
Available on-line at www.prace-ri.eu

Partnership for Advanced Computing in
Europe

GPU Implementation of the DP code

F. Sottilea, C. Roedla, V. Slavnićb, P. Jovanovićb,
D. Stankovićb, P. Kestenerc, F. Houssenc

aLaboratoire des Solides Irradiés, Ecole Polytechnique,
CNRS, CEA, UMR 7642, 91128 Palaiseau cedex, France

bScientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

cMaison de la Simulation,
USR 3441, bat. 565, CEA Saclay, 91191 Gif-sur-Yvette cedex, France

Abstract

Main goal of this PRACE project was to evaluate how GPUs could speed up the DP code – a
linear response TDDFT code. Profiling analysis of the code has been done to identify computational
bottlenecks to be delegated to the GPU. In order to speed up this code using GPUs, two different
strategies have been developed: a local one and a global one. Both strategies have been implemented
with cuBLAS and/or CUDA C. Results showed that one can reasonably expect about 10 times speedup
on the total execution time, depending on the structure of the input and the size of datasets used,
and speedups up to 16 have been observed for some cases.

1. Presentation of the DP code

The DP code [1] is an ab initio TDDFT linear response code, working in reciprocal space, on a plane-waves
basis, and in frequency domain. Its main purpose (not the only one) is to calculate the electronic polarizability
of a wide range of materials, including 0D (like atoms or clusters), 1D (nanotubes and nanowires), 2D (graphene,
surfaces, and layered systems) or bulk. The code is written in Fortran 90, with some insertion of C (essentially
for parsing the input file and dealing with the operative system). The testing suite is written in PERL. The
post-processing tools are written in Fortran and in Python.

The structure of the code is the following:

• Initialization part: reading of a ground state electronic structure file and creation of all possible energy
transistions Nt(from valence/occupied to conduction/empty states).

• Creation of the polarizability

χ0(g, g′, ω) =

Nt∑
t=1

ρ̃t(g) × ρ̃∗t (g′) × dent(ω)

where for any transition t there is ρ̃t(g), a vector of dimensionNg (the number of plane waves), and dent(ω),
a vector of dimension Nω (number of energies in which the polarizability is evaluated), to be calculated.
The CPU times grows linearly with Nt and quadratically with Ng, while the memory occupancy goes
like N2

g ×Nω (the dimension of χ0). This is the most cumbersome part of the calculation, especially for
what concerns the CPU time, but also, in most cases, for what concerns the memory occupancy. The
evaluation of χ0 gives also the scaling of the whole code, which goes as N4

at, with Nat = number of atoms.

• Creation of the macroscopic dielectric function via the formula

ε−1 = 1 + v(g)
(
1 − χ0v

)−1
gg′′ χ

0(g′′, g′, ω)

which involves a matrix inversion. This term does not give particular problems: each energy ω can be
treaten in an independent way and is easily and efficiently parallelized.

1

• Writing down the output and spectra.

After a preliminary analysis, it has been confirmed that the evaluation of the polarizability χ0 and in par-
ticular the time spent in the matrix creation, through the library method CGERC, is the most time consuming
part and will the object of the present parallelization project.

2. GPU strategies

Fig. 1: GPU strategies for DP

The structure of the DP code is illustrated by the Figure 1. In DP, the typical parameter magnitudes are as
follows: the number of transitions is about 1 000 000, and the number of alpha is about 500. The code is made
of 2 major parts: the first one is “create χ0”, and the second one is “create ε”. A profiling analysis made, first
with GNU gprof [2], then with Scalasca [3], confirmed that there are two hot spots:

• The first hot spot is an intensive call to CGERC (BLAS method) in “create χ0”: CGERC is called about
500 000 000 times (nbTransitions× nbAlpha according to the notations in the Figure 1).

• The second hot spot is a repeated call to CGINV in “create ε”: CGINV is called about 500 times (nbAlpha
according to the notations of the Figure 1). CGINV calls CGETRF and CGETRI (LAPACK methods).

From profiling results, it turns out that CGINV takes (in average) 1000 times more time than CGERC,
roughly speaking. Finally, there is still a factor 1000 between CGERC and CGINV. On overall, the CGERC
operation is costlier than CGINV: this is why CGERC is found to be the first hot spot. This is illustrated by
the Figure 2 where one can clearly see that the χ0 step is much more time consuming than the ε step. As a

Fig. 2: Profiling of a typical DP run

2

consequence, speeding up “create ε” with a classical MPI approach works pretty well. Nevertheless, speeding
up “create χ0” with a classical MPI approach may not be that efficient: one could expect GPU to do things
faster.

To port the DP code to GPU, one can use two strategies. The first strategy is local and has been implemented
by the “Maison de la Simulation” (France): the idea is to delegate to GPU only a subpart of the “create χ0”
step. The second strategy is global and has been implemented by the Institute of Physics Belgrade (Serbia):
the idea is to delegate to GPU the whole “create χ0” step. Before activities on GPU implementation started,
MPI version of DP, which was able to distribute the work over several MPI processes, was already available,
and it was used as a starting point in porting activities.

3. Strategy 1

3.1. Presentation

The first strategy is local: basically, the idea is to delegate CGERC to GPU. This is the very first and most
simple idea one can have. The main drawback of this approach will clearly be CPU/GPU transfers that are
known to be bottlenecks. The Figure 3 illustrates the algorithm. For the sake of clarity, we recall that CGERC
(BLAS method) performs the following operation:

A(i, j) + = α×X(i) ×X(j) (1)

where A is a complex 2D matrix, α is a scalar and X a complex vector. In DP, CGERC is called a lot of times
so that α is actually a vector. Finally, the work to delegate on GPU looks like:

A(i, j, k) + = α(k) ×X(i) ×X(j) (2)

where A is a complex 3D matrix, α is a vector and X is a complex vector.
The 3 data structures to transfer from CPU to GPU are A, α and X. After the GPU computation is done,
the only data to transfer back to CPU is A. α and X are updated by the CPU at each iteration, and must
be transfered to the GPU at each iteration: according to notations of Figure 3, α and X are transfered
nbTransitions times (the typical magnitude of nbTransitions is 1 000 000). A is not modified at CPU side so
that, when possible, A may be only transfered once to the GPU (at CPU side, A is seen as a computational
result needed to proceed to the following “create ε” step).

Clearly, one has two possible situations:

• A, α and X fit all at once on GPU memory. Here, A can be transfered once from CPU to GPU at the
first iteration, and, A can be transfered back from GPU to CPU at the last iteration (A stays on GPU
and is updated on GPU). One can expect significant speedup using GPU.

• A, α and X do not fit at once on GPU memory. Here, A will have to be transfered by chunk at each
iteration. The GPU approach will be much slower than the initial full CPU code. In this case, the only
way out is to use MPI to split the initial data into smaller pieces to distribute over several processes. A
is a matrix whose elements are single precision complex (2 * 4 bytes = 8 bytes). According to Figure 3,
the size of A is dimX2 × nbAlpha where dimX is the size of the X vector and nbAlpha is the size of the

Fig. 3: Strategy 1 - Presentation

3

α vector. As a result, the rule of thumb to apply to be sure that data will fit on GPU, is to choose dimX
and nbAlpha such that:

8 × dimX2 × nbAlpha ≈ 0.8 ∗GPUMem (3)

where GPUMem is the memory in bytes available on GPU (generally, dimX is fixed and nbAlpha is
adjusted). Note that to know the value of GPUMem, the user has just to run DP during one iteration
(one transition) using the verbose mode (to specify in the input file): GPUMem will be printed in DP
output log. This rule enables to target 80% occupancy on GPU (to get the best possible performance,
GPU must be loaded enough).

In short, the first strategy can be wrapped-up this way: the (potentially large) data are split (in smaller pieces)
and spread over several MPI processes (CPU), then each CPU is associated to a GPU, and finally each CPU
delegates the job to his GPU. Once the GPU is done, the CPU will get results back and go over the “create ε”
step. One can expect to overlap GPU computations with CPU to GPU transfer (X and α are updated at CPU
side, so that they must be transfered to GPU at each iteration). Note that a verbose mode is available in the
implementation. This verbose mode forces GPU synchronization (with CPU) to get reliable timing information
(profiling information). As a result, the user should turn off the verbose mode for production runs (the verbose
mode makes the CPU wait for the GPU at each iteration, so the transfer/computation overlap will not occur).
Both CUDA and cuBLAS implementations have been done and compared (the cuBLAS version was used as a
reference in terms of results and performance).

3.2. CUDA kernel validation

The CUDA kernel has been validated outside of any context of use (outside of DP). The Figure 4 illustrates
the validation process. On GPU, floating point operations will not be run in the same order as on CPU.
Moreover, the IEEE norm can not ensure commutativity. CPU results are taken to be the reference: to allow a
fair comparison with GPU, some specific options have been set during compilation (nvcc options [4]: –ftz=false
–prec-div=true –prec-sqrt=true). To validate the CUDA kernel, one had to use double precision complex and
to perform every calculation with double precision: results show the relative error (compared to CPU results)
is bounded by 10−14. Note that using double data, we can observe here the transfer bottleneck that may occur
if all data do not fit at once on GPU (Figure 4 for dimX >= 800): speedup drops as A must be transferred by
chunk at each iteration (transition). At this point, a float version of the double kernel was derived: basically,
double are replaced by float. The float kernel will be faster but the relative error magnitude will be about 10−5.
Hoping a better error/speed up trade-off, an additional test has been performed using float data, converting
float to double, and computing with double precision: results show that the benefit is only a potential error
decrease (10−7), while the speedup drops (tests showed that one can expect error decrease when the dataset
is “small” enough, otherwise the number of operations will increase so much that at least one of them will cut
the error back to the previous full float kernel). Using float data and performing double computation is not a

100 200 300 400 500 600 700 800 900 1000
Dimension of X

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

M
ax
 re
la
tiv
e
er
ro
r c
om

pa
re
d
to
 B
LA
S
(C
PU
)

Error : BLAS (CPU - no MT) / CUDA (GPU - double data, double compute)
Error : BLAS (CPU - no MT) / CUDA (GPU - float data, float compute)
Error : BLAS (CPU - no MT) / CUDA (GPU - float data, double compute)

2

4

6

8

Sp
ee
d
up

Serial standalone kernel tests (out of any context of use)
Use MKL for BLAS CPU, no MT = no Multi-Threading

100 transitions - 500 alpha - CGERC [A = A + alpha * X.conj(X)']

Speed up : BLAS (CPU - no MT) / CUDA (GPU - double data, double compute)
Speed up : BLAS (CPU - no MT) / CUDA (GPU - float data, float compute)
Speed up : BLAS (CPU - no MT) / CUDA (GPU - float data, double compute)

Fig. 4: Strategy 1 - Validation

4

good trade-off. Finally, the float kernel will be used to speed up DP as the A matrix handled by DP is a single
precision complex matrix.

3.3. CUDA kernel optimization

The CUDA kernel has been optimized outside of any context of use (outside of DP). The Figure 5 and 6
illustrate the optimization process. The process is as follows: test several grid sizes to find the best one (here,
768 X 16), and optimize step by step. First, to get the best possible performance, coalescing [5, 6] has to
be ensured. Then, as the algorithm is highly memory bandwidth intensive, use of shared memory has been
added to the CUDA implementation, and improves significantly performances (the first coalesced kernel was
naive, and shared memory has been added after some optimizations so that the gap between the coalesced and
shared memory version is not only, but mostly, due to shared memory [5, 6]). Finally, computations have been
overlapped with transfers. At this step, a profiling analysis (using nvvp, the Nvidia profiler) has shown there

100 200 300 400 500 600 700 800 900 1000
Dimension of X

5

10

15

20

Ti
m
e
(s
ec
s)

Serial standalone kernel tests (out of any context of use)
Grid = nb thread per block X nb blocks

CUDA kernel - 100 transitions - 500 alpha - CGERC [A = A + alpha * X.conj(X)']
Grid = 128 X 16
Grid = 256 X 16
Grid = 512 X 16
Grid = 768 X 16
Grid = 1024 X 16

700 800 900 1000

7

10

Fig. 5: Strategy 1 - Grid sizing

100 200 300 400 500 600 700 800 900 1000
Dimension of X

3

4

5

6

7

8

Sp
ee
d
up

6% bank conflicts

Serial standalone kernel tests (out of any context of use)
Use MKL for BLAS CPU, no MT = no Multi-Threading

100 transitions - 500 alpha - CGERC [A = A + alpha * X.conj(X)']
BLAS (CPU - no MT) / CUDA (GPU - coalesced)
BLAS (CPU - no MT) / CUDA (GPU - coalesced + shared memory)
BLAS (CPU - no MT) / CUDA (GPU - coalesced + shared memory + overlap compute with transfert)

Fig. 6: Strategy 1 - Optimization

5

was only 6% bank conflict left so the optimization has not been pushed further (actually, a kernel has been
written to reduce bank conflicts down to 1%, but to achieve this, data have to be stored and accessed in a
complex way so that the speedup drops).

3.4. Results

First, the strategy 1 has been tested outside of any context of use (outside of DP). The Figure 7 illustrates the
first results. The cuBLAS implementation has been done so that it should be possible to overlap computations
with transfer: as the CGERC method from cuBLAS has to be called progressively at each iteration (one call
for each α), results are pretty much the same when there is no overlap. The CUDA implementation allows to
compute directly the whole dataset (one call for every α) and to overlap efficiently computations with transfer.
The speedup is computed using a non multi-threaded CPU (1 thread, CGERC from MKL BLAS) as reference.
For the sake of completeness, GPU approaches have been compared with multi-threaded CPU approaches
(several threads, CGERC implemented with OpenMP, ensuring static scheduling with imposed chunk size and
1 core–1 thread affinity to get the best possible performances). It turns out that, as the strategy is local, threads
have to be created and destroyed frequently so that multi-threaded CPU approaches are not efficient.

Then, the CUDA and cuBLAS implementations have been plugged into DP. The Figure 8 and 9 illustrate
the speedup one can expect. First, a small test case (Argon) has been ran from 1 to 8 MPI processes. Then, a
bigger test case (HFO2O) has been ran from 16 to 256 processes (on “Curie”, 288 GPUs are available so that
using 256 processes was the biggest possible test). In both case, strong and weak scalings have been performed.
On “Curie”, 2 queues are available: a full CPU one (xlarge), and a CPU/GPU one (hybrid). The xlarge nodes
are made of 8 (quadricore) CPUs, while the hybrid nodes are made of 2 (quadricore) CPUs and 2 GPUs. To
allow a fair comparison, the CPU runs have been performed ensuring 2 MPI processes per node on the xlarge
queue. Results show that, the more there is work to do, the more CUDA outperforms cuBLAS. To get the best
possible performance, GPU must be fully loaded (target 80% GPU occupancy), and, for big runs (128 MPI
processes or more) the user must make sure that enough RAM is available (otherwise the code swaps and the
speedup drops). Depending on the case, one can expect a 10 to 14 times speedup (on the total elapsed time).

It should be stressed that for:

• The faster Argon CPU run (weak scaling over 8 procs), the initialization time (reading input files) was
about 15 seconds while the computation time (χ0 and ε steps) was about 19500 seconds. The ratio
between initialization and computation time is about 1300.

• The faster HFO2O CPU run (weak scaling over 256 procs), the initialization time (reading input files)
was about 170 seconds while the computation time (χ0 and ε steps) was about 10150 seconds. The ratio
between initialization and computation time is about 60.

As only the χ0 step can benefit from GPU speedup, we can expect better speedup (than 10-14 times) in cases
where the ratio between initialization and computation time is higher (ratio >10000) than the ones presented
in this document.

Fig. 7: Strategy 1 - Standalone results

6

1 2 4 8
Number of processus

2000

7000

12000

17000

22000
To
ta
l e
la
ps
ed
 ti
m
e
(s
ec
)

Argon - Elapsed time : strong and weak scaling

Strong : BLAS (CPU - no MT)
Strong : CUBLAS
Strong : CUDA
Weak : BLAS (CPU - no MT)
Weak : CUBLAS
Weak : CUDA

1 2 4 8
Number of processus

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee
d
up

Ensure 80% GPU load

Argon - Speed up : strong and weak scaling

Strong : BLAS (CPU - no MT) / CUBLAS
Strong : BLAS (CPU - no MT) / CUDA
Weak : BLAS (CPU - no MT) / CUBLAS
Weak : BLAS (CPU - no MT) / CUDA

Fig. 8: Strategy 1 - Argon : small test case

16 32 64 128 256
Number of processus

2000

4500

7000

9500

12000

To
ta
l e
la
ps
ed
 ti
m
e
(s
ec
)

HFO2O - Elapsed time : strong and weak scaling

Strong : BLAS (CPU - no MT)
Strong : CUBLAS
Strong : CUDA
Weak : BLAS (CPU - no MT)
Weak : CUBLAS
Weak : CUDA

16 32 64 128 256
Number of processus

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee
d
up

Ensure 80% GPU load

Ensure enough RAM

HFO2O - Speed up : strong and weak scaling

Strong : BLAS (CPU - no MT) / CUBLAS
Strong : BLAS (CPU - no MT) / CUDA
Weak : BLAS (CPU - no MT) / CUBLAS
Weak : BLAS (CPU - no MT) / CUDA

Fig. 9: Strategy 1 - HFO2O : typical test case

7

4. Strategy 2

4.1. Presentation

The main goal when designing strategy 2 of the GPU approach for the DP code was to minimize communication
and data transfers between the CPU and the GPU. This communication has an impact on the performance,
because in the algorithm presented in strategy 1 section, data has to be copied to the GPU for each transition
(one iteration of the computational loop). When the number of transitions is large (which is often the case for
some real inputs DP was designed for), it is expected that the memory transfer time can be a significant factor
in the performance of the entire program.

To ensure that the data will be transferred only once to the GPU (and back to the CPU after all transitions
have been processed), the whole loop which iterates through all transitions had to be ported to the GPU using
CUDA technology. This can be seen on Figure 1, where the outline of the algorithm is presented.

However, because now both α and X vectors need to be computed directly on the GPU, all related data
structures needed for their computation need to also reside in the GPU memory during all iterations of the
transitions loop. To illustrate this, we will briefly present needed steps for computation of the X vector for one
transition:

• We select 2 waveforms from the auxiliary data structure, which holds all waveforms for the input dataset,
based on the index depending on the current transition.

• We perform FFT on them, multiply them together and perform inverse FFT on the resulting waveform
vector. During the multiplication phase, elements of 2 waveforms to be multiplied in one step are selected
using indexes stored in the table containing index mapping. Which column from the mapping table will
be read, again depends on the current transition.

• We select a subset of the waveform calculated in the previous step to get the X vector which will be used
together with α to update the A matrix.

Because the waveform structure and the mapping table described above also consume significant amount of
memory, that means that the GPU memory now has to be shared between the A matrix and these structures.
Also, the number of waveforms in the auxiliary structure grows linearly with the number of total transitions,
so we can expect to reach the limits of the available GPU memory much faster than with strategy 1, as the size
of the input test case grows (whether with more transitions or with larger A matrix).

Available memory limit can be overcame either implicitly with distributing computation among many MPI
processes, or by explicitly managing data movement on the GPU card, so that the matrix is processed in parts.
The MPI approach for division of the data is already present in the DP code, and when enough resources are
not available, a modification of the strategy 2 for out-of-core solving of the problem was developed, and will be
described later in this text.

Having in mind that now the entire body of the loop will be executed on the GPU, the strategy 2 approach
has a risk of slowing down parts of the loop that are sequential or less parallel than updating of the matrix
A, because in that case advantages of the GPU are lost or at least diminished (a single GPU core is much
slower than the equivalent CPU core). However, since the FFT computation is now also moved to the GPU,
it is expected that it will be faster than on the CPU. Additionally, for larger test cases, vectors that are being
operated on inside the loop are larger and thus more suitable to be processed in parallel. Therefore, in overall,
the sequential and less parallel parts of the computational loop are not expected to be a significant factor of
slowing down of the algorithm when running on CUDA GPUs.

4.2. Implementation details

For the implementation of the strategy 2, CUDA C was used along with cuBLAS and cuFFT numerical libraries.
CUDA code was split in multiple kernels, each corresponding to a single original FORTRAN routine called inside
the loop. Each call to FFTW3 library routine was swapped with a call to cuFFT routine, and each MKL BLAS
CGERC call was swapped with the corresponding cuBLAS call (cublasCgerc). One FORTRAN routine had to
be split into 2 kernels, because there is a data dependency between the first and the second part of the routine,
which couldn’t be solved within a CUDA thread block. This initial GPU implementation works properly if the
matrix A, all waveforms and index mapping tables can fit into GPU memory together.

Because kernels were developed in CUDA C, and could not be called directly from FORTRAN code, several
wrapper C routines were created for initialization of the GPU memory, copying necessary data to the GPU,
executing body of the computational loop, and copying the A matrix back to be further used in the create ε
step. Custom kernel for updating the A matrix was not developed like it was done in strategy 1, because more
focus had to be put on porting the entire loop on the GPU and on implementing modification for out-of-core
execution when the input data sets are exceptionally large.

Even though it might look like performance-wise it could be better to put the entire loop in the single kernel,
because some overhead related to starting multiple kernels from the CPU side could be alleviated, it was not
done in this implementation. One of the reasons for this is that we wanted to keep using external FFT library
(for simplicity, and better performance), and it was not possible to call cuFFT from inside the kernel. The other
reason is that because waveforms are not always accessed in a linear fashion, but are instead sometimes indexed

8

indirectly using values from the mapping table, a situation where synchronization of all threads executing the
kernel in necessary can arise. This cannot be done efficiently in CUDA, because it was designed in a way that
only threads in same blocks can directly synchronize and share data.

There are two independent tasks that need to be performed before the A matrix is updated:

• Calculation of the X vector, and

• Calculation of the α vector

Because there are no data dependencies between these tasks, they can be executed concurrently on the
GPU. To achieve this, separate CUDA streams are created, one for each task, and each kernel is configured to
run in a stream associated with the task they are a part of. Because FFT is a part of the X vector calculation,
cuFFT library was configured to run in a first stream. This overlapping of computation on the GPU can be
useful because there is a varying degree of parallelism between kernels (some operate on long vectors, some on
shorter ones, and some even run with only a single thread), and it is possible that GPU won’t be fully utilized
running just a single task at a time. CUDA runtime can then select which kernels can be overlapped and help
us gain a bit of performance.

For updating of matrix A using cuBLAS cgerc call, streams are also used to help in gaining performance.
Increase in performance when using streams can especially be significant when the size of a single transform
is not very large. Since in DP code many matrices need to be updated in every loop iteration (meaning that
we can view A as a 3D structure, see Equation 2 in Section 3.1.), and cuBLAS allows for overlapped calls, we
have used 30 separate streams to perform matrix updates. This helped us gain approximately 2-3 times the
performance compared to sequential updating.

We have managed to avoid host to device synchronization entirely in this case, save for the points of memory
transfers, which only happen twice. Streams were synchronized directly on the GPU, so that as soon as the
computation of X and α was done, updating of the matrix starts. Because synchronization with the host is much
more expensive than the synchronization between streams on the GPU, a potential overhead was successfully
eliminated.

4.3. Offloading computation to CPUs

Even though it is expected that moving main DP computational loop to GPU will result in significant per-
formance gains, it shouldn’t be forgotten that CPUs on modern HPC systems have multiple cores and can
contribute to calculation tasks to some extent. The advantage of the algorithm employed in the DP code is that
iterations of the loop are independent and can be executed in parallel or out-of-order, and this can be used to
offload some subset of iterations to be executed on CPUs.

Because there is already a routine in the DP code which equally splits transitions to MPI processes when
DP is used with MPI parallelization, it was easy to modify that routine to take into account that both CPUs
and GPUs will participate in calculating transitions. There is difference in performance between a GPU card
and a CPU core, so that routine was modified to perform a weighted distribution instead. Once a MPI process
knows its set of transitions, it can begin with the computation, regardless of whether it will be performed on
the GPU or on a CPU core.

Each MPI process can either use a GPU or a CPU core for the execution of the computation loop. In this
implementation, first 2 processes on each node were selected to use GPU for computations, because a CURIE
hybrid node contains 2 GPU cards. DP already supports running performance tests with only a few iterations
of the loop (used to estimate total time needed for simulation, testrun input parameter controls this), so this
test was extended to run on both the CPU and the GPU. After a short test run has been performed, reported
ratio between execution times on the CPU and the GPU can be used as an input to routine where transitions
are split. In this way, it is expected that processes that run loop on the GPU and those who run it on the CPU
will complete calculation for transitions assigned to them in roughly the same time.

4.4. Modifying strategy 2 for out-of-core approach

As previously described in the presentation of this strategy for GPU code implementation, instead of only
storing the A matrix on the GPU during loop execution, some auxiliary structures also need to be stored, so
that vectors α and X can be calculated directly on the GPU. A problem arises when combined size of these
structures exceeds available memory on the GPU, because then it is no longer possible to run DP for this
input case. To solve this problem, we had to manipulate data movement between CPU and GPU so that
data is transferred only when absolutely needed, and kept and reused on the GPU for as long as possible, in
order to reduce the penalty for needing to synchronize data on the main memory and on the GPU. Although
the performance of the code for the out-of-core approach won’t be optimal (because now there will be more
communication than initially planned for the strategy 2 approach), we wanted to show that it can be used to
solve problems that couldn’t even be solved without it when not enough memory is available, and that the
introduced overhead will still be within acceptable bounds.

Analysis of the access patterns of the structure holding all waveforms and the table containing index mapping
showed that they exhibit very good locality. Waveform structure was accessed in a way that only a small part of
it is used for some subset of N transitions (where N is significantly larger than the number of used waveforms),
while mapping table was accessed so that a single column is reused multiple times, and then wasn’t used again

9

for a long time. Because of that, if we had enough space to hold the working set of waveforms on the GPU,
and just a single column of the mapping table, we could ensure that data won’t be copied between CPU and
GPU more than necessary. In fact, for test cases we have used during development, after a part of the waveform
structure was used, it was not needed again. If that is the case, then the total amount of data transferred to
the GPU will be the same as when everything fits at once (only that now data transferring has to be done using
multiple copy operations).

We implemented software caching of the waveform structure and the mapping table in the GPU memory,
using FIFO replacement policy, so that data loaded the earliest is swapped first. One waveform or a mapping
table column is transferred to the GPU when it is needed, and reused in subsequent transitions. That allowed
us to have the number of “cache misses” equal to the total number of waveforms (meaning each one is loaded
only once because of compulsory misses). Size of the waveforms cache was an order of magnitude (or more)
smaller than the initial size of the waveform structure for our test cases, and only a single line was needed for
caching mapping table entries, which allowed us to have more space for storing of the A matrix.

The situation is a bit different with the Amatrix, because entire matrix has to be updated for each transition.
That means that we can’t make any use of caching, but instead have to resort to updating the matrix part by
part. First, a part of the matrix is transferred to the GPU, then it is updated using cuBLAS calls, and it is
returned to the main memory. This is repeated until all parts have been processed. Downside of this is that
the entire A matrix has to be transferred back and forth for each update. Because memory transfers take more
time than the computation itself, this can slow down the algorithm by at least an order of magnitude.

To overcome this problem, internal structure of the loop had to be slightly modified. Main change is that
now instead of computing one α and X vector and then using them to update the A matrix, many α and X
vectors that correspond to subsequent transitions are computed in a batch, and then used to update parts of
the A matrix, for many transitions at the time. These transformation of the computational loop don’t affect
algorithm correctness, because updates on the A matrix are linear and can be executed in any order. This is
better illustrated by the following pseudo-code:

• Initial version of the loop:

do i=1, num_trans
calculate X
calculate alpha
update_matrix(A, X, alpha)

end do

• Modified version of the loop for out-of-core execution:

batch_size = K
num_batches = num_trans / K
do i=1, num_batches

do j=1, batch_size
calculate X(j)
calculate alpha(j)

end do
for each A part

copy A_part to GPU
do j=1, batch_size

update_matrix_part(A_part , X(j), alpha(j))
end do
copy back A_part to CPU

end for each
end do

As a consequence, now the entire matrix A doesn’t have to be moved for each transition, but can instead
be transferred only once for a batch of K transitions. This can greatly reduce time spent in copying data, and
can help us get close to performance of the original algorithm if the batch size is large enough. At the same
time, with large batch size, significant space on the GPU card has to be dedicated to storing of intermediate α
and X vectors, and that space also plays a part in the memory management.

Managing memory space for all these structures might not be easy for each possible problem DP is used
to solve, but for our test cases it could be done with very good efficiency. It was done with assumption that
waveform structures and mapping vectors exhibit good access locality for input cases used with DP (this was
true for all the cases we tested during development). Our approach to divide available memory between all
these necessary structures can be summarized as:

• First analyze access patterns for waveform structure and mapping table, and allocate just enough space
for their software caches, so that entire working set can fit at once. This ensures that no unnecessary
swapping of some waveform will happen, even when it is still needed in the near future.

10

• Then we allocate space for the number of A matrices equal to the number of CUDA streams used for
cuBLAS calls. This was done to ensure that there will be enough data to fully utilize computational
capabilities of the GPU, and was selected more as an educated guess than a strict rule.

• The remaining space can then be used to store K pairs of temporary vectors.

Theoretically, if we can manage to fit temporary vectors for all transitions on the GPU, we should be able
to match the performance of the original algorithm, even when using much less space on the GPU card. The
only difference will then be that the large amount of data would be transferred using many separate calls to
copying routines, instead in a single call, but assuming that the modification for out-of-core execution will be
used for very large data sets, overhead associated with a routine call will be insignificant compared to the time
spent in actually transferring the data.

4.5. Results

Strategy 2 for porting DP code to the GPU has been tested using the DP code already supporting MPI
parallelization, with the computational loop moved to the GPU. Also, a modification of the strategy 2 where
a part of the computation is offloaded to the CPU was tested. Separate testing was done using modified input
(to create larger data structures) with the out-of-core modification, using only one GPU card, to show what
kind of a performance drop we can expect if there is not enough memory to solve the problem in-core (where
there are only 2 points of data movement – before and after the computation).

All development, verification and performance testing of the GPU strategy 2 of the DP code was done using
Curie supercomputer (specifically, Curie hybrid nodes). Each hybrid node on Curie consists of 2 Intel Westmere
processors, each having 4 processing cores running on 2.66GHz, and 2 NVIDIA Tesla M2090 graphic processing
units (GPUs).

First series of tests was performed with the MPI+GPU approach for the DP code, when the main computa-
tional loop was executed only on the GPU cards. Because each Curie node has 2 Tesla cards, when running on
more than one node, processes were spread over all nodes so that there are exactly 2 MPI processes executing
on a single node. Also because there are 2 CPU sockets, and each GPU is connected to a bus local to the socket,
each MPI process was bound to a separate socket. More details on this, and the explanation on how to control
process scheduling can be found in Curie Best Practice Guide [7].

On Figure 10 we show execution times and speedups for test cases of Argon (small test case), and Hafnium
oxide (larger production-ready input). We would like to stress that these inputs are not exactly the same as the
ones reported with strategy 1 (see Section 3.1.), because there the input was modified in order to reach at least
80% memory occupancy on the GPU. This was not done here, because the emphasis when designing strategy 2
was not just to showcase the maximum performance of the “updating A” step, but instead to address the overall
performance of the loop. Tests were conducted for configurations having from 1 to 256 MPI processes (on 1 to
128 nodes), with 1 GPU card per process. Execution time is split into initialization time (mostly reading input
files from disk, completely unrelated to GPU implementation) and computation time for create χ0 step, which
was the focus of the GPU algorithm.

It can be seen that GPU implementation of strategy 2 for DP code scales reasonably well when a larger
number of GPU cards is used in execution. For the small test case, it would be optimal to run with 16 MPI
processes (using 16 GPUs), while for the larger input, scaling is very good for up to 64 processes. Since

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 4 8 16 32 64 128 256
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

ti
m

e
 i
n
 s

e
c
o
n
d
s

s
p
e
e
d
u
p
 f
a
c
to

r

number of MPI processes

initialization
creation_chi0 execution

total execution
speedup

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 4 8 16 32 64 128 256
 0

 2

 4

 6

 8

 10

 12

 14

 16

ti
m

e
 i
n
 s

e
c
o
n
d
s

s
p
e
e
d
u
p
 f
a
c
to

r

number of MPI processes

initialization
creation_chi0 execution

total execution
speedup

(b)

Fig. 10: Performance and scaling of the GPU strategy 2 for the DP code, for 1 to 256 total GPU cards with
2 GPUs per CURIE node (time when running with 1 GPU used as a baseline for speedup): (a) Argon (small)
test case; (b) Hafnium oxide (moderate) test case.

11

computing one transition is independent from others, when the total number of transitions is divided to more
processes, time for the computation itself decreases in a linear fashion. Because of that, reasons for limitations
in scaling DP CUDA code are in other parts of the code, that are either constant or even increase as the number
of processes increase.

Time spent in DP initialization is unrelated to CUDA, and is roughly constant over the range of processes
used for testing (with the exception for 256 processes, when its increase can be easily observed), so once that
time becomes close to, or even surpasses the calculation time on the GPU cards, adding more and more card
actually does very little for the performance. Figure 10 also shows that the execution time actually stops
decreasing, as would be expected, and even increases at the end of the range. Reason for this is that the CUDA
runtime initialization time is not constant, but instead starts to increase rapidly when the number of GPU cards
used grows. This cannot be explained easily, and is probably related to the implementation of CUDA drivers.
This time is spent at the first call to any CUDA routine during the execution, and we chose to present it here
as a part of calculation time, because, as it can be seen, it is a realistic problem that can limit performance,
and should be considered when running DP over a large set of GPU cards.

To compare GPU implementation execution times with CPU execution times, we tested the same cases
for configurations with 1 to 256 MPI processes, but now without using GPU cards at all. MPI processes were
distributed using by-socket discipline, so that inside of a node, processes were bound to CPU cores alternating
between 2 sockets. On Figure 11 we report total execution times for all tests done using GPUs for computation,
total execution times for all tests done using CPUs for computation, and their ratios (CPU/GPU time).

Here we see that the expected speedup of the DP code when GPUs are used can be up to 3.5 for the smaller
test, and up to 16 for the larger one. Actual numbers are even larger when comparing execution times of the
single iteration, but since the emphasis here is on the real use-case presentation, execution times for the entire
simulation are presented. In both cases, performance ratio peaks for the case with 8 MPI processes.

The first reason for this is that when code is executed only on CPUs, 8 processes saturate the entire
node. Because CURIE node has NUMA architecture, by-socket process scheduling is used to ensure equal load-
balancing of both memory sockets. But when a node is full, memory bandwidth starts to bottleneck execution
performance a bit. Because of that, when code runs on 8 processes, it cannot be expected to be twice as fast as
in the case with 4 processes. Since GPUs do not share memory, this situation doesn’t show up when everything
is calculated on the GPU. The second reason is in the above mentioned issue with CUDA initialization time,
which reduces effectiveness of GPUs as the number of processes grows. Because this doesn’t affect CPUs, it
influences the drop in GPU code speedup when compared to the CPU.

To showcase the performance of our approach with offloading parts of the computation to CPUs, we selected
the Argon test case. It was done because the GPU performance gain ratio on that test was lower than in the
other case, which means that the performance gap between the GPU and a CPU core is not as wide. In cases like
this, it is expected that the CPU will be able to contribute more to the computation, and that load-balancing
will be closer to equal. To test the offloading, we constricted test configurations to multiples of 8 MPI processes
(to fully saturate each CURIE node). 2 CPU cores were dedicated to controlling one GPU each, and the
remaining 6 were used for computation. Weight parameter for load-balancing was selected based on previously
presented tests, and was equal to 3.6. Results of offloading performance tests are shown in Figure 12, and it
can be seen that using CPU to handle some subsets of transitions can give almost twice the computational
performance as when using only GPUs, for suitable test cases. Although, because of the already described
issues with DP initialization (IO related), and CUDA runtime initialization, overall performance gains are in

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128 256
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

ti
m

e
 i
n
 s

e
c
o
n
d
s

s
p
e
e
d
u
p
 f
a
c
to

r

number of MPI processes

total time CPU
total time GPU

CPU/GPU time ratio

(a)

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128 256
 0

 2

 4

 6

 8

 10

 12

 14

 16

ti
m

e
 i
n
 s

e
c
o
n
d
s

s
p
e
e
d
u
p
 f
a
c
to

r

number of MPI processes

total time CPU
total time GPU

CPU/GPU time ratio

(b)

Fig. 11: Performance of the GPU strategy 2 for DP code compared with the CPU only version, for 1 to 256
GPU cards (each MPI process controlling one GPU), and 1 to 256 CPU cores (each MPI process bound to a
CPU core): (a) Argon (small) test case; (b) Hafnium oxide (large) test case.

12

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 2 4 8 16 32

ti
m

e
 i
n
 s

e
c
o
n
d
s

number of nodes

computation time GPU only
total time GPU only

computation time CPU+GPU
total time CPU+GPU

Fig. 12: Performance of the CPU offload modification of the GPU strategy 2 for DP compared to initial GPU
implementation, for 1 to 32 CURIE nodes (6 CPU cores + 2 GPU cards per node for offload modification, 2
GPU cards per node for initial GPU implementation), for Argon test case.

fact not that large.
Out-of-core modification of the strategy 2 for DP code GPU implementation was tested on a single GPU

card, using slightly modified Hafnium oxide test case. Some input parameters were modified, which increased the
size of the matrix A to about 2.8 GB. About 500 MB more was needed for storing of all waveforms and mapping
tables on the GPU, so the combined size of the data structures needed slightly exceeded 3 GB. Although this is
still less than the available memory on the Tesla M2090 GPU card used for testing, this case was used because
it allowed us to compare to the original strategy 2 approach.

The amount of available GPU memory visible to the program was gradually lowered. This was done to show
how variable memory capacity available for the A matrix, and for K pairs of X and α temporary vectors used
to update A for a batch of transitions can impact the performance. Total number of transitions for this test
was 107008. Caches for the waveform structures and mapping tables used only 5 MB of GPU memory for all
tested configurations. Table 1 shows execution times for various test cases along with the memory consumption
given in total, as well as separately for the part of the A matrix and K pairs of temporary vectors:

Total GPU mem used A part mem K X and α mem Execution time (s)
3.3 GB (in-core, no caching) 2.8 GB N/A N/A 6187
4.25 GB 2.8 GB 107008 1.44 GB 6181
1.8 GB 0.4 GB 107008 1.44 GB 6184
0.92 GB 0.2 GB 53504 0.72 GB 6187
0.47 GB 0.2 GB 20000 0.27 GB 6183
0.24 GB 0.2 GB 3000 0.04 GB 6241
0.2 GB 0.2 GB 100 ∼ 0 GB 8395

Table 1: Performance of the out-of-core modification of the GPU strategy 2 for DP for modified Hafnium oxide
test case.

We have managed to come within 1% of the original performance of the strategy 2 approach using only a
fraction of the GPU memory (0.24 GB compared to 3.3 GB needed to solve the problem in-core). It can be
seen that the size of the batch K has the most influence on the execution time, because copying of the entire
A matrix happens once for each batch of transitions, and copying data to the GPU and back is much more
expensive than computation for this algorithm.

13

5. Conclusion

We have successfully ported the DP code to GPUs, with two different approaches to implementation of the
main computational loop. Using the first strategy, we have obtained a speedup of 10 to 14 times compared
to the CPU code. Moreover, one can expect even better speedup when the ratio between initialization and
computation time is high, since initialization time cannot be made to scale. From a practical point of view, the
main drawback is that the user must make sure that all the data can fit at once on GPUs. To do that, a rule of
thumb must be applied (see Section 3.1.). Moreover, to get the best possible performance, the user must ensure
that the GPU is loaded enough (target 80% memory occupancy on GPU).

When the second strategy is used, speedups of up to 16 times were observed using production-ready inputs,
and good scaling for up to 64 GPU cards was achieved. Some modifications to the original strategy were also
implemented, allowing us to use CPUs to help with the computation, and to solve problems that cannot fully
fit into GPU memory, using out-of-core approach. CPU offload for Argon case showed that on a CURIE node,
CPUs can contribute to computation almost as much as GPUs. The use of the out-of-core approach allows
solving of problems of much greater sizes, without severely impacting the performance.

Based on the analysis of these two strategies, it is recommended to use strategy 1 when we have inputs
that satisfy conditions regarding GPU memory usage, because it contains custom written kernels that employ
CUDA shared memory and give very good performance when cgerc BLAS operation is performed in a way used
in the DP code. On the other hand, strategy 2 gives better relative performance when larger inputs are used,
but its performance does not depend on the size of the data as much, and it can be used to efficiently solve very
large problems when out-of-core modification is used.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. RI-283493. The work is achieved using the PRACE
Research Infrastructure resources [Curie, France].

References

1. V. Olevano, L.Reining, F.Sottile, The DP code, http://etsf.polytechnique.fr/Software/DP

2. GNU gprof profiler,
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html

3. Scalasca performance analysis tool,
http://www.scalasca.org/

4. Precision and Performance Floating Point and IEEE 754 Compliance for NVIDIA GPUs, Whitehead
N., Fit-Florea A., Nvidia, 2011

5. Optimizing Matrix Transpose in CUDA, Ruetsch G., Micikevicius P., Nvidia, 2009

6. CUDA C Best Practice Guide, Nvidia

7. Curie Best Practice Guide,
http://www.prace-ri.eu/Best-Practice-Guide-Curie-HTML

14

