaEvent, Alert,

Anomaly) before relaying them to the DFB for persistent storage and consumption by other

components (e.g., SmartViz, StreamHandler, Data Corpus).

While the three data models have a different focus, all of them share a common set of fields.

The most notable ones are:

• id: A unique id assigned to each inference result by the AI component that produced the

original raw inference result counterpart.

• cameraId: The id of the Camera entity (AV source) that produced the AV stream and

that was analysed to generate the inference result.

• owner: In the case of MARVEL, the pilot and use case code is used. ENUM: [GRN3,

GRN4, MT1, MT3, UNS1].

• detectedBy: The ID of the device at which the event was detected. In the case of

MARVEL, a unique id of the infrastructure node that hosts the AI component instance

that produced the original raw inference result counterpart is used.

• data: In the case of MARVEL, this field is used to encapsulate any case-specific data

structures, produced by each MARVEL AI component. This field can possibly include

multiple fields and nested structures.

• startTime: Within MARVEL, in case the inference result refers to a time period, this is

the absolute timestamp pointing to the start time of the period. Following the ISO8601

UTC format.

• endTime: Within MARVEL, in case the inference result refers to a time period, this is

the absolute timestamp pointing to the end time of the period. Following the ISO8601

UTC format.

• timestamp: Within MARVEL, in case the inference result refers to a time instant, this

is the absolute timestamp pointing to the exact time this instant. Following the ISO8601

UTC format.

• MLModelId: The id of the MLModel that was applied by the AI component that

produced the original raw inference result counterpart.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 135 - 21 July, 2023

In addition, the three data models used for SDM-compliant AI inference results in MARVEL,

include certain time/date fields that are used for logging the time of sequential intermediate

steps in the ‘AI Inference Pipeline’, which are also foreseen to be used in the context of the

MARVEL benchmarking activities (T5.4). Table 7 presents these fields and indicates whether

these fields are foreseen by the original SDM data model specification or have been introduced

in the MARVEL specification. The values of all these fields follow the ISO8601 UTC format55,

with the following conventions:

• Syntax: YYYY-MM-DD´T´HH:MM:SS.SSS´Z´

• Example: "2022-04-01T10:08:24.620+02:00"

• The last section (+02:00) denotes the offset from the UTC time zone.

• In case the timestamp is in the UTC time zone, the following syntax is used: "2022-04-

01T10:08:24.620Z".

Table 7: Time/Date fields used in the MARVEL Inference Result Data Models and presence in original SDM

data models

Time field

dateDetected

Date of

detection of the

event in the

inference model

dateCreated

Date of entry to

DatAna

dateProcessed

Date of exit

from DatAna to

the DFB

dateStored

Date of storage

in Elastic Search

dateModified

Last update by

other components

(i.e., SmartViz)

AI Inference

Result type
SDM

MAR

VEL
SDM

MAR

VEL
SDM

MAR

VEL
SDM

MAR

VEL
SDM

MAR

VEL

Alert X X X X X X X

Anomaly X X X X X X X X

MediaEvent X X X X X X X

Documents belonging in these three data models can be distinguished by the value of the field

“type”, which receives the value “MediaEvent”, “Alert” or “Anomaly” in each case.

The following sub-sections present more details regarding the MARVEL MediaEvent, Alert

and Anomaly data models.

5.3.2.1 MediaEvent Data Model

The MARVEL MediaEvent data model is a specialisation of the original SDM MediaEvent

data model56. The purpose of the model is to specify any potential event based on the results of

the ‘AI Inference Pipeline’. The MediaEvent data model is used for events or specific situations

detected by the inference models that cannot be categorised as alerts or anomalies (e.g., crowd

counting at a given moment of time). Events can be of different “eventType” or category (e.g.,

“crowd-detected”), which basically covers all the spectrum of messages issued by the AI

models not falling under the Anomaly or Alert data models.

The mandatory properties are: eventType, id, type, cameraId, startTime, endTime, timestamp

(either timestamp or startTime/endTime are mandatory), owner, data, MLModelId, detectedBy,

dateDetected, dateCreated, reviewed, verified.

The complete documentation of the MediaEvent data model specification can be found in

Appendix B.

55 https://www.iso.org/iso-8601-date-and-time-format.html

56 https://github.com/smart-data-models/dataModel.Multimedia/blob/master/MediaEvent/doc/spec.md

https://www.iso.org/iso-8601-date-and-time-format.html
https://github.com/smart-data-models/dataModel.Multimedia/blob/master/MediaEvent/doc/spec.md

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 136 - 21 July, 2023

5.3.2.2 Alert Data Model

The MARVEL Alert data model is a specialisation of the original SDM Alert 57 data model.

The purpose of the model is to indicate potential alerts based on the results of the inference

pipeline, which need to be delivered to the user.

The mandatory properties are: alertSource, category, id, type, cameraId, startTime, endTime,

timestamp (either timestamp or startTime/endTime are mandatory), owner, data, MLModelId,

detectedBy, dateDetected, dateCreated, reviewed, verified.

The complete documentation of the Alert data model specification can be found in Appendix

B.

5.3.2.3 Anomaly Data Model

The MARVEL Anomaly data model is a specialisation of the original SDM Anomaly 58 data

model. The purpose of the model is the indication of potential detected anomalies based on the

results of the inference pipeline, i.e., rare events that significantly differ from the events that

are normally expected (e.g., a loud sound detected by a microphone in a quiet area).

The mandatory properties are: anomalousProperty, id, type, cameraId, startTime, endTime,

timestamp (either timestamp or startTime/endTime are mandatory), owner, data, MLModelId,

detectedBy, dateDetected, dateCreated, reviewed, verified.

The complete documentation of the Alert data model specification can be found in Appendix

B.

5.3.3 Raw AI Inference Result Data Models

The MARVEL AI components implement different data models for structuring their raw output

of inference results according to the nature and objectives of the respective AI model. However,

the raw AI inference result data models are all required to adhere to certain principles in order

to allow the transformation of the raw results into the SDM-compliant equivalents by DatAna.

Therefore, the use of certain fields such as id, cameraId, owner, detectedBy, timestamp,

startTime, endTime, dateDetected, MLModelId that are derived from the SDM-compliant

data models are mandatory. Other fields that are case-specific for each AI component are

transferred to the internal structure of the “data” field when the raw result is transformed into

the SDM-compliant equivalent.

The following sub-sections present the data model for the raw inference results produced by

each MARVEL AI component.

5.3.3.1 CATFLow output Data Model

The GRN CATFlow component produces an output message whenever a vehicle or pedestrian

is detected. The vehicle and pedestrian detections are separated into two types of data models.

The CATFlow Vehicles data model provides information on the detected vehicles (e.g.,

entry/exit points, trajectory in the pixel space of the analysed video frames, road lane, speed,

etc).

Main fields: location, vehicle.type, vehicle.name, vehicle.entry, vehicle.lane_flow_uuid,

vehicle.distance, vehicle.speed_kmh, vehicle.trajectory_points.

57 https://github.com/smart-data-models/dataModel.Alert/blob/master/Alert/doc/spec.md

58 https://github.com/smart-data-models/dataModel.Alert/blob/master/Anomaly/doc/spec.md

https://github.com/smart-data-models/dataModel.Alert/blob/master/Alert/doc/spec.md
https://github.com/smart-data-models/dataModel.Alert/blob/master/Anomaly/doc/spec.md

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 137 - 21 July, 2023

The CATFlow Pedestrian data model provides information on the detected pedestrians (e.g.,

trajectory in the pixel space of the analysed video frames, start/end time of detection, etc)

Main fields: location, pedestrian.start_ts, pedestrian.end_ts, pedestrian.time_seconds

pedestrian.trajectory_points

A complete documentation of the specification of the CATFlow Vehicles and CATFlow

Pedestrians data models can be found in Appendix B.

5.3.3.2 TAD output Data Model

The GRN TAD component produces an output message whenever an anomalous speed is

detected from the analysis of the raw inference results produced by CATFlow.

The TAD data model provides information on the detected anomaly.

Main fields: category, thresholdBreach

The CATFlowid fields and the trajectory points fields were added to the TAD data model in

order to allow a reference to the original CATflow trajectory and output the trajectory points of

anomalous tracks.

A complete documentation of the specification of the TAD data model can be found in

Appendix B.

5.3.3.3 ViAD / AVAD output Data Model

The role of the ViAD and AVAD components by AU is to detect anomalies by analysing video

frames either exclusively or in combination with audio analysis respectively. For each analysed

AV segment, they produce a message that refers to the time period corresponding to that video

frame. According to whether an anomaly is detected or not, their raw inference results are

transformed to a document following the MediaEvent or Anomaly data model respectively.

The ViAD / AVAD data model provides information on whether an anomaly has been detected

by assigning a corresponding value to a field named “predictedAnomaly” which is of boolean

type.

A complete documentation of the specification of the ViAD / AVAD data model can be found

in Appendix B.

5.3.3.4 VCC / AVCC output Data Model

The role of the VCC and AVCC components by AU is to analyse video frames either

exclusively or in combination with audio analysis respectively to provide the predicted number

of persons in the input AV segment as well as the probability of human presence in the areas of

the analysed video segment.

The probability of human presence is delivered as normalised values that correspond to the

pixels of the analysed video frame in the form of a heatmap (thermographic image) that can be

used for visualisation purposes.

For each analysed AV segment, VCC and AVCC produce an output message that refers to the

time period corresponding to that video segment and contains the predicted number of persons

in the input image. The heatmap is calculated and included in the output message periodically

and not continuously.

The VCC / AVCC data model provides information on the number of detected people and a

heatmap. In R2, the heatmap is encoded as an ASCII character string using the Base64 scheme.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 138 - 21 July, 2023

Main fields: predictedCount, heatmap

A complete documentation of the specification of the VCC / AVCC data model can be found

in Appendix B.

5.3.3.5 SED output Data Model

The raw inference results of the MARVEL SED component follow the SED output data

model, which specifies how the detected sound events are represented in the pipeline.

Each event has absolute timestamp fields “startTime” and “endTime” in ISO8601 UTC format.

The “label” field stores the event class label in text format.

A complete documentation of the specification of the SED data model can be found in

Appendix B.

5.3.3.6 AT output Data Model

The raw inference results of the MARVEL AT component follow the AT output data model,

which specifies how the audio tags for segments of an audio signal are represented in the

pipeline.

Each tag has absolute timestamp fields “startTime” and “endTime” in ISO8601 UTC format.

The “label” field stores the tag label in text format. The model is similar to the MARVEL SED

output data model, however, “startTime” and “endTime” are now on a fixed time grid defined

by the inference model and there can be multiple tags active during the same time interval.

A complete documentation of the specification of the AT data model can be found in Appendix

B.

5.3.3.7 AAC output Data Model

The raw inference results of the MARVEL AAC component follow the AAC output data

model, which specifies how the audio captions extracted from an audio signal are represented

in the pipeline.

Each caption has absolute timestamp fields “startTime” and “endTime” in ISO8601 UTC

format. The “label” field stores the audio caption in text format.

A complete documentation of the specification of the AT data model can be found in Appendix

B.

5.3.3.8 SELD output Data Model

The raw inference results of the MARVEL SELD component follow the SELD output data

model, which specifies how detected localised sound events are represented in the pipeline.

Each event has absolute timestamp fields “startTime” and “endTime” in ISO8601 UTC format.

The “label” field stores the event class label in text format.

The SELD data model also uses the following fields:

• “azimuthAngle”, azimuth of the sound source in relation to the mic array orientation (-

180 to +180 degrees)

• “elevationAngle”, elevation of the sound source in relation to the mic array orientation

(-90 to +90 degrees)

• “azimuthVector”, vector showing direction of sound source in GPS coordinates, a list

of two arrays with two floats [[lat1, lon1], [lat2,lon2]].

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 139 - 21 July, 2023

A complete documentation of the specification of the AT data model can be found in Appendix

B.

5.3.3.9 YOLO-SED output Data Model

The role of the YOLO-SED component is to detect anomalies related to vulnerable road users

based on simulateneous processing of audio and video information that are based on the SED

audio analysis and the YOLO object detector respectively.

The YOLO-SED data model provides information on whether a vulnerable road user has been

detected.

The YOLO-SED inference results are meant to alert the competent authorities and therefore

they are subsequently transformed by DatAna to events that follow the SDM-compliant “Alert”

data model.

Each event has absolute timestamp fields “startTime” and “endTime” in ISO8601 UTC format.

Additionally, the “category” and “subcategory” fields are used to provide information related

to the classification of the detected event. These fields are derived from the original SDM

“Alert” data model. Typical value for “category” is “traffic” and indicative values for

“subcategory” are “injuredBiker”, “pedestrianOnRoad”, “bikerOnRoad”.

A complete documentation of the specification of the YOLO-SED data model can be found in

Appendix B.

5.3.3.10 RBAD output Data Model

The role of the RBAD component is to analyse inference results generated by the CATFlow

component and detect anomalies based on pre-specified rules.

The RBAD data model provides information on whether an anomaly has been detected by

assigning a corresponding value to a field named “predictedAnomaly” which is of boolean type.

Each event has absolute timestamp fields “startTime” and “endTime” in ISO8601 UTC format.

Additionally, the field “anomalousProperty” contains information related to the type of detected

anomaly, e.g., 'bus_not_on_schedule', 'bicycle_not_on_path', 'large_veh_rush_hour',

'jaywalking', etc.

A complete documentation of the specification of the YOLO-SED data model can be found in

Appendix B.

5.3.3.11 VAD output Data Model

The raw inference results of the MARVEL VAD component follow the VAD output data

model, which represents the timestamps of the detected audio event segments. These events

can be either Speech (voice activity) or Music. Therefore, each output contains absolute

timestamp fields “startTime” and “endTime” in ISO8601 UTC format, along with the field

“category” storing the event category label in textual format.

A complete documentation of the specification of the VAD data model can be found in

Appendix B.

5.3.4 MLModel Data Model

The SDM MLModel data model is adopted for MARVEL with few modifications. The purpose

of the MLModel data model is to describe elements of a machine learning model in the form of

metadata. The documents that are based on this data model are used to complement the AI

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 140 - 21 July, 2023

models stored in the MARVEL AI Model Repository as Model Descriptors, following the same

naming convention that is introduced for the AI models (Section 5.2.13).

MARVEL introduces a new field (“data”) to the SDM data model that refers to the payload

containing extra ad-hoc complementary metadata needed by the MARVEL components, which

are not covered in the other SDM existing fields. The “data” field encapsulates other fields such

as file_name_weights, model_definition, code, val_accuracy, loss, training_epochs.

The MLModel properties that are considered mandatory for MARVEL are id, type,

acceptableDataSources, algorithm, dateCreated, dateModified, description, id, inputAttributes,

mlFramework, name, outputAttributes, outputDataTypes, source, typeOfAlgorithm, version,

data, data. file_name_weights.

A complete documentation of the specification of the MLModel data model can be found in

Appendix B.

5.3.5 Inference Verification Message Data Model

According to the R2 design, AI inference results that are persistently stored at the DFB ES need

to be updated when they are verified by the user of SmartViz (case c in Section 5.2.8). More

specifically, when a SmartViz user reviews a specific inference result in SmartViz and provides

feedback, i.e., determines if the result is verified or not, SmartViz publishes a message to a

Kafka topic in the DFB ("InferenceVerification"). The DFB obtains these messages and updates

the respective inference result entries stored in the DFB ES accordingly. The DataCorpus also

subscribes to this topic to obtain these messages and store them so that they can be used for

labelling in the context of future AI training purposes.

In this context, a data model was prepared for the inference verification messages published by

SmartViz. The data model follows the JSON syntax and contains the following fields:

• index: The index of ES, under which the inference result has been stored (a separate

index is available for each MARVEL AI component).

• inferenceResultId: The id of the inference result about which the user has provided

verification. The inference result type can be "MediaEvent", "Alert" or "Anomaly".

• reviewed: (boolean) Indicates whether the inference result has been reviewed by the

user.

• verified: (boolean) Indicates whether the inference result is verified by the user or

not.

• verificationDate: Date and time of verification of the inference result in ISO8601

UTC format.

The fields “reviewed” and “verified” are already present in the inference results stored at the

DFB ES and their values are updated according to the information in the messages published

by SmartViz at the “InferenceVerification” topic, following the aforementioned data mode.

A complete documentation of the specification of the Inference Verification Message data

model can be found in Appendix B.

5.4 R2 Architecture instantiation per use case

5.4.1 GRN1 – Safer roads: AI Inference runtime and deployment view

Figure 58 provides the deployment and runtime view of the MARVEL architecture for the

GRN1 use case.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 141 - 21 July, 2023

Figure 58: MARVEL R2 deployment and runtime view of the MARVEL architecture for GRN1 – Safer roads

(annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for GRN2.

Two software components have been exclusively developed for the specific needs of GRN1:

(a) Arduino Proxy. Relays messages from an MQTT broker to an Arduino board via serial

protocol communication.

(b) Arduino LED control. Arduino script that controls an LED board based on incoming

messages.

These components facilitate the control of the GRN1 LED board based on the inference results

produced by the YOLO-SED component.

In GRN1, an audio and video stream are obtained from a CCTV camera at the Mgarr location

in Malta.

A YOLO-SED instance hosted on a Jetson device at the Edge (GRN E3) at the Mgarr location

receives the AV stream from the CCTV camera at Mgarr over RTSP. YOLO-SED analyses

the stream’s audio and video section to produce inference results that correspond to detection

of vulnerable road users.

The YOLO-SED instance publishes these inference results in real time to a dedicated topic of

a DatAna MQTT broker residing at the same host Jetson device as the YOLO-SED instance

(GRN E3).

An Arduino Proxy instance is also hosted on the Jetson device (GRN E3) and implements an

MQTT client to consume the inference results produced by YOLO-SED and published on the

DatAna MQTT broker. The Arduino Proxy converts the messages to suitable equivalent

signals for transmission over a Serial protocol and communicates them to an Arduino board.

The Arduino LED control script is hosted on an Arduino board and receives the signals from

the Arduino Proxy component over a Serial protocol communication channel. Based on the

information it receives, it issues commands to the LED board it controls to display appropriate

text messages that can be seen by road users. The commands are transmitted via 5V DC current

through the Arduino board pins.

A VideoAnony instance hosted on a PC at the Edge (GRN E1) at the Mgarr location receives

the AV stream from the camera at Mgarr.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 142 - 21 July, 2023

During system initialisation, the component instances that need to consume the produced

anonymised AV data streams (i.e., StreamHandler) request the metadata details of the

VideoAnony AV source from the AV Registry (GRN F2) via corresponding REST API calls.

DatAna NiFi nodes collect the inference results from the corresponding DatAna MQTT

brokers by subscribing to the respective MQTT topics. Specifically, the DatAna NiFi Edge

node on GRN F2 receives the inference results that are published on the DatAna MQTT Edge

broker on GRN E3. Each DatAna NiFi node performs certain operations on the collected raw

inference results from all AI components to transform them to SDM-compliant data models

(for more details, see Section 5.3.2). Then, each DatAna NiFi node pushes the transformed

inference results to the DatAna NiFi node on the higher E/F/C layer, i.e., (i) the DatAna NiFi

Edge nodes push the results to the respective DatAna NiFi Fog node and (ii) the DatAna NiFi

Fog nodes push the results to the DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed, SDM-compliant inference results it

collects from all layers to dedicated Kafka topics at the DFB (a separate topic is used for the

inference results of each AI component that produced them), which is deployed at the PSNC

HPC. The DFB persistently stores the received results on the DFB ES repository.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

Elastic Search (ES) database by making queries that are supported by the exposed REST API

of the DFB ES-proxy service. SmartViz displays the inference results to the user through

appropriate visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify

the displayed inference results and this verification information is fed back to the DFB by being

published to a dedicated Kafka topic. The DFB then updates the relevant inference result entry

in the DFB ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (GRN F2) receives

anonymised AV data streams in real time from the VideoAnony instance. StreamHandler

persistently stores the incoming anonymised AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

Τhe HDD is deployed at the PSNC HPC at the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

all infrastructure nodes (GRN E1, GRN E3, GRN F2, PSNC HPC).

Table 8 below presents a comprehensive list of components that were used in GRN1.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 143 - 21 July, 2023

Table 8: MARVEL architectural components for GRN1 – Safer roads

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

AV Registry ITML
Provides information on

available AV sources
1 Fog GRN F2

Arduino Proxy GRN

Transforms MQTT messages

and relays over Serial

protocol

1 Edge GRN E3

Arduino LED

control
GRN

Aduino script for controlling

LED board
1 Edge

Arduino

Nano

Security,

Privacy and

data

protection

Subsystem

VideoAnony FBK Video anonymisation 1 Edge GRN E1

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

4

Edge,

Fog,

Cloud

GRN E1,

GRN E3,

GRN F2,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

3

Edge,

Fog,

Cloud

GRN E3,

GRN F2,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog GRN F2

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual

and

multimodal

AI Subsystem

YOLO-SED
AU,

TAU

Anomaly detection using

YOLO object detector and

SED audio analysis

1 Cloud GRN E3

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 144 - 21 July, 2023

5.4.2 GRN2 – Road user behaviour: AI Inference runtime and deployment view

Figure 59 provides the deployment and runtime view of the MARVEL architecture for the

GRN2 use case.

Figure 59: MARVEL R2 deployment and runtime view of the MARVEL architecture for GRN2 – Road user

behaviour (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for GRN2.

Audio and video streams are obtained from three CCTV cameras at two different locations in

Malta (1 camera at Mgarr and 2 cameras at Zejtun).

A VideoAnony instance hosted on a PC at the Edge (GRN E1) at the Mgarr location receives

the AV stream from the camera at Mgarr, while another VideoAnony instance hosted on a PC

at the Edge (GRN E2) at the Zejtun location receives the AV streams from the two cameras at

Zejtun.

During the system initialisation phase, the component instances that need to consume the

produced anonymised AV data streams (i.e., CATFlow, SED and StreamHandler) request the

metadata details of the VideoAnony AV sources from the AV Registry (GRN F2) via the

corresponding REST API calls.

A CATFlow and a SED instance hosted on GRN E1 receive the anonymised AV stream from

the VideoAnony instance hosted on the same node. A second group of CATFlow and SED

instances hosted on GRN E2 receive one of the two anonymised AV streams from the

VideoAnony instance hosted on the same node. A third group of CATFlow and SED instances

hosted on the GRN Fog Server (GRN F2) receive the second anonymised AV stream from the

VideoAnony instance hosted on GRN E2. Each CATFlow and SED instance receives the

anonymised AV data stream from the corresponding VideoAnony instance in real time via

RTSP. CATFlow instances analyse the stream’s video section to produce the number of

detected vehicles and traffic trajectories as inference results, while SED instances analyse the

stream’s audio section to produce raw inference results that refer to sound event detection.

Each CATFlow and SED instance publishes these inference results in real time to a dedicated

topic (distinct for CATFlow and SED) of a DatAna MQTT broker residing at the same host

device as the CATFlow instance (one MQTT broker on GRN E1, one MQTT broker on GRN

E2 and one MQTT broker on GRN F2).

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 145 - 21 July, 2023

At the same time, there is one TAD and one RBAD instance associated with each CATFlow

instance that is deployed on the same infrastructure node (GRN E1, GRN E2 and GRN F2).

Each TAD and RBAD instance is subscribed to the topic of the corresponding DatAna MQTT

broker, where CATFlow publishes its results in order to receive the output of the CATFlow

instance it is associated with. Each TAD and RBAD instance processes the information it

receives to detect anomalous events and produces its own raw inference results, which are

published to dedicated topics (distinct for TAD and RBAD) on the DatAna MQTT broker

that is deployed at the same node as the TAD and RBAD instance (GRN E1, GRN E2 and

GRN F2).

DatAna NiFi nodes collect the inference results from corresponding DatAna MQTT brokers

by subscribing to the respective MQTT topics. Specifically, (i) the DatAna NiFi Edge nodes

on GRN E1 and on GRN E2 receive the inference results that are published on the DatAna

MQTT Edge broker on GRN E1 and on GRN E2 respectively and (ii) the DatAna NiFi Fog

node on GRN F2 receives the inference results that are published on the DatAna MQTT Fog

broker on GRN F2. Each DatAna NiFi node performs certain operations on the collected raw

inference results from all AI components to transform them to SDM-compliant data models

(for more details, see Section 5.3.2). Then, each DatAna NiFi node pushes the transformed

inference results to the DatAna NiFi node on the higher E/F/C layer, i.e., (i) the DatAna NiFi

Edge nodes push results to the respective DatAna NiFi Fog node and (ii) the DatAna NiFi

Fog nodes push results to the DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed, SDM-compliant inference results it

collects from all layers to dedicated Kafka topics at the DFB (a separate topic is used for the

inference results of each AI component that produced them), which is deployed at the PSNC

HPC. The DFB persistently stores the received results on the DFB ES repository. Furthermore,

the DFB fuses similar consecutive inference results from SED that are very close in time to

generate merged events that refer to longer periods.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

Elastic Search (ES) database by making queries that are supported by the exposed REST API

of the DFB ES-proxy service. SmartViz displays the inference results to the user through

appropriate visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify

the displayed inference results and this verification information is fed back to the DFB by being

published to a dedicated Kafka topic. The DFB then updates the relevant inference result entry

in the DFB ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (GRN F2) receives

anonymised AV data streams in real time from the two VideoAnony instances.

StreamHandler persistently stores the incoming anonymised AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 146 - 21 July, 2023

Τhe HDD is deployed at the PSNC HPC in the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

all infrastructure nodes (GRN E1, GRN E2, GRN F2, PSNC HPC).

Table 9 below presents a comprehensive list of components that were used in GRN2.

Table 9: MARVEL architectural components for GRN2 – Road user behaviour

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

AV Registry ITML
Provides information on

available AV sources
1 Fog GRN F2

Security,

Privacy and

data

protection

Subsystem

VideoAnony FBK Video anonymisation 2 Edge
GRN E1,

GRN E2

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

4

Edge,

Fog,

Cloud

GRN E1,

GRN E2,

GRN F2,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

4

Edge,

Fog,

Cloud

GRN E1,

GRN E2,

GRN F2,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog GRN F2

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual
and

multimodal

AI Subsystem

CATFlow GRN
AI inference: vehicle count,

traffic trajectories
3

Edge,

Fog

GRN E1,

GRN E2,

GRN F2

TAD GRN

Text Anomaly Detection.

Analysis of CATFlow raw

inference results

3
Edge,

Fog

GRN E1,

GRN E2,

GRN F2

RBAD AU

Rule-based Anomaly

detection. Analysis of

CATFlow raw inference

results

3
Edge,

Fog

GRN E1,

GRN E2,

GRN F2

SED TAU
Sound Event Detection in

general audio signal
3 Cloud

GRN E1,

GRN E2,

GRN F2

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 147 - 21 July, 2023

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.3 GRN3 – Traffic Anomalous Events: AI Inference runtime and deployment view

Figure 60 provides the deployment and runtime view of the MARVEL architecture for the

GRN3 use case.

Figure 60: MARVEL R2 deployment and runtime view of the MARVEL architecture for GRN3: Traffic

Conditions and Anomalous Events (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for GRN3.

Audio and video streams are obtained from three CCTV cameras at two different locations in

Malta (1 camera at Mgarr and 2 cameras at Zejtun).

A VideoAnony instance hosted on a PC at the Edge (GRN E1) at the Mgarr location receives

the AV stream from the camera at Mgarr, while another VideoAnony instance hosted on a PC

at the Edge (GRN E2) at the Zejtun location receives the AV streams from the two cameras at

Zejtun.

During system initialisation, the component instances that need to consume the produced

anonymised AV data streams (i.e., CATFlow, AVAD, AT, StreamHandler and SmartViz)

request the metadata details of the VideoAnony AV sources from the AV Registry (GRN F2)

via corresponding REST API calls.

A CATFlow instance hosted on GRN E1 receives the anonymised AV stream from the

VideoAnony instance hosted on the same node. A second CATFlow instance hosted on GRN

E2 receives one of the two anonymised AV streams from the VideoAnony instance hosted on

the same node. A third CATFlow instance hosted on the GRN Fog Server (GRN F2) receives

the second anonymised AV stream from the VideoAnony instance hosted on GRN E2. Each

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 148 - 21 July, 2023

CATFlow instance receives the anonymised AV data stream from the corresponding

VideoAnony instance in real time via RTSP to analyse the stream’s video section and produce

the number of detected vehicles and traffic trajectories as inference results.

Each CATFlow instance publishes these inference results in real time to a dedicated topic of a

DatAna MQTT broker residing at the same host device as the CATFlow instance (one MQTT

broker on GRN E1, one MQTT broker on GRN E2 and one MQTT broker on GRN F2).

At the same time, there is one TAD instance associated with each CATFlow instance that is

deployed on the same infrastructure node (GRN E1, GRN E2 and GRN F2). Each TAD

instance is subscribed to the topic of the corresponding DatAna MQTT broker, where

CATFlow publishes its results in order to receive the output of the CATFlow instance it is

associated with. Each TAD instance processes the information it receives to detect anomalous

events and produces its own raw inference results, which are published to another dedicated

topic on the DatAna MQTT broker that is deployed at the same node as the TAD instance

(GRN E1, GRN E2 and GRN F2).

In parallel, there are three instances of AT deployed at the GRN F2 and three instances of

AVAD deployed at the PSNC HPC, which also receive the RTSP AV streams in real time from

the two aforementioned VideoAnony instances (VideoAnony allows the audio to pass through

it). AVAD processes both audio and video sections of the incoming stream to produce raw

inference results that refer to anomaly detection, while AT processes the stream’s audio section

to produce inference results that refer to the activity of characteristic sounds inside audio

segments. AT and AVAD instances publish their raw inference results in real time to dedicated

topics of a DatAna MQTT broker residing at the GRN F2 and the PSNC HPC respectively.

DatAna NiFi nodes collect the inference results from corresponding DatAna MQTT brokers

by subscribing to the respective MQTT topics. Specifically, (i) the DatAna NiFi Edge nodes

on GRN E1 and on GRN E2 receive the inference results that are published on the DatAna

MQTT Edge broker on GRN E1 and on GRN E2 respectively, (ii) the DatAna NiFi Fog

node on GRN F2 receives the inference results that are published on the DatAna MQTT Fog

broker on GRN F2 and (iii) the DatAna NiFi Cloud node on the PSNC HPC receives the

inference results that are published on the DatAna MQTT Cloud broker on the PSNC HPC.

Each DatAna NiFi node performs certain operations on the collected raw inference results

from all AI components to transform them to SDM-compliant data models (for more details,

see Section 5.3.2). Then, each DatAna NiFi node pushes the transformed inference results to

the DatAna NiFi node on the higher E/F/C layer, i.e., (i) the DatAna NiFi Edge nodes push

results to the respective DatAna NiFi Fog node and (ii) the DatAna NiFi Fog nodes push

results to the DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed, SDM-compliant inference results it

collects from all layers to dedicated Kafka topics at the DFB (a separate topic is used for the

inference results of each AI component that produced them), which is deployed at the PSNC

HPC. The DFB persistently stores the received results on the DFB ES repository. Furthermore,

the DFB fuses similar consecutive inference results from AVAD and AT that are very close in

time to generate merged events that refer to longer periods.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

Elastic Search (ES) database by making queries that are supported by the exposed REST API

of the DFB ES-proxy service. SmartViz displays the inference results to the user through

appropriate visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 149 - 21 July, 2023

the displayed inference results and this verification information is fed back to the DFB by being

published to a dedicated Kafka topic. The DFB then updates the relevant inference result entry

in the DFB ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (GRN F2) receives

anonymised AV data streams in real time from the two VideoAnony instances.

StreamHandler persistently stores the incoming anonymised AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

Furthermore, upon user demand, SmartViz can connect to any of the two VideoAnony

instances to receive a live AV data stream via RTSP and display it within its UI to the user. The

connection is not continuous and is initiated only when a user requests a live AV feed from the

location where an event has previously been detected.

Τhe HDD is deployed at the PSNC HPC in the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

all infrastructure nodes (GRN E1, GRN E2, GRN F2, PSNC HPC).

Table 10 below presents a comprehensive list of components that were used in GRN3.

Table 10: MARVEL architectural components for GRN3: Traffic Conditions and Anomalous Events

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

AV Registry ITML
Provides information on

available AV sources
1 Fog GRN F2

Security,

Privacy and

data

protection

Subsystem

VideoAnony FBK Video anonymisation 2 Edge
GRN E1,

GRN E2

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

4

Edge,

Fog,

Cloud

GRN E1,

GRN E2,

GRN F2,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

4

Edge,

Fog,

Cloud

GRN E1,

GRN E2,

GRN F2,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog GRN F2

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 150 - 21 July, 2023

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual

and

multimodal

AI Subsystem

CATFlow GRN
AI inference: vehicle count,

traffic trajectories
3

Edge,

Fog

GRN E1,

GRN E2,

GRN F2

TAD GRN

Text Anomaly Detection.

Analysis of CATFlow raw

inference results

3
Edge,

Fog

GRN E1,

GRN E2,

GRN F2

AVAD AU

Audio-Visual Anomaly

detection. Detecting

deviations from normality

within video frames and

corresponding scene audio

3 Cloud PSNC HPC

AT TAU
Audio Tagging in fixed length

segments
3 Fog GRN F2

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.4 GRN4 – Junction Traffic Trajectory: AI Inference runtime and deployment view

Figure 61 provides the deployment and runtime view of the MARVEL architecture for the

GRN4 use case.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 151 - 21 July, 2023

Figure 61: MARVEL R2 deployment and runtime view of the MARVEL architecture for GRN4: Junction

Traffic Trajectory Collection (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for GRN4.

Audio and video streams are obtained from three CCTV cameras at two different locations in

Malta (1 camera at Mgarr and 2 cameras at Zejtun).

A VideoAnony instance hosted on a PC at the Edge (GRN E1) at the Mgarr location receives

the AV stream from the camera at Mgarr, while another VideoAnony instance hosted on a PC

at the Edge (GRN E2) at the Zejtun location receives the AV streams from the two cameras at

Zejtun.

During system initialisation, the component instances that need to consume the produced

anonymised AV data streams (i.e., CATFlow, SED, AVCC and SmartViz) request the

metadata details of the VideoAnony AV sources from the AV Registry (GRN F2) via

corresponding REST API calls.

A CATFlow instance hosted on GRN E1 receives the anonymised AV stream from the

VideoAnony instance hosted on the same node. A second CATFlow instance hosted on GRN

E2 receives one of the two anonymised AV streams from the VideoAnony instance hosted on

the same node. A third CATFlow instance hosted on the GRN Fog Server (GRN F2) receives

the second anonymised AV stream from the VideoAnony instance hosted on GRN E2. Each

CATFlow instance receives the anonymised AV data stream from the corresponding

VideoAnony instance in real time via RTSP to analyse the stream’s video section and produce

the number of detected vehicles and traffic trajectories as inference results.

Each CATFlow instance publishes these inference results in real time to a dedicated topic of a

DatAna MQTT broker residing at the same host device as the CATFlow instance (one MQTT

broker on GRN E1, one MQTT broker on GRN E2 and one MQTT broker on GRN F2).

At the same time, there is one TAD instance associated with each CATFlow instance that is

deployed on the same infrastructure node (GRN E1, GRN E2 and GRN F2). Each TAD

instance is subscribed to the topic of the corresponding DatAna MQTT broker, where

CATFlow publishes its results in order to receive the output of the CATFlow instance it is

associated with. Each TAD instance processes the information it receives to detect anomalous

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 152 - 21 July, 2023

events and produces its own raw inference results, which are published to another dedicated

topic on the DatAna MQTT broker that is deployed at the same node as the TAD instance

(GRN E1, GRN E2 and GRN F2).

In parallel, there are three instances of SED deployed at the PSNC HPC, which also receive

the RTSP AV streams in real time from the two VideoAnony instances (VideoAnony allows

the audio to pass through it). There is also one instance of AVCC deployed at the PSNC HPC,

which receives the RTSP AV stream in real time from one of the VideoAnony instances (from

GRN E1). SED processes the audio sections of the incoming stream to produce raw inference

results that refer to sound event detection, while AVCC processes the stream’s audio and video

sections to produce inference results that refer to crowd counting and the generation of visual

heatmaps. All SED and AVCC instances publish their raw inference results in real time to

dedicated topics of a DatAna MQTT broker residing at the PSNC HPC.

DatAna NiFi nodes collect the inference results from corresponding DatAna MQTT brokers

by subscribing to the respective MQTT topics. Specifically, (i) the DatAna NiFi Edge nodes

on GRN E1 and on GRN E2 receive the inference results that are published on the DatAna

MQTT Edge broker on GRN E1 and on GRN E2 respectively, (ii) the DatAna NiFi Fog

node on GRN F2 receives the inference results that are published on the DatAna MQTT Fog

broker on GRN F2 and (iii) the DatAna NiFi Cloud node on the PSNC HPC receives the

inference results that are published on the DatAna MQTT Cloud broker on the PSNC HPC.

Each DatAna NiFi node performs certain operations on the collected raw inference results

from all AI components to transform them to SDM-compliant data models (for more details,

see Section 5.3.2). Then, each DatAna NiFi node pushes the transformed inference results to

the DatAna NiFi node on the higher E/F/C layer, i.e., (i) the DatAna NiFi Edge nodes push

results to the respective DatAna NiFi Fog node and (ii) the DatAna NiFi Fog nodes push

results to the DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed, SDM-compliant inference results it

collects from all layers to dedicated Kafka topics at the DFB (a separate topic is used for the

inference results of each AI component that produced them), which is deployed at the PSNC

HPC. The DFB persistently stores the received results on the DFB ES repository. Furthermore,

the DFB fuses similar consecutive inference results from SED that are very close in time to

generate merged events that refer to longer periods.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

Elastic Search (ES) database by making queries that are supported by the exposed REST API

of the DFB ES-proxy service. SmartViz displays the inference results to the user through

appropriate visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify

the displayed inference results and this verification information is fed back to the DFB by being

published to a dedicated Kafka topic. The DFB then updates the relevant inference result entry

in the DFB ES accordingly.

Furthermore, upon user demand, SmartViz can connect to any of the two VideoAnony

instances to receive a live AV data stream via RTSP and display it within its UI to the user. The

connection is not continuous and is initiated only when a user requests a live AV feed from the

location where an event has previously been detected.

Τhe HDD is deployed at the PSNC HPC in the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 153 - 21 July, 2023

Finally, MARVdash is orchestrating the deployment of all the implemented components across

all infrastructure nodes (GRN E1, GRN E2, GRN F2, PSNC HPC).

Table 11 below presents a comprehensive list of components that were used in GRN4.

Table 11: MARVEL architectural components for GRN4: Junction Traffic Trajectory Collection

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

AV Registry ITML
Provides information on

available AV sources
1 Fog GRN F2

Security,

Privacy and

data

protection

Subsystem

VideoAnony FBK Video anonymisation 2 Edge
GRN E1,

GRN E2

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

4

Edge,

Fog,

Cloud

GRN E1,

GRN E2,

GRN F2,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

4

Edge,

Fog,

Cloud

GRN E1,

GRN E2,

GRN F2,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual

and

multimodal

AI Subsystem

CATFlow GRN
AI inference: vehicle count,

traffic trajectories
3

Edge,

Fog

GRN E1,

GRN E2,

GRN F2

TAD GRN

Text Anomaly Detection.

Analysis of CATFlow raw

inference results

3
Edge,

Fog

GRN E1,

GRN E2,

GRN F2

SED TAU
Sound Event Detection in

general audio signal
3 Cloud PSNC HPC

AVCC AU

Audio-Visual Crowd

Counting. Total number of
people present in given video

frames and from the

corresponding ambient audio.

1 Cloud PSNC HPC

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 154 - 21 July, 2023

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.5 MT1 – Monitoring of crowded areas: AI Inference runtime and deployment view

Figure 62 provides the deployment and runtime view of the MARVEL architecture for the MT1

use case.

Figure 62: MARVEL R2 deployment and runtime view of the MARVEL architecture for ΜΤ1: Monitoring of

crowded areas (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for ΜΤ1.

Video streams are obtained from two CCTV cameras at two different public locations in the

municipality of Trento (1 camera at Piazza Fiera and 1 camera at Piazza Duomo).

Due to restrictions associated with data privacy regulations and network security concerns

expressed by the Municipality of Trento (MT), a customised solution was implemented to allow

MARVEL components to access the AV data streams of the MT1 CCTV cameras. According

to data privacy regulations, access to the raw AV data feeds from the CCTV cameras that are

part of the MT network is restricted only to authorised personnel and to trusted devices from

within the network. Therefore, it was not possible to provide MARVEL components with direct

access to the raw AV data, but only to anonymised versions of it 59. Following deliberations

with the MT authorities and based on an agreement that nominates FBK as a data processor

under certain constraints, a solution was reached that involved the use of an external server

(MT F1), which is managed by FBK. However, this server (MT F1) could not be attached to

59 This issue could be overcome by processing the raw AV data streams with VideoAnony before feeding them to other

MARVEL components. However, there were additional issues related to network security, since (i) no device of the MT

network could be attached to the MARVEL Kubernetes cluster and (ii) only trusted external endpoints with compatible network

security policies can be granted access to the MT network, where the CCTV cameras are hosted.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 155 - 21 July, 2023

the MARVEL Kubernetes cluster, because such an action would violate the conditions and

security policies foreseen by the agreement between MT and FBK. Therefore, it was necessary

to deploy VideoAnony services directly on the MT F1 server at the Fog, without them being

hosted on the MARVEL Kubernetes cluster. These VideoAnony services could consume the

raw AV streams through a VPN tunnel. In addition, a second Fog server was set up at FBK

(MT F2), which was allowed to (i) be attached to the MARVEL Kubernetes cluster and (ii)

gain access to the VideoAnony services hosted on the first infrastructure node of FBK (MT

F1) through an RTSP Proxy service that was not part of the Kubernetes cluster, but could re-

stream the output of VideoAnony towards the Kubernetes cluster using a VPN tunnel.

Therefore, using this configuration, it was possible for all components that are hosted within

the MARVEL Kubernetes cluster to gain access to anonymised AV data streams produced by

VideoAnony at MT F1.

A VideoAnony instance is deployed on MT F1 and is tasked with processing the streams the

two CCTV cameras. The output is exposed to an RTSP Proxy service that is deployed on MT

F2 outside of the MARVEL Kubernetes cluster via RTSP. This RTSP Proxy service can

expose the anonymised streams from the VideoAnony service to components residing within

the MARVEL Kubernetes cluster.

During the system initialisation phase, the component instances that need to consume the

produced anonymised AV data streams (i.e., CATFlow, ViAD, VCC, StreamHandler and

SmartViz) request the metadata details of the VideoAnony AV sources from the AV Registry

(MT F2) via corresponding REST API calls.

Two CATFlow instances are deployed at the Fog layer on MT F2 and receive the output of

anonymised AV data stream in real time from the VideoAnony instance on MT F1 through the

RTSP Proxy service on MT F2 via RTSP to analyse the stream’s video section and produce

the number of detected vehicles and traffic trajectories as inference results.

Both CATFlow instances publish their inference results in real time to a dedicated topic of the

DatAna MQTT broker residing at MT F2.

In parallel, there are two instances of ViAD and two instances of VCC deployed at the PSNC

HPC, which also receive the RTSP AV streams from the VideoAnony instance on MT F1

through the RTSP Proxy service on MT F2. ViAD and VCC process the video section of the

incoming streams to produce raw inference results that refer to anomaly detection and to crowd

counting and generation of visual heatmaps respectively. All ViAD and VCC instances publish

these raw inference results in real time to dedicated topics of a DatAna MQTT broker residing

at the PSNC HPC.

DatAna NiFi nodes collect the inference results from corresponding DatAna MQTT brokers

by subscribing to the respective MQTT topics. Specifically, (i) the DatAna NiFi Fog node on

MT F2 receives the inference results that are published on the DatAna MQTT Fog broker on

MT F2 and (ii) the DatAna NiFi Cloud node on the PSNC HPC receives the inference results

that are published on the DatAna MQTT Cloud broker on the PSNC HPC. Each DatAna

NiFi node performs certain operations on the collected raw inference results from all AI

components to transform them to SDM-compliant data models (for more details, see Section

5.3.2). Then, each DatAna NiFi node pushes the transformed inference results to the DatAna

NiFi node on the higher E/F/C layer, i.e., the DatAna NiFi Fog node pushes results to the

DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed inference results it collects from all

layers to dedicated Kafka topics at the DFB (a separate topic is used for the inference results of

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 156 - 21 July, 2023

each AI component that produced them), which is deployed at the PSNC HPC. The DFB

persistently stores the received results on the DFB ES repository. Furthermore, the DFB fuses

similar consecutive inference results from ViAD that are very close in time to generate merged

events that refer to longer periods.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

ES database by making queries that are supported by the exposed REST API of the DFB ES-

proxy service. SmartViz displays the inference results to the user through appropriate

visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify the displayed

inference results and this verification information is fed back to the DFB by being published to

a dedicated Kafka topic. The DFB then updates the relevant inference result entry in the DFB

ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (MT F2) receives

anonymised AV data streams in real time from the VideoAnony instance on MT F1 through

the RTSP Proxy service on MT F2. StreamHandler persistently stores the incoming

anonymised AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

Furthermore, upon user demand, SmartViz can connect to the VideoAnony instance on MT

F1 through the RTSP Proxy service on MT F2 to receive a live AV data stream via RTSP and

display it within its UI to the user. The connection is not continuous and is initiated only when

a user requests a live AV feed from the location where an event has previously been detected.

Τhe HDD is deployed at the PSNC HPC at the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

the infrastructure nodes of MT F2 and PSNC HPC.

Table 12 below presents a comprehensive list of components that were used in MT1.

Table 12: MARVEL architectural components for MT1: Monitoring of crowded areas

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

AV Registry ITML
Provides information on

available AV sources
1 Fog MT F2

Security,

Privacy and
VideoAnony FBK Video anonymisation 1 Fog MT F1

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 157 - 21 July, 2023

data

protection

Subsystem

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

2
Fog,

Cloud

MT F2,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

2
Fog,

Cloud

MT F2,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog MT F2

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual

and

multimodal

AI Subsystem

CATFlow GRN
AI inference: pedestrian

count, traffic trajectories
2 Fog MT F2

ViAD AU

Visual Anomaly detection.
Detecting deviations from

normality within video frames

2 Cloud PSNC HPC

VCC AU

Visual Crowd Counting. Total

number of people present in

given video frames.

2 Cloud PSNC HPC

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.6 MT2 – Detecting criminal/anti-social behaviours: AI Inference runtime and

deployment view

Figure 64 provides the deployment and runtime view of the MARVEL architecture for the MT3

use case.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 158 - 21 July, 2023

Figure 63: MARVEL R2 deployment and runtime view of the MARVEL architecture for MT2 – Detecting

criminal/anti-social behaviours (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for ΜΤ2.

Audio streams are obtained from two MEMS microphones that are hosted on Raspberry Pi

devices connected to the network of the Municipality of Trento and located at the Piazza Santa

Maria Maggiore in Trento. Video streams are obtained from two CCTV cameras at the same

location.

Due to restrictions associated with data privacy regulations and network security concerns

expressed by the Municipality of Trento (MT), a customised solution was implemented to allow

MARVEL components to access the AV data streams of the MT2 MEMS microphones and

CCTV cameras (similar to the solution implemented for MT1, but additionally addressing the

needs of anonymising audio at the edge within the MT network). According to data privacy

regulations, access to the raw AV data feeds (microphone and CCTV camera) that are part of

the MT network is restricted only to authorised personnel and to trusted devices within the

network. Therefore, it was not possible to provide MARVEL components with direct access to

the raw AV data, but only to anonymised versions of it 60. Following deliberations with the MT

authorities and based on an agreement that nominates FBK as a data processor under certain

constraints, a solution was reached that involved the use of an external server (MT F1), which

is managed by FBK. However, this server (MT F1) could not be attached to the MARVEL

Kubernetes cluster, because such an action would violate the conditions and security policies

foreseen by the agreement between MT and FBK.

Regarding audio, it was decided to deploy AudioAnony (coupled with VAD) directly on the

MT2 E1 and MT2 E2 Raspberry Pi devices in order to provide anonymisation at the Edge,

60 This issue could be overcome by processing the raw AV data streams with AudioAnony and VideoAnony before feeding

them to other MARVEL components. However, there were additional issues related to network security, since (i) no device

that belonged in the MT network could be attached to the MARVEL Kubernetes cluster and (ii) only trusted external endpoints

with compatible network security policies can be granted access to the MT network, where the Raspberry Pi (MT E1) with the

MEMS microphone and the CCTV cameras are hosted.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 159 - 21 July, 2023

considering that the RPi could provide sufficient computational power for this service.

However, since MT2 E1 and MT2 E2 were part of the MT network, they could not be attached

as nodes to the MARVEL Kubernetes cluster. Furthermore, due to the agreement between MT

and FBK, MT2 E1 and MT2 E2 could only be accessed from MT F1 using VPN. In order to

grant access to the anonymised audio from AudioAnony on MT2 E1 and on MT2 E2 to other

endpoints within the MARVEL Kubernetes cluster, an RTSP Proxy F1 service was deployed

directly on MT F1 that could re-stream the output audio stream from AudioAnony on MT E1

and on MT2 E2.

Regarding video, it was necessary to deploy a VideoAnony service directly on the MT F1

server at the Fog, without it being hosted on the MARVEL Kubernetes cluster. This

VideoAnony service could consume the raw AV streams from the CCTV cameras through a

VPN tunnel.

In addition, a second Fog server was set up at FBK (MT F2), which was allowed to (i) be

attached to the MARVEL Kubernetes cluster and (ii) gain access to the RTSP Proxy F1 and

VideoAnony services hosted on the first infrastructure node of FBK (MT F1) through an RTSP

Proxy F2 service that was not part of the Kubernetes cluster, but could re-stream the output of

AudioAnony and VideoAnony towards the Kubernetes cluster using a VPN tunnel. Therefore,

using this configuration, it was possible for all components that are hosted within the MARVEL

Kubernetes cluster to gain access to anonymised AV data streams produced by AudioAnony

on MT2 E1 and on MT2 E2 and by VideoAnony on MT F1.

AudioAnony instances on MT2 E1 and on MT2 E2 are coupled with VAD instances within

the same containers. VAD accesses the raw audio stream and detects voice activity boundaries,

which are directly provided to AudioAnony for controlling the activation of the anonymisation

process. The VAD component within the AudioAnony container on MT2 E1 and on MT2 E2

also needs to publish the voice activity boundaries it detects as raw inference results in real time

to a dedicated topic of the DatAna MQTT Proxy broker residing at MT F2 (within

Kubernetes). For this purpose, an MQTT Proxy service was deployed on MT F1 to which

VAD could publish MQTT messages via VPN, which were then restreamed through another

VPN tunnel towards the DatAna MQTT broker on MT F2 within the Kubernetes cluster.

During system initialisation, the component instances that need to consume the produced

anonymised AV data streams (i.e., AAC, AVAD, AT, SED, StreamHandler and SmartViz)

request the metadata details of the RTSP Proxy F2 AV sources (AudioAnony and

VideoAnony) from the AV Registry (MT F2) via corresponding REST API calls.

An instance of AAC is deployed on MT F2 and receives the output of anonymised AV data

stream in real time from the AudioAnony instance on MT2 E1 through the RTSP Proxy

service on MT F2 via RTSP to analyse the stream’s audio and produce inference results

comprising audio captions.

The AAC instance publishes these inference results in real time to a dedicated topic of a

DatAna MQTT broker residing at MT F2.

At the same time, there is a GPURegex instance deployed on MT F2 associated with the AAC

instance on MT F2. The GPURegex instance is subscribed to the topic of the corresponding

DatAna MQTT broker on MT F2, where AAC publishes its results in order to receive its

output. GPURegex processes the information it receives to detect criminal and anti-social

actions by searching for specific keywords and produces its own raw inference results (alerts),

which are published to another dedicated topic on the DatAna MQTT broker on MT F2.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 160 - 21 July, 2023

In parallel, there instances of AT, SED and AVAD (two of each) deployed at the PSNC HPC.

All these components (AT, SED, AVAD) receive the two audio RTSP streams from

AudioAnony instances on MT2 E1 and on MT2 E2 in real time through the RTSP Proxy on

MT F2. AVAD also receives the two RTSP AV streams in real time from the VideoAnony

instance on MT F1 through the RTSP Proxy on MT F2. AT and SED process the incoming

audio data stream to produce raw inference results that refer to the activity of characteristic

sounds inside audio segments and to detected sound events respectively. AVAD processes the

incoming audio and video data streams to produce raw inference results that refer to anomaly

detection. All AT, SED and AVAD instances publish their raw inference results in real time to

dedicated topics of the DatAna MQTT broker residing at the PSNC HPC.

DatAna NiFi nodes collect the inference results from corresponding DatAna MQTT brokers

by subscribing to the respective MQTT topics. Specifically, (i) the DatAna NiFi Fog node on

MT F2 receives the inference results that are published on the DatAna MQTT Fog broker on

MT F2 and (ii) the DatAna NiFi Cloud node on the PSNC HPC receives the inference results

that are published on the DatAna MQTT Cloud broker on the PSNC HPC. Each DatAna

NiFi node performs certain operations on the collected raw inference results from all AI

components to transform them to SDM-compliant data models (for more details, see Section

5.3.2). Then, each DatAna NiFi node pushes the transformed inference results to the DatAna

NiFi node on the higher E/F/C layer, i.e., the DatAna NiFi Fog node pushes results to the

DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed inference results it collects from all

layers to dedicated Kafka topics at the DFB (a separate topic is used for the inference results of

each AI component that produced them), which is deployed at the PSNC HPC. The DFB

persistently stores the received results on the DFB ES repository. Furthermore, the DFB fuses

similar consecutive inference results from AVAD, SED and AT that are very close in time to

generate merged events that refer to longer periods.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

ES database by making queries that are supported by the exposed REST API of the DFB ES-

proxy service. SmartViz displays the inference results to the user through appropriate

visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify the displayed

inference results and this verification information is fed back to the DFB by being published to

a dedicated Kafka topic. The DFB then updates the relevant inference result entry in the DFB

ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (MT F2) receives

anonymised AV data streams in real time from the RTSP Proxy service on MT F2.

StreamHandler persistently stores the incoming anonymised AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 161 - 21 July, 2023

Furthermore, upon user demand, SmartViz can connect to the RTSP Proxy F2 and receive a

live anonymised AV data stream via RTSP from AudioAnony on MT2 E1 or on MT2 E2 or

from VideoAnony on MT F1 and display it within its UI to the user. The connection is not

continuous and is initiated only when a user requests a live AV feed from the location where

an event has previously been detected.

Τhe HDD is deployed at the PSNC HPC in the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

the infrastructure nodes of MT F2 and PSNC HPC.

Table 13 provides the list of components together with their main functionalities, across

MARVEL functional subsystems that were used in ΜΤ3.

Table 13: MARVEL architectural components for MT2 – Detecting criminal/anti-social behaviours

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

MEMS

microphone
IFAG

Audio data acquisition via

IM69D130 and Edge

processing of the acquired

data

2 Edge
MT2 E1,

MT2 E2

AV Registry ITML
Provides information on

available AV sources
1 Fog MT F2

Security,

Privacy and

data

protection

Subsystem

AudioAnony FBK Audio anonymisation 2 Edge
MT2 E1,

MT2 E2

VAD AUD

Voice Activity Detection

detects voiced segments either

in batched or online fashion.

2 Edge
MT2 E1,

MT2 E2

VideoAnony FBK Video anonymisation 1 Fog MT F1

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

2
Fog,

Cloud

MT F2,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

2
Fog,

Cloud

MT F2,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog MT F2

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual

and

multimodal

AI Subsystem

AAC TAU Automatic Audio Captioning 1 Fog MT F2

AT TAU
Audio Tagging in fixed length

segments
2 Cloud PSNC HPC

SED TAU
Sound Event Detection in

general audio signal
2 Cloud PSNC HPC

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 162 - 21 July, 2023

AVAD AU

Audio-Visual Anomaly

detection. Detecting

deviations from normality

within video frames and

corresponding scene audio

2 Cloud PSNC HPC

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

GPURegex FORTH
Keyword detection using

GPU acceleration
1 Fog MT F2

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.7 MT3 – Monitoring of parking places: AI Inference runtime and deployment view

Figure 64 provides the deployment and runtime view of the MARVEL architecture for the MT3

use case.

Figure 64: MARVEL R2 deployment and runtime view of the MARVEL architecture for MT3: Monitoring of

parking places (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for ΜΤ3.

An audio stream is obtained from a MEMS microphone that is hosted on a Raspberry Pi device

connected to the network of the Municipality of Trento and located at the parking place of the

Piazzale ex Zuffo at Trento. A video stream is obtained from a CCTV camera at the same

location.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 163 - 21 July, 2023

Due to restrictions associated with data privacy regulations and network security concerns

expressed by the Municipality of Trento (MT), a customised solution was implemented to allow

MARVEL components to access the AV data streams of the MT3 MEMS microphone and

CCTV camera (similar to the solution implemented for MT1, but additionally addressing the

needs of anonymising audio and video data at the edge within the MT network). According to

data privacy regulations, access to the raw AV data feeds (microphone and CCTV camera) that

are part of the MT network is restricted only to authorised personnel and to trusted devices

within the network. Therefore, it was not possible to provide MARVEL components with direct

access to the raw AV data, but only to anonymised versions of it 61. Following deliberations

with the MT authorities and based on an agreement that nominates FBK as a data processor

under certain constraints, a solution was reached that involved the use of an external server

(MT F1), which is managed by FBK. However, this server (MT F1) could not be attached to

the MARVEL Kubernetes cluster, because such an action would violate the conditions and

security policies foreseen by the agreement between MT and FBK.

It was decided to deploy AudioAnony (coupled with VAD) directly on the MT3 E1 Raspberry

Pi device and to deploy VideoAnony directly on the MT3 E2 Jetson device in order to provide

anonymisation at the Edge, considering that the RPi and Nvidia Jetson could provide sufficient

computational power for these services. However, since MT3 E1 and MT3 E2 were part of the

MT network, they could not be attached as a node to the MARVEL Kubernetes cluster.

Furthermore, due to the agreement between MT and FBK, MT3 E1 and MT3 E2 could only

be accessed from MT F1 using VPN. In order to grant access to the anonymised audio from

AudioAnony on MT3 E1 and to the anonymised video from VideoAnony on MT3 E2 to other

endpoints within the MARVEL Kubernetes cluster, an RTSP Proxy F1 service was deployed

directly on MT F1 that could re-stream the output audio stream from AudioAnony on MT3

E1 and output video stream from VideoAnony on MT3 E2.

In addition, a second Fog server was set up at FBK (MT F2), which was allowed to (i) be

attached to the MARVEL Kubernetes cluster and (ii) gain access to the RTSP Proxy F1 and

VideoAnony services hosted on the first infrastructure node of FBK (MT F1) through an RTSP

Proxy F2 service that was not part of the Kubernetes cluster, but could re-stream the output of

AudioAnony and VideoAnony towards the Kubernetes cluster using a VPN tunnel. Therefore,

using this configuration, it was possible for all components that are hosted within the MARVEL

Kubernetes cluster to gain access to anonymised AV data streams produced by AudioAnony

at MT3 E1 and VideoAnony at MT3 E2.

AudioAnony on MT3 E1 is coupled with VAD within the same container. VAD accesses the

raw audio stream and detects voice activity boundaries, which are directly provided to

AudioAnony for controlling the activation of the anonymisation process. The VAD component

within the AudioAnony container on MT3 E1 also needs to publish the voice activity

boundaries it detects as raw inference results in real time to a dedicated topic of the DatAna

MQTT Proxy broker residing at MT F2 (within Kubernetes). For this purpose, an MQTT

Proxy service was deployed on MT F1 to which VAD could publish MQTT messages via

VPN, which were then restreamed through another VPN tunnel towards the DatAna MQTT

broker on MT F2 within the Kubernetes cluster.

61 This issue could be overcome by processing the raw AV data streams with AudioAnony and VideoAnony before feeding

them to other MARVEL components. However, there were additional issues related to network security, since (i) no device

that belonged in the MT network could be attached to the MARVEL Kubernetes cluster and (ii) only trusted external endpoints

with compatible network security policies can be granted access to the MT network, where the Raspberry Pi (MT E1) with the

MEMS microphone and the CCTV cameras are hosted.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 164 - 21 July, 2023

During the system initialisation phase, the component instances that need to consume the

produced anonymised AV data streams (i.e., AT, SED, AVAD, StreamHandler and

SmartViz) request the metadata details of the RTSP Proxy F2 AV sources (AudioAnony and

VideoAnony) from the AV Registry (MT F2) via corresponding REST API calls.

In parallel, there are single instances of AT, SED and AVAD deployed at the PSNC HPC. All

these components (AT, SED, AVAD) receive the audio RTSP stream from AudioAnony at

MT3 E1 in real time through the RTSP Proxy on MT F2. AVAD also receives the RTSP AV

stream in real time from the VideoAnony instance on MT3 E2 through the RTSP Proxy on

MT F2. AT and SED process the incoming audio data stream to produce raw inference results

that refer to the activity of characteristic sounds inside audio segments and to detected sound

events respectively. AVAD processes the incoming audio and video data streams to produce

raw inference results that refer to anomaly detection. All AT, SED and AVAD instances publish

their raw inference results in real time to dedicated topics of the DatAna MQTT broker

residing at the PSNC HPC.

DatAna NiFi nodes collect the inference results from corresponding DatAna MQTT brokers

by subscribing to the respective MQTT topics. Specifically, (i) the DatAna NiFi Fog node on

MT F2 receives the inference results that are published on the DatAna MQTT Fog broker on

MT F2 and (ii) the DatAna NiFi Cloud node on the PSNC HPC receives the inference results

that are published on the DatAna MQTT Cloud broker on the PSNC HPC. Each DatAna

NiFi node performs certain operations on the collected raw inference results from all AI

components to transform them to SDM-compliant data models (for more details, see Section

5.3.2). Then, each DatAna NiFi node pushes the transformed inference results to the DatAna

NiFi node on the higher E/F/C layer, i.e., the DatAna NiFi Fog node pushes results to the

DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed inference results it collects from all

layers to dedicated Kafka topics at the DFB (a separate topic is used for the inference results of

each AI component that produced them), which is deployed at the PSNC HPC. The DFB

persistently stores the received results on the DFB ES repository. Furthermore, the DFB fuses

similar consecutive inference results from AVAD, SED and AT that are very close in time to

generate merged events that refer to longer periods.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

ES database by making queries that are supported by the exposed REST API of the DFB ES-

proxy service. SmartViz displays the inference results to the user through appropriate

visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify the displayed

inference results and this verification information is fed back to the DFB by being published to

a dedicated Kafka topic. The DFB then updates the relevant inference result entry in the DFB

ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (MT F2) receives

anonymised AV data streams in real time from the RTSP Proxy service on MT F2.

StreamHandler persistently stores the incoming anonymised AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 165 - 21 July, 2023

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

Furthermore, upon user demand, SmartViz can connect to the RTSP Proxy F2 and receive a

live anonymised AV data stream via RTSP from AudioAnony on MT3 E1 or from

VideoAnony on MT3 E2 and display it within its UI to the user. The connection is not

continuous and is initiated only when a user requests a live AV feed from the location where

an event has previously been detected.

Τhe HDD is deployed at the PSNC HPC at the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

the infrastructure nodes of MT F2 and PSNC HPC.

Table 14 provides the list of components together with their main functionalities, across

MARVEL functional subsystems that were used in ΜΤ3.

Table 14: MARVEL architectural components for MT3: Monitoring of parking places

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

MEMS

microphone
IFAG

Audio data acquisition via

IM69D130 and Edge

processing of the acquired

data

1 Edge MT3 E1

AV Registry ITML
Provides information on

available AV sources
1 Fog MT F2

Security,

Privacy and

data

protection

Subsystem

AudioAnony FBK Audio anonymisation 1 Edge MT3 E1

VAD AUD

Voice Activity Detection

detects voiced segments either

in batched or online fashion.

1 Edge MT3 E1

VideoAnony FBK Video anonymisation 1 Edge MT3 E2

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

2
Fog,

Cloud

MT F2,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

2
Fog,

Cloud

MT F2,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog MT F2

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 166 - 21 July, 2023

Audio, visual

and

multimodal

AI Subsystem

AT TAU
Audio Tagging in fixed length

segments
1 Cloud PSNC HPC

SED TAU
Sound Event Detection in

general audio signal
1 Cloud PSNC HPC

AVAD AU

Audio-Visual Anomaly

detection. Detecting

deviations from normality

within video frames and

corresponding scene audio

1 Cloud PSNC HPC

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.8 MT4 – Analysis of a specific area: AI Inference runtime and deployment view

Figure 65 provides the deployment and runtime view of the MARVEL architecture for the MT4

use case.

Figure 65: MARVEL R2 deployment and runtime view of the MARVEL architecture for MT4 – Analysis of a

specific area (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for ΜΤ4.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 167 - 21 July, 2023

An audio stream is obtained from a MEMS microphone that is hosted on a Raspberry Pi device

connected to the network of the Municipality of Trento and located at the Piazza Dante in

Trento. Video streams are obtained from two CCTV cameras at the same location.

Due to restrictions associated with data privacy regulations and network security concerns

expressed by the Municipality of Trento (MT), a customised solution was implemented to allow

MARVEL components to access the AV data streams of the MT4 MEMS microphone and

CCTV cameras (similar to the solution implemented for MT1, but additionally addressing the

needs of anonymising audio at the edge within the MT network). According to data privacy

regulations, access to the raw AV data feeds (microphone and CCTV cameras) that are part of

the MT network is restricted only to authorised personnel and to trusted devices within the

network. Therefore, it was not possible to provide MARVEL components with direct access to

the raw AV data, but only to anonymised versions of it 62. Following deliberations with the MT

authorities and based on an agreement that nominates FBK as a data processor under certain

constraints, a solution was reached that involved the use of an external server (MT F1), which

is managed by FBK. However, this server (MT F1) could not be attached to the MARVEL

Kubernetes cluster, because such an action would violate the conditions and security policies

foreseen by the agreement between MT and FBK.

Regarding audio, it was decided to deploy AudioAnony (coupled with VAD) directly on the

MT4 E1 Raspberry Pi device in order to provide anonymisation at the Edge, considering that

the RPi could provide sufficient computational power for this service. However, since MT4 E1

was part of the MT network, it could not be attached as a node to the MARVEL Kubernetes

cluster. Furthermore, due to the agreement between MT and FBK, MT4 E1 could only be

accessed from MT F1 using VPN. In order to grant access to the anonymised audio from

AudioAnony on MT4 E1 to other endpoints within the MARVEL Kubernetes cluster, an

RTSP Proxy F1 service was deployed directly on MT F1 that could re-stream the output audio

stream from AudioAnony on MT4 E1.

Regarding video, it was necessary to deploy a VideoAnony service directly on the MT F1

server at the Fog, without it being hosted on the MARVEL Kubernetes cluster. This

VideoAnony service could consume the raw AV streams from the CCTV cameras through a

VPN tunnel.

In addition, a second Fog server was set up at FBK (MT F2), which was allowed to (i) be

attached to the MARVEL Kubernetes cluster and (ii) gain access to the RTSP Proxy F1 and

VideoAnony services hosted on the first infrastructure node of FBK (MT F1) through an RTSP

Proxy F2 service that was not part of the Kubernetes cluster, but could re-stream the output of

AudioAnony and VideoAnony towards the Kubernetes cluster using a VPN tunnel. Therefore,

using this configuration, it was possible for all components that are hosted within the MARVEL

Kubernetes cluster to gain access to anonymised AV data streams produced by AudioAnony

on MT4 E1 and by VideoAnony on MT F1.

AudioAnony on MT4 E1 is coupled with VAD within the same container. VAD accesses the

raw audio stream and detects voice activity boundaries, which are directly provided to

AudioAnony for controlling the activation of the anonymisation process. The VAD component

within the AudioAnony container on MT4 E1 also needs to publish the voice activity

62 This issue could be overcome by processing the raw AV data streams with AudioAnony and VideoAnony before feeding

them to other MARVEL components. However, there were additional issues related to network security, since (i) no device

that belonged in the MT network could be attached to the MARVEL Kubernetes cluster and (ii) only trusted external endpoints

with compatible network security policies can be granted access to the MT network, where the Raspberry Pi (MT E1) with the

MEMS microphone and the CCTV cameras are hosted.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 168 - 21 July, 2023

boundaries it detects as raw inference results in real time to a dedicated topic of the DatAna

MQTT Proxy broker residing at MT F2 (within Kubernetes). For this purpose, an MQTT

Proxy service was deployed on MT F1 to which VAD could publish MQTT messages via

VPN, which were then restreamed through another VPN tunnel towards the DatAna MQTT

broker on MT F2 within the Kubernetes cluster.

During system initialisation, the component instances that need to consume the produced

anonymised AV data streams (i.e., CATFlow, AVAD, SED, StreamHandler and SmartViz)

request the metadata details of the RTSP Proxy F2 AV sources (AudioAnony and

VideoAnony) from the AV Registry (MT F2) via corresponding REST API calls.

Two CATFlow instances are deployed at the Fog layer on MT F2 and receive the output of

anonymised AV data stream in real time from the VideoAnony instance on MT F1 through the

RTSP Proxy service on MT F2 via RTSP to analyse the stream’s video section and produce

the number of detected vehicles and traffic trajectories as inference results.

Both CATFlow instances publish their inference results in real time to a dedicated topic of the

DatAna MQTT broker residing at MT F2.

In parallel, there is one instance of AVAD and one instance of SED deployed at the PSNC

HPC. These components (AVAD, SED) receive the audio RTSP stream from AudioAnony on

MT4 E1 in real time through the RTSP Proxy on MT F2. AVAD also receives the RTSP AV

stream in real time from the VideoAnony instance on MT F1 through the RTSP Proxy on MT

F2. SED processes the incoming audio data stream to produce raw inference results that refer

to sound event detection, while AVAD processes the incoming audio and video data streams to

produce raw inference results that refer to anomaly detection. All SED and AVAD instances

publish their raw inference results in real time to dedicated topics of the DatAna MQTT

broker residing at the PSNC HPC.

DatAna NiFi nodes collect the inference results from corresponding DatAna MQTT brokers

by subscribing to the respective MQTT topics. Specifically, (i) the DatAna NiFi Fog node on

MT F2 receives the inference results that are published on the DatAna MQTT Fog broker on

MT F2 and (ii) the DatAna NiFi Cloud node on the PSNC HPC receives the inference results

that are published on the DatAna MQTT Cloud broker on the PSNC HPC. Each DatAna

NiFi node performs certain operations on the collected raw inference results from all AI

components to transform them to SDM-compliant data models (for more details, see Section

5.3.2). Then, each DatAna NiFi node pushes the transformed inference results to the DatAna

NiFi node on the higher E/F/C layer, i.e., the DatAna NiFi Fog node pushes results to the

DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed inference results it collects from all

layers to dedicated Kafka topics at the DFB (a separate topic is used for the inference results of

each AI component that produced them), which is deployed at the PSNC HPC. The DFB

persistently stores the received results on the DFB ES repository. Furthermore, the DFB fuses

similar consecutive inference results from AVAD and SED that are very close in time to

generate merged events that refer to longer periods.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

ES database by making queries that are supported by the exposed REST API of the DFB ES-

proxy service. SmartViz displays the inference results to the user through appropriate

visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify the displayed

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 169 - 21 July, 2023

inference results and this verification information is fed back to the DFB by being published to

a dedicated Kafka topic. The DFB then updates the relevant inference result entry in the DFB

ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (MT F2) receives

anonymised AV data streams in real time from the RTSP Proxy service on MT F2.

StreamHandler persistently stores the incoming anonymised AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

Furthermore, upon user demand, SmartViz can connect to the RTSP Proxy F2 and receive a

live anonymised AV data stream via RTSP from AudioAnony on MT4 E1 or from

VideoAnony on MT F1 and display it within its UI to the user. The connection is not

continuous and is initiated only when a user requests a live AV feed from the location where

an event has previously been detected.

Τhe HDD is deployed at the PSNC HPC at the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

the infrastructure nodes of MT F2 and PSNC HPC.

Table 15 provides the list of components together with their main functionalities, across

MARVEL functional subsystems that were used in ΜΤ4.

Table 15: MARVEL architectural components for MT4 – Analysis of a specific area

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

MEMS

microphone
IFAG

Audio data acquisition via

IM69D130 and Edge

processing of the acquired

data

1 Edge MT4 E1

AV Registry ITML
Provides information on

available AV sources
1 Fog MT F2

Security,

Privacy and

data

protection

Subsystem

AudioAnony FBK Audio anonymisation 1 Edge MT4 E1

VAD AUD

Voice Activity Detection

detects voiced segments either

in batched or online fashion.

1 Edge MT4 E1

VideoAnony FBK Video anonymisation 1 Fog MT F1

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 170 - 21 July, 2023

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

2
Fog,

Cloud

MT F2,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

2
Fog,

Cloud

MT F2,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog MT F2

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual

and

multimodal

AI Subsystem

CATFlow GRN

AI inference:

pedestrian/vehicle count,

traffic trajectories

2 Fog MT F2

SED TAU
Sound Event Detection in

general audio signal
1 Cloud PSNC HPC

AVAD AU

Audio-Visual Anomaly

detection. Detecting

deviations from normality

within video frames and

corresponding scene audio

1 Cloud PSNC HPC

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.9 UNS1 – Drone Experiment: AI Inference runtime and deployment view

Figure 66 provides the deployment and runtime view of the MARVEL architecture for the

UNS1 use case.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 171 - 21 July, 2023

Figure 66: MARVEL R2 deployment and runtime view of the MARVEL architecture for UNS1: Drone

Experiment (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for UNS1.

An audio stream is obtained from a MEMS microphone that is hosted on a Raspberry Pi device

(UNS E2), located in Novi Sad. A video stream is obtained from a GoPro camera, which is

attached to an Intel NUC device (UNS E1). The MEMS microphone, the Raspberry Pi, the

GoPro camera and the Intel NUC are mounted on the AVDrone, which is a hexacopter UAV,

controlled by a human operator.

One AudioAnony instance is deployed on UNS E2 that processes the AV data stream from the

MEMS microphone hosted on the same device. One VideoAnony instance is deployed within

EdgeSec TEE on UNS E1. EdgeSec TEE ensures the trustworthiness of the VideoAnony

instance it encapsulates and protects the access to the live video stream of the GoPro camera

that VideoAnony requires.

AudioAnony on UNS E2 is coupled with VAD within the same container. VAD accesses the

raw audio stream and detects voice activity boundaries, which are directly provided to

AudioAnony for controlling the activation of the anonymisation process.

During system initialisation, the component instances that need to consume the produced

anonymised AV data streams (i.e., VCC, StreamHandler and SmartViz) request the metadata

details of the AudioAnony and VideoAnony AV sources from the AV Registry, which is

deployed at a server at the premises of the University of Novi Sad (UNS F1) via corresponding

REST API calls.

The VAD component within the AudioAnony container on UNS E2 publishes the voice

activity boundaries it detects as raw inference results in real time to a dedicated topic of the

DatAna MQTT broker at UNS E1.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 172 - 21 July, 2023

In parallel, there is a single instance of VCC deployed at the UNS F1, which receives the RTSP

AV stream in real time from the VideoAnony instance on UNS E1. VCC processes the

incoming video data stream to produce raw inference results that refer to crowd counting and

the generation of visual heatmaps. The VCC service publishes its raw inference results in real

time to a dedicated topic of the DatAna MQTT broker residing at the UNS F1.

DatAna NiFi nodes collect the inference results from DatAna MQTT brokers by subscribing

to the respective MQTT topics. Specifically, (i) the DatAna NiFi Fog node on UNS F1

receives the inference results that are published on the DatAna MQTT Edge broker on UNS

E2 and the DatAna MQTT Fog broker on UNS F1 and (ii) the DatAna NiFi Cloud node on

the PSNC HPC receives the inference results that are published on the DatAna MQTT Cloud

broker on the PSNC HPC. Each DatAna NiFi node performs certain operations on the

collected raw inference results from all AI components to transform them to SDM-compliant

data models (for more details, see Section 5.3.2. Then, each DatAna NiFi node pushes the

transformed inference results to the DatAna NiFi node on the higher E/F/C layer, i.e., (i) the

DatAna NiFi Edge nodes push results to the respective DatAna NiFi Fog node and (ii) the

DatAna NiFi Fog nodes push results to the DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed inference results it collects from all

layers to dedicated Kafka topics at the DFB (a separate topic is used for the inference results of

each AI component that produced them), which is deployed at the PSNC HPC. The DFB

persistently stores the received results on the DFB ES repository.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

ES database by making queries that are supported by the exposed REST API of the DFB ES-

proxy service. SmartViz displays the inference results to the user through appropriate

visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify the displayed

inference results and this verification information is fed back to the DFB by being published to

a dedicated Kafka topic. The DFB then updates the relevant inference result entry in the DFB

ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (UNS F1) receives

anonymised AV data streams in real time from the AudioAnony service at UNS E2 and the

VideoAnony service at UNS E1. StreamHandler persistently stores the incoming anonymised

AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

Furthermore, upon user demand, SmartViz can connect to the AudioAnony service at UNS

E2 or the VideoAnony service at UNS E1 to receive a live AV data stream via RTSP and

display it within its UI to the user. The connection is not continuous and is initiated only when

a user requests a live AV feed from the location where an event has previously been detected.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 173 - 21 July, 2023

Τhe HDD is deployed at the PSNC HPC at the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

the infrastructure nodes of UNS E1, UNS E2, UNS F1 and PSNC HPC.

Table 16 provides the list of components together with their main functionalities, across

MARVEL functional subsystems that were used in UNS1.

Table 16: MARVEL architectural components for UNS1: Drone Experiment

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

MEMS

microphone
IFAG

Audio data acquisition via

IM69D130 and Edge

processing of the acquired

data

1 Edge UNS E1

AVDrone UNS

Drone-mounted equipment

for audio and video data

acquisition and streaming

1 Edge N/A

AV Registry ITML
Provides information on

available AV sources
1 Fog UNS F1

Security,

Privacy and

data

protection

Subsystem

AudioAnony FBK Audio anonymisation 1 Edge UNS E2

VAD AUD

Voice Activity Detection

detects voiced segments either

in batched or online fashion.

1 Edge UNS E2

VideoAnony FBK Video anonymisation 1 Edge UNS E1

EdgeSec TEE FORTH
Secure computing based on

Intel SGX security features.
4 Edge UNS E1

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

4

Edge,

Fog,

Cloud

UNS E1,

UNS E2,

UNS F1,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

3

Edge,

Fog,

Cloud

UNS E1,

UNS F1,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog UNS F1

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual

and

multimodal

AI Subsystem

VCC AU

Visual Crowd Counting. Total

number of people present in

given video frames.

1 Fog UNS F1

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 174 - 21 July, 2023

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.10 UNS2 – Localising audio events in crowds: AI Inference runtime and deployment

view

Figure 67 provides the deployment and runtime view of the MARVEL architecture for the

UNS1 use case.

Figure 67: MARVEL R2 deployment and runtime view of the MARVEL architecture for UNS2 – Localising

audio events in crowds (annotation label descriptions in Table 6, Section 5.2)

This section describes the deployment, operation and interactions between components that are

implemented for UNS2.

An 8-channel audio stream is obtained from a MEMS microphone that is attached to a portable

PC device (UNS E3), located in Novi Sad.

One AudioAnony instance is deployed on UNS E3 that processes the AV data stream from the

MEMS microphone hosted on the same device. Only one of the eight channels produced by

the MEMS microphone is processed for anonymisation and streaming by AudioAnony.

AudioAnony on UNS E2 is coupled with VAD within the same container. VAD accesses the

raw audio stream and detects voice activity boundaries, which are directly provided to

AudioAnony for controlling the activation of the anonymisation process.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 175 - 21 July, 2023

One SELD instance is also deployed on UNS E2 and it processes all eight audio channels of

the AV data stream from the MEMS microphone hosted on the same device.

During system initialisation, the component instances that need to consume the produced

anonymised AV data streams (i.e., StreamHandler and SmartViz) request the metadata details

of the AudioAnony AV sources from the AV Registry, which is deployed at a server at the

premises of the University of Novi Sad (UNS F1) via corresponding REST API calls.

The VAD component within the AudioAnony container on UNS E3 publishes the voice

activity boundaries it detects as raw inference results in real time to a dedicated topic of the

DatAna MQTT broker at UNS F1.

The SELD component on UNS E3 also publishes its inference results in real time to a dedicated

topic of the DatAna MQTT broker at UNS F1. The inference results refer to sound detection

and localisation.

DatAna NiFi nodes collect the inference results from DatAna MQTT brokers by subscribing

to the respective MQTT topics. Specifically, (i) the DatAna NiFi Fog node on UNS F1

receives the inference results that are published on the DatAna MQTT Fog broker on UNS

F1. Each DatAna NiFi node performs certain operations on the collected raw inference results

from all AI components to transform them to SDM-compliant data models (for more details,

see Section 5.3.2). Then, each DatAna NiFi node pushes the transformed inference results to

the DatAna NiFi node on the higher E/F/C layer, i.e., (i) the DatAna NiFi Edge nodes push

results to the respective DatAna NiFi Fog node and (ii) the DatAna NiFi Fog nodes push

results to the DatAna NiFi Cloud node.

The DatAna NiFi Cloud node publishes the transformed inference results it collects from all

layers to dedicated Kafka topics at the DFB (a separate topic is used for the inference results of

each AI component that produced them), which is deployed at the PSNC HPC. The DFB

persistently stores the received results on the DFB ES repository.

SmartViz is deployed at the PSNC HPC and accesses the incoming inference results at the

DFB in real time by subscribing to the Kafka topics where they are published by the DatAna

NiFi Cloud node. SmartViz also accesses the historical inference result data stored in the DFB

ES database by making queries that are supported by the exposed REST API of the DFB ES-

proxy service. SmartViz displays the inference results to the user through appropriate

visualisations, as detailed in Section 5.5. SmartViz also allows the user to verify the displayed

inference results and this verification information is fed back to the DFB by being published to

a dedicated Kafka topic. The DFB then updates the relevant inference result entry in the DFB

ES accordingly.

In parallel, a single instance of StreamHandler deployed at the Fog (UNS F1) receives

anonymised AV data streams in real time from the AudioAnony service at UNS E3.

StreamHandler persistently stores the incoming anonymised AV data in a MinIO repository.

The StreamHandler instance also accesses the incoming inference results at the DFB in real

time by subscribing to the Kafka topics where they are published by the DatAna NiFi Cloud

node. StreamHandler uses the information in these results (e.g., AV source and time period

of result) to generate AV files that correspond to each inference result.

Upon user demand, SmartViz requests data from StreamHandler that refer to a particular

inference result by accessing a REST API exposed by StreamHandler. StreamHandler

composes the AV data that is requested (if not already available) and returns the location of the

corresponding AV data to SmartViz. SmartViz accesses the AV data and makes it available

to the user for playback within its UI.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 176 - 21 July, 2023

Furthermore, upon user demand, SmartViz can connect to the AudioAnony service at UNS

E3 to receive a live AV data stream via RTSP and present it within its UI to the user. The

connection is not continuous and is initiated only when a user requests a live AV feed from the

location where an event has previously been detected.

Τhe HDD is deployed at the PSNC HPC at the Cloud and can receive the current Kafka topic

partition configuration from the DFB on a periodic basis. After analysing it, the HDD returns

a recommendation for an optimised Kafka topic partition configuration to the DFB.

Finally, MARVdash is orchestrating the deployment of all the implemented components across

the infrastructure nodes of UNS E3, UNS F1 and PSNC HPC.

Table 17 provides the list of components together with their main functionalities, across

MARVEL functional subsystems that were used in UNS1.

Table 17: MARVEL architectural components for UNS1: Drone Experiment

MARVEL

subsystem

Component information

Name Owner Functionality
Deployment

Instances Layer Infr. Node

Sensing and

perception

subsystem

MEMS

microphone
IFAG

Audio data acquisition via

IM69D130 and Edge

processing of the acquired

data

1 Edge UNS E3

AV Registry ITML
Provides information on

available AV sources
1 Fog UNS F1

Security,

Privacy and

data

protection

Subsystem

AudioAnony FBK Audio anonymisation 1 Edge UNS E3

VAD AUD

Voice Activity Detection

detects voiced segments either

in batched or online fashion.

1 Edge UNS E3

EdgeSec VPN FORTH

Secure communications

between services on

infrastructure nodes

3

Edge,

Fog,

Cloud

UNS E3,

UNS F1,

PSNC HPC

Data

management

and

distribution

subsystem

DatAna ATOS

Collection and transformation

of raw inference results –

MQTT brokers and NiFi

nodes

2
Fog,

Cloud

UNS F1,

PSNC HPC

DFB ITML

Collection, persistent storage

and fusion of SDM-compliant

inference results – Kafka

brokers, ES database

1 Cloud PSNC HPC

StreamHandler INTRA Persistent storage of AV data 1 Fog UNS F1

HDD CNR
Kafka broker partition

optimisation
1 Cloud PSNC HPC

Audio, visual

and

multimodal

AI Subsystem

SELD TAU
Sound Event Localisation and

Detection
1 Edge UNS E3

Optimised

E2F2C

processing

and

deployment

subsystem

MARVdash FORTH

Service deployment and

Kubernetes cluster

management

1 Cloud PSNC HPC

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 177 - 21 July, 2023

E2F2C

infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting

VMs for service deployment
1 Cloud PSNC HPC

Management

and

orchestration of

HPC resources

PSNC

Management and monitoring

via SLURM software and

OpenStack.

1 Cloud PSNC HPC

User

interactions

and decision-

making

toolkit

SmartViz ZELUS UI and visualisations 1 Cloud PSNC HPC

5.4.11 AI Training runtime and deployment view

Figure 68 provides the deployment and runtime view of the MARVEL reference architecture

for AI Training that is applied to support the ‘AI Inference Pipeline’ in all R2 use cases.

Figure 68: MARVEL R2 deployment and runtime view of the MARVEL architecture for AI Training

(annotation label descriptions in Table 6, Section 5.2)

MARVEL has established a methodology and an associated system architecture that are

dedicated to AI Training, serving the purpose of the continuous improvement of the ‘AI

Inference Pipeline’, which is applied to all R2 use cases.

To a large extent, the operation of the MARVEL framework in the ‘AI Inference Pipeline’ relies

on AI components that require Machine Learning (ML), Deep Learning (DL) and Federated

Learning for the formulation and optimisation of their associated AI models. While each

component may adopt a different approach to perform such AI Training processes according to

its nature and objectives, all these processes depend on the availability of relevant datasets and

annotation information. In addition, some of the MARVEL AI models are significantly case-

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 178 - 21 July, 2023

specific, i.e., to speed-up the process and improve the inference performance, they might require

being pre-trained using datasets that are compatible with use-case specific input data.

AI Training of MARVEL AI components can occur using each component’s own resources

and using private or publicly available datasets that have not necessarily emerged from the

MARVEL data collection activities. However, in the context of the MARVEL R2 integration

activities, dedicated processes were established to support AI training of MARVEL

components that took the form of a structured system architecture. The AI Training processes

foreseen by this architecture can be activated on an on-demand basis or be driven by a periodical

schedule, subject to the availability of new datasets in the Data Corpus. The associated AI

Training architecture ensures that:

• AI components in training mode can gain access to the data that is aggregated at the

Data Corpus or other local data repositories on the MARVEL infrastructure for AI

training purposes.

• AI components can store and retrieve different versions of their associated AI models

that are produced through AI Training with different datasets.

• AI models can be further enhanced using special compression and optimisation

techniques to provide improved performance in the ‘AI Inference Pipeline’ (DynHP).

• Federated Learning can be applied in AI training processes to enable model training

over private, distributed datasets (FedL).

This section describes the deployment, operation and interactions between components that are

implemented in the MARVEL AI Training architecture.

AI components in training mode deployed at the Fog or Cloud infrastructure nodes may

access the Data Corpus that is deployed at the Cloud PSNC HPC and/or other local data

repositories hosted on infrastructure at the Fog layer to retrieve raw datasets and annotation

information and use these data to feed their own AI training processes. The training process

typically also involves a quality control phase (benchmarking), which can be automated or

manual to ensure that the trained model meets certain functional and performance criteria.

After concluding AI training tasks, AI components in training mode can store the updated AI

models that they produce in a central AI Model Repository that is hosted at the Cloud PSNC

HPC using specified data structures and naming conventions (see Section 5.3.4).

AI components in inference mode deployed at the Edge, Fog or Cloud infrastructure nodes

can access and retrieve any AI model that is associated with their functions from the central AI

Model Repository that is hosted at the Cloud PSNC HPC.

DynHP is hosted at the Fog or Cloud layer and can access the AI Model Repository to retrieve

an AI model that is foreseen to be used by a MARVEL AI component. DynHP then re-trains

the model using techniques for compression and optimisation. During this process, DynHP

may also retrieve datasets from the Data Corpus. The resulting optimised and compressed AI

model is stored back in the AI Model Repository.

The FedL component is composed of a client and a server application. Typically, the FedL

server is hosted at the Cloud node and the FedL client is hosted at a Fog node. The FedL

server receives a compressed/optimised AI model from the AI Model Repository.

Subsequently, the FedL server exchanges information bidirectionally with the FedL client to

process a compressed/optimised AI model and update it after performing federated learning. At

the end of this process, the FedL server returns an updated version of the model to the AI

Model Repository.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 179 - 21 July, 2023

Table 18 provides the list of components together with their main functionalities, across

MARVEL functional subsystems that are used in the MARVEL AI Training architecture.

Table 18: MARVEL architectural components for AI Training

MARVEL subsystem

Component information

Name Owner Functionality

Security, Privacy and data

protection Subsystem

VideoAnony FBK Video anonymisation

AudioAnony FBK Audio anonymisation

Audio, visual and

multimodal AI Subsystem

TAD GRN
Text Anomaly Detection. Analysis of

CATFlow raw inference results

SED TAU Sound Event Detection in general audio signal

AT TAU Audio Tagging in fixed length segments

AAC TAU Automated Audio Captioning

SELD TAU Sound Event Localisation and Detection

ViAD AU
Visual Anomaly detection. Detecting

deviations from normality within video frames

AVAD AU

Audio-Visual Anomaly detection. Detecting

deviations from normality within video frames

and corresponding scene audio

VCC AU
Visual Crowd Counting. Total number of

people present in given video frames.

AVCC AU

Audio-Visual Crowd Counting. Total number

of people present in given video frames and

from the corresponding ambient audio.

YOLO-SED
AU,

TAU

Anomaly detection using YOLO object detector

and SED audio analysis

RBAD AU Rule-Based Anomaly Detector

Optimised E2F2C

processing and deployment

subsystem

DynHP CNR

Training and compressing a deep neural

network model under a fixed memory budget

for model’s deployment at Edge/Fog layer.

FedL UNS
Algorithmic and protocol framework for

federated learning (FL).

MARVdash FORTH
Service deployment and Kubernetes cluster

management

E2F2C infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting VMs for service

deployment

Management and

orchestration of

HPC resources

PSNC
Management and monitoring via SLURM

software and OpenStack.

Data Corpus STS
A data pool of anonymised and labelled data

and inference results for AI training purposes

5.4.12 Data Corpus Data Aggregation runtime and deployment view

Figure 69 provides the deployment and runtime view of the MARVEL reference architecture

for the Data Corpus that is applicable in all use cases addressed by R2.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 180 - 21 July, 2023

Figure 69: MARVEL R2 deployment and runtime view of the MARVEL architecture for Data Aggregation at

the Data Corpus (annotation label descriptions in Table 6, Section 5.2

The AI Training pipeline is supported by another mechanism associated with the Data Corpus,

whose purpose is to populate the Data Corpus with the necessary data that can be used for AI

Training. This section describes the operation and interactions between components that are

implemented for the Data Corpus Data Aggregation.

The Data Corpus is hosted on the PSNC HPC and incorporates a front-end client with a GUI

that allows users to upload AV datasets that are coupled with associated annotations for AI

Training. The client accesses the Data Corpus API to transmit the data to the Data Corpus back-

end repository for persistent storage.

In addition, the Data Corpus can access the MinIO repository of each StreamHandler instance

that is deployed at the Fog nodes of each pilot (GRN, MT, UNS) for the needs of the ‘AI

Inference Pipeline’ of each use case. Each StreamHandler instance collects AV data by

consuming the RTSP streams from instances of AudioAnony and VideoAnony deployed at

the Edge and Fog nodes of the respective pilot, which anonymise the raw AV data streams from

the capturing devices at the Edge. StreamHandler segments the incoming AV data streams

into binary AV files and stores them in its MinIO repository. The Data Corpus can retrieve

AV files directly from the StreamHandler MinIO repository.

The Data Corpus also maintains a copy of inference results that are being produced by the ‘AI

Inference Pipeline’ that is applied in all R2 use cases. Since the DFB aggregates the inference

results from all use cases, the Data Corpus can receive them during the operation of the ‘AI

Inference Pipeline’ by subscribing to the DFB Kafka topics, where they are published by

DatAna. The Data Corpus also accesses the DFB Kafka topic, where SmartViz publishes

information related to the verification of inference results by human operators. This information

is particularly valuable for the Data Corpus as it constitutes a “ground truth” and can provide

labelled datasets for future AI training activities, which are fully aligned with the needs of the

MARVEL AI components.

Table 19 provides the list of components together with their main functionalities, across

MARVEL functional subsystems that are used for the Data Corpus Data Aggregation.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 181 - 21 July, 2023

Table 19: MARVEL architectural components for Data Corpus

MARVEL subsystem

Component information

Name Owner Functionality

Data management and

distribution subsystem

DFB ITML

Collection, persistent storage and fusion of

SDM-compliant inference results – Kafka

brokers, ES database

StreamHandler INTRA Persistent storage of AV data

Optimised E2F2C

processing and deployment

subsystem

MARVdash FORTH
Service deployment and Kubernetes cluster

management

E2F2C infrastructure

HPC

Infrastructure
PSNC

Cloud layer for GRN4 hosting VMs for service

deployment

Management and

orchestration of

HPC resources

PSNC
Management and monitoring via SLURM

software and OpenStack.

Data Corpus STS
A data pool of anonymised and labelled data

and inference results for AI training purposes

5.5 UI/UX Design

The DMT serves as the UI for the MARVEL project. In collaboration with the pilots, the needs

and objectives of the use cases were identified and addressed. The process followed involved

analysing the user requirements, defining both functional and non-functional requirements for

the DMT functionalities, and mapping them to the visualisation widgets. Finally, mockup

screens that compose the user interface were developed and reviewed by end users who

provided feedback that was used to design the final form of the interface. This systematic

process ensures that the DMT effectively aligns with user needs and provides a comprehensive

interface for decision-making within the MARVEL project.

Through the aforementioned process, the DMT offers to the users a range of visualisations for

detected events, anomalies, and alerts. These visualisations are accompanied by relevant audio

and video snippets, bus scheduling information correlated with some cameras, weather-related

data, and more. Further details on the DMT and its functionalities are included in Section 2.3

of D4.6 ‘Decision Making Toolkit-final version’.

The toolkit enables users to visualise events, alerts, and anomalies, providing valuable insights

for making medium to long-term decisions. To ensure user-friendliness and intuitiveness, the

DMT incorporates preconfigured visualisations that have been carefully selected based on best

practices and ZELUS team's experience. This allows users to utilise the toolkit effectively

without the need for extensive training, enhancing its accessibility and usability.

The visualisation widgets and functionalities that have been added in R2 are presented in the

following sub-sections. D4.6 presents all the visualisation widgets (including the ones

developed during R1) in more detail.

5.5.1 Weather Information

The Weather Information widget (Figure 70) provides a representation of weather-related data

for the analysed area within the MARVEL use cases. Users can interact with this widget to

view weather information for a selected time period, with the ability to drill down into 3-hour

time windows. The widget displays details such as visibility, humidity, temperature, and an

overall summary of the weather conditions in the area. By visualising these weather variables,

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 182 - 21 July, 2023

the widget helps users understand the weather factors that may contribute to the detection

process and events within the MARVEL system.

Figure 70: Weather widget

5.5.2 Sound Localisation Map

The Sound Localisation Map widget (Figure 71) consists of a map showcasing the direction of

a sound event detected by the SELD component. The user who interacts with this widget can

view consecutive available detected events with their direction indicated by an arrow from a

selected time period.

Figure 71: Sound Localisation Map widget

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 183 - 21 July, 2023

5.5.3 Alerts

The Alerts widget (Figure 72) serves as a functionality catering for both real-time and historical

data. The primary objective of this widget is to notify users whenever an alert is detected. When

an alert occurs, a pop-up notification is displayed to the user, indicating the camera where the

alert was detected, along with relevant information regarding the alert. In addition to real-time

notifications, the Alerts widget also provides users with a summary of detected events from the

past 24 hours. This feature allows users to review and gain insights into previously detected

events.

Figure 72: Alerts widget

5.5.4 Comparison

The comparison functionality (Figure 73) allows users to view two separate time periods side

by side, displaying the same widgets for each period. This feature enables users to compare and

analyse the detected events within each time period. By examining the events across different

time periods, users can identify hidden correlations between them. This comparison can be

particularly useful for identifying patterns or trends, evaluating the effectiveness of educational

campaigns, and drawing conclusions about their performance.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 184 - 21 July, 2023

Figure 73: Comparison functionality

5.5.5 Download Data (JSON)

In the final version of the DMT, users have the option to download the visualised data in a

JSON format. These downloadable data include any filters and preferences applied during the

users’ interaction with the DMT. By providing this functionality, users can easily retrieve and

utilise the visualised data for further analysis or reference purposes.

5.5.6 Download PDF Report

In the final version of the DMT, users have the ability to download a PDF version of the

dashboard view. This allows them to save the entire dashboard as a PDF file, providing a

convenient way to store and use the dashboard according to their preference. Users can refer to

the downloaded PDF version of the dashboard offline or share it with others as needed.

5.5.7 Word Cloud

The Word Cloud widget (Figure 74) in the DMT enables users to visualise the most common

keywords and descriptions associated with the detected events. The data used for this widget

are the output of the AAC component that create textual description with full sentences for

audio segment. The caption of the component’s outputs describes what is happening in the

audio signal, for example, “people yelling while siren wails”. In the word cloud, more

frequently occurring captions are displayed with greater prominence, while less frequently used

captions are shown with less emphasis. This visualisation provides a summary of the most

prominent terms or topics within the data input.

By analysing the prominence of the captions in the word cloud, users can quickly identify the

words that appear most frequently. This visualisation technique is particularly valuable for

gaining insights into the main trends or keywords associated with the detected events and it

allows users to extract meaningful information from the textual descriptions.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 185 - 21 July, 2023

Figure 74: Word Cloud widget

5.5.8 Audio Player

The audio player widget in the DMT (Figure 75) offers two main functionalities. Real-time

audio streaming and playback of audio snippets related to specific events or detections. Users

can listen to audio streams in real-time, monitoring ongoing audio data. They can also trigger

playback of corresponding audio snippets when selecting specific events or areas for further

analysis.

Figure 75: Audio player widget

5.5.9 Police Intervention

Police intervention widget (Figure 76) provides the ability for users, especially police

authorities, to identify and flag specific events within DMT's visualisation interface. When

observing a visualised event that requires police intervention, users have the option to mark or

flag that event. By marking the event, users indicate its significance and the need for attention

from authorities. This functionality allows users to annotate and highlight events they view as

particularly important in their analysis and reporting.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 186 - 21 July, 2023

Figure 76: Police Intervention functionality

5.5.10 Service Management

In the final version of the DMT, users are empowered with service control capabilities (Figure

77). They can initiate or terminate specific services according to their needs. This functionality

is made possible through the interaction between SmartViz and MARVDash via a REST API.

This API allows SmartViz to retrieve information about the available services deployed within

MARVDash. The users can then initiate and terminate selected services. This interaction

provides the end users with the ability to control and manage services within the system.

Figure 77: Service Management functionality

Table 20, Table 21 and Table 22 map the DMTs’ widgets to the use cases that were selected

for R2. A full and detailed description of the available widgets, their features, graphic

appearance, functionality, and operation is included in D4.6 ‘Decision Making Toolkit-final

version’.

Table 20: DMT Widgets’ mapping to R2 use cases of GRN

Widgets GRN1 GRN2 GRN3 GRN4

Temporal Representation - YES - YES

Crowd Density Heatmap Representation - - - YES

Details Widget YES YES YES YES

Vehicle Trajectories - - - YES

Statistical Representation - YES YES YES

Video Player YES YES YES -

Real-time Map Representation - - YES -

Summaries YES YES - -

Weather information YES YES YES YES

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 187 - 21 July, 2023

Sound Localisation Map - - - -

Alerts YES - - -

Comparison - YES - -

Download Data (JSON) YES YES YES YES

Download PDF Report YES YES YES YES

Word Cloud - - - -

Audio Player - YES YES -

Police Intervention - - - -

Service Management - - - YES

Table 21: DMT Widgets’ mapping to R2 use cases of MT

Widgets MT1 MT2 MT3 MT4

Temporal Representation YES - YES YES

Crowd Density Heatmap Representation YES - - -

Details Widget YES YES YES YES

Vehicle Trajectories - - - YES

Statistical Representation YES YES - YES

Video Player YES YES YES YES

Real-time Map Representation YES - - -

Summaries YES YES YES -

Weather information YES YES YES YES

Sound Localisation Map - - - -

Alerts YES YES YES -

Comparison YES - - -

Download Data (JSON) YES YES YES YES

Download PDF Report YES YES YES YES

Word Cloud - YES - -

Audio player - YES YES YES

Police Intervention YES YES YES YES

Service Management - - - -

Table 22: DMT Widgets’ mapping to R2 use cases of UNS

Widgets UNS1 UNS2

Temporal Representation - -

Crowd Density Heatmap Representation YES -

Details Widget YES YES

Vehicle Trajectories - -

Statistical Representation - -

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 188 - 21 July, 2023

Video Stream Player YES -

Real-time Map Representation - -

Summaries YES -

Weather information YES YES

Sound Localisation Map - YES

Alerts YES -

Comparison - -

Download Data (JSON) YES YES

Download PDF Report YES YES

Word Cloud - -

Audio Player YES YES

Police Intervention YES YES

Service Management - -

5.6 Infrastructure

The available infrastructure that was employed for developing and integrating the MARVEL

R2 integrated framework played an important role in the overall design, specification and final

form of R2. This section presents the AV sources, the computational infrastructure and other

key devices that were used in each pilot at the edge and fog tiers as well as the computational

infrastructure used at the cloud tier that was provided by PSNC.

5.6.1 GRN Infrastructure

The GRN Infrastructure provided for the R2 integration consists of 3 IP cameras transmitting

audio and video, 2 PCs simulating Edge layer computational nodes, 1 Nvidia Jetson Edge

device and a server on loan from FORTH acting as the Fog computational node. GRN has also

added a Jetson Apollo Dev Kit edge device and Arduino to control a prototype LED road sign.

The following subsections describe each component in detail.

5.6.1.1 GRN Edge Tier

The GRN pilot includes three IP cameras; One camera is at Mgarr (a rural town in the north-

west region) and the other two cameras are at Zejtun (an urban town close to the southern inner-

harbour region. These cameras have no ability to process data at the Edge and can only transmit

audio and video via an IP connection. The camera at Mgarr has slightly different specifications

than the IP cameras at Zejtun. All three components were used in both GRN use cases (GRN3

and GRN4). Table 23 lists the specifications for each camera.

Table 23: Specifications for GRN IP Cameras

Specifications Type Mgarr Camera Zejtun Cameras

IP camera model Safire 5MP Bullet Outdoor/Indoor IP

Camera With POE

ANNKE outdoor 5MP PoE security

cameras, Model I51DL, Lens: 2.8mm

Resolution 1920 x 1080 P 1920 x 1080 P

Frame Rate 25 fps 20 fps

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 189 - 21 July, 2023

Specifications Type Mgarr Camera Zejtun Cameras

Video Encoding H.265 H.265

Audio Encoding MP2L2 MP2L2

Audio Sampling Rate 32kHz 16kHz

Audio Stream Bitrate 64kbs 128kbps

GRN has a PC at the Mgarr location directly connected to the Mgarr IP Camera. Table 24

shows the specifications of the GRN Edge PC 1 (GRN E1). This PC was used to carry out

processing at the Edge.

Table 24: GRN Edge PC 1 (GRN E1) specifications

HW subsystem Specifications

CPU Intel Core i7-3770 @3.4GHz, 8 cores

GPU GTX1650 4GB

Hard Drive 1 TB

RAM 32 GB

A second PC was added to the Zejtun location to directly connect to the Zejtun IP Cameras.

Table 25 shows the specifications of the GRN Edge PC 2 (GRN E2). This PC was used to carry

out processing at the edge and further avoid transferring of anonymised data.

Table 25: GRN Edge PC 2 (GRN E2) specifications

HW subsystem Specifications

CPU INTEL CORE I 7 12700

GPU GEFORCE RTX 3080

Hard Drive 1 TB

RAM CRUCIAL 16GB DDR4

The Jetson Apollo Dev Kit edge device is a development kit for the NVIDIA JetsonXavier NX.

Table 26 shows the specifications of the Jetson Device. This device is connected to an Arduino

nano which controls an LED board which alerts drivers.

Table 26: GRN Edge Jetson Device specifications

HW subsystem Specifications

CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6MB L2 +

4MB L3 processor

GPU NVIDIA Volta™ architecture with 384 NVIDIA CUDA®

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 190 - 21 July, 2023

cores and 48 Tensor cores

Hard Drive 16 GB eMMC 5.1

RAM 8 GB 128-bit LPDDR4x @ 1600 MHz 51.2GB/s16 GB

128-bit LPDDR4x @ 59.7GB/s

All Edge devices are connected to 4G mobile routers.

During the MVP the original GRNEdge device was partially integrated and tested as part of the

GRN edge infrastructure. The GRNEdge device suffered an unstable connection and frequent

shutting down due to overheating, as reported in D5.2. From R1 onwards, the GRNEdge Device

was replaced by the multiple devices described above. The latest setup resulted in an edge

system that is stable most of the time, weatherproof and readily installed with industry standard

streaming protocols and control.

Finally, for the specific needs of GRN1, a Traffic LED sign simulator was used comprising an

Arduino Nano board that controls an LED board. The detailed specification of these devices

are presented in Table 27 below.

Table 27: GRN Traffic LED sign simulator

HW components HW subsystem Specifications

Arduino Nano Memory 2 KB of SRAM and 1 KB of EEPROM.

Input and

Output
14 digital pins on the Nano , 5V 40mA

Communication UART TTL (5V) serial communication, FTDI

FT232RL serial communication over USB and the

FTDI drivers

LED Lighting Development

Tools NeoPixel Triple-Ring

Board

LEDS 44 Thru-Hole LEDs - 66mm Diameter

Input DOUT Control data signal output,
VDD Power supply LED - +3.5～+5.5,
VSS Ground, DIN Control data signal input

5.6.1.2 GRN Fog Tier

GRN has set up a server on loan from FORTH as the GRN Fog node. This node processes

anonymised streams for all the use cases. The Fog server is connected to internet via a wired

connection.

Table 28 shows the specifications of the GRN Fog server node.

Table 28: GRN Fog server node specifications

HW subsystem Specifications

CPU AMD EPYC 7313P 16-Core Processor (32

Threads)

GPU NVIDIA RTX A4000 16GB

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 191 - 21 July, 2023

Hard Drive NVME drive 256GB running UBUNTU Server

OS

2 x Enterprise SAMSUNG SSDs 3.5TB

RAM 252GB of RAM

5.6.2 MT/FBK Infrastructure

In the context of the R2 integration, the infrastructure for the MT pilot at the Edge has been

extended and now includes the following devices:

• 8 IP cameras transmitting video.

• Raspberry Pi boards equipped with MEMS microphones installed at the sites of the

MT2, MT3 and MT4 use cases.

Regarding the Fog layer, it has not been modified after R1 and 2 workstations provided by FBK

continue to serve as the computational infrastructure resources at the Fog.

The infrastructure of the MT use cases is particularly complicated because:

• It involves the production networks of two different institutions.

• Access to the raw data collected by the surveillance cameras and microphones of MT is

granted to FBK on the basis of a bilateral agreement between MT and FBK, but only

with strict constraints.

• The devices in the surveillance network of MT cannot be part of the Kubernetes cluster.

Therefore, the Fog tier is split into two parts: the first part (MT F1) interfaces with the MT

network via VPN, and the second one (MT F2) communicates with the MARVdash platform

via the EdgeSec VPN component.

5.6.2.1 MT Edge Tier

The video sensing devices consist of two models of IP cameras:

• Basler BIP2

• Basler BIP.

Both models can record videos with a resolution of 1600x1200 pixels with the MPEG codec,

while Basler BIP2 can reach a framerate of 12.5 fps and Basler BIP can reach framerate of 2

fps. Note that overall, 14 cameras are available for data recordings (11 Basler BIP2 and 3 Basler

BIP). However, 2 cameras per use cases have been selected to demonstrate the MARVEL

functionalities. The live video feeds will be streamed to the MTFOG1 via the VPN access

provided by MT.

The audio sensing devices consist of Nano hub IFAG microphones mounted on a Raspberry Pi

(RPi) 4B 8GB. In the R1 deployment, 2 audio devices were used in the use case MT-3 (Piazzale

ex-Zuffo). The RPi acts as an Edge device and performs the initial processing of the captured

audio signals: voice activity detection (VAD) and subsequent anonymisation (AudioAnony).

Signals are recorded at 16kHz with 16-bits precision. The RPi implements an RTSP server that

streams the anonymised audio data to the subscriber nodes (a rebound node in the FOG tier as

explained later). The RPi also forwards MQTT messages from VAD.

Due to security and privacy issues, Edge nodes are not part of the MARVEL Kubernetes cluster.

Table 29 presents the AV sources and edge infrastructure devices used in the MT pilot for R2.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 192 - 21 July, 2023

Table 29: MT Edge Infrastructure in R2

Sensing device
[e.g., camera,

microphone, mobile

phone]

Specifications Location Use

Case

Stream Name

Camera 1 Digital cameras - Basler

BIP2-1600c-dn

12 fps, 1600 x 1200

Piazza

Fiera

MT1 MT1-VA-

01_PiazzaFiera3_VideoAnony

Camera 2 Digital cameras - Basler

BIP2-1600c-dn

12 fps, 1600 x 1200

Piazza

Duomo

MT1 MT1-VA-

02_PiazzaDuomoNord_VideoAnony

Camera 3 Digital cameras - Basler

BIP-1600c

2 fps, 1600 x 1200

Piazzale

ex Zuffo

MT3 MT3-VA-

01_PiazzaleExZuffo_Ingresso_via_S

S._Cosma_e_Damiano_VideoAnony

Camera 4 Digital cameras - Basler

BIP-1600c

2 fps, 1600 x 1200

Piazzale

ex Zuffo

MT3 MT3-VA-

02_PiazzaleExZuffo_Ingresso_via_B

erlino_VideoAnony

Camera 5 Digital cameras - Basler

BIP2-1600c-dn

12 fps, 1600 x 1200

Piazza S.

Maria

Maggiore

MT2 MT2-VA-

01_Piazza_SMMaggiore_Obelisque_

VideoAnony

Camera 6 Digital cameras - Basler

BIP2-1600c-dn

12 fps, 1600 x 1200

Piazza S.

Maria

Maggiore

MT2 MT2-VA-

02_Piazza_SMMaggiore_TrafficLigh

t_VideoAnony

Camera 7 Digital cameras - Basler

BIP2-1600c-dn

12 fps, 1600 x 1200

Piazza

Dante

MT4 MT4-VA-

01_Piazza_Dante_TrafficLight1_Vid

eoAnony

Camera 8 Digital cameras - Basler

BIP2-1600c-dn

12 fps, 1600 x 1200

Piazza

Dante

MT4 MT4-VA-

02_Piazza_Dante_TrafficLight2_Vid

eoAnony

MEMS

Microphone 1

Microphones IFAG-MEMS

RPi 4B 4GB (for audio

elaboration)

Piazzale

ex Zuffo

MT3 MT3-AA-

01_PiazzaleExZuffo_Ingresso_via_S

S._Cosma_e_Damiano_AudioAnony

MEMS

Microphone 1

Microphones IFAG-MEMS

RPi 4B 4GB (for audio

elaboration)

Piazzale

ex Zuffo

MT3 MT3-AA-

02_PiazzaleExZuffo_Ingresso_via_B

erlino_AudioAnony

MEMS

Microphone 3

Microphones IFAG-MEMS

RPi 4B 4GB (for audio

elaboration)

Piazza S.

Maria

Maggiore

MT2 MT2-AA-

01_Piazza_SMMaggiore_Obelisque_

AudioAnony

MEMS

Microphone 3

Microphones IFAG-MEMS

RPi 4B 4GB (for audio

elaboration)

Piazza S.

Maria

Maggiore

MT2 MT2-AA-

02_Piazza_SMMaggiore_TrafficLigh

t_AudioAnony

MEMS

Microphone 5

Microphones IFAG-MEMS

RPi 4B 4GB (for audio

elaboration)

Piazzale

Dante

MT4 MT4-AA-

01_Piazza_Dante_TrafficLight_Audi

oAnony

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 193 - 21 July, 2023

MEMS

Microphone 5

Microphones IFAG-MEMS

RPi 4B 4GB (for audio

elaboration)

Piazzale

Dante

MT4 MT4-AA-

02_Piazza_Dante_Listone_AudioAno

ny

Furthermore, an Nvidia Jetson device was used at the edge (MT3 E2) for hosting an instance

of VideoAnony for the needs of MT3. The device specifications can be found in Table 30.

Table 30: MT3 E2 Edge Jetson Device specifications

HW subsystem Specifications

CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6MB L2 +

4MB L3 processor

GPU NVIDIA Volta™ architecture with 384 NVIDIA CUDA®

cores and 48 Tensor cores

Hard Drive 16 GB eMMC 5.1

RAM 8 GB 128-bit LPDDR4x @ 1600 MHz 51.2GB/s16 GB

128-bit LPDDR4x @ 59.7GB/s

5.6.2.2 MT Fog Tier (FBK)

The Fog tier is split into two separate nodes. As mentioned above, this configuration is required

in order to comply with the requirements of MT in order to grant FBK access to the raw data.

Therefore, one node (MTFOG1 in Figure 78) connects via VPN to the cameras and

microphones and is not part of MARVdash. The other node (MTFOG2) is within the

Kubernetes cluster and communicates with MTFOG1 via the local area network. In this way:

• access to MTFOG1 is restricted and controlled by standard FBK’s security protocol;

• anonymised video and audio streams are made available to the nodes in the Kubernetes

cluster.

Figure 78 illustrates the specific configuration that was implemented at the MT Fog layer.

Figure 78: Infrastructure of the MT FOG, implemented at FBK premises

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 194 - 21 July, 2023

MTFOG1 (MT F1) is a workstation (WS) with a GPU. Since it is not part of the Kubernetes

cluster this WS can be modified. The current workstation is equipped with a GPU GeForce

RTX 2060 with 6GB of memory. It features a 12 core Intel(R) Core (TM) i7-8750H CPU @

2.20GHz CPU with 32GB of RAM and a 500GB disk. MTFOG1 hosts:

• Videoanony.

• 2 RTSP clients to rebound the anonymised streams.

• 1 MQTT broker-client pair to rebound the VAD MQTT messages.

MTFOG2 (MT F1) is a workstation equipped with an Intel Xeon E5-1620 and Tesla K40 GPU

with 11GB memory. The storage is 512 GB and the RAM is 20 GB. MTFOG2 is part of the

Kubernetes cluster and hosts a DatAna fog node, StreamHandler, AV Registry, two instances

of CATFlow for MT1, AAC and GPURegex for ΜΤ2 and two instances of CATFlow for MT4.

It also hosts an RTSP server that receives the anonymised audio and video streams from

MTFOG1, which resides outside of the MARVdash Kubernetes cluster.

The specification of MTFOG1 (MT F1) and MTFOG2 (MT F2) are presented in Table 31

below.

Table 31: MT Fog workstation specifications

HW subsystem MTFOG1 (MT F1) Specifications

(workstation PC)

MTFOG2 (MT F2) Specifications

(workstation PC)

CPU Intel Core i7-8750H @2.2GHz, 12 cores Intel Xeon E5-1620

GPU GeForce RTX 2060 6GB Tesla K40 11GB

Hard Drive 500 GB 512 GB

RAM 32 GB 20 GB

5.6.3 UNS Infrastructure

In the context of R2, the UNS pilot hosts UNS1 (Drone experiment) and UNS2 (Localising

audio events in crowds). The provided infrastructure consists of two tiers – Edge and Fog.

5.6.3.1 UNS Edge Tier

The Edge tier for UNS1 is based on the AVDrone component. It includes four Raspberry Pi

(RPi) version 4 boards (UNS E2) and an Intel NUC mini PC (UNS E1). IFAG AudioHub Nano

microphone boards are attached to the RPi v4 boards and are used for audio data processing on

the ground. The setup of the drone includes an Intel NUC10i5FNH Mini PC, to which a GoPro

camera is attached, which serves the needs of video anonymisation and data transmission to the

Fog tier. It should be noted that the Mini PC supports Intel® Software Guard Extensions (Intel®

SGX), which is a set of instructions that increase the security of application code and data,

while it allows the deployment of EdgeSec TEE used for securing VideoAnony.

Furthermore, the following UAVs were used as part of the AVDrone:

• DJI Matrice 600 Pro63 was used for demonstration purposes.

63 https://www.dji.com/gr/matrice600-pro

https://www.dji.com/gr/matrice600-pro

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 195 - 21 July, 2023

• DJI P4 Multispectral Drone 64 was used for data collection due to its smaller size and

less restrictive flight permissions.

Regarding the Edge tier for UNS2, an IFAG Audiohub – Nano 8 channel microphone board is

used as a data capturing device. It is connected to the UNS E3 laptop at the Edge using Wi-Fi

network. The microphone captures audio data using 8 spatially distributed sensors of the

microphone array and transmits them to the laptop where the SELD and AudioAnony

components are deployed. The user can set the sampling rate by selecting an option from a

predefined set of values as well as the bitrate and number of channels for data capturing (up to

8 channels).

Default parameter values of the microphone board in UNS2 (Dual-PCB 8-microphones

Audiohub – Nano board):

• Channels: 8

• Sampling rate: 48kHz

• Rate: 24-bit audio data

The specifications of the Edge devices at the UNS pilot for UNS1 and UNS2 are presented in

Table 32.

Table 32: UNS Edge infrastructure specifications

HW

subsyst

em

UNS E1 Specifications

(Intel NUC10i5FNH Mini PC)

UNS E2 Specifications

(Raspberry Pi version 4)

UNS E3 Specifications

(Laptop HP ProBook 440 G9)

CPU Intel Core i5-10210U

@4.2GHz

Quad core Cortex-A72 (ARM

v8) 64-bit SoC @ 1.5GHz

12th Gen Intel Core i7 - 1255U

x 12.

GPU Integrated - Integrated

Hard

Drive

1TB M.2 NVMe - 1TB

RAM 16 GB 2 GB 16 GB

5.6.3.2 UNS Fog Tier

AI models are executed at the Fog tier, including FedL which serves for model training in an

ad-hoc mode. For this purpose, a SUPERMICRO SYS-7049A Server SuperWorkstation node

is used, with the following specifications presented in Table 33.

Table 33: UNS Fog server specifications

HW subsystem Specifications

(SUPERMICRO SYS-7049A Server SuperWorkstation)

CPU 2 Intel Xeon Silver 4110 2.1 GHz 8C/16T CPU

GPU Nvidia TitanXP

Hard Drive 3 300GB SSD, 1 1TB SSD

64 https://www.dji.com/gr/p4-multispectral

https://www.dji.com/gr/p4-multispectral

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 196 - 21 July, 2023

RAM 128 GB DDR4

Additionally, there is a local network storage appliance:

• QNAP TVS-682-8G with 4 3TB SATA3 disks under RAID protection, with

NFS/SMB/S3 protocols enabled.

All infrastructure components are locally connected with multiple redundant 1G Ethernet links.

UNS infrastructure is currently hosted “behind” an HTTP(S) proxy for Internet connectivity.

5.6.4 PSNC Cloud Infrastructure

The Cloud layer of the MARVEL framework is located on the PSNC premises. As mentioned

in Section 4.5.1, Cloud resources come from two geographically distributed regions of PSNC -

DCW and BST. Both areas are connected with a fast and dedicated (multiple 100Gbit links)

network, allowing efficient data exchange between components running in different regions.

Most of the cloud VMs (14 instances) are located in the DCW, which provides resources mainly

for Kubernetes cluster nodes but also for general needs of the project, e.g., Zabbix monitoring,

GitLab server. The BST is primarily used to store data in MARVEL Data Corpus using the

CEPH storage backend. Summarising both regions, resources available exclusively for the

MARVEL project include about 350 VCPUs, more than 500GB of RAM and about 1PB of

storage.

Apart from that, after R1, PSNC dedicated one node of Eagle supercomputer, which joined the

MARVEL Kubernetes cluster. It enabled the deployment of components that require constant

access to GPU. This node has a direct connection with cloud infrastructure, allowing efficient

two-sided communication between MARVEL containers running in the cloud layer (please see

description in Section 4.6.1 and Figure 43: Connection between cloud and HPC infrastructure).

Technically, it is a VM with Ubuntu 22.04 running on 16 CPUs and equipped with 64GB of

RAM and direct access to 2x NVIDIA V100 GPUs (GPU passthrough technology).

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 197 - 21 July, 2023

6 Main challenges, issues encountered and resolution

During the R2 integration activities and especially in the context of Partial and End-To-End

Integration Testing (Sections 3.8.2 and 3.8.3), issues and bugs regularly arose, as is expected

during the integration phase of any complex system built collaboratively. These issues were

documented and relevant action points were assigned to the corresponding partners for

addressing them through updates to the respective components by using the MARVEL Issue

Tracking System (Section 3.5) and shared online spreadsheets for reporting test results.

This section documents the most notable and frequent challenges and issues that were

encountered as well as the actions that were taken to address them.

• Manage inherent integration complexity. As already mentioned in Section 3.1, the

overall task of the MARVEL framework integration was found to be particularly

challenging due to its inherent complexity resulting from its characteristics (i.e., number

of integrated components, use cases, deployment layers, and pilot infrastructure nodes).

The following measures were taken to address this:

o Clear time plan with milestones from the outset (Section 3.1.1)

o Organise regular Integration Meetings (Section 3.1.2)

o Establish Integration Board (Section 3.1.3)

o Implement an Issue Tracking System universally for all integration issues

(Section 3.5)

o Use of online shared templates and spreadsheets for organising and centrally

documenting information related to integration (e.g., Figure 2, Figure 3, Figure

4, Figure 14)

o Maintain clear, up-to-date and version-controlled documentation of system

specifications, i.e. I/O interfaces and Data Models (Section 3.6)

o Use of the MARVdash tool to facilitate the frequent re-deployment of more than

120 interconnected microservices across all infrastructure nodes and for all R2

use cases (Sections 3.7, 4.5.4).

• Absence of dedicated component for AV data management. From the early stages

of R1, the lack of a foreseen technology in the MARVEL framework that could

comprehensively manage AV data was recognised. The following actions were taken to

address this:

o Design of a universal framework relying on the RTSP protocol for live AV data

transmission (Section 5.2.3).

o Delegation of AV data handling to individual components that act as producers

(e.g., VideoAnony, AudioAnony) or consumers (e.g., AI components) of live

AV data streams. Each producer needs to implement its own RTSP server, and

each consumer needs to implement its own RTSP client.

o Used the ‘Camera’ Data Model to structure the AV source metadata (Section

5.3.1).

o Introduced AV Registry (Section 4.1.3) as a new component in R1 for managing

AV source metadata.

o Added new features in StreamHandler (Section 4.3.3) to handle persistent AV

data storage management and distribution. In R2, this functionality was further

improved.

• Complying with data privacy regulations and meeting security requirements. Due

to the nature of MARVEL comprising the collection of live AV data with potentially

personal information and the need to access closed operational networks of public

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 198 - 21 July, 2023

authorities hosting AV sources, a series of requirements related to ethics, data privacy,

and security were expected to be met. The Ethics Review Procedure that was carried

out during the evaluation phase of the project identified 10 pre-grant ethics requirements

and 10 post-grant ethics requirements in addition to the restrictions imposed by data

owners (e.g., public authorities in Malta and Trento) This aspect of MARVEL was

considered of increased significance and was challenging to achieve from a technical

perspective. The following actions were taken to address this point:

o Anonymisation of AV data (VideoAnony, AudioAnony) was positioned as close

to the source as possible (i.e., at the edge or at the fog when this was not

possible). Anonymising AV data close to the source reduces the risk of

intercepting the raw data compared to the possibility of transferring to higher

layers (e.g., cloud) for anonymisation. Also, this meant that only an anonymised

form of the data would be distributed to other components for analysis, storage

and viewing at higher layers.

o Persistent storage of anonymised AV data close to the source. Even though it is

foreseen to permanently store only AV data that have already been anonymised,

further security measures were being considered to counteract possible risks of

potential anonymisation failure. In this context, all StreamHandler (Section

4.3.3) instances were positioned at the fog layer, so that the storage of AV data

occurs on devices that are at the premises and under the complete control of the

data owners (pilots).

o Secure communications between infrastructure nodes were established using

EdgeSec VPN (Section 4.2.4)

o Encrypted credentials were embedded in anonymisation services for accessing

raw AV sources, i.e., in the GRN pilot the ‘secrets’ method of Kubernetes was

used. Wherever the infrastructure allowed, increased security levels were

achieved for protecting the credentials required to access AV sources by using

the EdgeSec TEE component (Section 4.2.5); in R2, this was possible in UNS1.

o Implemented customised network and fog infrastructure configuration at FBK

for the MT pilot. For the needs of the MT pilot, FBK has been nominated as a

Data Processor by the authorities of the Municipality of Trento. In order to gain

access to the live raw AV data from the AV sources in the MT network, a

customised solution involving dual servers on segregated networks at the fog

layer and a series of VPN connections was applied. More details are provided in

Sections 5.4.5, 5.4.6, 5.4.7, 5.4.8 and 5.6.2.2.

o AI Training dataset preparation was carried out only by authorised personnel.

o Continuous monitoring of the technical activities for ethics, legal, and privacy

compliance by the MARVEL Ethics Board which consists of three independent

members external to the MARVEL consortium, assisted by three consortium

members.

• Improving Stability. During R1 integration activities, it became apparent that the

system was facing stability issues and that a continuous, error-free operation could not

be guaranteed. The main reasons for instability were (i) unstable streams from AV

sources (e.g., short and long interruptions in transmission, corrupted data packets), (ii)

limited computational resources on edge and fog devices, and (iii) network problems.

In R2, considerable efforts were made to overcome these issues:

o After recognising that signals from AV sources were often intermittent, it was

requested from all owners of components that consume RTSP streams

(CATFlow, SED, AT, AAC, SELD, VCC, AVCC, ViAD, AVAD, YOLO-SED,

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 199 - 21 July, 2023

StreamHandler) to implement error-handling mechanisms at the level of

individual components. Each component implemented a mechanism that was

better suited to the nature and the internal operation of the component in order

to (i) avoid complete failure of the component when receiving interrupted or

corrupted data streams, (ii) be able to recover and resume normal operation when

the data stream is restored, and (iii) ensure that no repercussions are caused to

other components when the input is not the one that is expected.

o The tools used for monitoring the MARVEL framework were further extended

in R2 by adding the MARVdash monitoring tool (based on Grafana,

Prometheus and Loki) and the MARVEL infrastructure monitoring tool

(based on Zabbix). These allowed the centralised live monitoring of multiple

aspects of the running integrated framework and the Kubernetes cluster,

including available computational resources, the resources consumed by

running services, the log output of individual components, the status of MQTT

brokers, all visualised via intuitive dashboard-based GUIs (Section 3.8.3).

o In the GRN pilot, improved 4G routers and network bandwidth were secured for

the edge devices. In addition, a second edge device with high computational

resources was added to the Zejtun location that could handle the anonymisation

of the two AV streams from that location and the partial AI computation for

GRN2, GRN3, and GRN4. Furthermore, the fog server that had been used in R1

was replaced by another (provided as a loan by FORTH), which featured much

higher computational resources (Section 5.6.1).

o In the MT pilot, where there is a VPN tunnel connecting the network of the MT

municipality and the network of FBK, actions were taken on both ends to

configure a mechanism that automatically checks the VPN connection status and

keeps it alive continuously. Furthermore, a more stable connection with

increased bandwidth was secured for the VPN tunnel.

o In the MT pilot, it was discovered that the 6 Raspberry Pi Edge devices hosting

the MEMS microphones that were installed on-site at the locations of the MT2,

MT3 and MT4 sites were affected by environmental temperatures and were

malfunctioning when temperatures were very high (i.e.,. during the summer

period). For this reason, FBK implemented a mechanism for remotely

monitoring the Raspberry Pi boards and for being able to restart and reset the

devices when a malfunction was observed.

o In the MT pilot, thorough investigations took place by MT and FBK to discover

and understand the root cause of continuing intermittence in the transmission of

CCTV cameras and the reception of corrupted frames. It was concluded that the

most likely explanation is the intermittent malfunction of the employed CCTV

camera devices, which was not possible to rectify.

• AV sources and infrastructure not available on a 24/7 basis. It was not possible to

have the streams from all AV sources available continuously due to limitations of the

infrastructure used for processing/anonymising the streams (e.g., overheating) and due

to conflicts with data collection procedures. Mitigation action:

o This issue was addressed through a pro-active scheduling of the AV source

availability, planning integration testing sessions at fixed time slots and using

alternative staging/testing environments where possible.

• Component deployment complications. Component instances (services) were

required to be deployed repeatedly (e.g., to provide updated service image for

addressing issues) and on different infrastructure nodes. MARVdash facilitated this

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 200 - 21 July, 2023

process and FORTH had provided detailed instructions for the use of MARVdash.

However, there were occasions where issues would arise, especially in cases of more

complex services with specific requirements and/or constraints. Mitigation action:

o FORTH continued to provide direct support to all component owners throughout

the deployment process on a case-by-case basis to resolve all issues.

o Relevant issues were created in the GitLab ITS when necessary.

o Issues were also discussed and resolved during integration meetings and E2E

testing sessions.

• Integration testing complexity. We have found that the testing process was

encumbered by multiple component and infrastructure co-dependencies at run-time

during the execution of experiments. Mitigation actions:

o 30 intensive E2E testing sessions were organised during R2 activities to ensure

sufficient testing of all use cases (Section 3.8.3).

o Parallelisation of tests in each session to make efficient use of time.

o Promotion of direct chat communication using a common channel for

integration issues.

o Pro-activeness: The necessary preparations that were needed in advance of each

E2E test were communicated through email, testing documentation spreadsheets

and issues in the ITS (Section 3.5).

• Service exposure. In some cases, particular attention and specialised handling were

required to expose services that could not reached by others. Notable examples:

o The RTSP proxy services in the MT use cases were deployed outside of the

MARVEL Kubernetes cluster and a secure VPN connection had to be

configured to make the streams of anonymised AV data available to other

components of the Kubernetes cluster.

o The DFB Kafka service was exposed using the nodeport method so that it could

be reached from the Data Corpus, which was deployed on a different VM at the

PSNC HPC.

o The NGINX 65 Reverse Proxy service has been employed and configured so that

some services could be reachable from services outside of the Kubernetes

cluster, which proved to very useful for debugging purposes during development

and testing.

• Fine-Tuning AV data streams. Based on preliminary test results, the AV data stream

output of VideoAnony and AudioAnony was fine-tuned to serve the needs of AI

components for improved performance.

• Inconsistencies in inference result data. On several occasions, inconsistencies were

observed in the raw AI inference results produced by AI components. A frequent issue

was the incorrect formatting of the date/time field values or missing fields.

Nevertheless, the persistent and up-to-date documentation of all foreseen data models

in the project’s repository (Sections 3.6, 5.3.3), the revision of the documentation

following test execution and the opening of relevant issues in the ITS (Section 3.5) when

problems were observed assisted in significantly reducing such occasions.

• Issues with REST API calls. On some occasions, mismatches in service names, open

ports or syntax in the API calls caused some disruption, but all these issues were quickly

addressed and resolved thanks to the thorough documentation that was maintained for

all I/O interface specifications and service deployment configuration (Sections 3.6, 3.7,

5.2 and Figure 14).

65 https://www.nginx.com/

https://www.nginx.com/

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 201 - 21 July, 2023

• Shifting AI computation closer to the edge layer. In some cases, it has been difficult

to shift AI computation closer to the edge due to limited computational resources in

available edge and fog devices. Mitigation actions:

o GPU support was added in AI components (CATFlow, VideoAnony, ViAD,

AVAD, VCC, SED, AT, AAC, SELD, YOLO-SED, GPURegex) to make

optimal use of available resources and increase performance due to GPU-

enabled multi-threading.

o Additional and more powerful edge devices were secured (GRN E2, GRN E3,

UNS E3), while a new more powerful GRN fog server was installed (on loan

from FORTH). (Section 5.6)

o Adaptations to the system architecture design for each use case to make optimal

use of available resources.

• Deploying docker containers of components with GPU usage on the Jetson device.

In the case of GRN1, this proved to be a highly demanding task due to a conflict between

specific firmware versions of the Nvidia Jetson and Kubernetes tools related to GPU

usage. Eventually, this issue was resolved, following experiments with various

configurations coupled with tests, offline communications between the involved

partners and tracking the issue through the MARVEL ITS (Section 3.5).

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 202 - 21 July, 2023

7 R2 main achievements and contribution to MARVEL goals

7.1 R2 main achievements

The main accomplishments of R2 are summarised below:

• R2 addresses the complete set of the MARVEL use cases (10).

• R2 integrates the complete set of the MARVEL components (32).

• Reinforcement of the coherent and versatile architecture. The design of the R2 ‘AI

Inference Pipeline’ architecture combines a coherent core, which remains consistent

across all use cases and interchangeable, configurable endpoints that can be deployed at

the Edge and Fog in response to specific use case requirements. This was further

reinforced and demonstrated in additional use cases in R2 and supported additional

components that were introduced and integrated in R2.

• Parallel operation of multiple component instances. In each R2 use case, the data

streamed from each AV source was processed by a distinct instance of each AI

component (service), which increased integration complexity but achieved a closer

approximation real-life operating conditions. In R2, this was further scaled up due to

the presence of additional use cases, components and infrastructure nodes.

• Improved computational infrastructure. In R2, the available infrastructure was

upgraded by introducing two new edge devices in GRN (PC and Jetson), by replacing

the GRN fog server by another of higher specifications, by adding five (5) new edge

devices in MT (1 Jetson and 5 Raspberry Pi devices) and by adding one more edge

device in UNS (PC). All the new edge and fog devices apart from the RPis support GPU

computation. Furthermore, 6 new VMs were added to the cloud infrastructure. In R2, 6

of the total 18 VMs allocated for MARVEL were attached to the Kubernetes cluster

used for the deployment of services that support the inference pipeline in the R2 use

cases. One of these VMs belongs to the PSNC Eagle cluster and supports high-

performance GPU-based computation.

• Improved overall system stability. In R2, particular focus was paid to improving the

overall system stability. This was achieved by implementing error-handling and

recovery mechanisms in components that consume AV data streams, developing and

employing dedicated centralised GUI-based monitoring tools (MARVdash monitoring

tool, MARVEL infrastructure monitoring tool) for improving the infrastructure and its

configuration, enhancing network performance and implementing mechanisms that

allow manual recovery in cases of instability (e.g., remote monitoring and reset of

AudioAnony in MT pilot when overheating).

• Operation with additional parallel real-world live (real-time) data streams.

Multimodal sensors (CCTV IP cameras, AV Drone with GoPro camera, MEMS

microphones) were deployed at the Edge and simultaneously streamed the captured AV

data to anonymisation services (VideoAnony, AudioAnony, VAD) that processed it in

real time and served the output to multiple other component endpoints. In total, 17 AV

sources were used in R2 compared to 9 AV sources in R1.

• More extensive use of the unified framework for AV data distribution. The RTSP

protocol was adopted universally for all AV data streaming needs in the MARVEL

project. Each component that needs to access an AV data source can directly connect to

it and consume the stream. This process is further facilitated by the AV Registry

component that disseminates AV source metadata. In R2, the AV data distributions

framework was scaled up and was used more extensively in more use cases, by more

components and involved additional AV sources.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 203 - 21 July, 2023

• Reliable and efficient AI inference result data collection from all EFC layers. R2

reinforces the web of multiple data collection endpoints. Distinct DatAna MQTT

message brokers are deployed at each infrastructure node where AI components are

operating to directly receive AI inference results. The inference results are propagated

to higher EFC layers by DatAna NiFi to be persistently stored at the DFB and consumed

by SmartViz. In R2, DatAna was deployed on all new infrastructure nodes that were

added for the needs of the R2 use cases and supported the data models of the new AI

components that were introduced in R2 (AAC, SELD, YOLO-SED, RBAD,

GPURegex).

• Increased data security. The use of the EdgeSec VPN component was further extended

covering all new infrastructure nodes that were added, ensuring that all communications

within the MARVEL Kubernetes cluster are secure. In addition, the EdgeSec TEE

component was added in UNS1 for R2 to provide elevated protection to raw AV data

and grant it exclusively to authorised components (VideoAnony) running within a

trusted execution environment.

• Improved persistent storage of AV data for reviewing detected events. Anonymised

live AV data streams are persistently stored by the StreamHandler component on

infrastructure that is managed by the data owner or an authorised party and made

available to MARVEL users in association with detected events. In R2, the operation of

StreamHandler was improved in terms of stability and performance, while it was

connected to the DFB in order to be able to generate AV segments that directly

correspond to the inference results that arrive at the DFB.

• Extensive and improved implementation of advanced deployment support and

management. MARVdash was used to facilitate the deployment of all components at

the MARVEL Kubernetes clusters that unified infrastructure nodes across all EFC

layers and pilot locations. In R2, the new MARVdash monitoring tool was integrated,

the service creation was further optimised, and an API was established that can be used

for controlling the status of multiple services (e.g., start, stop, etc).

• Reinforcement of adaptive deployment for meeting end-user requirements (MT

use cases). Through the specific implementation and deployment configuration that was

performed for the MT use cases, MARVEL demonstrated that it can be significantly

customised and propose creative solutions in response to demanding constraints set by

the end-users. In the MT use cases, the hard requirements associated with data privacy

and security were satisfied through a tailored solution comprising specialised

infrastructure configuration and the deployment of necessary auxiliary services for

overcoming data access barriers, while preserving high data privacy and security

standards. The solution that was devised can be leveraged to address the needs of other

MARVEL use cases as well as potential customer needs in future business cases. In R2,

this was demonstrated in two additional use cases (MT2, MT4), while additional AV

sources and edge devices were added and supported.

• Further AI training with datasets originating from specific use case data sources.

R2 contributed to the further collection of raw and annotated datasets from the pilot sites

to be used in AI training of the MARVEL components and ensure that the resulting AI

models achieve increased performance and accuracy in the context of the addressed use

cases.

• Performance optimisation. More components with GPU support were integrated

(ViAD, AVAD, VCC, SED, AT, AAC, SELD, YOLO-SED).

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 204 - 21 July, 2023

• Improved UI/UX. The UI/UX elements of SmartViz were further elaborated and

refined, while new elements were introduced to provide an enhanced Decision-Making

Toolkit that fits the needs of the additional use cases addressed by R2.

• More extensive use of new data management features. DatAna provides inference

results transformation to selected SDM-compliant homogeneous data models, while

DFB provides services for fusing selected inference result types and updating the

verification status of all results according to the user input through SmartViz for AI

training purposes (labelling). This process was applied in 5 additional use cases and for

additional AI components and was further fine-tuned and streamlined.

• Implementation of mechanisms for benchmarking MARVEL. A benchmarking

framework and elements in the system that can be used for performance measurements

(e.g., data model timestamps specification and implementation for tracking the latency

in inference result routes) have been implemented.

• More extensive use of management and CI/CD procedures. The organisational

mechanisms and CI/CD tools and methods that had been introduced in R1 (e.g., weekly

integration meetings, Integration Board, shared online templates, Issue Tracking

System, Version Control System, documentation repository, code repository, quality

assurance) matured further and were applied more extensively in R2.

Table 34 demonstrates a summary of the incremental scale-up that was achieved between

consecutive releases of the MARVEL framework.

Table 34: Comparison of main achievements in each MARVEL framework release

Achievements MVP (M12) R1 (M18) R2 (M30)

Integrated components 12 26 32

Pilots 1 3 3

Use Cases 1 5 10

Infrastructure Nodes at

E/F/C layers

E: 1

F: 1

C: 2 VMs (1 for k8s)

E: 4 (3 for k8s)

F: 4 (3 for k8s)

C: 12 VMs (2 for k8s)

E: 12 (6 for k8s)

F: 4 (3 for k8s)

C: 18 VMs (6 for k8s)

Input AV data Pre-recorded Live streams Live streams

AV data distribution

framework
Ad-hoc

RTSP protocol,
AV Registry,

StreamHandler

RTSP protocol,
AV Registry,

StreamHandler

Handling intermittent

AV streams
N/A None

Error-Handling and

recovery implemented

at consumer component

level

AV sources per pilot N/A

GRN: 3

MT: 4

UNS: 2

GRN: 3

MT: 11

UNS: 3

Component instantiations Single Multiple Multiple

Deployment with

MARVdash
Partial Complete Complete

Edge Computation No Partial Complete

GPU availability in

infrastructure
No Partial Complete

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 205 - 21 July, 2023

Component support for

GPU acceleration
CATFlow, VideoAnony CATFlow, VideoAnony

CATFlow,

VideoAnony, ViAD,

AVAD, VCC, SED, AT,

AAC, SELD, YOLO-

SED, GPURegex

Issue Tracking System No Yes Yes

I/O Interface and Data

Model specification

documentation (with

version control)

No Yes Yes

Centralised monitoring

tools
No Partial Complete

Stability improvements No Partial Complete

Inference result data

model
Custom

Compliant to Smart

Data Models standards

Compliant to Smart

Data Models standards

7.2 Contribution of R2 to MARVEL goals

The overarching goal of MARVEL is to deliver an Edge-to-Fog-to-Cloud (E2F2C) framework

that operates in real-world environments, processing large volumes of captured AV data,

enabled by multi-modal perception and intelligence.

More specifically, with regard to the project’s objectives, analysed in the DoA, the delivery of

the final version of the MARVEL Integrated framework (R2) contributes to the achievement of

each objective by supporting the respective Enablers in the way that is described below.

Objective 1: Leverage innovative technologies for data acquisition, management and

distribution to develop a privacy-aware engineering solution for revealing valuable and

hidden societal knowledge in a smart city environment

MARVEL R2 contributes to the achievement of this objective by bringing forward a concrete

definition of a comprehensive ‘AI Inference Pipeline’ that incorporates integrated solutions for

E1 - Data Capturing (MEMS microphones, AV Drone, CCTV cameras, Go Pro camera), E2

– Data fusion and management (DatAna, DFB, StreamHandler, HDD, Data Corpus) and E3

– Privacy preservation and assurance (AudioAnony, VideoAnony, EdgeSec VPN, EdgeSec

TEE, DatAna NiFi TLS security, DFB Keycloak, AV data persistent storage near the source –

Fog layer, AI inference result decoupling from AV data).

Objective 2: Deliver AI-based multimodal perception and intelligence for audio-visual

scene recognition, event detection and situational awareness in a smart city

environment

MARVEL R2 contributes to the achievement of this objective by integrating and testing a series

of AI components (CATFlow, TAD, VAD, SED, AT, VCC, AVCC, ViAD, AVAD, AAC,

SELD, YOLO-SED, RBAD), including AI components with inherent multimodal audio-visual

processing capabilities (AVAD, AVCC, YOLO-SED) and E1 - Multimodal federated

learning approaches (FedL), producing inference results for enhanced understanding of smart

city environments (E2 - Multimodal representations). Additionally, the output of individual

AI components with unimodal processing capabilities is intelligently combined at the

MARVEL Decision Making Toolkit (SmartViz) to provide a multimodal situational awareness

and reveal hidden events and relationships (E3 - Multimodal intelligence).

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 206 - 21 July, 2023

Objective 3: Break technological silos, converge very diverse and novel engineering

paradigms and establish a distributed and secure Edge-to-Fog-to-Cloud (E2F2C)

ubiquitous computing framework in the big data value chain.

MARVEL R2 contributes to the achievement of this objective by delivering an operational

solution that is fully distributed and deployed on an E2F2C infrastructure, enabled by (i) E1 –

HPC infrastructure and resource management (PSNC HPC infrastructure, management and

orchestration), (ii) E2 - Distributed and optimised DL models deployment (DynHP, FedL),

(iii) E3 - Secure and distributed computing framework (MARVdash, Kubernetes cluster,

EdgeSec VPN) and (iv) E4 - Complex decision-making and insights (SmartViz).

Objective 4: Realise societal opportunities in a smart city environment by validating

tools and techniques in real-world settings.

MARVEL R2 contributes to the achievement of this objective by (i) elaborating and addressing

ten (10) use cases (GRN1, GRN2, GRN3, GRN4, MT1, MT2, MT3, UNS1, UNS2) in the

context of three (3) pilots (GRN, MT, UNS) (E1-Real-life societal experiments definition),

(ii) specifying a methodology and toolset for Quality Assurance and technical validation

(Section 3.8) of the framework’s operation (E2-Experimentation variables) and (iii)

deploying and testing the R2 framework prototype on the real-life infrastructure hosted at the

three pilot sites for five use cases (E3 - Experimentation execution).

Objective 5: Foster the European Data Economy vision and create new scientific and

business opportunities by offering the MARVEL Data Corpus as a free service and

contributing to BDVA standards

MARVEL R2 contributes to the achievement of this objective by (i) integrating the components

and infrastructure that allow the collection (VideoAnony, AudioAnony, AV Drone, RTSP

protocol, AV Registry) and persistent storage (StreamHandler, Data Corpus) of AV data (E1-

Create an audio-visual dataset), (ii) specifying, implementing and testing the necessary

interfaces for providing access to these AV data (E2-Sharing of the dataset)

Finally, R2 provides a functional platform that can be used for the evaluation of technical KPIs

that are linked to the above Objectives, concerning advanced data management, data privacy,

novel algorithms, algorithmic accuracy and performance, facilitation of complex decision-

making and validation strategy (the associated KPIs were also elaborated in D6.1 and D6.3).

R2 provides the mechanisms for a thorough technical evaluation of the MARVEL framework

through benchmarking activities in T5.4, while end-user feedback and evaluation will occur

during upcoming T6.3 activities. The results of these evaluations will be detailed in the

respective deliverables D5.5 and D6.4.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 207 - 21 July, 2023

8 Future work

As part of the R2 integration activities, we have identified the following areas for future

improvement:

• Implementation of a central mechanism for configuring the entire framework

deployment (e.g., specify components, target deployment locations, input/output of

each component instance, associations between components).

• Connection to third-party data sources (e.g. AI components that do not belong in the

MARVEL framework, external databases, etc.) and/or third-party data visualisation

tools.

• Implement long-term data analytics approaches for post-processing aggregated

inference results that refer to long time periods after building relevant datasets.

• Improvement of CI/CD procedures (e.g. automated deployment pipelines connected to

source code repositories).

• Implementation of E2E test automations.

• Live re-configuration of deployed running services (e.g., start, pause, change

input/output) possibly via implementation of control signals through message brokers.

• Further improvement of system stability, particularly in relation to AV data stream

access.

• Broader use of DynHP and FedL techniques in combination with AI components.

• Further automation of the pipeline involving AI training tasks and the transfer of trained

AI models for inference operation.

• Further improvement of AV data distribution management, e.g., by implementing proxy

server that can redirect each component to the data stream of the corresponding AV

source.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 208 - 21 July, 2023

9 Conclusions

This report presented the final version of the MARVEL Integrated framework (Release 2

or R2), whose development and integration were based on the further elaboration of previous

work on the framework’s architecture and use case definition and the experience gained from

the delivery of the previous MARVEL framework releases, i.e., MVP (D5.1) and R1 (D5.3).

The integration plan, methodology, and overall design approach adopted for the development

and delivery of R2 were presented in detail. The scope and objectives of R2 were elaborated,

followed by a description of the use cases that were addressed by R2, coupled with technical

decisions regarding infrastructure, involved components, and integration of technologies into a

unified, end-to-end platform. All components that have been integrated into R2 were presented

and a detailed account was given on the design of the architectural configuration of the

MARVEL framework. The specific architecture that was implemented for each of the selected

R2 use cases was explained and all involved UI/UX elements, I/O interfaces and data models

were documented. The specific infrastructure that was employed and the R2 deployment

procedure were presented. Finally, the main achievements and contribution of R2 to the overall

MARVEL goals were discussed, followed by an outline of the possible next steps for a potential

future release of the MARVEL integrated framework.

This document can be used as a basis and reference for planned activities, deliverables and

milestones, most notably: a) the planned benchmarking sessions within Task 5.4, to be part of

deliverable D5.5 ‘Technical evaluation and progress against benchmarks’, b) the public events,

showcases and info days where the R2 will be demonstrated to the public, c) the pilot execution

and evaluation, deliverables D6.3 ‘Demonstrators execution – final version’, D6.4 ‘Final

assessment report and impact analysis’, and d) the upcoming deliverable D5.7 ‘MARVEL’s

framework large scale deployment’. Especially for the aforementioned deliverable D5.7, the

present deliverable D5.6 can serve as the main input, providing the blueprints of the MARVEL

framework design and deployment possibilities for consideration in larger-scale deployment

scenarios.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 209 - 21 July, 2023

Appendix A: R2 Technical Validation Test Report

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

GRN1: Safer Roads

T-GRN1.01 AV Registry StreamHandler 2

StreamHandler GRN F2 received
Camera objects from AV
Registry GRN F2 for ids Cam-
GRN-VA-01, Cam-GRN-VA-01-
Audio

15-06-23 SUCCESS

T-GRN1.02 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry GRN
F2 for ids Cam-GRN-VA-01, Cam-
GRN-VA-01-Audio

15-06-23 SUCCESS

T-GRN1.03 CCTV Camera YOLO-SED 3
YOLO-SED GRN1 E3 received
RTSP stream from camera with
id Cam-GRN-CCTV-01

15-06-23 SUCCESS

T-GRN1.04 CCTV Camera VideoAnony 3
VideoAnony GRN E1 received
RTSP stream from camera with
id Cam-GRN-CCTV-01

15-06-23 SUCCESS

T-GRN1.05 VideoAnony StreamHandler 3

StreamHandler GRN F2 received
RTSP stream from VideoAnony
GRN E1 for ids Cam-GRN-VA-01,
Cam-GRN-VA-01-Audio

15-06-23 SUCCESS

T-GRN1.06 YOLO-SED DatAna 4
YOLO-SED GRN1 E3 published
raw inference results to DatAna
MQTT GRN E3

15-06-23 SUCCESS

T-GRN1.07 Arduino Proxy DatAna 5

ArduinoProxy GRN1 E3
consumed raw inference results
from YOLO-SED GRN1 E3 for
Cam-GRN-VA-01, Cam-GRN-VA-
01-Audio by subscribing to the
"YOLO-SED" topic of DatAna
MQTT GRN E3.

15-06-23 SUCCESS

T-GRN1.08 Arduino Proxy
LED Sign
Control

N/A

ArduinoProxy GRN1 E3 sent
control commands over serial
protocol to the LED Sign Control
script on Arduino

15-06-23 SUCCESS

T-GRN1.09 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler GRN
F2 for AV content related to
inference results generated by
YOLO-SED. StreamHandler
returned the urls for requested
AV content.

30-06-23 SUCCESS

T-GRN1.10 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (YOLO-SED) from
StreamHandler GRN F2

30-06-23 SUCCESS

T-GRN1.11 DatAna DFB 7
DFB C1 received inference
results (YOLO-SED) from DatAna
C1

15-06-23 SUCCESS

T-GRN1.12 DFB SmartViz 8

SmartViz C1 received inference
results (YOLO-SED) from DFB
Kafka / Elastic Search C1
DFB C1 received inference
verification messages (YOLO-
SED) from SmartViz C1

21-06-23 SUCCESS

GRN2: Road user behaviour

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 210 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-GRN2.01 AV Registry CATFlow 2

CATFlow GRN E1, E2, F2
received Camera objects from
AV Registry GRN F2 for ids Cam-
GRN-VA-01, Cam-GRN-VA-02,
Cam-GRN-VA-03

24-25/05/2023 SUCCESS

T-GRN2.02 AV Registry SED 2

SED GRN2 E1, E2, F2 received
Camera objects from AV
Registry GRN F2 for ids Cam-
GRN-VA-01-Audio, Cam-GRN-VA-
02-Audio, Cam-GRN-VA-03-Audio

24-25/05/2023 SUCCESS

T-GRN2.03 AV Registry StreamHandler 2

StreamHandler GRN F2 received
Camera objects from AV
Registry GRN F2 for ids Cam-
GRN-VA-01, Cam-GRN-VA-01-
Audio, Cam-GRN-VA-02, Cam-
GRN-VA-02-Audio, Cam-GRN-VA-
03, Cam-GRN-VA-03-Audio

24-25/05/2023 SUCCESS

T-GRN2.04 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry GRN
F2 for ids Cam-GRN-VA-01, Cam-
GRN-VA-01-Audio, Cam-GRN-VA-
02, Cam-GRN-VA-02-Audio, Cam-
GRN-VA-03, Cam-GRN-VA-03-
Audio

24-25/05/2023 SUCCESS

T-GRN2.05 VideoAnony CATFlow 3

CATFlow GRN E1, E2, F2
received RTSP stream from
VideoAnony GRN E1, E2, F2 for
ids Cam-GRN-VA-01, Cam-GRN-
VA-02, Cam-GRN-VA-03

24-25/05/2023 SUCCESS

T-GRN2.06 VideoAnony SED 3

SED GRN2 E1, E2, F2 received
RTSP stream from VideoAnony
GRN E1, E2, F2 for ids Cam-GRN-
VA-01-Audio, Cam-GRN-VA-02-
Audio, Cam-GRN-VA-03-Audio

24-25/05/2023 SUCCESS

T-GRN2.07 VideoAnony StreamHandler 3

StreamHandler GRN F2 received
RTSP stream from VideoAnony
GRN E1, E2, F2 for ids Cam-GRN-
VA-01, Cam-GRN-VA-01-Audio,
Cam-GRN-VA-02, Cam-GRN-VA-
02-Audio, Cam-GRN-VA-03, Cam-
GRN-VA-03-Audio

24-25/05/2023 SUCCESS

T-GRN2.08 CATFlow DatAna 4

CATFlow GRN E1 published raw
inference results to DatAna
MQTT GRN E1.
CATFlow GRN E2 published raw
inference results to DatAna
MQTT GRN E2.
CATFlow GRN F2 published raw
inference results to DatAna
MQTT GRN F2

24-25/05/2023 SUCCESS

T-GRN2.09 TAD DatAna 4

TAD GRN E1 published raw
inference results to DatAna
MQTT GRN E1.
TAD GRN E2 published raw
inference results to DatAna
MQTT GRN E2.
TAD GRN F2 published raw
inference results to DatAna
MQTT GRN F2

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 211 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-GRN2.10 TAD DatAna 5

TAD GRN E1 consumed raw
inference results from CATFlow
GRN E1 for Cam-GRN-VA-01 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN E1.
TAD GRN E2 consumed raw
inference results from CATFlow
GRN E2 for Cam-GRN-VA-02 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN E2.
TAD GRN F2 consumed raw
inference results from CATFlow
GRN F2 for Cam-GRN-VA-03 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN F2.

24-25/05/2023 SUCCESS

T-GRN2.11 RBAD DatAna 4
RBAD GRN2 F2.1, F2.2, F2.3
published raw inference results
to DatAna MQTT F2

24-25/05/2023 SUCCESS

T-GRN2.12 RBAD DatAna 5

RBAD GRN2 F2.1 consumed raw
inference results from CATFlow
GRN E1 for Cam-GRN-VA-01 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN E1.
RBAD GRN2 F2.2 consumed raw
inference results from CATFlow
GRN E2 for Cam-GRN-VA-02 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN E2.
RBAD GRN2 F2.3 consumed raw
inference results from CATFlow
GRN F2 for Cam-GRN-VA-03 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN F2.

24-25/05/2023 SUCCESS

T-GRN2.13 SED DatAna 4

SED GRN2 E1 published raw
inference results to DatAna
MQTT GRN E1.
SED GRN2 E2 published raw
inference results to DatAna
MQTT GRN E2.
SED GRN2 F2 published raw
inference results to DatAna
MQTT GRN F2

24-25/05/2023 SUCCESS

T-GRN2.14 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler GRN
F2 for AV content related to
inference results generated by
CATFlow, TAD, SED, RBAD.
StreamHandler returned the urls
for requested AV content.

30-06-23 SUCCESS

T-GRN2.15 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (CATFlow, TAD, SED,
RBAD) from StreamHandler GRN
F2

30-06-23 SUCCESS

T-GRN2.16 DatAna DFB 7
DFB C1 received inference
results (CATFlow, TAD, SED,
RBAD) from DatAna C1

24-25/05/2023 SUCCESS

T-GRN2.17 DFB SmartViz 8

SmartViz C1 received inference
results (CATFlow, TAD, SED,
RBAD) from DFB Kafka / Elastic
Search C1
DFB C1 received inference
verification messages (CATFlow,
TAD, SED, RBAD) from SmartViz
C1

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 212 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

GRN3: Traffic Anomalous Events

T-GRN3.01 AV Registry CATFlow 2

CATFlow GRN E1, E2, F2
received Camera objects from
AV Registry GRN F2 for ids Cam-
GRN-VA-01, Cam-GRN-VA-02,
Cam-GRN-VA-03

24-25/05/2023 SUCCESS

T-GRN3.02 AV Registry AVAD 2

AVAD GRN3 F2.1, F2.2, F2.3
received Camera objects from
AV Registry GRN F2 for ids Cam-
GRN-VA-01, Cam-GRN-VA-01-
Audio, Cam-GRN-VA-02, Cam-
GRN-VA-02-Audio, Cam-GRN-VA-
03, Cam-GRN-VA-03-Audio

21-06-23 SUCCESS

T-GRN3.03 AV Registry ΑΤ 2

AT GRN3 F2.1, F2.2, F2.3
received Camera objects from
AV Registry GRN F2 for ids Cam-
GRN-VA-01-Audio, Cam-GRN-VA-
02-Audio, Cam-GRN-VA-03-Audio

24-25/05/2023 SUCCESS

T-GRN3.04 AV Registry StreamHandler 2

StreamHandler GRN F2 received
Camera objects from AV
Registry GRN F2 for ids Cam-
GRN-VA-01, Cam-GRN-VA-01-
Audio, Cam-GRN-VA-02, Cam-
GRN-VA-02-Audio, Cam-GRN-VA-
03, Cam-GRN-VA-03-Audio

24-25/05/2023 SUCCESS

T-GRN3.05 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry GRN
F2 for ids Cam-GRN-VA-01, Cam-
GRN-VA-01-Audio, Cam-GRN-VA-
02, Cam-GRN-VA-02-Audio, Cam-
GRN-VA-03, Cam-GRN-VA-03-
Audio

24-25/05/2023 SUCCESS

T-GRN3.06 VideoAnony CATFlow 3

CATFlow GRN E1, E2, F2
received RTSP stream from
VideoAnony GRN E1, E2, F2 for
ids Cam-GRN-VA-01, Cam-GRN-
VA-02, Cam-GRN-VA-03

24-25/05/2023 SUCCESS

T-GRN3.07 VideoAnony AVAD 3

AVAD GRN3 F2.1, F2.2, F2.3
received RTSP stream from
VideoAnony GRN E1, E2, F2 for
ids Cam-GRN-VA-01, Cam-GRN-
VA-01-Audio, Cam-GRN-VA-02,
Cam-GRN-VA-02-Audio, Cam-
GRN-VA-03, Cam-GRN-VA-03-
Audio

24-25/05/2023 SUCCESS

T-GRN3.08 VideoAnony ΑΤ 3

AT GRN3 F2.1, F2.2, F2.3
received RTSP stream from
VideoAnony GRN E1, E2, F2 for
ids Cam-GRN-VA-01-Audio, Cam-
GRN-VA-02-Audio, Cam-GRN-VA-
03-Audio

24-25/05/2023 SUCCESS

T-GRN3.09 VideoAnony StreamHandler 3

StreamHandler GRN F2 received
RTSP stream from VideoAnony
GRN E1, E2, F2 for ids Cam-GRN-
VA-01, Cam-GRN-VA-01-Audio,
Cam-GRN-VA-02, Cam-GRN-VA-
02-Audio, Cam-GRN-VA-03, Cam-
GRN-VA-03-Audio

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 213 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-GRN3.10 VideoAnony SmartViz 3

SmartViz C1 received RTSP
stream from VideoAnony GRN
E1, E2, F2 for ids Cam-GRN-VA-
01, Cam-GRN-VA-01-Audio, Cam-
GRN-VA-02, Cam-GRN-VA-02-
Audio, Cam-GRN-VA-03, Cam-
GRN-VA-03-Audio

24-25/05/2023 SUCCESS

T-GRN3.11 CATFlow DatAna 4

CATFlow GRN E1 published raw
inference results to DatAna
MQTT GRN E1.
CATFlow GRN E2 published raw
inference results to DatAna
MQTT GRN E2.
CATFlow GRN F2 published raw
inference results to DatAna
MQTT GRN F2

24-25/05/2023 SUCCESS

T-GRN3.12 TAD DatAna 4

TAD GRN E1 published raw
inference results to DatAna
MQTT GRN E1.
TAD GRN E2 published raw
inference results to DatAna
MQTT GRN E2.
TAD GRN F2 published raw
inference results to DatAna
MQTT GRN F2

24-25/05/2023 SUCCESS

T-GRN3.13 TAD DatAna 5

TAD GRN E1 consumed raw
inference results from CATFlow
GRN E1 for Cam-GRN-VA-01 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN E1.
TAD GRN E2 consumed raw
inference results from CATFlow
GRN E2 for Cam-GRN-VA-02 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN E2.
TAD GRN F2 consumed raw
inference results from CATFlow
GRN F2 for Cam-GRN-VA-03 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN F2.

24-25/05/2023 SUCCESS

T-GRN3.14 AVAD DatAna 4
AVAD GRN3 F2.1, F2.2, F2.3
published raw inference results
to DatAna MQTT F2

24-25/05/2023 SUCCESS

T-GRN3.15 AT DatAna 4
AT GRN3 F2.1, F2.2, F2.3
published raw inference results
to DatAna MQTT F2

24-25/05/2023 SUCCESS

T-GRN3.16 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler GRN
F2 for AV content related to
inference results generated by
CATFlow, TAD, AVAD, AT.
StreamHandler returned the urls
for requested AV content.

30-06-23 SUCCESS

T-GRN3.17 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (CATFlow, TAD, AVAD,
AT) from StreamHandler GRN F2

30-06-23 SUCCESS

T-GRN3.18 DatAna DFB 7
DFB C1 received inference
results (CATFlow, TAD, AVAD,
AT) from DatAna C1

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 214 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-GRN3.19 DFB SmartViz 8

SmartViz C1 received inference
results (CATFlow, TAD, AVAD,
AT) from DFB Kafka / Elastic
Search C1
DFB C1 received inference
verification messages (CATFlow,
TAD, AVAD, AT) from SmartViz
C1

24-25/05/2023 SUCCESS

GRN4: Trajectories

T-GRN4.01 AV Registry CATFlow 2

CATFlow GRN E1, E2, F2
received Camera objects from
AV Registry GRN F2 for ids Cam-
GRN-VA-01, Cam-GRN-VA-02,
Cam-GRN-VA-03

24-25/05/2023 SUCCESS

T-GRN4.02 AV Registry AVCC 2

AVCC GRN4 C1 received Camera
objects from AV Registry GRN
F2 for ids Cam-GRN-VA-01, Cam-
GRN-VA-01-Audio

21-06-23 SUCCESS

T-GRN4.03 AV Registry SED 2

SED GRN4 C1.1, C1.2, C1.3
received Camera objects from
AV Registry GRN F2 for ids Cam-
GRN-VA-01-Audio, Cam-GRN-VA-
02-Audio, Cam-GRN-VA-03-Audio

24-25/05/2023 SUCCESS

T-GRN4.04 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry GRN
F2 for ids Cam-GRN-VA-01, Cam-
GRN-VA-01-Audio, Cam-GRN-VA-
02, Cam-GRN-VA-02-Audio, Cam-
GRN-VA-03, Cam-GRN-VA-03-
Audio

24-25/05/2023 SUCCESS

T-GRN4.05 VideoAnony CATFlow 3

CATFlow GRN E1, E2, F2
received RTSP stream from
VideoAnony GRN E1, E2, F2 for
ids Cam-GRN-VA-01, Cam-GRN-
VA-02, Cam-GRN-VA-03

24-25/05/2023 SUCCESS

T-GRN4.06 VideoAnony AVCC 3
AVCC GRN4 C1 received RTSP
stream from VideoAnony GRN
E1

24-25/05/2023 SUCCESS

T-GRN4.07 VideoAnony SED 3
SED GRN C1.1, C1.2, C1.3
received RTSP stream from
VideoAnony GRN E1, F1.1, F1.2

24-25/05/2023 SUCCESS

T-GRN4.08 VideoAnony SmartViz 3
SmartViz C1 received RTSP
stream from VideoAnony GRN
E1, F1.1, F1.2

24-25/05/2023 SUCCESS

T-GRN4.09 CATFlow DatAna 4

CATFlow GRN E1 published raw
inference results to DatAna
MQTT GRN E1.
CATFlow GRN F1.1, F1.2
published raw inference results
to DatAna MQTT GRN F1

24-25/05/2023 SUCCESS

T-GRN4.10 TAD DatAna 4

TAD GRN E1 published raw
inference results to DatAna
MQTT GRN E1.
TAD GRN E2 published raw
inference results to DatAna
MQTT GRN E2.
TAD GRN F2 published raw
inference results to DatAna
MQTT GRN F2

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 215 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-GRN4.11 TAD DatAna 5

TAD GRN E1 consumed raw
inference results from CATFlow
GRN E1 for Cam-GRN-VA-01 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN E1.
TAD GRN E2 consumed raw
inference results from CATFlow
GRN E2 for Cam-GRN-VA-02 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN E2.
TAD GRN F2 consumed raw
inference results from CATFlow
GRN F2 for Cam-GRN-VA-03 by
subscribing to the "CATFlow-V"
topic of DatAna MQTT GRN F2.

24-25/05/2023 SUCCESS

T-GRN4.12 AVCC DatAna 4
AVCC GRN4 C1 published raw
inference results to DatAna
MQTT C1

24-25/05/2023 SUCCESS

T-GRN4.13 SED DatAna 4
SED GRN4 C1.1, C1.2, C1.3
published raw inference results
to DatAna MQTT C1

24-25/05/2023 SUCCESS

T-GRN4.14 DatAna DFB 7
DFB C1 received inference
results (CATFlow, TAD, AVCC,
SED) from DatAna C1

24-25/05/2023 SUCCESS

T-GRN4.15 DFB SmartViz 8

SmartViz C1 received inference
results (CATFlow, TAD, AVCC,
SED) from DFB Kafka / Elastic
Search C1
DFB C1 received inference
verification messages (CATFlow,
TAD, AVCC, SED) from SmartViz
C1

24-25/05/2023

SUCCESS
(AVCC

heatmaps
contain

errors due
to

corrupted
video

frames)

MT1: Crowd Monitoring

T-MT1.01 AV Registry CATFlow 2

CATFlow MT1 F2.1, F2.2
received Camera objects from
AV Registry MT F2 for ids Cam-
MT1-VA-01, Cam-MT1-VA-02

24-25/05/2023 SUCCESS

T-MT1.02 AV Registry ViAD 2 thank you very much. 30-06-23 SUCCESS

T-MT1.03 AV Registry VCC 2

VCC MT1 C1.1,C1.2 received
Camera objects from AV
Registry MT F2 for ids Cam-
MT1-VA-01, Cam-MT1-VA-02

30-06-23 SUCCESS

T-MT1.04 AV Registry StreamHandler 2

StreamHandler MT F2 received
Camera objects from AV
Registry MT F2 for ids Cam-
MT1-VA-01, Cam-MT1-VA-02

24-25/05/2023 SUCCESS

T-MT1.05 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry MT F2
for ids Cam-MT1-VA-01, Cam-
MT1-VA-02

24-25/05/2023 SUCCESS

T-MT1.06 RTSP Proxy CATFlow 3
CATFlow MT1 F2.1, F2.2
received RTSP streams from
RTSP Proxy ΜΤ F2

24-25/05/2023 SUCCESS

T-MT1.07 RTSP Proxy ViAD 3
ViAD MT1 C1.1, C1.2 received
RTSP streams from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

T-MT1.08 RTSP Proxy VCC 3
VCC MT1 C1.1, C1.2 received
RTSP streams from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 216 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-MT1.09 RTSP Proxy StreamHandler 3
StreamHandler MT F2 received
RTSP streams from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

T-MT1.10 RTSP Proxy SmartViz 3
SmartViz C1 received RTSP
streams from VideoAnony RTSP
Proxy ΜΤ F2

30-06-23 SUCCESS

T-MT1.11 CATFlow DatAna 4
CATFlow MT1 F2.1, F2.2
published raw inference results
to DatAna MQTT MT F2.

24-25/05/2023 SUCCESS

T-MT1.12 ViAD DatAna 4
ViAD MT1 C1.1, C1.2 published
raw inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

T-MT1.13 VCC DatAna 4
VCC MT1 C1.1, C1.2 published
raw inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

T-MT1.14 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler MT
F2 for inference results
generated by CATFlow, ViAD,
VCC. StreamHandler returned
the urls for requested AV
content.

30-06-23 SUCCESS

T-MT1.15 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (CATFlow, ViAD, VCC)
from StreamHandler MT F2

30-06-23 SUCCESS

T-MT1.16 DatAna DFB 7
DFB C1 received inference
results (CATFlow, ViAD, VCC)
from DatAna C1

24-25/05/2023 SUCCESS

T-MT1.17 DFB SmartViz 8

SmartViz C1 received inference
results (CATFlow, ViAD, VCC)
from DFB Kafka / Elastic Search
C1
DFB C1 received inference
verification messages (CATFlow,
ViAD, VCC) from SmartViz C1

24-25/05/2023 SUCCESS

MT2: Detecting criminal/anti-social behaviours

T-MT2.01 AV Registry AAC 2
AAC MT2 F2 received Camera
objects from AV Registry MT F2
for id Cam-MT2-AA-01

24-25/05/2023 SUCCESS

T-MT2.02 AV Registry AVAD 2

AVAD MT2 C1.1, C1.2 received
Camera objects from AV
Registry MT F2 for ids Cam-
MT2-VA-01, Cam-MT2-AA-01,
Cam-MT2-VA-02, Cam-MT2-AA-
02

21-06-23 SUCCESS

T-MT2.03 AV Registry SED 2

SED MT2 C1.1, C1.2 received
Camera objects from AV
Registry MT F2 for ids Cam-
MT2-AA-01, Cam-MT2-AA-02

24-25/05/2023 SUCCESS

T-MT2.04 AV Registry ΑΤ 2

AT MT2 C1.1, C1.2 received
Camera objects from AV
Registry MT F2 for ids Cam-
MT2-AA-01, Cam-MT2-AA-02

24-25/05/2023 SUCCESS

T-MT2.05 AV Registry StreamHandler 2

StreamHandler MT F2 received
Camera objects from AV
Registry MT F2 for ids Cam-
MT2-VA-01, Cam-MT2-AA-01,
Cam-MT2-VA-02, Cam-MT2-AA-
02

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 217 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-MT2.06 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry MT F2
for ids Cam-MT2-VA-01, Cam-
MT2-AA-01, Cam-MT2-VA-02,
Cam-MT2-AA-02

24-25/05/2023 SUCCESS

T-MT2.07 MEMS
AudioAnony -

VAD
1

AudioAnony-VAD MT2 E1, E2
consumed the raw audio stream
from the MEMS microphone
MT2 E1, E2

24-25/05/2023 SUCCESS

T-MT2.08 RTSP Proxy AAC 3
AAC MT2 F2 received RTSP
stream from RTSP Proxy ΜΤ F2

24-25/05/2023 SUCCESS

T-MT2.09 RTSP Proxy AVAD 3
AVAD MT2 C1.1, C1.2 received
RTSP stream from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

T-MT2.10 RTSP Proxy SED 3
SED MT2 C1.1, C1.2 received
RTSP stream from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

T-MT2.11 RTSP Proxy ΑΤ 3
AT MT2 C1.1, C1.2 received
RTSP stream from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

T-MT2.12 RTSP Proxy StreamHandler 3
StreamHandler C1 received
RTSP stream from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

T-MT2.13 RTSP Proxy SmartViz 3
SmartViz C1 received RTSP
stream from RTSP Proxy ΜΤ F2

30-06-23 SUCCESS

T-MT2.14 VAD DatAna 4
VAD MT2 E1, E2 published raw
inference results to DatAna
MQTT MT F2.

24-25/05/2023 SUCCESS

T-MT2.15 AAC DatAna 4
AAC MT2 F2 published raw
inference results to DatAna
MQTT F2.

24-25/05/2023 SUCCESS

T-MT2.16 AVAD DatAna 4
AVAD MT2 C1.1, C1.2 published
raw inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

T-MT2.17 SED DatAna 4
SED MT2 C1.1, C1.2 published
raw inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

T-MT2.18 AT DatAna 4
AT MT2 C1.1, C1.2 published
raw inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

T-MT2.19 GPURegex DatAna 4
GPURegex MT2 F2 published
raw inference results to DatAna
MQTT F2.

21-06-23 SUCCESS

T-MT2.20 GPURegex DatAna 5

GPURegex MT2 F2 consumed
raw inference results from AAC
MT2 F2 for Cam-MT2-AA-01 by
subscribing to the "GPURegex"
topic of DatAna MQTT MT F2

24-25/05/2023 SUCCESS

T-MT2.21 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler MT
F2 for inference results
generated by VAD, AAC, AVAD,
SED, AT. StreamHandler
returned the urls for requested
AV content.

30-06-23 SUCCESS

T-MT2.22 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (AAC, AVAD, SED, AT)
from StreamHandler MT F2

30-06-23 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 218 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-MT2.23 DatAna DFB 7
DFB C1 received inference
results (VAD, AAC, AVAD, SED,
AT) from DatAna C1

24-25/05/2023 SUCCESS

T-MT2.24 DFB SmartViz 8

SmartViz C1 received inference
results (VAD, AAC, AVAD, SED,
AT) from DFB Kafka / Elastic
Search C1
DFB C1 received inference
verification messages (VAD,
AAC, AVAD, SED, AT) from
SmartViz C1

21-06-23 SUCCESS

MT3: Parking Lot

T-MT3.01 AV Registry AVAD 2

AVAD MT3 C1 received Camera
objects from AV Registry MT F2
for ids Cam-MT3-AA-01, Cam-
MT3-VA-01

30-06-23 SUCCESS

T-MT3.02 AV Registry SED 2
SED MT3 C1 received Camera
objects from AV Registry MT F2
for ids Cam-MT3-AA-01

24-25/05/2023 SUCCESS

T-MT3.03 AV Registry ΑΤ 2
AT MT3 C1 received Camera
objects from AV Registry MT F2
for ids Cam-MT3-AA-01

24-25/05/2023 SUCCESS

T-MT3.04 AV Registry StreamHandler 2

StreamHandler MT F2 received
Camera objects from AV
Registry MT F2 for ids Cam-
MT3-AA-01, Cam-MT3-VA-01

24-25/05/2023 SUCCESS

T-MT3.05 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry MT F2
for ids Cam-MT3-AA-01, Cam-
MT3-VA-01

24-25/05/2023 SUCCESS

T-MT3.06 MEMS
AudioAnony -

VAD
1

AudioAnony-VAD MT E1
consumed the raw audio stream
from the MEMS microphone MT
E1

24-25/05/2023 SUCCESS

T-MT3.07 RTSP Proxy StreamHandler 3
StreamHandler MT F2 received
RTSP stream from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

T-MT3.08 RTSP Proxy SmartViz 3
SmartViz C1 received RTSP
stream from RTSP Proxy ΜΤ F2

30-06-23 SUCCESS

T-MT3.09 RTSP Proxy AVAD 3
AVAD MT3 C1 received RTSP
stream from RTSP Proxy ΜΤ F2

21-06-23 SUCCESS

T-MT3.10 RTSP Proxy SED 3
SED MT3 C1 received RTSP
stream from RTSP Proxy ΜΤ F2

24-25/05/2023 SUCCESS

T-MT3.11 RTSP Proxy ΑΤ 3
AT MT3 C1 received RTSP
stream from RTSP Proxy ΜΤ F2

24-25/05/2023 SUCCESS

T-MT3.12 VAD DatAna 4
VAD MT3 E1 published raw
inference results to DatAna
MQTT MT F2.

24-25/05/2023 SUCCESS

T-MT3.13 AVAD DatAna 4
AVAD MT3 C1 published raw
inference results to DatAna
MQTT C1.

21-06-23 SUCCESS

T-MT3.14 SED DatAna 4
SED MT3 C1 published raw
inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

T-MT3.15 AT DatAna 4
AT MT3 C1 published raw
inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 219 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-MT3.16 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler MT
F2 for inference results
generated by VAD, AVAD, SED,
AT. StreamHandler returned the
urls for requested AV content.

30-06-23 SUCCESS

T-MT3.17 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (AVAD, SED, AT) from
StreamHandler MT F2

30-06-23 SUCCESS

T-MT3.18 DatAna DFB 7
DFB C1 received inference
results (VAD, AVAD, SED, AT)
from DatAna C1

21-06-23 SUCCESS

T-MT3.19 DFB SmartViz 8

SmartViz C1 received inference
results (VAD, AVAD, SED, AT)
from DFB Kafka / Elastic Search
C1
DFB C1 received inference
verification messages (VAD,
AVAD, SED, AT) from SmartViz
C1

21-06-23 SUCCESS

MT4: Analysis of a specific area

T-MT4.01 AV Registry CATFlow 2

CATFLow MT4 F2.1, F2.2
received Camera objects from
AV Registry MT F2 for id Cam-
MT4-VA-01, Cam-MT4-VA-02

24-25/05/2023 SUCCESS

T-MT4.02 AV Registry AVAD 2

AVAD MT4 C1 received Camera
objects from AV Registry MT F2
for ids Cam-MT4-VA-01, Cam-
MT4-AA-01

30-06-23 SUCCESS

T-MT4.03 AV Registry SED 2
SED MT4 C1 received Camera
objects from AV Registry MT F2
for id Cam-MT4-AA-01

24-25/05/2023 SUCCESS

T-MT4.04 AV Registry StreamHandler 2

StreamHandler MT F2 received
Camera objects from AV
Registry MT F2 for ids Cam-
MT4-VA-01, Cam-MT4-AA-01,
Cam-MT4-VA-02

24-25/05/2023 SUCCESS

T-MT4.05 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry MT F2
for ids Cam-MT4-VA-01, Cam-
MT4-AA-01, Cam-MT4-VA-02

24-25/05/2023 SUCCESS

T-MT4.06 MEMS
AudioAnony -

VAD
1

AudioAnony-VAD MT4 E1
consumed the raw audio stream
from the MEMS microphone
MT4 E1

24-25/05/2023 SUCCESS

T-MT4.07 RTSP Proxy CATFlow 3
CATFlow MT4 F2.1, F2.2
received RTSP stream from
RTSP Proxy ΜΤ F2

24-25/05/2023 SUCCESS

T-MT4.08 RTSP Proxy AVAD 3
AVAD MT4 C1 received RTSP
stream from RTSP Proxy ΜΤ F2

24-25/05/2023 SUCCESS

T-MT4.09 RTSP Proxy SED 3
SED MT4 C1 received RTSP
stream from RTSP Proxy ΜΤ F2

24-25/05/2023 SUCCESS

T-MT4.10 RTSP Proxy StreamHandler 3
StreamHandler C1 received
RTSP stream from RTSP Proxy
ΜΤ F2

24-25/05/2023 SUCCESS

T-MT4.11 RTSP Proxy SmartViz 3
SmartViz C1 received RTSP
stream from RTSP Proxy ΜΤ F2

30-06-23 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 220 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-MT4.12 VAD DatAna 4
VAD MT4 E1 published raw
inference results to DatAna
MQTT MT F2.

24-25/05/2023 SUCCESS

T-MT4.13 CATFlow DatAna 4
CATFlow MT4 F2.1, F2.2
published raw inference results
to DatAna MQTT F2.

24-25/05/2023 SUCCESS

T-MT4.14 AVAD DatAna 4
AVAD MT4 C1 published raw
inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

T-MT4.15 SED DatAna 4
SED MT4 C1 published raw
inference results to DatAna
MQTT C1.

24-25/05/2023 SUCCESS

T-MT4.16 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler MT
F2 for inference results
generated by VAD, CATFLow,
AVAD, SED. StreamHandler
returned the urls for requested
AV content.

30-06-23 SUCCESS

T-MT4.17 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (CATFlow, AVAD, SED)
from StreamHandler MT F2

30-06-23 SUCCESS

T-MT4.18 DatAna DFB 7
DFB C1 received inference
results (VAD, CATFlow, AVAD,
SED) from DatAna C1

24-25/05/2023 SUCCESS

T-MT4.19 DFB SmartViz 8

SmartViz C1 received inference
results (VAD, CATFlow, AVAD,
SED) from DFB Kafka / Elastic
Search C1
DFB C1 received inference
verification messages (VAD,
CATFlow, AVAD, SED) from
SmartViz C1

24-25/05/2023 SUCCESS

UNS1: Drone Crowd Classification

T-UNS1.01 AV Registry VCC 2
VCC UNS1 F1 received Camera
objects from AV Registry UNS F1
for id Cam-Cam-UNS-VA-01

15-06-23 SUCCESS

T-UNS1.02 AV Registry StreamHandler 2

StreamHandler UNS F1 received
Camera objects from AV
Registry UNS F1 for ids Cam-
UNS-VA-01, Cam-UNS-AA-01

24-25/05/2023 SUCCESS

T-UNS1.03 AV Registry SmartViz 2

SmartViz C1 received Camera
objects from AV Registry UNS F1
for ids Cam-UNS-VA-01, Cam-
UNS-AA-01

24-25/05/2023 SUCCESS

T-UNS1.04 MEMS
AudioAnony -

VAD
1

AudioAnony-VAD UNS E2
consumed the raw audio stream
from the MEMS microphone
UNS E2

24-25/05/2023 SUCCESS

T-UNS1.05 EdgeSec TEE VideoAnony N/A

VideoAnony requests and
receives information from
EdgeSec TEE over a REST
protocol

15-06-23 SUCCESS

T-UNS1.06 VideoAnony VCC 3
VCC UNS1 F1 received RTSP
stream from VideoAnony UNS
E1

24-25/05/2023 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 221 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-UNS1.07 VideoAnony StreamHandler 3
StreamHandler UNS F1 received
RTSP stream from VideoAnony
UNS E1

24-25/05/2023 SUCCESS

T-UNS1.08 VideoAnony SmartViz 3
SmartViz C1 received RTSP
stream from VideoAnony UNS
E1

24-25/05/2023 SUCCESS

T-UNS1.09
AudioAnony -

VAD
 StreamHandler 3

StreamHandler UNS F1 received
RTSP stream from AudioAnony-
VAD UNS E2

24-25/05/2023 SUCCESS

T-UNS1.10
AudioAnony -

VAD
 SmartViz 3

SmartViz C1 received RTSP
stream from AudioAnony-VAD
UNS E2

30-06-23 SUCCESS

T-UNS1.11 VAD DatAna 4
VAD UNS E2 published raw
inference results to DatAna
MQTT UNS E2.

24-25/05/2023 SUCCESS

T-UNS1.12 VCC DatAna 4
VCC UNS1 F1 published raw
inference results to DatAna
MQTT UNS F1.

24-25/05/2023 SUCCESS

T-UNS1.13 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler UNS
F1 for inference results
generated by VCC.
StreamHandler returned the urls
for requested AV content.

15-06-23 SUCCESS

T-UNS1.14 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (VAD, VCC) from
StreamHandler UNS F1

15-06-23 SUCCESS

T-UNS1.15 DatAna DFB 7
DFB C1 received inference
results (VAD, VCC) from DatAna
C1

24-25/05/2023 SUCCESS

T-UNS1.16 DFB SmartViz 8

SmartViz C1 received inference
results (VAD, VCC) from DFB
Kafka / Elastic Search C1
DFB C1 received inference
verification messages (VAD,
VCC) from SmartViz C1

24-25/05/2023 SUCCESS

UNS2: Sound Localisation

T-UNS2.01 AV Registry SELD 2
SELD UNS2 F1 received Camera
objects from AV Registry UNS F1
for id Cam-UNS-MEMS-02

24-25/05/2023 SUCCESS

T-UNS2.02 AV Registry StreamHandler 2

StreamHandler UNS F1 received
Camera objects from AV
Registry UNS F1 for ids Cam-
UNS-AA-02

24-25/05/2023 SUCCESS

T-UNS2.03 AV Registry SmartViz 2
SmartViz C1 received Camera
objects from AV Registry UNS F1
for id Cam-UNS-AA-02

24-25/05/2023 SUCCESS

T-UNS2.04 MEMS
AudioAnony -

VAD
1

AudioAnony-VAD UNS E3
consumed the raw audio stream
from the MEMS microphone
UNS E3

07-06-23 SUCCESS

T-UNS2.05 MEMS SELD 3
SELD UNS F1 received RTSP
stream from RTSPProxy UNS E3

07-06-23 SUCCESS

T-UNS2.06
AudioAnony -

VAD
 StreamHandler 3

StreamHandler UNS F1 received
RTSP stream from AudioAnony-
VAD UNS E3

07-06-23 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 222 - 21 July, 2023

Test ID Component A
Direct

ion
Component B

I/O
ID

Description Test Date Result

T-UNS2.07
AudioAnony -

VAD
 SmartViz 3

SmartViz C1 received RTSP
stream from AudioAnony-VAD
UNS E3

30-06-23 SUCCESS

T-UNS2.08 VAD DatAna 4
VAD UNS E3 published raw
inference results to DatAna
MQTT UNS F1.

30-06-23

FAIL
(resolutio

n in
progress)

T-UNS2.09 SELD DatAna 4
SELD UNS F1 published raw
inference results to DatAna
MQTT UNS F1.

15-06-23 SUCCESS

T-UNS2.10 StreamHandler SmartViz 9

SmartViz C1 made REST API
requests to StreamHandler UNS
F1 for inference results
generated by SELD.
StreamHandler returned the urls
for requested AV content.

30-06-23 SUCCESS

T-UNS2.11 StreamHandler SmartViz 10

SmartViz C1 received the AV
files for requested inference
results (VAD, SELD) from
StreamHandler UNS F1

30-06-23 SUCCESS

T-UNS2.12 DatAna DFB 7
DFB C1 received inference
results (VAD, SELD) from DatAna
C1

15-06-23 SUCCESS

T-UNS2.13 DFB SmartViz 8

SmartViz C1 received inference
results (VAD, SELD) from DFB
Kafka / Elastic Search C1
DFB C1 received inference
verification messages (VAD,
SELD) from SmartViz C1

15-06-23 SUCCESS

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 223 - 21 July, 2023

Appendix B: R2 Data Model specifications

“Camera” SDM-compliant Data Model for AV Sources

Entity: Camera
Global description:

A Data Model for all AV sources in the MARVEL framework (including generated anonymized
AV content). Based on the Smart Data Models (SDM) standard
Based on the Smart Data Models (SDM) specification.

Original Data Model by SDM initiative

Open License

List of properties
Properties by SDM

• address: The mailing address

• alternateName: An alternative name for this item

• areaServed: The geographic area where a service or offered item is provided

• cameraName: Name of the camera corresponding to this observation.

• cameraOrientation: Orientation information for the camera corresponding to this

observation

• cameraType: Type of the camera corresponding to this observation. Enum:'FIXED, PTZ,

DOME, DAY/NIGHT, C-MOUNT, BULLET'.

• cameraUsage: Purpose of the camera corresponding to this observation. ENUM:

[SURVEILLANCE, RLVD, ANPR/LPR].

• dataProvider: A sequence of characters identifying the provider of the harmonised data

entity.

• dateCreated: Entity creation timestamp. This will usually be allocated by the storage

platform.

• dateModified: Timestamp of the last modification of the entity. This will usually be

allocated by the storage platform.

• description: A description of this item

• endDateTime: Reported end time corresponding to this observation.

• imageSnapshot: Camera feed snapshot download link for the camera corresponding to this

observation

• location: Geojson reference to the item. It can be Point, LineString, Polygon, MultiPoint,

MultiLineString or MultiPolygon

• mediaURL: URL providing further information of any image(s) or media of the complaint or

place.

• name: The name of this item.

• seeAlso: list of uri pointing to additional resources about the item

• source: A sequence of characters giving the original source of the entity data as a URL.

Recommended to be the fully qualified domain name of the source provider, or the URL to

the source object.

• startDateTime: Reported start time corresponding to this observation.

• streamName: Name of the video stream from the camera corresponding to this observation

• streamURL: URL providing video streaming information for the camera corresponding to

this observation

https://github.com/smart-data-models/dataModel.Device/blob/master/Camera/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/master/Camera/LICENSE.md

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 224 - 21 July, 2023

Properties by SDM modified for MARVEL

• cameraNum: Camera number corresponding to this observation (##).

• owner: A List containing a JSON encoded sequence of characters referencing the unique Ids

of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• id: Unique identifier of the entity. IDs for AV sources will be hard-coded manually in a

configuration file or automatically assigned by the AV registry component. Recommended

format: "Cam-" + owner + "-" AVSourceType + "-" + cameraNum(##).

• type: The type of the entity. In this case "Camera".

Additional properties by MARVEL

• AVSourceType: Indicates whether the AV source is a CCTV camera, a MEMS microphone or

an anonymisation service (VideoAnony or AudioAnony or both). ENUM: [CCTV, MEMS, VA,

AA, VAAA]

• contentType: Indicates whether the source transmits audio, video or both. ENUM: [A, V,

AV].

• cameraManufacturer: The name of the manufacturer producing the camera.

• cameraModel: The name of the camera model.

• videoAnonymized: Indicates whether the specific AV source provides anonymised video

content. (boolean type)

• audioAnonymized: Indicates whether the specific AV source provides anonymised audio

content. (boolean type)

• originalAVSourceId: Points to the id of the original AV source in case the current source is

anonymised. In case this is the original AV source, then the camera's own id is used.

• videoResolutionWidth: The width of the frame in pixels for. Applicable for sources that

contain Video content.

• videoResolutionHeight: The height of the frame in pixels. Applicable for sources that

contain Video content.

• videoFramerate: The video framerate in fps. Applicable for sources that contain Video

content.

• videoCodec: The codec that was used to encode the video stream. Applicable for sources

that contain Video content. ENUM: [H264, H265, MPEG4].

• videoBitrate: The bitrate of the video in the AV stream (in Kbps).

• audioSamplingRate: The sampling rate of the audio. Applicable for sources that contain

Audio content.

• audioBitDepth: The bit-depth of the audio. ENUM: [8-bit, 16-bit, 24-bit, 32-bit]

• audioCodec: The codec that was used to encode the audio stream. Applicable for sources

that contain Audio content. ENUM: [MP3, WAV, PCM, AAC, AIFF, OGG].

• audioBitrate: The bitrate of the audio in the AV stream (in Kbps).

• audioGain: The gain of the audio stream (float value)

• audioAGC: Indicates whether Automatic Gain Control is applied (boolean value).

• audioChannels: The number of channels in the audio stream (integer value).

• AVContainer: The container used to encapsulate the AV data. ENUM: [MP4, MOV, AVI, WAV,

MP3, AAC].

Required properties by SDM
• id
• type

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 225 - 21 July, 2023

Required properties by MARVEL
• streamURL
• owner
• contentType
• cameraManufacturer
• cameraModel
• anonymized
• originalAVSourceId
• resolutionWidth
• resolutionHeight
• framerate
• samplingRate
• videoCodec
• audioCodec
• AVContainer

Example payload
{
 "id": "Cam-GRN4-VAAA-03",
 "type": "Camera",
 "AVSourceType": "VAAA",
 "owner": "GRN4",
 "cameraNum": "03",
 "cameraName": "GRN4-VAAA-03",
 "streamName": "GRN_Mgarr_XxxxxxStr_Surv_Fixed_Cam-aca8b8870f61",
 "streamURL": "rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mp4",
 "cameraManufacturer": "FBK",
 "cameraModel": "VideoAnony_v05-AudioAnony_v03",
 "location": {
 "type": "Point",
 "coordinates": [
 14.366710,
 35.920308
]
 },
 "cameraOrientation": {
 "comments": "Camera facing East",
 },
 "contentType": "AV",
 "videoAnonymized": true,
 "audioAnonymized": true,
 "originalAVSourceId": "Cam-GRN4-CCTV-17",
 "videoResolutionWidth": 1600,
 "videoResolutionHeight": 1200,
 "videoFramerate": 30,
 "videoCodec": "H264",
 "videoBitrate": 20000,
 "audioSamplingRate": 44100,
 "audioBitDepth": "24-bit",
 "audioCodec": "MP3",
 "audioBitrate": 240,
 "audioGain": 1.0,
 "audioAGC": false,
 "audioChannels": 1,
 "AVContainer": "MP4",
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 226 - 21 July, 2023

“MediaEvent” SDM-compliant Inference Result Data Model

Entity: MediaEvent
Global description:

A Data Model for events generated by AI components in the MARVEL framework. Based on the
Smart Data Models (SDM) standard

Based on the Smart Data Models (SDM) specification.
Original Data Model by SDM initiative
Open License

List of properties
• address: The mailing address

• alternateName: An alternative name for this item

• areaServed: The geographic area where a service or offered item is provided

• dataProvider: A sequence of characters identifying the provider of the harmonised data

entity.

• description: A description of this item

• eventType: Type of event that was raised. (ie: PlateDetectionEvent, ColourDetectionEvent,

etc.

• id: Unique identifier of the entity

• location: Geojson reference to the item. It can be Point, LineString, Polygon, MultiPoint,

MultiLineString or MultiPolygon

• mediaSource: Technical information of the object that raised the event

• name: The name of this item.

• observedEntities: Array of model Entities created updated or just observed by this event.

• seeAlso: list of uri pointing to additional resources about the item

• source: A sequence of characters giving the original source of the entity data as a URL.

Recommended to be the fully qualified domain name of the source provider, or the URL to

the source object.

• type: NGSI Entity type. It has to be MediaEvent

Properties by SDM modified for MARVEL

• data: Any serializable object that is attached to the event. Eg:plate-number + Attribute

type. This is where MARVEL AI components will include their case-specific inference results.

• detectedBy: The ID of the device at which the event was detected (the link to the device id

of the infrastructure in MARVEL).

• owner: A List containing a JSON encoded sequence of characters referencing the unique Ids

of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN, GRN1, GRN2, GRN3, GRN4, MT1, MT2 MT3, MT4, UNS1, UNS2].

• dateCreated: Entity creation timestamp. Timestamp in which DatAna performs the

transformation of the event

• dateModified: Timestamp of the last modification of the entity. This will usually be

allocated by the storage platform. In MARVEL this field contains the last update by other

components (i.e. SmartViz)

Additional properties by MARVEL

• cameraId: The id of the Camera entity that produced the AV stream and that was analysed

to generate this event. Formatted according to the NGSI-LD standard (i.e. URN identifier).

https://github.com/smart-data-models/dataModel.Multimedia/blob/master/MediaEvent/doc/spec.md
https://github.com/smart-data-models/dataModel.Multimedia/blob/master/MediaEvent/LICENSE.md

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 227 - 21 July, 2023

IDs for AV sources will be hard-coded manually in a configuration file or automatically

assigned by the AV registry component and will include a 12-digit hexadecimal identifier.

• startTime: The start time of the event. Following the ISO8601 UTC format.

• endTime: The end time of the event. Following the ISO8601 UTC format.

• MLModelId: The id of the MLModel that generated this event.

• reviewed: (boolean) Indicates whether the inference result has been reviewed by the user.

Default value false.

• verified: (boolean) Indicates whether the inference result is verified by the user or not.

Default value false.

• timestamp: Entity creation timestamp. In MARVEL, this is the absolute timestamp pointing

to the exact time of the video stream to which this element is referring to.

• dateDetected: Timestamp in which the inference model processed and detected the

entity.

• dateProcessed: Timestamp in which the inference model processed and detected the

entity. In MARVEL this is the date when the event finalise its process in DatAna.

• dateStored: Timestamp in which the entity is persisted. This will usually be allocated by

the storage platform. In MARVEL this is done by the DFB when storing the entity in Elastic

Search.

• secondCameraId: The id of a second Camera entity (audio or video) that produced a AV

stream. This is used only for some inference components that need to digest two streams

(audio / video) at the same time, and it is complementary and following the same

conventions as the cameraId (main stream). Used so far for VCC and AVCC, not mandatory.

Required properties by SDM
• dateCreated
• eventType
• id
• type

Required properties by MARVEL
• cameraId
• startTime
• endTime
• owner
• data
• MLModelId
• detectedBy
• dateDetected
• dateCreated
• reviewed
• verified

• timestamp - Either timestamp or startTime/endTime are mandatory

The data field is open in order to be able to contain any information detected by custom filters. For

example a filter for trafic plates may just have as data the plate number but a fencing filter might
have as data the criticality, the actual coordinates of the violation, and the url of a taken picture or
even the BASE64 image

Example payload
{
 "id": "mediaEvent_1509702324600",
 "startTime": "",

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 228 - 21 July, 2023

 "endTime": "",
 "dateCreated": "2022-04-01T10:07:59.618+01:58",
 "dateDetected": "2022-04-01T10:08:24.620+02:00",
 "timestamp": "2022-04-01T10:07:53.614+01:54",
 "owner": "GRN4",
 "cameraId": "Cam-MGARR",
 "MLModelId": "AVCC_v01",
 "detectedBy": "GRN_Fog_Server",
 "alertSource": "MLModel",
 "type": "MediaEvent",
 "eventType": "crowd-detected",
 "reviewed": "false",
 "verified": "false",
 "data": {
 "frame": 0,
 "predicted_count": "18.0",
 "image_paths": "frames/0.jpg",
 "audio_paths": "audio/0.wav",
 "density_paths": null,
 "inference_time": "2.33"
 }
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 229 - 21 July, 2023

“Alert” SDM-compliant Inference Result Data Model

Entity: Alert
Global description:

A Data Model for alerts generated by AI components in the MARVEL framework. Based on the
Smart Data Models (SDM) standard.

Based on the Smart Data Models (SDM) specification.
Original Data Model by SDM initiative
Open License

List of properties
• address: The mailing address

• alternateName: An alternative name for this item

• areaServed: The geographic area where a service or offered item is provided

• category: Category of the Alert. Enum:'traffic, naturalDisaster, weather, environment,

health, security, agriculture'

• dataProvider: A sequence of characters identifying the provider of the harmonised data

entity.

• description: A description of this item

• id: Unique identifier of the entity

• location: Geojson reference to the item. It can be Point, LineString, Polygon, MultiPoint,

MultiLineString or MultiPolygon

• name: The name of this item.

• seeAlso: list of uri pointing to additional resources about the item

• severity: Severity of the Alert (informational, low, medium, high, critical)

• source: A sequence of characters giving the original source of the entity data as a URL.

Recommended to be the fully qualified domain name of the source provider, or the URL to

the source object.

• subCategory: Describe the sub category of alert. Enum:'trafficJam, carAccident,

carWrongDirection, carStopped, pothole, roadClosed, roadWorks, hazardOnRoad,

injuredBiker, pedestrianOnRoad, bikerOnRoad, tramApproaching, flood, tsunami,

coastalEvent, earthquake, rainfall, highTemperature, lowTemperature, heatWave,

coldWave, ice, snow, wind, fog, tornado, tropicalCyclone, hurricane, snow/ice,

thunderstorms, fireRisk, avalancheRisk, floodRisk, airPollution, waterPollution,

pollenConcentration, asthmaAttack, bumpedPatient, fallenPatient, heartAttack,

suspiciousAction, robbery, assault, civilDisorder, buildingFire, forestFire, noxiousWeed,

snail, insect, rodent, bacteria, microbe, fungus,mite, virus, nematodes, irrigation,

fertilisation

• type: NGSI Entity type. It has to be Alert.

• validFrom: The start of the validity period for this forecast as a ISO8601 format

• validTo: The end of the validity period for this forecast as a ISO8601 format

Properties by FIWARE modified for MARVEL

• alertSource: Source of the alert (can ve a user, an application, a model -"MLModel" is the

default in MARVEL)

• data: Payload containing the data retrieved. This is where MARVEL AI components will

include their case-specific inference results.

https://github.com/smart-data-models/dataModel.Alert/blob/master/Alert/doc/spec.md
https://github.com/smart-data-models/dataModel.Alert/blob/master/Alert/LICENSE.md

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 230 - 21 July, 2023

• owner: A List containing a JSON encoded sequence of characters referencing the unique Ids

of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN, GRN1, GRN2, GRN3, GRN4, MT1, MT2 MT3, MT4, UNS1, UNS2].

• dateCreated: Entity creation timestamp. Timestamp in which DatAna performs the

transformation of the event

• dateModified: Timestamp of the last modification of the entity. This will usually be

allocated by the storage platform. In MARVEL this field contains the last update by other

components (i.e. SmartViz)

Additional properties by MARVEL

• cameraId: The id of the Camera or mic entity that produced the AV stream and that was

analysed to generate this event. Formatted according to the MARVEL camera or microphon

id conventions. IDs for AV sources will be hard-coded manually in a configuration file or

automatically assigned by the AV registry component and will include a 12-digit

hexadecimal identifier.

• startTime: The start time of the event. Following the ISO8601 UTC format.

• endTime: The end time of the event. Following the ISO8601 UTC format.

• MLModelId: The id of the MLModel that generated this event.

• reviewed: (boolean) Indicates whether the inference result has been reviewed by the user.

Default value false.

• verified: (boolean) Indicates whether the inference result is verified by the user or not.

Default value false.

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

• timestamp: Entity creation timestamp. In MARVEL, this is the absolute timestamp pointing

to the exact time of the video stream to which this element is referring to.

• dateDetected: Timestamp in which the inference model processed and detected the

entity.

• dateProcessed: Timestamp in which the inference model processed and detected the

entity. In MARVEL this is the date when the event finalise its process in DatAna.

• dateStored: Timestamp in which the entity is persisted. This will usually be allocated by

the storage platform. In MARVEL this is done by the DFB when storing the entity in Elastic

Search.

Required properties by SDM
• alertSource
• category
• id
• type

Required properties by MARVEL
• cameraId
• startTime
• endTime
• dateCreated
• dateDetected
• owner
• data
• MLModelId
• detectedBy

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 231 - 21 July, 2023

• reviewed
• verified

• timestamp - Either timestamp or startTime/endTime are mandatory

This entity models an alert and could be used to send alerts related to traffic jam, accidents,

weather conditions, high level of pollutants and so on. The purpose of the model is to support the

generation of notifications for a user or trigger other actions, based on such alerts. An alert is
generated by a specific situation. The main features of an alert is that it is not predictable and it is
not a recurrent data. That means that an alert could be an accident or a high level of pollutants

measure, additionally it could be the fall down of a patient or a car driving in the opposite
direction. Some examples of context data are; type of alert (traffic, weather, security, and

pollution, etc.), severity, location and so on.

Example payload
{
 "id": "Alert_1",
 "startTime": "",
 "endTime": "",
 "dateCreated": "2022-04-01T10:07:59.618+01:58",
 "dateIssued": "2022-04-01T10:08:24.620+02:00",
 "timestamp": "2022-04-01T10:07:53.614+01:54",
 "owner": "GRN4",
 "cameraId": "Cam-MGARR",
 "MLModelId": "AVCC_v01",
 "alertSource": "MLModel",
 "type": "Alert",
 "detectedBy": "GRN_Fog_Server",
 "category": "traffic",
 "subCategory":"trafficJam",
 "description": "The area is getting crowded",
 "severity": "high",
 "reviewed": "false",
 "verified": "false",
 "data": {
 "frame": 0,
 "predicted_count": "18.0",
 "image_paths": "frames/0.jpg",
 "audio_paths": "audio/0.wav",
 "density_paths": null,
 "inference_time": "2.33"
 }
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 232 - 21 July, 2023

“Anomaly” SDM-compliant Inference Result Data Model

Entity: Anomaly
Global description:

A Data Model for anomalies detected by AI components in the MARVEL framework. Based on
the Smart Data Models (SDM) standard. This entity contains a harmonised description of an

anomaly.
Based on the Smart Data Models (SDM) specification.
Original Data Model by SDM initiative

Open License

List of properties
• address: The mailing address

• alternateName: An alternative name for this item

• anomalousProperty: The controlledProperty (of the device) in which the anomaly was

detected

• areaServed: The geographic area where a service or offered item is provided

• dataProvider: A sequence of characters identifying the provider of the harmonised data

entity.

• description: A description of this item

• id: Unique identifier of the entity

• location: Geojson reference to the item. It can be Point, LineString, Polygon, MultiPoint,

MultiLineString or MultiPolygon

• name: The name of this item.

• seeAlso: list of uri pointing to additional resources about the item

• source: A sequence of characters giving the original source of the entity data as a URL.

Recommended to be the fully qualified domain name of the source provider, or the URL to

the source object.

• thresholdBreach: Description of an observed threshold breach that contributed to

detection of an anomaly

• type: NGSI-LD Entity Type. It has to be Anomaly

Properties by SDM modified for MARVEL

• detectedBy: The ID of the device at which the anomaly was detected (the link to the device

id of the infrastructure in MARVEL).

• owner: A List containing a JSON encoded sequence of characters referencing the unique Ids

of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN, GRN1, GRN2, GRN3, GRN4, MT1, MT2 MT3, MT4, UNS1, UNS2].

• dateCreated: Entity creation timestamp. Timestamp in which DatAna performs the

transformation of the event

• dateDetected: Timestamp in which the inference model processed and detected the

entity.

• dateModified: Timestamp of the last modification of the entity. This will usually be

allocated by the storage platform. In MARVEL this field contains the last update by other

components (i.e. SmartViz)

Additional properties by MARVEL

• cameraId: The id of the Camera entity that produced the AV stream and that was analysed

to generate this event. Formatted according to the NGSI-LD standard (i.e. URN identifier).

https://github.com/smart-data-models/dataModel.Alert/blob/master/Anomaly/doc/spec.md
https://github.com/smart-data-models/dataModel.Alert/blob/master/Anomaly/LICENSE.md

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 233 - 21 July, 2023

IDs for AV sources will be hard-coded manually in a configuration file or automatically

assigned by the AV registry component and will include a 12-digit hexadecimal identifier.

• startTime: The start time of the event. Following the ISO8601 UTC format.

• endTime: The end time of the event. Following the ISO8601 UTC format.

• data: Payload containing the data retrieved. This is where MARVEL AI components will

include their case-specific inference results.

• MLModelId: The id of the MLModel that generated this event.

• reviewed: (boolean) Indicates whether the inference result has been reviewed by the user.

Default value false.

• verified: (boolean) Indicates whether the inference result is verified by the user or not.

Default value false.

• timestamp: Entity creation timestamp. In MARVEL, this is the absolute timestamp pointing

to the exact time of the video stream to which this element is referring to.

• dateProcessed: Timestamp in which the inference model processed and detected the

entity. In MARVEL this is the date when the event finalise its process in DatAna.

• dateStored: Timestamp in which the entity is persisted. This will usually be allocated by

the storage platform. In MARVEL this is done by the DFB when storing the entity in Elastic

Search.

Required properties by SDM
• anomalousProperty
• dateDetected
• id
• type

Required properties by MARVEL
• cameraId
• dateCreated
• dateDetected
• startTime
• endTime
• owner
• data
• MLModelId
• deviceSource
• reviewed
• verified

• timestamp - Either timestamp or startTime/endTime are mandatory

Example payload
{
 "id": "Anomaly_1",
 "startTime": "2022-04-01T10:08:24.620+02:00",
 "endTime": "",
 "dateCreated": "2022-04-01T10:07:59.618+01:58",
 "dateDetected": "2022-04-01T10:08:24.620+02:00",
 "timestamp": "2022-04-01T10:07:53.614+01:54",
 "owner": "GRN4",
 "cameraId": "Cam-MGARR",
 "MLModelId": "AVCC_v01",
 "detectedBy": "GRN_Fog_Server"
 "type": "Anomaly",
 "anomalousProperty": "predicted_count",

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 234 - 21 July, 2023

 "data": {
 "frame": 0,
 "predicted_count": "18.0",
 "image_paths": "frames/0.jpg",
 "audio_paths": "audio/0.wav",
 "density_paths": null,
 "inference_time": "2.33",
 },
 "thresholdBreach": [
 {
 "dateObserved": "2022-04-01T10:08:24.620+02:00",
 "measuredValue": 18.00,
 "thresholdType": "LOWER",
 "thresholdValue": 15
 },
 {
 "dateObserved": "2022-04-02T10:10:25.620+02:11",
 "measuredValue": 18.00,
 "thresholdType": "LOWER",
 "thresholdValue": 15
 }
]
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 235 - 21 July, 2023

“MLModel” SDM-compliant Data Model for AI model descriptors

Entity: MLModel
Global description:

Data model for compilation of the elements of a machine learning model in the MARVEL
framework.

Original Data Model by SDM initiative
Open License

List of properties
Mandatory fields for MARVEL marked with "*".

• acceptableDataSources*: Valid type of input data sources for running the Machine

Learning Model

• algorithm*: The algorithm used by the underlying Machine Learning model (e.g. linear

regression, k-means, SVM, MLP,...)

• alternateName: An alternative name for this item

• dataProvider: A sequence of characters identifying the provider of the harmonised data

entity.

• dateCreated*: Entity creation timestamp. This will usually be allocated by the storage

platform.

• dateModified*: Timestamp of the last modification of the entity. This will usually be

allocated by the storage platform.

• description*: A description of this item

• dockerImage: Docker image containing the Machine Learning model

• id*: Unique identifier of the entity

• inputAttributes*: Comma-separated list of attributes names (that should have a given

type by definition).

• mlFramework*: The Machine Learning framework that has been used to prepare the model

(e.g., scikit-learn, H2O, Spark MLib, etc)

• name*: The name of this item.

• outputAttributes*: Comma-separated list of attributes names used to publish the results.

• outputDataTypes*: Type of output data produced by the Machine Learning Model

• owner: A List containing a JSON encoded sequence of characters referencing the unique Ids

of the owner(s)

• refMLProcessing:

• seeAlso: list of uri pointing to additional resources about the item

• source*: A sequence of characters giving the original source of the entity data as a URL.

Recommended to be the fully qualified domain name of the source provider, or the URL to

the source object.

• typeOfAlgorithm*: enumeration

• version*: Version of the model.

New properties by MARVEL

• data*: Payload containing extra ad-hoc complementary metadata needed by the MARVEL

components not covered in the previous fields.

Required properties by SDM
• id*
• type*

https://github.com/smart-data-models/dataModel.MachineLearning/blob/master/MLModel/doc/spec.md
https://github.com/smart-data-models/dataModel.MachineLearning/blob/master/MLModel/LICENSE.md

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 236 - 21 July, 2023

Required properties by MARVEL
• version*

Data field contains metadata for the trained models:

• file_name_weights*: name of the object containing trained model parameters,

the name is based on a convention agreed upon before (https://git.marvel-

project.eu/manolis.falelakis/marvel-technical-integration/-

/issues/25), <component_name>-<out_format>-<partner>-<type>-<version_number>

• model_definition: git url to the class file where the model is defined

• code: git url to the repository containing all the necessarry code to train the model

• val_accuracy: model performance (if model outputs compatible metric)

• loss: final traning loss (if model outputs it)

• training_epochs: number of epochs model was trained

• ...: other relevant model metrics should also be added to the object in the data field,

and other components can read specific information about the models from this field.

Examples
Example 1 (AVCC model, TensorFlow, HeatMap, DISCO dataset for training)
{
 "acceptableDataSources": ["images"], // images => spectrograms for audio
and frames from the video sources
 "algorithm": "avcc_tf",
 "alternateName": "AVCC model (heatmap output)", // redundant?
 "dataProvider": "UNS_F1",
 "dateCreated": "2022-05-29 08:25:29.988676",
 "dateModified": "2022-05-30 08:25:29.988676",
 "description": "Audio-Visual Crowd Counting model that outputs a heatmap
(density map)",
 "dockerImage": "registry.marvel-platform.eu/fedlclient_uns_f1:1", //
unclear, is this a docker image that built the model or the one that runs it,
because we can have one image that can run many models?
 "id": "avcc_heatmap_uns_f1_v0", // not sure if version should be included
in id, or some uuid or timestamp or similar?
 "inputAttributes": ["audio_spectrogram", "video_frame"],
 "mlFramework": "tensorflow==2.6.0", // version should be very important,
check?
 "name": "avcc_heatmap_uns_f1_v0", // redundant because of id?
 "outputAttributes": ["heatmap"], // just took heatmap from here:
https://git.marvel-project.eu/manolis.falelakis/marvel-technical-integration/-
/blob/main/Documentation/avcc.md
 "outputDataTypes": ["image"],
 "owner": ["UNS1"], // put all partners involved in the use case? unclear,
maybe should leave blank for now
 "refMLProcessing": ["https://git.marvel-
project.eu/manolis.falelakis/marvel-technical-integration/-
/blob/main/Documentation/avcc.md"], // based on https://github.com/smart-data-
models/dataModel.MachineLearning/blob/master/MLProcessing/README.md
 "seeAlso": ["https://git.marvel-project.eu/manolis.falelakis/marvel-
technical-integration/-/blob/main/Documentation/avcc.md"],
 "source": "https://marvel-platform.eu/files/shared/disco" // should be UNS
data, for now we can say this is the training data that was used to build this
model,
 "typeOfAlgorithm": "Deep Neural Network",
 "version": 0
 "data": {

https://git.marvel-project.eu/manolis.falelakis/marvel-technical-integration/-/issues/25
https://git.marvel-project.eu/manolis.falelakis/marvel-technical-integration/-/issues/25
https://git.marvel-project.eu/manolis.falelakis/marvel-technical-integration/-/issues/25

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 237 - 21 July, 2023

 "file_name_weights": "avcc-heatmap-uns-full_tensorflow-v0",
//<component_name>-<out_format>-<partner>-<type>-<version_number>
 "model_definition": "https://gitlab.au.dk/maleci/sl_vit/-
/blob/master/train_audio_visual_crowd_counting_backbone_stage1.ipynb", // uri to
gitlab, this is only the class which defines the model with all the imports
 "code": "https://gitlab.au.dk/maleci/sl_vit", // uri to gitlab
repo, all files that are needed to load/train the model
 "val_accuracy": 0.9621,
 "loss": 0.00123,
 "training_epochs": 100
 // can add any other information for training model
(hyperparameters, optimizer, etc.)
 }
 "type": "MLModel" // for SDM
}
Example 2 (AVCC model, TensorFlow, HeadCount, DISCO dataset for training)
{
 "acceptableDataSources": ["images"], // images => spectrograms for audio
and frames from the video sources
 "algorithm": "avcc_tf",
 "alternateName": "AVCC model (crowd counting output)", // redundant?
 "dataProvider": "UNS_F1",
 "dateCreated": "2022-05-29 08:25:29.988676",
 "dateModified": "2022-05-30 08:25:29.988676",
 "description": "Audio-Visual Crowd Counting model that outputs the people
count in the frame",
 "dockerImage": "registry.marvel-platform.eu/fedlclient_uns_f1:1", //
unclear, is this a docker image that built the model or the one that runs it,
because we can have one image that can run many models?
 "id": "avcc_headcount_uns_f1_v0", // not sure if version should be included
in id, or some uuid or timestamp or similar?
 "inputAttributes": ["audio_spectrogram", "video_frame"],
 "mlFramework": "tensorflow==2.6.0", // version should be very important,
check?
 "name": "avcc_headcount_uns_f1_v0", // redundant because of id?
 "outputAttributes": ["predictedCount"], // just took predictedCount from
here: https://git.marvel-project.eu/manolis.falelakis/marvel-technical-
integration/-/blob/main/Documentation/avcc.md
 "outputDataTypes": ["integer"],
 "owner": ["UNS1"], // put all partners involved in the use case? unclear,
maybe should leave blank for now
 "refMLProcessing": ["https://git.marvel-
project.eu/manolis.falelakis/marvel-technical-integration/-
/blob/main/Documentation/avcc.md"], // based on https://github.com/smart-data-
models/dataModel.MachineLearning/blob/master/MLProcessing/README.md
 "seeAlso": ["https://git.marvel-project.eu/manolis.falelakis/marvel-
technical-integration/-/blob/main/Documentation/avcc.md"],
 "source": "https://marvel-platform.eu/files/shared/disco" // should be UNS
data, for now we can say this is the training data that was used to build this
model,
 "typeOfAlgorithm": "Deep Neural Network",
 "version": 0
 "data": {
 "file_name_weights": "avcc-headcount-uns-full_tensorflow-v0",
//<component_name>-<out_format>-<partner>-<type>-<version_number>

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 238 - 21 July, 2023

 "model_definition": "https://gitlab.au.dk/maleci/sl_vit/-
/blob/master/train_audio_visual_crowd_counting_backbone_stage2.ipynb", // uri to
gitlab, this is only the class which defines the model with all the imports
 "code": "https://gitlab.au.dk/maleci/sl_vit", // uri to gitlab
repo, all files that are needed to load/train the model
 "val_accuracy": 0.9621,
 "loss": 0.00123,
 "training_epochs": 100
 // can add any other information for training model
(hyperparameters, optimizer, etc.)
 }
 "type": "MLModel" // for SDM
}
Example 3 (AVCC model, PyTorch, HeatMap, DISCO dataset for training)
{
 "acceptableDataSources": ["images"], // images => spectrograms for audio
and frames from the video sources
 "algorithm": "avcc_pytorch",
 "alternateName": "AVCC model (heatmap output)", // redundant?
 "dataProvider": "UNS_F1",
 "dateCreated": "2022-05-29 08:25:29.988676",
 "dateModified": "2022-05-30 08:25:29.988676",
 "description": "Audio-Visual Crowd Counting model that outputs a heatmap
(density map)",
 "dockerImage": "registry.marvel-platform.eu/fedlclient_uns_f1:1", //
unclear, is this a docker image that built the model or the one that runs it,
because we can have one image that can run many models?
 "id": "avcc_heatmap_uns_f1_v0", // not sure if version should be included
in id, or some uuid or timestamp or similar?
 "inputAttributes": ["audio_spectrogram", "video_frame"],
 "mlFramework": "pytorch==1.8.2",
 "name": "avcc_heatmap_uns_f1_v0", // redundant because of id?
 "outputAttributes": ["heatmap"], // just took heatmap from here:
https://git.marvel-project.eu/manolis.falelakis/marvel-technical-integration/-
/blob/main/Documentation/avcc.md
 "outputDataTypes": ["image"],
 "owner": ["UNS1"], // put all partners involved in the use case? unclear,
maybe should leave blank for now
 "refMLProcessing": ["https://git.marvel-
project.eu/manolis.falelakis/marvel-technical-integration/-
/blob/main/Documentation/avcc.md"], // based on https://github.com/smart-data-
models/dataModel.MachineLearning/blob/master/MLProcessing/README.md
 "seeAlso": ["https://git.marvel-project.eu/manolis.falelakis/marvel-
technical-integration/-/blob/main/Documentation/avcc.md"],
 "source": "https://marvel-platform.eu/files/shared/disco" // should be UNS
data, for now we can say this is the training data that was used to build this
model,
 "typeOfAlgorithm": "Deep Neural Network",
 "version": 0
 "data": {
 "file_name_weights": "avcc-heatmap-uns-full_pytorch-v0",
//<component_name>-<out_format>-<partner>-<type>-<version_number>
 "model_definition": "https://git.marvel-
project.eu/marvel/dynhp/dynhp-compressor/-/blob/master/models/l0_avcc.py", // uri
to gitlab, this is only the class which defines the model with all the imports

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 239 - 21 July, 2023

 "code: "https"://git.marvel-project.eu/marvel/dynhp/dynhp-
compressor", // uri to gitlab repo, all files that are needed to load/train the
model
 "val_accuracy": 0.9621,
 "loss": 0.00123,
 "training_epochs": 100
 // can add any other information for training model
(hyperparameters, optimizer, etc.)
 }
 "type": "MLModel" // for SDM
}

Example 4 (Repeated Example 1 with mandatory fields marked with "*")
{
 "acceptableDataSources*": ["images"], // images => spectrograms for audio
and frames from the video sources
 "algorithm*": "avcc_tf",
 "alternateName": "AVCC model (heatmap output)", // redundant?
 "dataProvider": "UNS_F1",
 "dateCreated*": "2022-05-29 08:25:29.988676",
 "dateModified*": "2022-05-30 08:25:29.988676",
 "description*": "Audio-Visual Crowd Counting model that outputs a heatmap
(density map)",
 "dockerImage": "registry.marvel-platform.eu/fedlclient_uns_f1:1", //
unclear, is this a docker image that built the model or the one that runs it,
because we can have one image that can run many models?
 "id*": "avcc_heatmap_uns_f1_v0", // not sure if version should be included
in id, or some uuid or timestamp or similar?
 "inputAttributes*": ["audio_spectrogram", "video_frame"],
 "mlFramework*": "tensorflow==2.6.0", // version should be very important,
check?
 "name*": "avcc_heatmap_uns_f1_v0", // redundant because of id?
 "outputAttributes*": ["heatmap"], // just took heatmap from here:
https://git.marvel-project.eu/manolis.falelakis/marvel-technical-integration/-
/blob/main/Documentation/avcc.md
 "outputDataTypes*": ["image"],
 "owner": ["UNS1"], // put all partners involved in the use case? unclear,
maybe should leave blank for now
 "refMLProcessing": ["https://git.marvel-
project.eu/manolis.falelakis/marvel-technical-integration/-
/blob/main/Documentation/avcc.md"], // based on https://github.com/smart-data-
models/dataModel.MachineLearning/blob/master/MLProcessing/README.md
 "seeAlso": ["https://git.marvel-project.eu/manolis.falelakis/marvel-
technical-integration/-/blob/main/Documentation/avcc.md"],
 "source*": "https://marvel-platform.eu/files/shared/disco" // should be UNS
data, for now we can say this is the training data that was used to build this
model,
 "typeOfAlgorithm*": "Deep Neural Network",
 "version*": 0
 "data*": {
 "file_name_weights*": "avcc-heatmap-uns-full_tensorflow-v0",
//<component_name>-<out_format>-<partner>-<type>-<version_number>
 "model_definition": "https://gitlab.au.dk/maleci/sl_vit/-
/blob/master/train_audio_visual_crowd_counting_backbone_stage1.ipynb", // uri to
gitlab, this is only the class which defines the model with all the imports
 "code": "https://gitlab.au.dk/maleci/sl_vit", // uri to gitlab
repo, all files that are needed to load/train the model

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 240 - 21 July, 2023

 "val_accuracy": 0.9621,
 "loss": 0.00123,
 "training_epochs": 100
 // can add any other information for training model
(hyperparameters, optimizer, etc.)
 }
 "type*": "MLModel" // for SDM
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 241 - 21 July, 2023

CATFlow-Vehicles Raw Inference Result Data Model

Entity: CATFlow-Vehicles-Output
Global description:

A Data Model for the CATFlow-Vehicles inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• location: Location dictionary from settings file. It contains the following attributes:

o name: The location name.

o id: URL friendly location name using lowercase and dashes as per REST

convention.

o uuid: The UUID of the location.

o lat: Latitude of camera location.

o lon: Longitude of camera location.

• camera: Contains details about the camera. It contains the following attributes:

o type: Hard-coded as “CAM”. Consumer knows this part of the message is about the

camera.

o group_id: The camera group. Useful for virtual cameras.

o cam_id: The name of the camera. Lowercase and dashes according to REST

convention.

o cam_name: The name of the camera. Lowercase and dashes according to REST

convention.

o cam_uuid: The UUID of the camera.

• vehicle: Contains details about the tracked vehicle. It contains the following attributes:

o type: The label assigned to the tracked vehicle. ENUM: [“car”, “bus”, “light-goods-

vehicle”, “heavy-goods-vehicle”, “bicycle”, “motorcycle”]

o name: A UI friendly name for the tracked vehicle (e.g: Light Goods Vehicle)

o entry: Details about the entry of a vehicle. It contains the following attributes:

▪ ts: Timestamp of entry

▪ carriageway_name: Name of carriageway where vehicle entered

▪ carriageway_uuid: UUID of the carriageway

▪ lane_name: Name of the lane the vehicle entered

▪ lane_uuid: The UUID of the lane

▪ lane_type: Discerns what to track (“General” vs “Bicycle”)

▪ lane_flow_uuid: UUID of the lane flow, which connects exits and entries

together

▪ uuid: The UUID of the entry line

▪ handle: The coordinates of the handle for the circle

o exit: Details about the exit of a vehicle.

▪ ts: Timestamp of entry

▪ carriageway_name: Name of carriageway where vehicle entered

▪ carriageway_uuid: UUID of the carriageway

▪ lane_name: Name of the lane the vehicle entered

▪ lane_uuid: The UUID of the lane

▪ lane_type: Discerns what to track (“General” vs “Bicycle”)

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 242 - 21 July, 2023

▪ lane_flow_uuid: UUID of the lane flow, which connects exits and entries

together

▪ uuid: The UUID of the entry line

▪ handle: The coordinates of the handle for the circle

o lane_flow_uuid: UUID of the lane flow, which connects entries and exits together

o distance: Format: Float - Range: >0 metres. Approximate distance between entry

and exit

o time_seconds: Format: Float - Range: 0 - 120 seconds. Time taken by vehicle to

enter and exit

o speed_kmh: Format: Float - Range: 0 - 200 km/h. Average speed of vehicle

o trajectory_points: Format: Object with x and y image coordinates - Range: points

between 0.0 and 1.0 since relative to image. List of points that visualise the path

the vehicle took. Points represented as JSONs whose entries are relative to image

size (e.g: {‘x’: 0.567, ‘y’: 0.356})

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be

"CATFlow-V_v" and the version number of the model. It has to be one of the models

defined in the registry.

• name: The name of this item. Typically in this case it could be the string "CATFlow-V-" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• detectedBy: The id of the device that hosts the AI component instance. ENUM: [GRN_E1,

GRN_E2, GRN_F1, GRN_F2, MT_F2]

• type: The type of the entity. In this case "MediaEvent"

• startTime: Timestamp when vehicle started getting tracked

• endTime: Timestamp when vehicle stopped getting tracked

• dateProcessed: The datetime when the object was detected and sent

Extra properties to be passed by the inference model to relate to the original data stream and

other MARVEL elements

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be

"CATFlow-Vehicles_v" and the version number of the model. It has to be one of the models

defined in the registry.

• name: The name of this item. Typically in this case it could be the string "CATFlow-Vehicle-"

plus a timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "MediaEvent"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 243 - 21 July, 2023

Required properties by MARVEL
• vehicle:type
• time_seconds
• distance
• speed_kmh
• trajectory_points
• id
• owner

• camera:cam_id NOTE: or another property that matches with the cameraId in MARVEL

• dateProcessed
• MLModelId

• entry:TS NOTE: Equivalent to the startTime in other models

• exitTS NOTE: Equivalent to the endTime in other models

• detectedBy

Example payload
{
 "location": {
 "name": "Mġarr - iż-Żebbiegh",
 "id": "mgarr-iz-zebbiegh",
 "uuid": "f630a888-6f40-4784-b377-e1c75f2b849b",
 "lat": "35.91877777777778",
 "lon": "14.376527777777778"
 },
 "camera": {
 "type": "CAM",
 "group_id": "[cam-grn-va-01]",
 "cam_id": "Cam-GRN-VA-01",
 "cam_name": "Cam-GRN-VA-01",
 "cam_uuid": "45a767a7-9bfc-4b13-a459-6432d30c6028"
 },
 "vehicle": {
 "type": "car",
 "name": "Car",
 "entry": {
 "ts": "2022-02-20T10:46:43.331Z",
 "carriageway_name": "Mġarr - Triq iż-Żebbiegh",
 "carriageway_uuid": "a31d0d53-be33-49db-8b24-ba81e3c84509",
 "lane_name": "Mġarr - Triq iż-Żebbiegh - Eastwards",
 "lane_uuid": "a6278135-95db-44f0-a91a-0694ad551999",
 "lane_type": "general",
 "uuid": "3a8fb5a2-f47c-45d4-872d-7acdf17cd96d"
 },
 "exit": {
 "ts": "2022-02-20T10:46:45.205Z",
 "carriageway_name": "Mġarr - Triq iż-Żebbiegh",
 "carriageway_uuid": "a31d0d53-be33-49db-8b24-ba81e3c84509",
 "lane_name": "Mġarr - Triq iż-Żebbiegh - Eastwards",
 "lane_uuid": "a6278135-95db-44f0-a91a-0694ad551999",
 "lane_type": "general",
 "uuid": "f26e2a40-f9c0-4d46-accf-501f4444fdd6"
 },
 "lane_flow_uuid": "65219a0f-c924-48ca-a007-e1c9a057dd14",
 "distance": 24,
 "time_seconds": 1.874,
 "speed_kmh": 46.10458911419423,

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 244 - 21 July, 2023

 "trajectory_points": [
 {
 "x": 0.6627604166666666,
 "y": 0.35509259259259257
 },
 {
 "x": 0.5627604166666667,
 "y": 0.43194444444444446
 },
 {
 "x": 0.46197916666666666,
 "y": 0.5143518518518518
 },
 {
 "x": 0.3625,
 "y": 0.59375
 },
 {
 "x": 0.2578125,
 "y": 0.6731481481481482
 },
 {
 "x": 0.1875,
 "y": 0.7261574074074074
 },
 {
 "x": 0.08645833333333333,
 "y": 0.8
 }
]
 },
 "id": "b8128b96-242e-441a-925b-3a9c2dd26eb5",
 "MLModelId": "CATFlow-V_v01",
 "name": "CATFlow-V2023-04-11T07:58:19.474Z",
 "owner": "GRN",
 "detectedBy": "GRN_E1",
 "type": "MediaEvent",
 "dateProcessed": "2023-04-11T07:58:19.474Z",
 "startTime": "2022-02-20T10:46:43.331Z",
 "endTime": "2022-02-20T10:46:45.205Z",
 "cameraId": "Cam-GRN-VA-01"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 245 - 21 July, 2023

CATFlow-Pedestrians Raw Inference Result Data Model

Entity: CATFlow-Pedestrians-Output
Global description:

A Data Model for the CATFlow-Pedestrians inference model outputs of the MARVEL
framework.

List of properties
List of properties defined as output by the inference model

• location: Location dictionary from settings file. It contains the following attributes:

o name: The location name.

o id: URL friendly location name using lowercase and dashes as per REST

convention.

o uuid: The UUID of the location.

o lat: Latitude of camera location.

o lon: Longitude of camera location.

• camera: Contains details about the camera. It contains the following attributes:

o type: Hard-coded as “CAM”. Consumer knows this part of the message is about the

camera.

o group_id: The camera group. Useful for virtual cameras.

o cam_id: The name of the camera. Lowercase and dashes according to REST

convention.

o cam_name: The name of the camera. Lowercase and dashes according to REST

convention.

o cam_uuid: The UUID of the camera.

• pedestrian: Contains details about the tracked pedestrian. It contains the following

attributes:

o start_ts: Timestamp when pedestrian started getting tracked

o end_ts: Timestamp when pedestrian stopped getting tracked

o time_seconds: Format: Float - Range: 0 - 120 seconds. Time taken by pedestrian to

enter and exit of the scene

o trajectory_points: Format: Object with x and y image coordinates - Range: points

between 0.0 and 1.0 since relative to image. List of points that visualise the path

the pedestrian took. Points represented as JSONs whose entries are relative to

image size (e.g: {‘x’: 0.567, ‘y’: 0.356})

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be

"CATFlow-P_v" and the version number of the model. It has to be one of the models

defined in the registry.

• name: The name of this item. Typically in this case it could be the string "CATFlow-P" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• detectedBy: The id of the device that hosts the AI component instance. ENUM: [GRN_E1,

GRN_E2, GRN_F1, GRN_F2, MT_F2]

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 246 - 21 July, 2023

• type: The type of the entity. In this case "MediaEvent"

• startTime: Timestamp when pedestrian started getting tracked

• endTime: Timestamp when pedestrian stopped getting tracked

• dateProcessed: The datetime when the object was detected and sent

Extra properties to be passed by the inference model to relate to the original data stream and
other MARVEL elements

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be

"CATFlow-P_v" and the version number of the model. It has to be one of the models

defined in the registry.

• name: The name of this item. Typically in this case it could be the string "CATFlow-P" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "MediaEvent"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• time_seconds
• itrajectory_points
• id
• owner

• camera:cam_id NOTE: or another property that matches with the cameraId in MARVEL

• dateProcessed
• MLModelId
• startTS
• endTS
• detectedBy

Example payload
{
 "location": {
 "name": "Mġarr - iż-Żebbiegh",
 "id": "mgarr-iz-zebbiegh",
 "uuid": "f630a888-6f40-4784-b377-e1c75f2b849b",
 "lat": "35.91877777777778",
 "lon": "14.376527777777778"
 },
 "camera": {
 "type": "CAM",
 "group_id": "[cam-grn-va-01]",
 "cam_id": "Cam-GRN-VA-01",
 "cam_name": "Cam-GRN-VA-01",
 "cam_uuid": "45a767a7-9bfc-4b13-a459-6432d30c6028"
 },
 "pedestrian": {
 "start_ts": "2022-02-20T10:42:21.683Z",
 "end_ts": "2022-02-20T10:42:26.547Z",

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 247 - 21 July, 2023

 "time_seconds": 4.864,
 "trajectory_points": [
 {
 "x": 0.08463541666666667,
 "y": 0.6601851851851852
 },
 {
 "x": 0.13385416666666666,
 "y": 0.6305555555555555
 }
]
 },
 "id": "15adec18-2335-49b1-ad42-a59ea8e0e84c",
 "MLModelId": "CATFlow-P_v01",
 "name": "CATFlow-P2023-04-11T07:38:56.536Z",
 "owner": "GRN",
 "detectedBy": "GRN_E1",
 "type": "MediaEvent",
 "dateProcessed": "2023-04-11T07:38:56.536Z",
 "startTime": "2022-02-20T10:42:21.683Z",
 "endTime": "2022-02-20T10:42:26.547Z",
 "cameraId": "Cam-GRN-VA-01"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 248 - 21 July, 2023

TAD Raw Inference Result Data Model

Entity: TAD-Output
Global description:

A Data Model for the TAD inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• entryTs: data type: float (seconds), entry timestamp pointing to the absolute time in the

video. Following the ISO8601 UTC format.

• exitTs: data type: float (seconds), exit timestamp pointing to the absolute time in the

video. Following the ISO8601 UTC format.

• speed: data type: string, value of the anomalous speed

• category: data type: string, a field containing the catefory of the anomaly detected. In the

case of TAD, it would be low or high speed. ENUM: [HighSpeed, LowSpeed].

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI standard (i.e. URN identifier). IDs for AV sources will be hard-coded

manually in a configuration file or automatically assigned by the AV registry component

and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "TAD-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "TAD-" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• thresholdBreach : Description of an observed threshold breach that contributed to

detection of an anomaly

• type: The type of the entity. In this case "Anomaly"

Extra properties to be passed by the inference model to relate to the original data stream and

other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI standard (i.e. URN identifier). IDs for AV sources will be hard-coded

manually in a configuration file or automatically assigned by the AV registry component

and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• catflowid: Unique identifier of the entity from the CATFlow output, such that entries can

be tracked to the CATFlow output. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 249 - 21 July, 2023

• trajectory_points: Format: Object with x and y image coordinates - Range: points

between 0.0 and 1.0 since relative to image. List of points that visualise the path the vehicle

took. Points represented as JSONs whose entries are relative to image size (e.g: {‘x’: 0.567,

‘y’: 0.356})

• MLModelId: The id of the MLModel that generated this event. In this case it will be "TAD-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "TAD-" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• thresholdBreach : Description of an observed threshold breach that contributed to

detection of an anomaly

• type: The type of the entity. In this case "Anomaly"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• startTime
• endTime
• speed
• category
• id
• type
• owner
• cameraId
• dateProcessed
• MLModelId
• detectedBy

Example payload
{
 "entry_Ts": "17-05-2022T04:59:14",
 "exit_Ts": "2022-05-17T06:59:11.067605+02:00",
 "speed": 96.75598677668181,
 "category": "HighSpeed",
 "cameraId": "greenroads-streams1-stream1",
 "dateProcessed": "17-05-2022T04:59:14",
 "description": "Speed anomaly detector from CATFlow output",
 "id": "TAD_Event-17-05-2022T04:59:14",
 "catflowid": "41dd90c8-b029-47bf-acff-1c5ec6ee6736",
 "trajectory_points": [
 {
 "x": 0.16458333333333333,
 "y": 0.687037037037037
 },
 {
 "x": 0.19583333333333333,
 "y": 0.6722222222222223
 },
 {
 "x": 0.22604166666666667,
 "y": 0.6472222222222223

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 250 - 21 July, 2023

 },
 {
 "x": 0.25729166666666664,
 "y": 0.6268518518518519
 },
 {
 "x": 0.28854166666666664,
 "y": 0.6101851851851852
 },
 {
 "x": 0.321875,
 "y": 0.5935185185185186
 },
 {
 "x": 0.3541666666666667,
 "y": 0.5805555555555556
 },
 {
 "x": 0.3854166666666667,
 "y": 0.5712962962962963
 },
 {
 "x": 0.42109375,
 "y": 0.5613425925925926
 },
 {
 "x": 0.45416666666666666,
 "y": 0.5652777777777778
 },
 {
 "x": 0.4864583333333333,
 "y": 0.5671296296296297
 },
 {
 "x": 0.5166666666666667,
 "y": 0.5745370370370371
 },
 {
 "x": 0.55,
 "y": 0.5856481481481481
 },
 {
 "x": 0.5854166666666667,
 "y": 0.600462962962963
 },
 {
 "x": 0.5916666666666667,
 "y": 0.6023148148148149
 }
]

 "MLModelId": "TAD-v01",
 "name": "TAD-17-05-2022T04:59:14",
 "owner": "GRN",
 "thresholdBreach": 81.33301819276505,
 "type": "Anomaly"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 251 - 21 July, 2023

ViAD / AVAD Raw Inference Result Data Model

Entity: ViAD/AVAD-Output
Global description:

A Data Model for the ViAD and AVAD inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• predictedAnomaly: data type: boolean, true or false, depending if the anomaly is detected

(NOTE - Is this necessary? If the anomaly is not detected, it would suffice not to send any

output).

• startTime: data type: float (seconds), absolute timestamp for the event start. Following

the ISO8601 UTC format.

• endTime: data type: float (seconds), absolute timestamp for the event end. Following the

ISO8601 UTC format.

Extra properties to be passed by the inference model to relate to the original data stream and

other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI standard (i.e. URN identifier). IDs for AV sources will be hard-coded

manually in a configuration file or automatically assigned by the AV registry component

and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "AVAD-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "AVAD-" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "Anomaly"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• predictedAnomaly
• id
• type
• owner
• cameraId
• dateProcessed
• MLModelId
• startTime
• endTime
• detectedBy

Example payload
{

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 252 - 21 July, 2023

 "predictedAnomaly": "true",
 "id": "AVAD_Event_2022-04-11T06:40:10.063Z",
 "type": "Anomaly",
 "cameraId": "Cam-GRN-VA-01",
 "dateProcessed": "2022-04-11T06:42:10.063Z",
 "name": "AVAD-2022-04-11T06:40:10.063Z",
 "MLModelId": "AVAD-v1",
 "startTime": "2022-04-11T06:42:10.063Z",
 "endTime": "2022-04-11T06:42:10.063Z",
 "detectedBy": "GRN_Fog_Server"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 253 - 21 July, 2023

VCC / AVCC Raw Inference Result Data Model

Entity: VCC/AVCC-Output
Global description:

A Data Model for the VCC and AVCC inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• predictedCount: data type: string, number of people counted by the AI model in the frame

• heatmap: data type: string, image encoded using Base64.

Extra properties to be passed by the inference model to relate to the original data stream and
other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI standard (i.e. URN identifier). IDs for AV sources will be hard-coded

manually in a configuration file or automatically assigned by the AV registry component

and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "AVCC-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "AVCC-" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "MediaEvent"

• timestamp: Entity creation timestamp. In MARVEL, this is the absolute timestamp pointing

to the exact time of the video stream to which this element is referring to. Optional. Fill-in if

the event is referring to specific time (either this field or starTime/endTime should be

popultated).

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

• secondCameraId: The id of a second Camera entity (audio or video) that produced a AV

stream. This is used only for some inference components that need to digest two streams

(audio / video) at the same time, and it is complementary and following the same

conventions as the cameraId (main stream). Used so far for VCC and AVCC, not mandatory.

Required properties by MARVEL
• predictedCount
• id
• type
• owner
• cameraId
• timestamp
• dateProcessed
• MLModelId
• detectedBy

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 254 - 21 July, 2023

Example payload
{
 "predictedCount": "14.0",
 "id": "AVCC_Event_2022-04-11T06:40:10.063Z",
 "type": "MediaEvent",
 "cameraId": "Cam-MGARR",
 "timestamp": "2022-04-11T06:35:20.065Z",
 "dateProcessed": "2022-04-11T06:40:10.063Z",
 "name": "AVCC-2022-04-11T06:40:10.063Z",
 "MLModelId": "AVCC-v1",
 "detectedBy": "GRN_Fog_Server",
 "heatmap":
"b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYFBgYG
BwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAJABAADASIAAhEBAxEB/8QAHwAAAQ
UBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhB
yJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZn
aGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19j
Z2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAg
ECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJ
ygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOk
paanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxE
APwD8KdT1DWtd1KTVdW3T3EpBkkePG7AA7AdgK0/DHiLW9AdzpthahpMAmXT45SOvTzFbHXtX0Y5BclRxni
kr9cpcc4zC1G6cNerunf74n5RLi+lOl7OWFXL25tPu5bGB8J/2uvjb8OVlk0EqDNtOY9NtV27d3/TA5+8fp
XfwftSeDdamFzrP7NU91KB8rnxxfLgHqflGDwMdK5+ivFzjOMqz3E/WMZgKcqlrOVoqTXROUYJtLom+/dme
B4seV831GFShzO8lRxFWkpPvJU3FNro2nbpuzvLH9p7wa0ieb+zZPuQgqx8cXvH/AI57elei6N+3b8Vtbsb
TRdO0UaZaW4YSRC5SfzMsrD5pIdwwQe/f2r5+orzsJUyDAYuGKw+X0o1Iaxlyxk43TT5XKLtdNrSxvi+M6m
Y0fY4729eH8tXFV6sL7puE5Si2nZq60aTWqR71omrteQR+a44z1Yf57VvWb24IDTx/XIr5nor3q/FtfE1nV
q07ye75vl2LXGttFh//ACb/AO1Pqq1kt1OPtEWO+WHP61o2ktptykycdBuFfIlFZvidv/l1/wCTf8AP9dn/
AM+P/Jv/ALU+xEu7Rcf6TH7/ADipF1i1t/uXiDP+0K+N6KqnxXUpS5oU7Pyl/wAAn/XV/wDPj/yb/wC1Pr7
VfEKvbbo7yNjn24rm9Wt766t3ie5R0cHGdvH5V8y0V0vjfHOPK07f43/kT/rjF3vh1/4F/wDanpeu28ltdT
WUzDj7uR2rhNd1bVdEnMuniEHBJL2yvx/wJT71n0VvQ47xeHk5Qg03/f8A/tTGpxZGqrSw6a6+9/8AanT+E
/jZ4yu0/s7UfsEyFiD5mkW5PUd/L46Cuv0fUQbiLUEWBHyMhUCjGMcAYryminU4+x9WPK4e725kvyjqOjxX
h8Ov3WFUfR2/9tPqbQPEAktUuUS23qBjdGrDp6HINdvpP7UXxR0W2bS9Lv8ASIoCFXauh2akYJIIIiBPLHr
nrXxFRWVbjeviKDo16KnF2dp8sldO6dpQa0evrqZ4jiXBYuSdbBxlba8r2vo/s9tPQ+s/FPirV"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 255 - 21 July, 2023

SED Raw Inference Result Data Model

Entity: SED-Output
Global description:

A Data Model for the SED inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• startTime: data type: float (seconds), absolute timestamp for the event start. Following

the ISO8601 UTC format.

• endTime: data type: float (seconds), absolute timestamp for the event end. Following the

ISO8601 UTC format.

• label: data type: string, value range defined by use case, for GRN4 ["motorcycle",

"bicycle", "car", "bus"].

Extra properties to be passed by the inference model to relate to the original data stream and

other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI-LD standard (i.e. URN identifier). IDs for AV sources will be hard-

coded manually in a configuration file or automatically assigned by the AV registry

component and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "SED-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "SED_" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "MediaEvent"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• startTime
• endTime
• label
• id
• type
• owner
• cameraId
• dateProcessed
• MLModelId
• detectedBy

Example payload
{
 "owner": "GRN4",

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 256 - 21 July, 2023

 "startTime": "2022-04-11T06:40:10.063Z",
 "endTime": "2022-04-11T06:40:10.063Z",
 "label": "bus",
 "id": "SEDEvent_2022-04-11T06:40:10.063Z",
 "type": "MediaEvent",
 "cameraId": "Cam-MGARR",
 "dateProcessed": "2022-04-11T06:40:10.063Z",
 "name": "SED-2022-04-11T06:40:10.063Z",
 "MLModelId": "SED-v1",
 "detectedBy": "GRN_Fog_Server"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 257 - 21 July, 2023

AT Raw Inference Result Data Model

Entity: AudioTagging-Output
Global description:

A Data Model for the AudioTagging inference model outputs of the MARVEL framework. In
case of Audio Tagging multiple classes can be active at given time, and onset-offset time are

not overlapping with other events. Event onsets and offset are on fixed grid. For audio
tagging, the output is again similar having multiple events active at the same time instance.

List of properties
List of properties defined as output by the inference model

• startTime: data type: float (seconds), absolute timestamp for the event start. Following

the ISO8601 UTC format.

• endTime: data type: float (seconds), absolute timestamp for the event end. Following the

ISO8601 UTC format.

• label: data type: string, value range defined by use case, ENUM to be defined, including for

instance "TrafficLight", "LowSpeed", "HighSpeed", "ModerateSpeed", "SparseTraffic", etc.

Extra properties to be passed by the inference model to relate to the original data stream and

other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI-LD standard (i.e. URN identifier). IDs for AV sources will be hard-

coded manually in a configuration file or automatically assigned by the AV registry

component and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "SED-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "SED_" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• timestamp: Reported timestamp pointing to the absolute time in the video where the

observation was made

• type: The type of the entity. In this case "MediaEvent"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• startTime
• endTime
• label
• id
• type
• owner
• cameraId
• detectedBy

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 258 - 21 July, 2023

• dateProcessed
• MLModelId

Example payload
{
 "owner": "GRN4",
 "startTime": "2022-04-11T06:35:20.065Z",
 "endTime":"2022-04-11T06:35:24.065Z",
 "label": "TrafficLights",
 "id": "ATEvent_2022-04-11T06:45:20.063Z",
 "type": "MediaEvent",
 "cameraId": "Cam-MGARR",
 "dateProcessed": "2022-04-11T06:45:20.063Z",
 "name": "AT-2022-04-11T06:40:10.063Z",
 "detectedBy": "GRN_Fog_Server",
 "MLModelId": "AT-v1"
}
{
 "owner": "GRN4",
 "startTime": "2022-04-11T06:35:20.065Z",
 "endTime":"2022-04-11T06:35:24.065Z",
 "label": "LowSpeed",
 "id": "ATEvent_2022-04-11T06:45:22.068Z",
 "type": "MediaEvent",
 "cameraId": "Cam-MGARR",
 "dateProcessed": "2022-04-11T06:45:22.068Z",
 "name": "AT-2022-04-11T06:40:10.063Z",
 "detectedBy": "GRN_Fog_Server",
 "MLModelId": "AT-v1"
}
{
 "owner": "GRN4",
 "startTime": "2022-04-11T06:35:24.065Z",
 "endTime":"2022-04-11T06:35:28.065Z",
 "label": "SparseTraffic",
 "id": "ATEvent_2022-04-11T06:45:23.057Z",
 "type": "MediaEvent",
 "cameraId": "Cam-MGARR",
 "dateProcessed": "2022-04-11T06:45:23.057Z",
 "name": "AT-2022-04-11T06:40:10.063Z",
 "detectedBy": "GRN_Fog_Server",
 "MLModelId": "AT-v1"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 259 - 21 July, 2023

AAC Raw Inference Result Data Model

Entity: AAC-Output
Global description:

A Data Model for the AAC inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• startTime: data type: float (seconds), absolute timestamp for the event start. Following

the ISO8601 UTC format.

• endTime: data type: float (seconds), absolute timestamp for the event end. Following the

ISO8601 UTC format.

• label: data type: string, text description for the given segment, multiple words, free form.

Extra properties to be passed by the inference model to relate to the original data stream and
other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI-LD standard (i.e. URN identifier). IDs for AV sources will be hard-

coded manually in a configuration file or automatically assigned by the AV registry

component and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "SED-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "SED_" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "MediaEvent"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• startTime
• endTime
• label
• id
• type
• owner
• cameraId
• dateProcessed
• MLModelId
• detectedBy

Example payload
{
 "owner": "GRN4",
 "startTime": 2022-04-11T06:40:10.063Z,

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 260 - 21 July, 2023

 "endTime":2022-04-11T06:40:14.063Z,
 "caption": "A bus passes by while it is raining.",
 "id": "AACEvent_2022-04-11T06:40:10.063Z",
 "type": "MediaEvent",
 "cameraId": "Cam-MGARR",
 "dateProcessed": "2022-04-11T06:40:10.063Z",
 "name": "AAC-2022-04-11T06:40:10.063Z",
 "MLModelId": "AAC-v1",
 "detectedBy": "GRN_Fog_Server"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 261 - 21 July, 2023

SELD Raw Inference Result Data Model

Entity: SELD-Output
Global description:

A Data Model for the SELD inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• startTime: data type: float (seconds), absolute timestamp for the event start. Following

the ISO8601 UTC format.

• endTime: data type: float (seconds), absolute timestamp for the event end. Following the

ISO8601 UTC format.

• label: data type: string, value range defined by use case, for GRN4 ["motorcycle",

"bicycle", "car", "bus"].

• azimuthAngle: data type: int (-180 - +180 degrees), azimuth of the sound source in relation

of the mic array orientation. Zero value at the front. Azimuth angle is increasing counter-

clockwise.

• elevationAngle: data type: int (-90 - +90 degrees), elevation of the sound source in relation

of the mic array orientation. Zero value at the level of mic array.

• azimuthVector: data type: list of 2 array with 2 floats each, vector showing direction in GPS

coordinates, format lat1, lon1], [lat2, lon2, (lat1,lon1) are the GPS coordinates of the mic

array.

Extra properties to be passed by the inference model to relate to the original data stream and
other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI-LD standard (i.e. URN identifier). IDs for AV sources will be hard-

coded manually in a configuration file or automatically assigned by the AV registry

component and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "SED-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "SED_" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "MediaEvent"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• startTime
• endTime
• label
• id

https://file+.vscode-resource.vscode-cdn.net/c:/GIT/marvel-technical-integration/Documentation/DataModels/RawInferenceResults/R2/lat1,_lon1%5d,_%5blat2,_lon2.md

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 262 - 21 July, 2023

• type
• owner
• cameraId
• dateProcessed
• MLModelId
• detectedBy

Example payload
{
 "owner": "GRN4",
 "startTime": "2022-04-11T06:40:10.063Z",
 "endTime": "2022-04-11T06:40:10.063Z",
 "label": "bus",
 "azimuthAngle": 45,
 "elevationAngle": 0,
 "azimuthVector": "[40.741895, -73.989308],[40.741388868048034, -
73.98913840211132]",
 "id": "SELDEvent_2022-04-11T06:40:10.063Z",
 "type": "MediaEvent",
 "cameraId": "Cam-MGARR",
 "dateProcessed": "2022-04-11T06:40:10.063Z",
 "name": "SELD-2022-04-11T06:40:10.063Z",
 "MLModelId": "SELD-v1",
 "detectedBy": "GRN_Fog_Server"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 263 - 21 July, 2023

VAD Raw Inference Result Data Model

Entity: VAD-Output
Global description:

A Data Model for the VAD inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• startTime: The start time of the event. Following the ISO8601 UTC format.

• endTime: The end time of the event. Following the ISO8601 UTC format.

• category: data type: string, a field containing the catefory of the acoustic event detected.

ENUM: [speech, music] (currently only 2 values; new values could be added in future

versions potentially).

Extra properties to be passed by the inference model to relate to the original data stream and
other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI standard (i.e. URN identifier). IDs for AV sources will be hard-coded

manually in a configuration file or automatically assigned by the AV registry component

and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "AVAD-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "AVAD-" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "MediaEvent"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• id
• type
• owner
• cameraId
• dateProcessed
• MLModelId
• startTime
• endTime
• detectedBy

Example payload
{
 "id": "AVAD_Event_2022-04-11T06:40:10.063Z",
 "type": "MediaEvent",
 "cameraId": "Cam-MGARR",

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 264 - 21 July, 2023

 "dateProcessed": "2022-04-11T06:42:10.063Z",
 "name": "VAD-2022-04-11T06:40:10.063Z",
 "MLModelId": "AVAD-v1",
 "category": "speech",
 "startTime": "2022-04-01T10:07:59.618+01:58",
 "endTime": "2022-04-01T10:08:01.618+01:00",
 "detectedBy": "GRN_Fog_Server"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 265 - 21 July, 2023

YOLO-SED Raw Inference Result Data Model

Entity: YOLO-SED-Output
Global description:

A Data Model for the YOLO-SED inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• category: data type: string, 'traffic'.

• subCategory: data type: string, a field containing the category of the anomaly detected.

ENUM: ['pedestrian', 'bicycle'].

• startTime: data type: float (seconds), absolute timestamp for the event start. Following

the ISO8601 UTC format.

• endTime: data type: float (seconds), absolute timestamp for the event end. Following the

ISO8601 UTC format.

Extra properties to be passed by the inference model to relate to the original data stream and

other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI standard (i.e. URN identifier). IDs for AV sources will be hard-coded

manually in a configuration file or automatically assigned by the AV registry component

and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "AVAD-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "AVAD-" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "Alert"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• category
• subCategory
• id
• type
• owner
• cameraId
• dateProcessed
• MLModelId
• timestamp
• detectedBy

Example payload
{

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 266 - 21 July, 2023

 "id": "YOLOSED_2022-04-11T06:40:10.063Z",
 "type": "Alert",
 "cameraId": "Cam-GRN-VA-01",
 "dateProcessed": "2022-04-11T06:42:10.063Z",
 "name": "YOLOSED-2022-04-11T06:40:10.063Z",
 "MLModelId": "YOLOSED-v1",
 "category": "traffic",
 "subCategory": "pedestrianOnRoad",
 "startTime": "2022-04-11T06:42:10.063Z",
 "endTime": "2022-04-11T06:42:10.063Z",
 "detectedBy": "GRN_EDGE_JETSON"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 267 - 21 July, 2023

RBAD Raw Inference Result Data Model

Entity: RBAD-Output
Global description:

A Data Model for the RBAD inference model outputs of the MARVEL framework.

List of properties
List of properties defined as output by the inference model

• predictedAnomaly: data type: boolean, true or false, depending if the anomaly is detected

(NOTE - Is this necessary? If the anomaly is not detected, it would suffice not to send any

output).

• anomalousProperty: data type: string, a field containing the category of the anomaly

detected.

ENUM: ['bus_not_on_schedule', 'bicycle_not_on_path', 'large_veh_rush_hour',

'jaywalking'].

• startTime: data type: float (seconds), absolute timestamp for the event start. Following

the ISO8601 UTC format.

• endTime: data type: float (seconds), absolute timestamp for the event end. Following the

ISO8601 UTC format.

Extra properties to be passed by the inference model to relate to the original data stream and
other MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI standard (i.e. URN identifier). IDs for AV sources will be hard-coded

manually in a configuration file or automatically assigned by the AV registry component

and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• description: A description of this item

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be "AVAD-"

and the version number of the model. It has to be one of the models defined in the registry.

• name: The name of this item. Typically in this case it could be the string "AVAD-" plus a

timestamp of the moment of the execution

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [GRN3, GRN4, MT1, MT3, UNS1].

• type: The type of the entity. In this case "Anomaly"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

Required properties by MARVEL
• predictedAnomaly
• id
• type
• owner
• anomalousProperty
• cameraId
• dateProcessed
• MLModelId

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 268 - 21 July, 2023

• startTime
• endTime
• detectedBy

Example payloads
{
 "predictedAnomaly": "true",
 "anomalousProperty": "jaywalking",
 "id": "RBAD_Event_2022-04-11T06:40:10.063Z",
 "type": "Anomaly",
 "cameraId": "Cam-GRN-VA-01",
 "dateProcessed": "2022-04-11T06:42:10.063Z",
 "name": "RBAD-2022-04-11T06:40:10.063Z",
 "MLModelId": "RBAD-v1",
 "startTime": 2022-04-11T06:40:10.063Z,
 "endTime":2022-04-11T06:40:14.063Z,
 "detectedBy": "GRN_Fog_Server"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 269 - 21 July, 2023

GPURegex Raw Inference Result Data Model

Entity: GPURegex-Output
Global description:

A Data Model for the GPURegex output of the MARVEL framework.

List of properties
List of properties defined as output

• startTime: data type: float (seconds), absolute timestamp for the event start. Following

the ISO8601 UTC format.

• endTime: data type: float (seconds), absolute timestamp for the event end. Following the

ISO8601 UTC format.

Extra properties to be passed by the GPURegex to relate to the original data stream and other
MARVEL elements

• cameraId: Unique identifier of the camera from where the video was taken. Formatted

according to the NGSI-LD standard (i.e. URN identifier). IDs for AV sources will be hard-

coded manually in a configuration file or automatically assigned by the AV registry

component and will include a 12-digit hexadecimal identifier.

• dateProcessed: Timestamp of the processing of the entity by the inference model.

• id: Unique identifier of the entity. Formatted according to the NGSI standard. IDs for the

especific media event can be automatically assigned by component.

• MLModelId: The id of the MLModel that generated this event. In this case it will be

"GPUREGEX-" and the version number of the model. It has to be one of the models defined

in the registry.

• owner: A field containing a JSON encoded sequence of characters referencing the unique

Ids of the owner(s). In the case of MARVEL, we can use the pilot name and use case here.

ENUM: [MT2, MT4].

• type: The type of the entity. In this case "Alert"

• detectedBy: Link to the device providing where the alert is detected (the link to the device

id of the infrastructure in MARVEL)

• alertSource: Source of the alert ("GPURegex_MT_v01")

• category: Category of the Alert.

• subCategory: Describe the sub category of alert.

Required properties by MARVEL
• startTime
• endTime
• id
• type
• owner
• cameraId
• dateProcessed
• MLModelId
• detectedBy

Example payload
{
 "owner": "MT2",
 "startTime": "2022-04-11T06:40:10.063Z",
 "endTime": "2022-04-11T06:40:10.063Z",

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 270 - 21 July, 2023

 "id": "GPUREGEX_2022-04-11T06:40:10.063Z",
 "type": "Alert",
 "cameraId": "Cam-MGARR",
 "dateProcessed": "2022-04-11T06:40:10.063Z",
 "MLModelId": "GPURegex_MT_v01",
 "detectedBy": "MTFOG_2",
 "alertSource": "GPURegex_MT_v01",
 "category": "traffic",
 "subCategory": "carAccident"
}

MARVEL D5.6 H2020-ICT-2018-20/№ 957337

MARVEL - 271 - 21 July, 2023

Inference Result Verification Message Data Model

Inference Result Verification Message
These messages will be published from SmartViz to a Kafka topic in the DFB

("InferenceVerification") when a user reviews a specific inference result in SmartViz and provides
feedback, i.e. determines if the result is verified or not. The DFB will obtain these messages and

update the respective inference result entries stored in the DFB ElasticSearch accordingly. The
DataCorpus will also subscribe to this topic to obtain these messages and store them so that they
can be used for labeling in the context of future AI training purposes.

List of properties
• index: The index of ElasticSearch, under which the inference result has been stored.

• inferenceResultId: The id of the inference result about which the user has provided

verification. The inference result type can be "MediaEvent", "Alert" or "Anomaly"

• reviewed: (boolean) Indicates whether the inference result has been reviewed by the user.

• verified: (boolean) Indicates whether the inference result is verified by the user or not.

• verificationDate: Date and time of verification of the inference result.

Example payload
{
 "index": "tad",
 "inferenceResultId": "mediaEvent_1509702324600",
 "reviewed": true,
 "verified": true,
 "verificationDate": "2022-05-05T10:45:00Z"
}

	The MARVEL Consortium
	Document Revisions & Quality Assurance
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose and scope of this document
	1.2 Intended readership
	1.3 Contribution to WP5 and project objectives
	1.4 Relation to other WPs and deliverables
	1.5 Structure of the document

	2 R2 Overview and Use Cases
	2.1 R2 Overview and Objectives
	2.2 R2 Use cases
	2.2.1 GRN Use Case 1 – Safer roads
	2.2.2 GRN Use Case 2 – Road user behaviour
	2.2.3 GRN Use Case 3 – Traffic Conditions and Anomalous Events
	2.2.4 GRN Use Case 4 – Junction Traffic Trajectory Collection
	2.2.5 MT Use Case 1 – Monitoring of crowded areas
	2.2.6 MT Use Case 2 – Detecting criminal/anti-social behaviours
	2.2.7 MT Use Case 3 – Monitoring of parking places
	2.2.8 MT Use Case 4 – Analysis of a specific area
	2.2.9 UNS Use Case 1 – Drone experiment
	2.2.10 UNS Use Case 2 – Localising audio events in crowds

	3 R2 Integration Plan and Methodology
	3.1 Technical Project Organisation
	3.1.1 Time Plan
	3.1.2 Recurring Technical Integration Meetings
	3.1.3 Integration Board

	3.2 R2 Design approach
	3.3 Infrastructure sizing
	3.4 Source version control system
	3.5 Issue Tracking system
	3.6 Specification documentation
	3.7 Component deployment (CI/CD)
	3.8 Quality Assurance
	3.8.1 Unit Testing
	3.8.2 Partial Integration Testing
	3.8.3 End-to-End Integration Testing
	3.8.4 Technical Validation Testing

	4 Subsystems and Components integrated in R2
	4.1 Sensing and perception Subsystem
	4.1.1 MEMS microphone IM69D130
	4.1.1.1 Overview
	4.1.1.2 Internal Operation & Technologies
	4.1.1.3 Role in R2 and associated use cases

	4.1.2 AVDrone
	4.1.2.1 Overview
	4.1.2.2 Internal Operation & Technologies
	4.1.2.3 Role in R2 and associated use cases

	4.1.3 AV Registry
	4.1.3.1 Overview
	4.1.3.2 Internal Operation & Technologies
	4.1.3.3 Role in R2 and associated use cases

	4.2 Security, Privacy and data protection Subsystem
	4.2.1 VideoAnony
	4.2.1.1 Overview
	4.2.1.2 Internal Operation & Technologies
	4.2.1.3 Role in R2 and associated use cases

	4.2.2 AudioAnony
	4.2.2.1 Overview
	4.2.2.2 Internal Operation & Technologies
	4.2.2.3 Role in R2 and associated use cases

	4.2.3 Voice Activity Detection (VAD) – devAIce
	4.2.3.1 Overview
	4.2.3.2 Internal Operation & Technologies
	4.2.3.3 Role in R2 and associated use cases

	4.2.4 EdgeSec VPN
	4.2.4.1 Overview
	4.2.4.2 Internal Operation & Technologies
	4.2.4.3 Role in R2 and associated use cases

	4.2.5 EdgeSec Trusted Execution Environment (TEE)
	4.2.5.1 Overview
	4.2.5.2 Internal Operation & Technologies
	4.2.5.3 Role in R2 and associated use cases

	4.3 Data Management and distribution Subsystem
	4.3.1 DatAna
	4.3.1.1 Overview
	4.3.1.2 Internal Operation & Technologies
	4.3.1.3 Role in R2 and associated use cases

	4.3.2 Data Fusion Bus
	4.3.2.1 Overview
	4.3.2.2 Internal Operation & Technologies
	4.3.2.3 Role in R2 and associated use cases

	4.3.3 StreamHandler
	4.3.3.1 Overview
	4.3.3.2 Internal Operation & Technologies
	4.3.3.3 Role in R2 and associated use cases

	4.3.4 Hierarchical Data Distribution (HDD)
	4.3.4.1 Overview
	4.3.4.2 Internal Operation & Technologies
	4.3.4.3 Role in R2 and associated use cases

	4.4 Audio, visual and multimodal AI Subsystem
	4.4.1 CATFlow
	4.4.1.1 Overview
	4.4.1.2 Internal Operation & Technologies
	4.4.1.3 Role in R2 and associated use cases

	4.4.2 Text Anomaly Detection (TAD)
	4.4.2.1 Overview
	4.4.2.2 Internal Operation & Technologies
	4.4.2.3 Role in R2 and associated use cases

	4.4.3 Visual Anomaly Detection (ViAD)
	4.4.3.1 Overview
	4.4.3.2 Internal Operation & Technologies
	4.4.3.3 Role in R2 and associated use cases

	4.4.4 Audio-Visual Anomaly Detection (AVAD)
	4.4.4.1 Overview
	4.4.4.2 Internal Operation & Technologies
	4.4.4.3 Role in R2 and associated use cases

	4.4.5 Visual Crowd Counting (VCC)
	4.4.5.1 Overview
	4.4.5.2 Internal Operation & Technologies
	4.4.5.3 Role in R2 and associated use cases

	4.4.6 Audio-Visual Crowd Counting (AVCC)
	4.4.6.1 Overview
	4.4.6.2 Internal Operation & Technologies
	4.4.6.3 Role in R2 and associated use cases

	4.4.7 Sound Event Detection (SED)
	4.4.7.1 Overview
	4.4.7.2 Internal Operation & Technologies
	4.4.7.3 Role in R2 and associated use cases

	4.4.8 Audio Tagging (AT)
	4.4.8.1 Overview
	4.4.8.2 Internal Operation & Technologies
	4.4.8.3 Role in R2 and associated use cases

	4.4.9 Automated audio captioning (AAC)
	4.4.9.1 Overview
	4.4.9.2 Internal Operation & Technologies
	4.4.9.3 Role in R2 and associated use cases

	4.4.10 Sound event localisation and detection (SELD)
	4.4.10.1 Overview
	4.4.10.2 Internal Operation & Technologies
	4.4.10.3 Role in R2 and associated use cases

	4.4.11 YOLO-SED
	4.4.11.1 Overview
	4.4.11.2 Internal Operation & Technologies
	4.4.11.3 Role in R2 and associated use cases

	4.4.12 Rule-Based Anomaly Detection (RBAD)
	4.4.12.1 Overview
	4.4.12.2 Internal Operation & Technologies
	4.4.12.3 Role in R2 and associated use cases

	4.5 Optimised E2F2C processing and deployment Subsystem
	4.5.1 GPURegex
	4.5.1.1 Overview
	4.5.1.2 Internal Operation & Technologies
	4.5.1.3 Role in R2 and associated use cases

	4.5.2 DynHP
	4.5.2.1 Overview
	4.5.2.2 Internal Operation & Technologies
	4.5.2.3 Role in R2 and associated use cases

	4.5.3 FedL
	4.5.3.1 Overview
	4.5.3.2 Internal Operation & Technologies
	4.5.3.3 Role in R2 and associated use cases

	4.5.4 MARVDash
	4.5.4.1 Overview
	4.5.4.2 Internal Operation & Technologies
	4.5.4.3 Role in R2 and associated use cases

	4.6 E2F2C Infrastructure
	4.6.1 HPC infrastructure
	4.6.1.1 Overview
	4.6.1.2 Internal Operation & Technologies
	4.6.1.3 Role in R2 and associated use cases

	4.6.2 Management and orchestration of HPC resources
	4.6.2.1 Overview
	4.6.2.2 Internal Operation & Technologies
	4.6.2.3 Role in R2 and associated use cases

	4.7 User interactions and decision-making toolkit
	4.7.1 SmartViz
	4.7.1.1 Overview
	4.7.1.2 Internal Operation & Technologies
	4.7.1.3 Role in R2 and associated use cases

	4.7.2 MARVEL Data Corpus-as-a-Service
	4.7.2.1 Overview
	4.7.2.2 Internal Operation & Technologies
	4.7.2.3 Role in R2 and associated use cases

	5 R2 Design and Specifications
	5.1 ‘AI Inference pipeline’ reference architecture
	5.2 I/O Interfaces - APIs
	5.2.1 Onboard AV access
	5.2.2 AV Registry access
	5.2.3 AV streaming
	5.2.4 DatAna: AI inference result publication
	5.2.5 DatAna: AI result consumption
	5.2.6 DatAna Inter-Agent Communication
	5.2.7 DatAna - DFB
	5.2.8 DFB - SmartViz
	5.2.9 StreamHandler - DFB
	5.2.10 StreamHandler - SmartViz
	5.2.11 StreamHandler MinIO AV Data access
	5.2.12 DFB - HDD
	5.2.13 AI Model Repository access
	5.2.14 DataCorpus: AI training
	5.2.15 FedL Server – FedL Client
	5.2.16 DFB - DataCorpus

	5.3 Data Models
	5.3.1 AV Source Data Model (Camera)
	5.3.2 SDM-compliant AI Inference Result Data Models (MediaEvent, Alert, Anomaly)
	5.3.2.1 MediaEvent Data Model
	5.3.2.2 Alert Data Model
	5.3.2.3 Anomaly Data Model

	5.3.3 Raw AI Inference Result Data Models
	5.3.3.1 CATFLow output Data Model
	5.3.3.2 TAD output Data Model
	5.3.3.3 ViAD / AVAD output Data Model
	5.3.3.4 VCC / AVCC output Data Model
	5.3.3.5 SED output Data Model
	5.3.3.6 AT output Data Model
	5.3.3.7 AAC output Data Model
	5.3.3.8 SELD output Data Model
	5.3.3.9 YOLO-SED output Data Model
	5.3.3.10 RBAD output Data Model
	5.3.3.11 VAD output Data Model

	5.3.4 MLModel Data Model
	5.3.5 Inference Verification Message Data Model

	5.4 R2 Architecture instantiation per use case
	5.4.1 GRN1 – Safer roads: AI Inference runtime and deployment view
	5.4.2 GRN2 – Road user behaviour: AI Inference runtime and deployment view
	5.4.3 GRN3 – Traffic Anomalous Events: AI Inference runtime and deployment view
	5.4.4 GRN4 – Junction Traffic Trajectory: AI Inference runtime and deployment view
	5.4.5 MT1 – Monitoring of crowded areas: AI Inference runtime and deployment view
	5.4.6 MT2 – Detecting criminal/anti-social behaviours: AI Inference runtime and deployment view
	5.4.7 MT3 – Monitoring of parking places: AI Inference runtime and deployment view
	5.4.8 MT4 – Analysis of a specific area: AI Inference runtime and deployment view
	5.4.9 UNS1 – Drone Experiment: AI Inference runtime and deployment view
	5.4.10 UNS2 – Localising audio events in crowds: AI Inference runtime and deployment view
	5.4.11 AI Training runtime and deployment view
	5.4.12 Data Corpus Data Aggregation runtime and deployment view

	5.5 UI/UX Design
	5.5.1 Weather Information
	5.5.2 Sound Localisation Map
	5.5.3 Alerts
	5.5.4 Comparison
	5.5.5 Download Data (JSON)
	5.5.6 Download PDF Report
	5.5.7 Word Cloud
	5.5.8 Audio Player
	5.5.9 Police Intervention
	5.5.10 Service Management

	5.6 Infrastructure
	5.6.1 GRN Infrastructure
	5.6.1.1 GRN Edge Tier
	5.6.1.2 GRN Fog Tier

	5.6.2 MT/FBK Infrastructure
	5.6.2.1 MT Edge Tier
	5.6.2.2 MT Fog Tier (FBK)

	5.6.3 UNS Infrastructure
	5.6.3.1 UNS Edge Tier
	5.6.3.2 UNS Fog Tier

	5.6.4 PSNC Cloud Infrastructure

	6 Main challenges, issues encountered and resolution
	7 R2 main achievements and contribution to MARVEL goals
	7.1 R2 main achievements
	7.2 Contribution of R2 to MARVEL goals

	8 Future work
	9 Conclusions
	Appendix A: R2 Technical Validation Test Report
	Appendix B: R2 Data Model specifications
	“Camera” SDM-compliant Data Model for AV Sources
	“MediaEvent” SDM-compliant Inference Result Data Model
	“Alert” SDM-compliant Inference Result Data Model
	“Anomaly” SDM-compliant Inference Result Data Model
	“MLModel” SDM-compliant Data Model for AI model descriptors
	CATFlow-Vehicles Raw Inference Result Data Model
	CATFlow-Pedestrians Raw Inference Result Data Model
	TAD Raw Inference Result Data Model
	ViAD / AVAD Raw Inference Result Data Model
	VCC / AVCC Raw Inference Result Data Model
	SED Raw Inference Result Data Model
	AT Raw Inference Result Data Model
	AAC Raw Inference Result Data Model
	SELD Raw Inference Result Data Model
	VAD Raw Inference Result Data Model
	YOLO-SED Raw Inference Result Data Model
	RBAD Raw Inference Result Data Model
	GPURegex Raw Inference Result Data Model
	Inference Result Verification Message Data Model

