

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Porting and Evolution of THETIS on the Curie Supercomputer

Stéphane Glocknerb, N. Audiffrena,*, H. Ouvrardb,a
a CINES, Centre Informatique National de l’Enseignement Supérieur, Montpellier, France
b I2M (Institut de Mécanique et d'Ingénierie de Bordeaux)

 *Corresponding author : audiffren@cines.fr

Abstract

It has already been shown that the numerical tool Thétis based on the resolution of the Navier-Stokes
equation for multiphase flows gives accurate results for coastal applications, e.g. wave breaking, tidal
bore propagation, tsunamis generation, swash flows, etc. [1,2,3,4,5,6]. In this study our goal is to
improve the time and memory consumption in the set-up phase of the simulation (partitioning and
building the computational mesh), examining the eventual benefits of an hybrid approach of the Hypre
library, and doing fine tuning in implementation of the code on Curie Tier-0. We also implement
parallel POSIX VTK and HDF5 I/O. Thétis is now able to run efficiently up to 1 billion mesh nodes at
16384 cores on CURIE in a production context.

1. Introduction

Numerical simulation of air/water coastal applications are still a very challenging goal to achieve since
small interface deformations, air entrainment, very active turbulence and vorticity generation are
involved. The accuracy of the whole physical process description is closely linked to the mesh grid
size. Parallel computing will enhance access to a better level of description of the turbulent behaviour
of the entrained and rising air bubbles, provided refined mesh grids are used to ensure an accurate free
surface description.

The Thétis code has been parallelized a few years ago using domain decomposition and MPI libraries.
It is linked to the massively parallel solver and preconditioner Hypre library. Weak scalability is good
up to 1 billion mesh points at 16 384 cores (see Fig. 1), but before this Preparatory Access Project
PA0937, some developments were still needed before envisaging to use the code in a production
context. In this project, we improved the partitioning step that was too memory and CPU time
consuming. We also improved the I/O thanks to parallel POSIX and HDF5 approaches, and did fine
tuning in the implementation of the code on the Curie Tier-0 system.

2

Fig. 1: weak scalability study of Thetis and Hypre with 40x40x40 mesh cells per core (up to 1.1 billion cells at 16 384
cores on Curie). The times given in the table are the maximum (among all the cores) elapsed wall-clock given by

MPI_WTIME in different part of the code : (1) the time loop (Thetis+Hypre) ; (2) the prediction step of the time loop
(Hypre) ; (3) the correction step of the time loop (Hypre) ; (4) other parts of the time loop (Thetis). We have

(1)=(2)+(3)+(4)

2. Partitioning

As a starting point the Scalasca tool was used to analyse the code. It confirms good load equilibrium
between process and scalability measured by mpi_wtime. It was helpful to improve CPU time for
three time-consuming subroutines.

We first optimized the partitioning step of the code, which, for some parts of it, is still sequential.
Improvements have been achieved to decrease memory usage and CPU time. This was realized up to
40% and 20 % regarding CPU time and memory respectively. Moreover, a new special check point /
restart procedure has been created which skips the partitioning step for a new job when the mesh size
and the number of cores do not change. We also improved 3 subroutines regarding CPU time:
resolution of the advection equation thanks to the VOF-TVD method (20%), VOF-PLIC (5%) and the
subroutine of the matrix preparation for the Navier-Stokes equations (2%).

3. Parallel I/O

We first perform parallel I/O in a POSIX mode for Paraview/Visit thanks to VTK .pvts and .vts files
for structured grids. Figure 2 shows the good performance rates obtained in such manner, from 403 to
703 grid cells per core and from 16 to 8192 cores. The values min_SAR and max_SAR refer to the
rates defined in [7]. Max_SAR is the maximum sustained aggregate rate when p processors are doing
I/O and min_SAR refers to the minimum sustained aggregate rate which can reflect the slowest
processor to commit I/O.

3

Fig. 2: maximum and minimum sustainable rates in POSIX I/O of THETIS.

But some users of Thétis code also need to visualize results using the Tecplot software which do not
support VTK files. Since this software can read HDF5 files, we have implemented such an output. The
measured rates in the MPI I/O writing case are still min_SAR and max_SAR. When best tuning is
achieved, both are nearly identical. However, we aimed to test whether writing a shared file in HDF5
format composed of 8 to 11 scalar fields would be useful and tractable. We used the HDF5 interface

4

and MPI collective I/O. We expect some lack of performance compared to the POSIX approach as
pointed out by several publications including [8]. We face that a small amount of data has to be
written by each process (from 2MB (403 case) to 11MB (703 case)) and that numerous processes have
to do that (1024 to 8192). The total file size varies according to the number of cores because we are in
conditions of weak scaling. The range goes from 2GB (1024 cores) to 32GB (4096). In fact, the file
size also depends on the amount of mesh points per tasks. We focus on the configurations given in
Tab. 2 representative of production runs.

Mesh points per
core /nb of cores

1024 2048 4096 8192

40x40x40 2GB 4GB 8 GB 16 GB
50x50x50 ///////// 8 GB 16 GB /////////////
60x60x60 6,6 GB 13 GB ///////////////// /////////////
70x70x70 11 GB 22 GB ///////////// /////////////

Tab. 1: HDF5 shared-file size

During collective writes a two-phase I/O is performed. The first one is communication between
processes making offsets, strides and counts specific to a process known to all others. The filling of
the temporary buffer is also done during this phase. The second phase is I/O.

The default mode for collective buffering is automatic which means that ROMIO will use heuristics to
determine when to enable optimization. The buffer size is 4MB by default. The advantage of this
method is to avoid locks on the file [9].

Although collective I/O was our choice we also tuned the user-controllable hints concerning data
sieving because we perform small I/O amounts per I/O request and that data sieving is used in the
second phase of collective I/O in order to decrease the number of requests [10].

Our first guess of ROMIO hints were derived from a previous study [8] but some large differences
between their work and ours clearly appeared: their numbers of cores does not go over 1024 cores
while we run much higher numbers of cores, and moreover their throughput per each core is very large
since their shared file size is 250 GB. The reason for that is that RAMSES code used in their study
owns one million of points per task whereas our range of number of mesh points per task is [403 -703]
which is far less. Hence, the best settings of ROMIO hints for our code obviously differ from theirs. In
particular, they do not use collective buffering.

Standalone tests with parallel HDF5 were performed prior to implementation of collective writings of
unique shared file in Thétis. Hints for these tests of I/O amounts of 15MB per task allowed improving
the writing rate from default (few hundreds of MB/s to 3GB/s). The best ROMIO settings for Thétis
are seen on Table 2.

Table 3 sums up the results. Cb_nodes are the number of cores working as aggregators in collective
I/O. By default, its value is set to the number of unique hosts in the communicator used in opening the
file. Setting its value to half the number of cores or even the number of cores were tried giving no
better results.

In conclusion, for moderate number of cores (1024 ore 2048) parallel HDF5 can provide a shared file
at writing rates that are tractable. Tuning appeared to be essential because without it, for example in
the case of 403 mesh points per cell and 1024 cores, min_SAR and max_SAR values go down to 152
MB/s and 256 MB/s respectively .

Among the ROMIO hints, we also confirm that the striping unit and factor are important hints as said
in [8] for example. I/O chunks in Thetis are small. Even though collective MPI I/O functions allow to
aggregate I/O in order to better exploit bandwith, it does not scale. MPI overheads seem to impact
performance significantly with increasing number of cores by a higher amount of interprocess
communication. Further investigation with additional hints specific to Lustre file system could be

5

examined: romio_lustre_co_ratio, romio_lustre_threshold, romio_lustre_cb_ds_threshold,
romio_lustre_ds_in_coll as indicated in [11].

Striping
factor

Striping
unit

Data
sieving

Independent
Write buffer
size

Collective
buffering
(CB)

CB_block_size CB_buffer_size Cb_nodes

40* 16 MB** enable 16 MB automatic No value
assigned

No value
assigned

No value
assigned

 * Striping factor is 80 for the case 70^3 with 2048 cores

 ** 8 MB is used for the smallest number of mesh points i.e. case 40^3

 *** Usually the default (cb_nodes=number of nodes) gives best results except for 8192 tasks.

 Tab. 2: ROMIO hints used for Thétis parallel HDF5 collective I/O.

Configuration 1024 2048 4096 8192

403 2.1 GB/s 1.15 GB/s 0.484 GB/s 0.362 GB/s
503 //////// 2.1 GB/s 0.895GB/s ////////
603 0.770 GB/s 2.6 GB/s /////// /////////
703 3.04 GB/s 2.6 GB/s //////// /////////

Tab. 3: Thétis I/O with parallel HDF5 and ROMIO tuning as indicated in Tab2.

4. Use of shared memory Hypre library

We used three tools to analyze the code: scalasca, tau and hpctoolkit, all based on the PAPI tools.
They showed that 43% of the total cycles are spent in the solver BICGSTAB associated with the
multigrid preconditioner called in the correction step of the predictor-corrector method used by the
pressure correction method to solve the velocity pressure coupling of the Navier-Stokes equations.

Given 1024 cores we compare the case of a pure MPI run with the case of an hybrid run with 4 threads
and 256 MPI tasks. Tab. 4 shows the results.

Mode Duration
of the time loop

Correction step Time spent outside Hypre subs

Pure MPI (1024 tasks) 2.48 s 0.69 s 1.78 s

Hybrid mode (256 tasks,
4threads per task)

2.80 s 0.69 s 2.2 s

Tab 4: Comparison of MPI and MPI/OpenMP Hypre runs

5. Study of the placement of MPI tasks across the nodes

Placement of MPI tasks can be derived directly from SLURM using the command ccc_mprun which
distributes mpi tasks by node and binds them to core. This approach results in a placement of
consecutive mpi-rank tasks on different nodes. On the other hand, one can leave aside this SLURM-
derived placement of tasks and choose to perform the placement of the tasks using the BullxMPI
mpirun command. The next figure shows the different possibilities of distribution and binding up to
4096 cores and provides the comparison to ccc_mprun - derived placement.

6

Only beyond 8192 cores is the SLURM placement valuable. At current number of cores for Thétis
runs it is worthy to choose a distribution of task “by core” and binding their memory to core or to

socket.

Fig 3a: Several methods of MPI tasks placement for THETIS runs of 2048 or 4096 cores

Fig 3b: Several methods of MPI tasks placement for THETIS runs of more than 4096 cores

7

6. Conclusion

Significant improvements have been achieved in the partitioning phase which is the most time
consuming part. This PA achieved its goal on this point.

We studied the OpenMP/MPI approach which is implemented in the Hypre library. Various tests were
done on fat and thin nodes of CURIE without any real improvement compared to the pure MPI
approach. MPI runs are much better on the thin nodes. Moreover, the overheads induced by OpenMP
combined with the fact that less cores are available for the part of the code out of Hypre lead us to
continue on the pure MPI code version. However, with future version of Hypre and on future
architectures as Xeon-phi, it would be worth while to look at it again.

We also demonstrated that one must pay attention to the placement of tasks. For moderate numbers of
tasks, SLURM-derived placement is not the best one can get but it is optimal at very high numbers of
tasks. However, production runs with this code will use moderate number of cores.

Finally we also improved the I/O part of the code thanks to parallel POSIX VTK files or HDF5 files.
The code is now able to run efficiently up to 1 billion mesh nodes at 16 384 cores in a production
context on Curie supercomputer.

References

[1] P. Lubin, S. Glockner, O. Kimmoun, H. Branger, Numerical study of the hydrodynamics of regular
waves breaking over a sloping beach. Accepté dans European Journal of Mechanics B/Fluids, 2011.

[2] P. Lubin, H. Chanson, S. Glockner, Large Eddy Simulation of turbulence generated by a weak
breaking tidal bore, Environmental Fluid Mechanics, Volume 10, Number 5, pp587-602, 2010.

[3] P. Lubin, S. Glockner, H. Chanson, Numerical simulation of a weak breaking tidal bore,
Mechanics Research, 37 1: 119-121, 2010.

[4] M. Mory, S. Abadie, S. Mauriet, P. Lubin, Run-up flows of collapsing bores over a beach.
European Journal of Mechanics B/Fluids, 30 (6), pp 565-576, 2011.

[5] P. Lubin, S. Vincent, S. Abadie, J.-P. Caltagirone, Three-dimensional Large Eddy Simulation of
air entrainment under plunging breaking waves. Coastal Engineering, 53 (8), pp 631-655, 2006.

[6] S. Abadie, D. Morichon, S. Grilli & S. Glockner, Numerical simulation of waves generated by
landslides using a multiple-fluid Navier–Stokes model Coastal Engineering, Volume 57, Issue 9,
September 2010, pp779-794.

[7] James C. French, Terrence W. Pratt and Mriganka Das “Performance Measurement of a Parallel
Input/Output System for the Intel iPSC/2 Hypercube”, IPC-TR-91-002. IN Proceedings of the 1991
ACM SIGMETRICS Conference on Measurement & Modeling of Computer Systems, May, 1991.

[8] P. Wautelet and P. Kestener., “Parallel IO performance and scalability study on the PRACE
CURIEsupercomputer”, White paper, Prace 2011. http:// www.prace-
ri.eu/IMG/pdf/Parallel_IO_performance_and_scalability_study_on_the_PRACE_CURIE_supercompu
ter-2.pdf

[9] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Collective I/O in ROMIO”. In Proceedings
of the 7th Symposium on the Frontiers of Massively Parallel Computation, pages 182-189, February
1999.

[10] R. Thakur, W. Gropp, and E. Lusk “ A Case for Using MPI's Derived Datatypes to Improve I/O
Performance”. In Proceedings of SC98: High Performance Networking and Computing, November
1998.

8

[11] R. Thakur, R. Ross, E. Lus, W. Groppp, and R. Latham “Users guide for ROMIO: A High
performance, portable MPI-IO Implementation”, Argonne National Laboratory, May 2004, revised in
April 2010.

[12] A. Baker, R.D. Falgout, T.V. Kolev and U. Meier Yang “ Scaling hypre’s multigrid solvers to
100,000 cores”, from https://computation.llnl.gov/casc/linear_solvers/pubs/Baker-2010-scaling-
hypre.pdf.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-283493.

