

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Numerical model for the thermal energy storage tank with
integrated steam generator (TES-SG) based on the OpenFOAM

software package

A.Charalampidoua,b, P.Daogloua,b, J.Hertzerc, E.V.Votyakovd*

aGreek Research and Technology Network, Athens, Greece

bScientific Computing Center, Aristotle University of Thessaloniki
Thessaloniki 54124, Greece

cHLRS, Nobelstr. 19, D-70569 Stuttgart, Germany
dThe Cyprus Institute, 20 Konstantinou Kavafi Street

2121 Aglantzia, Nicosia, Cyprus

Abstract

The project objective has been to develop and justify the OpenFOAM model for the simulation of a TES tank. In
the course of the project we have obtained scalability results, which are presented in this paper. Scalability tests
have been performed on HLRS Hermit HPC system using various combinations of decomposition methods, cell
capacities and number of physical cpu cores.

1. Introduction

Within this project, a realistic 3D model which solves jointly Navier-Stokes and heat conduction equations
including buoyancy effect with Boussinesq approximation has been developed based on the OpenFOAM CFD
toolbox.

The CFD simulations have been carried out using the open source toolbox OpenFOAM (Open Field Operation
and Manipulation) version 2.1.1. The OpenFOAM (Open Field Operation and Manipulation) CFD Toolbox [1] is
a free, open source CFD software package, released under the GNU General Public Licence. It is developed by
OpenCFD Ltd and distributed by OpenFOAM Foundation. OpenFOAM has an extensive range of features to
solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to fluid
dynamics and electromagnetics[2]. It is written in C++ and apart from being a ready to use CFD software, it can
be also thought as a framework, which allows programmers to build their own code, as it provides them with the
abstraction sufficient to think of a problem in terms of the underlying mathematical model [3].

Furthermore, OpenFOAM has parallel computing capabilities, which provide the opportunity to simulate
problems of greater complexity, such as the one considered in this project, more quickly and with greater
accuracy. The method of parallel computing used by OpenFOAM uses the public domain OpenMPI
implementation of the standard Message Passing Interface (MPI). Parallelisation is robust and integrated into
OpenFOAM at a low level, so in general, new applications are able to run in parallel by default, without the need
of parallel specific coding.

Performance results in this study have been obtained from benchmark tests performed on HLRS Hermit [4]
supercomputer. The initial motivation for this study on Hermit (CRAY) machine has been scalability results that
were obtained on another CRAY machine beforehand for the OpenFOAM tutorial case [5]. Similar scalability
has also been observed in this study.

2

2. Description of the model

The 3D numerical model that was designed and optimized with the usage of the OpenFOAM CFD toolbox is a
thermal energy storage (TES) tank with integrated steam generator (SG). The model includes heat and mass
transfer partial differential equations solved by means of the OpenFOAM. Specifically, the finite volume method
(FVM) is used.

Figure 1: Thermal Energy Storage tank with integrated
inlet pipe.

TES is a technology to store thermal energy in a reservoir for
later use. The numerical model will be a part of the OPTS
project (Optimization of Thermal Storage with integrated steam
generator), which aims at developing a new TES system based
on single tank configuration using stratifying Molten Salts (MS,
Sodium/Potassium Nitrates 60/40 w/w) as the heat storage
medium at temperatures reaching 550 °C. The TES tank is
integrated with a Steam Generator (SG) to provide efficient,
reliable and economic energy storage for the next generation of
trough and tower plants.

3. Description of construction and solution steps

The use of the OpenFOAM utilities for the construction and solution of the model is briefly described here. The
functions that have been used (in the order that they have been executed) are the following ones:

a. blockMesh: BlockMesh is a mesh generation utility. The utility reads the dictionary file blockMeshDict,
generates the mesh and writes out the mesh data to points and faces, cells and boundary files [6].

b. decomposePar: In order to run OpenFOAM in parallel on distributed processors, the mesh is decomposed
using the OpenFOAM decomposePar utility. DecomposePar decomposes the domain according to
decomposeParDict dictionary file which is present in the system subdirectory of the case, assigning one domain
per process. The numberOfSubdomains variable specifies the number of processors used to solve the case [7].
The decomposition method applied is also declared within decomposeParDict file. Decomposition methods that
have been tested in this study are manual, scotch and simple.

c. buoyantBoussinesqPimpleFoam: OpenFOAM buoyantBoussinesqPimpleFoam solver [8] is a transient
solver for buoyant, turbulent flow of incompressible fluids. The buoyantBoussinesqPimpleFoam solver uses the
Boussinesq approximation:

1

where:

= the effective (driving) kinematic density beta = thermal expansion coefficient [1⁄]
 = temperature []

 = reference temperature []

Valid when:

 1

The solver step has been executed in parallel on Hermit on the allocated nodes for each run using the aprun
application launcher.

d. reconstructPar: The reconstructPar utility is finally used to reconstruct the case that has been run in parallel
[9]. All the sets of time directories from each processor directory are merged into a single directory.

3

4. Mesh construction and decomposition

In this section we describe the 3D structured mesh for the realistic system that has been developed.

The mesh consists of macroscopic hexahedral blocks of different shapes and geometric sizes. In OpenFOAM
notation, hexahedra are polyhedral blocks with six faces, which might be curved and they are defined by eight
vertices. The blocks are subdivided in cells by the OpenFOAM blockMesh utility. The amount of cells in each
block is proportional to , where is a characteristic number (number of partitions of the typical edge in the
system).

Figures 2,3: Mesh N=16 for the system studied

Hexahedra are described in a so called blockMesh dictionary file. This is an ASCII file formatted according to
blockMesh specifications. It is important that the generation and partition of the hexahedra in cells are proceeded
in the order given by the order of lines in the blockMesh dictionary file, that is, block 1, block 2, .. ,etc. So, in the
trivial case block 1 can be assigned to core 1, block 2 to core 2, and so on.

To prepare a blockMesh dictionary file we used m4 pre-processor language, which allows us to parameterize the
mesh. Then, any change of geometric sizes of the system, inlet location, boundary layer thickness, mesh
resolution, and any other needed tank properties can be controlled by the parameters specified in one place. So,
the work to generate the mesh was as follow: (1) the preparation of m4 script, which must be done once; (2) the
blockMesh dictionary generation at the given mesh parameters; (3) mesh generation from the blockMesh
dictionary file.

As we mentioned in the previous section, the decomposePar utility is used in order to split the mesh into a
number of sub-domains and allocate them to separate processors. OpenFOAM provides the user with the choice
of several decomposition methods. We analyse here shortly the methods that were used in this study:

a. manual

This decomposition method provides the user with the option to specify directly the allocation of cells to a
particular processor.

Using this method we have achieved an equally loaded decomposition of our mesh. Thus, all cores may handle
an equal number of cells, and the communication time between adjacent cores (blocks) is minimal.
Computationally, to work on such a structured mesh is the same as to work on the equally distant cubic grid.

In order to implement this specific decomposition strategy, before the decomposition step, a script was used in
order to calculate the number of cells per process for each different mesh capacity and setup the files
system/decomposeParDict, system/decomposeParBlock and constant/cellDecomposition.

b. scotch

Scotch decomposition method does not require geometric input from the user and attempts to minimise the
number of processor boundaries [9].

d. simple

In the case of simple geometric decomposition, the domain is split into pieces by x, y and z directions. For
example, the table below demonstrates the configurations that were used for mesh with characteristic number
N=32 and different numbers of processors.

4

Configuration
Number

Number of processors #Sub-domains
X direction

#Sub-domains
Y direction

#Sub-domains
Z direction

1 512 4 2 64

2 512 4 4 32

3 512 8 4 16

4 512 8 2 32

5 512 2 2 128

6 1024 8 2 64

7 1280 8 2 80

8 2048 16 2 64

Table 1: Simple decomposition method - configurations for mesh N=32

5. Scalability tests using manual decomposition method

For the simple square grid and canonical problem (cavity flow) almost ideal scalability has been demonstrated
on a CRAY machine [5] as long as the number of cells for one core is sufficiently large.

In order to check our model’s scalability, benchmark tests have been performed on the meshes of total capacity
equal to 320 cells with N=16, 32, 64. The largest mesh (N=64) consists of 83,886,080 cells.

Figure 4: Typical flow structure from the inlet (upper pipe)
to the outlet.

Though the geometry of our problem is not rectangular,
because it consists of large cylindrical tank with small
inlet and outlet pipes, we were able to map this complex
computational domain onto blocks of proportional size.
Thus, we have obtained the speedup in parallel
simulations similar to those observed by other authors
with OpenFOAM for a simple rectangular 2D problem.
This speedup has been observed when the number of
cells for one core is larger than 10 . For reasons given
below, work with double refined mesh with the same
computational time requires factor 16 more cores, hence,
this provides natural utilization of cores with larger mesh
by keeping the same structure of the problem.

Scalability results are shown in figure 5 and the table below. The simulation runs, used to obtain the scalability
data, correspond to laminar flow. For each N, the runs were started with the same initial condition and stopped
when the physical time of the simulations reached time equal to 0.1sec. Double refinement of the mesh (each
new N is larger with factor 2 than previous N) means that the new mesh is eight times larger because we are
working on a 3D system. Moreover, in order to have the same stability factor (the same Courant number) the
time integration step must be also twice less. Altogether, it results in 16 times slowing down when keeping the
same number of cores in the double-refined mesh. In this respect, the system studied is highly suitable for
massive parallel simulation, since the refinement of the mesh just means an appropriate increase of processors
for parallel computations.

5

Mesh #cores Solver Cpu Time
 (seconds)

speedup

N=16

32 232 1
64 90 2.57

128 42 5.52
256 27 8.59

N=32

256 845 1
512 395 2.14

1024 217 3.89
1280 186 4.54
2048 224 3.77

N=64

1024 5842 1
2048 2559 2.28
4096 1669 3.50

Table 1: timing results for solver step, using manual decomposition method

In figure 5, one can see that the achieved speedup is close to the ideal one. For the mesh N=32 (red curve with
open circles), the speedup for 2048 cores is worse than what we have for 1280 cores because the number of cells
for one core is too small for this mesh, and the communication cost between subdomains is large compared to
the time of the internal simulation inside each subdomain. Therefore, in order to utilize properly the larger
number of cores, one has to use a larger mesh, that is, mesh N=64 (blue curve with closed squares) which
exhibits a fairly good scalability pattern. Actually, for the mesh N=64, one can see almost perfect scalability up
to 4096 cores. We have found that speedup in our problem is observed when the number of cells for one core is
larger than , which corresponds to 8192 cores for the mesh N=64.

Figure 5: Speedup for mesh N=32 and N=64

0

2

4

6

8

10

12

14

16

sp
ee

du
p

no
rm

al
iz

ed
 to

 2
56

 c
or

es
 a

nd
 m

es
h

N
=

32

Number of cores

speedup for series mesh N=64

speedup for series mesh N=32

ideal

6

6. Comparison of decomposition methods

Timing results for N=32, using 3 different methods for decomposition, are shown in Figure 6. As can be seen,
for our case study, the scotch decomposition method provides best scaling overall. Similar results are obtained
for mesh N=64. For this specific case (N=64), only the manual and scotch decomposition methods have been
tested. When implementing the scotch approach in the decomposition step the solver scales better with an
increasing number of cores. It should be noted that the results given in this section include only the timing results
of the solver (parallel) step (not the decomposition and reconstruct steps).

Figure 6: cpu time for solver step using different decomposition methods for mesh N=32 and N=64

Regarding simple decomposition method, figure 6 only includes results for configurations 4, 6 and 8 that are
presented in table 1. In figure 7 the timing results for the solver using the simple decomposition method and in
specific configurations 1-5 from table 1 are presented, showing that the best results are achieved when the
domain is split in a greater number of sub-domains in the z direction.

Figure 7: cpu time for solver running in parallel on 512 processors when simple method has been used for decomposition (mesh N=32)

100

1000

10000

100 1000 10000

C
p
u
 T
im

e
 s
o
lv
e
r
[s
e
c]

Number of Cores

manual
(N=32)
scotch (N=32)

simple (N=32)

manual
(N=64)
scotch (N=64)

conf1 conf2 conf3 conf4 conf5

Solver CPU Time 480 553 733 444 632

0

100

200

300

400

500

600

700

800

Se
co
n
d
s

7

Regarding the time the decomposition step takes to run, some significant observations are presented in tables 3
and 4.

#cores Decomposition Method Decomposition
cpu time (seconds)

Solver
cpu time (seconds)

1024 manual 85 5734
scotch 1890 5410

2048 manual 87 2559
scotch 2121 2232

4096 manual 88 1669
scotch 2409 1040

Table 3: cpu for decomposition and solver (mesh N=64)

It is clear that although the solver part had less time consumption when using the scotch decomposition method,
the decomposePar utility takes much more cpu time to complete in this case than when using manual
decomposition method. However, assuming the overall absolute wall time is the critical metric, timing results do
not differ that remarkably, taking into consideration the results presented in table 4. Due to the limited resources
in terms of cpu hours for this project, wall time results for manual decompositions were not obtained for 2048
and 4096 number of cores. However, we assume that manual decomposition method might be preferable.

#cores Decomposition

Method
Decomposition
Setup wall time

(seconds)

Decomposition
wall time
(seconds)

Solver
wall time
(seconds)

Total
wall time
(seconds)

1024 manual 1253 3990 5767 11010
scotch - 5744 5436 11180

2048 scotch - 8335 2256 10591
4096 scotch - 11291 1077 12368

Table 4: wall time for decomposition and solver (mesh N=64)

It was also found that system time (file creation and I/O) for decomposition step has been remarkably time
consuming when compared to the overall wall time. Figure 8 shows that system time is increased with the
number of processors used, due to the increasing number of files that are created and processed.

1024 processes

2048 processes

4096 processes

Figure 8: percentage of system time over total time spent for mesh decomposition (mesh N=64, scotch decomposition method)

Future work may involve further investigation on system time consumption for decomposition step.

7. Conclusions

OpenFOAM with this application proved to be suitable for current Tier-0 systems up to several thousand cores.
The efficiency depends on the number of cells of the finite volume model used, increasing significantly with
more detailed models, requiring greater number of cells. Therefore, for more complicated problems, which
require more detailed models, OpenFOAM is expected to scale well on higher core numbers also.

33%

67%

decomposition (cpu time) system time

25%

75%

decomposition (cpu time) system time

21%

79%

decomposition (cpu time) system time

8

References

[1] OpenFOAM main site, http://www.openfoam.com/
[2] OpenFOAM Foundation, http://www.openfoam.com/features/index.php
[3] Massimiliano Culpo, Current Bottlenecks in the Scalability of OpenFOAM on Massively Parallel Clusters,

PRACE-1IP Whitepaper, http://www.prace-project.eu
[4] HLRS, Hermit User Guide, https://wickie.hlrs.de/platforms/index.php/Cray_XE6
[5] Computational Fluids Dynamics (CFD) Simulations at Scale. OpenFOAM open source applications.

HPC|Scale Working Group, Sep 2010, http://www.hpcadvisorycouncil.com/pdf/OpenFOAM_at_Scale.pdf
[6] http://www.openfoam.org/docs/user/blockMesh.php
[7] http://openfoamwiki.net/index.php/DecomposePar
[8] http://foam.sourceforge.net/docs/cpp/a02826.html#details
[9] http://www.openfoam.org/docs/user/running-applications-parallel.php

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-283493.

