
SatTerm Project:
Vocabulary Control and Facet Analysis

help improve the Software
Requirements Elicitation Process

Ricardo Eito-Brun
Universidad Carlos III de Madrid

ISKO UK CONFERENCE
London, July 8th -9th , 2013

 Terminology management and control is a critical area in the

production of technical documents and software specifications

 Terminology control is needed to:

◦ Help authors and reviewers use a common, defined set of terms.

◦ Standardize the writing of technical documents among the writers in

the team.

◦ Ensure a common understanding with customers and partners of the

terms used in different publications.

◦ Avoid misinterpretations of potentially ambiguous terms.

Introduction
Terminology and linguistic resources
in SW Engineering

 Sample Use Case:

◦ Engineers can access terminologies when writing technical documents

to ensure the use of preferred terms in the right context.

◦ Glossaries and acronyms are added at the beginning of technical

documents to help readers understand their content.

◦ Engineering and support teams access terminologies when writing or

answering problem descriptions or ECR for searching and indexing.

◦ The elaboration and publishing of glossaries is a common practice in

major projects in the aerospace industry.

Introduction
Terminology and linguistic resources
in SW Engineering

Introduction
Terminology and linguistic resources
in SW Engineering

 Glossaries are a valid tool to support engineering tasks, but…

 As the complexity of the working processes grows and

 Knowledge Representation and Organization techniques

improve,

Additional opportunities because

better knowledge-based supporting tools are available.

How can we take advantage of them?

Introduction
Are current practices enough?

 Three main areas of improvement in Requirements Management:

 Generation of models / diagrams from requirements written in natural

language (Model Driven Design/MDD).

 Automatic Verification of requirements.

 Reuse of requirements

 But…

 We need to improve the way we represent / encode knowledge on

requirements text.

Introduction
Are current practices enough?

 SW development is a knowledge-intensive process.

 It requires the application of expert knowledge to solve the problem initially

stated by the future users of SW.

 To formulate and develop the solution it is necessary to capture and encode

knowledge about:

 The problem and its context,

 Specify, model and represent the features of the planned solution using different knowledge

representation techniques (natural language, formal or semi-formal languages, diagramming

techniques or the source code written in a specific programming language).

 SW development can be seen as a transformation process between different

artifacts that represent the knowledge captured at the different steps of the

process (MDA/MDD approach and technologies).

Introduction
Are current practices enough… for MDA?

1. Requirements

 Writen in natural language

 Document-model

2. Design document (PIM)

 Writen using a modelling language (UML)

 Diagrams that represent entities, relationships, properties.

3. Design document (PSM)

 Writen in a specific programming language (C, Java, etc.)

 Implements the items identified in the design document.

4. Source code

 Writen using a programming language (C, C++, Java)

 Derived from the PSM

5. SW Application

 Files installed on the target computer.

 Support the SW end-users activities and work processes

Introduction
Are current practices enough?

Introduction
Are current practices enough…
for Model Driven Engineering?

Yue, T., Briand, L.C. and Labiche, Y.: A systematic review of transformation approaches between user
requirements and analysis models. IN Proceedings of Requirements Engineering (2011), p. 75-99.

 Is it possible to obtain an initial model (Platform-independent model) from

a requirements specification written in natural language?

 In order to automatically generate a design model from a textual specification, the

“tagging” of the requirements text is needed to know whether the terms/words

correspond to actors, processes, objetcs, measurements, numeric values, etc.

Introduction
Are current practices enough…
for Model Driven Engineering?

 “The system executable image shall transition
to FAILED if the board slot number on the
processing bord upon which it runs does not
mach the 6.784 value”

 Entities: “system executable image”,
“processing board”, “slot in processing board”

 Agent: “system executable image”

 Propeties: “board slot::number”, “system
executable image::status”

 Actions: “transition to a specific status”

 Condition: { board slot.number < 6.784}

 Contextual information: “system executable
image runs on processing board”.

 Requirement: a verifiable statement regarding some property that a software

system has to possess.

 Requirements must fulfill some quality characteristics or attributes:

 Completeness

 Coherence

 Lack of ambiguity

 Verifiable.

 No redundant, no duplicated requirements.

 The possibility of having a “knowledge base” with statements about the

constraints and restrictions in the application domain (that is to say, the

environment where the SW will be used), would make possible the verification

of these attributes.

Introduction
Are current practices enough…
for requirements verification?

 Example:

 If the knowledge base includes statements like this one:

 “Status limit is used to ensure that a digital parameter value is one in a list of

values statically defined in the database…”

 It would be possible to identify potential errors like:

 “Parameter X is an analogue parameter with a status limit in between…”

Introduction
Are current practices enough…
for Requirements verification?

 “Knowledge reuse in software development processes” has replaced “software

reuse”.

 Traditional SW reuse has focused on the reuse of source code, and on the

creation of catalogues of software components (sometimes described by

means of faceted classifications)

 Current trends on software reuse try to achieve the reuse of intermediate

artifacts (software specifications, users requirements, design models, etc.)

generated during the SW development process.

 Requirements can be “reused”:

 To facilitate the retrieval and reuse of the specifications as an independent artifact.

 To easily identify the design and code that implements these requirements.

 Tradicional “cataloguing” of requirements may be improved with more detailed

descriptions of the requirements purpose and scope.

Introduction
Are current practices enough…
For requirements reuse?

 In order to generate models, verify automatically requirements or reuse

them, we need to improve the way we encode knowledge on

requirements.

 The information in the requirements document is recorded on statements

written in a specification language:

 Free, non-restricted natural language,

 Structured or restricted natural language,

 Semi-formal methods and

 Formal languages like VDM or Z.

How requirements represent
knowledge?

 Restricted Natural language defines rules that govern:

 the way engineers write the different types of statements (writing conventions to

represent the conditional behavior of the system)

 ensure that all the concepts used in the statements are properly defined before they are used,

 do not include more than one requirements, hypothesis of domain feature in each sentence,

 keep statements and sentences short,

 use “shall” for statements that correspond to mandatory requirements and “should” for desirable

requirements,

 avoid acronyms and terms difficult to understand,

 use examples to clarify abstracts declarations, g) include diagrams to represent complex

relationships between elements,

 avoid complex combinations of nested conditions that may lead to ambiguity, etc..

 the structure of the requirements document.

How requirements represent
knowledge?

 Durán Toro (1999) proposed and approach that combined “requirement

patterns” (R-patterns) – and linguistic patterns (L-Patterns).

 L-patterns are frequently used types of sentences that can be combined

to describe scenarios or interactions;

 L-patterns distinguish variable textual fragments that can be replaced

with the appropriate terms when writing the specification.

 When writing requirements, engineers will use a template that describe

interactions made up of different statements based on L-patterns; the

engineer must make the necessary changes in these L-patterns to

complete the description of the target interaction.

How requirements represent
knowledge? – Retrospective Analysis

 Fantechi (2002) applied NLP techniques to detect defects due to the

ambiguity of natural language in requirements documents

 Statements are analysed from the lexical, syntactical and semantic

dimensions, as all these factors may have an effect on ambiguity.

 The analysis detects sentences that may be interpreted in more than one

way and sentences with a complex structure.

 Different NLP tools were combined: QuARS, ARM y SyTwo.

How requirements represent
knowledge? – Retrospective Analysis

 Tjong (2006) proposes to reduce the problem of language ambiguity and lack of

precision by means of “language quality patterns” and “guiding rules”.

 The use of connectors like and, or, but, and/or and both usually result in ambiguous

sentences.

 He proposed:

 A set of patterns called GAND (Generic AND Pattern), GOR (Generic AND Pattern), IFFP (If and Only If

Pattern), CACP (Compound AND Condition pattern), GP (Generic Pattern), GNP (Generic Negative

Pattern), ECP (Event Condition Patterns) and TP (Time Patterns).

 15 writing rules : use positive sentences with a single verb [Rule 1], avoid passive verbs [Rule 2], avoid

terms like “either”, “whether”, “otherwise” [Rule 4], “eventually”, “at least” [Rule 5], use “at most” and

“at least” instead of “maximum” and “minimum” [Rule 6], avoid “both”, [Rule 7], “but” [Rule 8],

“and/or” [Rule 10], “not only”, “but also” [Rule 11], etc. Rules 13, 14 and 15 refer to the need of fixing

a glossary and a list of acronyms and abbreviations.

 To verify this approach, requirements documents from different domains were re-

written applying these rules and patterns.

How requirements represent
knowledge? – Retrospective Analysis

 Videira et al. (2006) presented a language for requirements specification based on

the identification of frequently used linguistic patterns.

 The rules in the language were derived from an analysis of existing specifications.

 Most of the sentences follow the pattern “subject executes and action – expressed

by a verb – that affects an object”.

 This analysis led to the development of a metamodel with:

 Actors – active resources like external systems, end users, which execute actions

on one or more entities.

 Entities – static resources affected by the operations. They have properties that

describe their status.

 Operations – these are sequences of single actions that affect the entities and

their properties.

How requirements represent
knowledge? – Retrospective Analysis

 Boyd (2007) proposed to restrict both the vocabulary and the syntax to reduce

ambiguity and complex sentences;

 Boyd presented an automatic approach and the concept of replaceability.

 Replaceability is defined as the possibility of replacing one term X with other term Y

in a particular domain.

 It is calculated from the lexical similarity and polysemy.

 The information about terms replaceability is kept in two-dimensional matrices. For

each term its Part of Speech is indicated as well as its meaning (this is an index that

points to the exact meaning of the term in the document among all the possible

meanings).

 One interesting aspect of this approach is the possibility of combining the

identification and selection of terms by engineers with this technique.

How requirements represent
knowledge? – Retrospective Analysis

 Ketabchi (2011) proposed the use of restricted natural language.

 Two steps:

 Domain analysis and modeling: based on the analysis of work
processes, activities and participants.

 Definition of the problem space.

 Business rules were gathered using structured patterns, like, for example:

Whenever <condition>

if <state> then <agent> is <deontic-operator> to <action>.

How requirements represent
knowledge? – Retrospective Analysis

 Majumdar (2011) proposes a formal syntax to write requirements using a

restricted natural language called ADV-EARS.

 To enable the automatic generation of use case diagrams from

textual requirements it is necessary to apply some control on the

requirements’ text.

 Requirements must be written following the restricted syntax, and then

an automatic analysis is done to generate syntactic trees for each

statement and to identify actors and use cases.

How requirements represent
knowledge? – Retrospective Analysis

How requirements represent
knowledge? – Retrospective Analysis

Req Type Definition in EARS Definition in ADV-EARS

UB The <system name> shall <system

response>

The <entity> shall <functionality> |

The <entity> shall <functionality> the <entity> for <functionality>

EV WHEN <optional preconditions>

<trigger> the <system name> shall

<system response>

When <optional preconditions> the <entity> shall <functionality> |

When <optional preconditions> the <entity> shall perform <functionality> | When

<entity> <functionality> the <entity> shall <functionality>

UW IF <optional preconditions> <trigger>,

THEN the <system name> shall <system

response>

IF < preconditions> THEN the <entity> shall <functionality> |

IF < preconditions> THEN the <functionality> of <functionality> shall <functionality> |

IF < preconditions> THEN the <functionality> of <functionality> shall <functionality> to

<functionality> | IF < preconditions> THEN the <functionality> of <functionality> shall

<functionality> to <functionality> and <functionality>

ST WHILE <in a specific state> the <system

name> shall <system response>

WHILE <in a specific state> the <entity> shall <functionality> |

WHILE <in a specific state> the <functionality> shall <functionality>

OP WHERE <feature is included> the

<system name> shall <system

response>

WHERE <feature is included> the <entity>shall <functionality> |

WHERE < preconditions> the <functionality> shall <functionality> | WHERE <

preconditions> the <functionality> of <functionality> shall <functionality> to

<functionality>

HY Not defined <While-in-a-specific-state> if necessary the <functionality> shall <functionality> |

<While-in-a-specificstate> if necessary the <entity> shall perform <functionality> |

<While-in-a-specific-state> if <preconditions> the <functionality> shall <functionality>

 Research has focused on the use of “linguistic patterns”, e.g. “syntactic patterns”,

combined to model “typical interactions” and use cases.

 These linguistic patterns are useful to identify actions, agents, objets, conditions and

roles, to make the transition from text to design models easier.

 The use of instruments like ontologies (or any other form of controlled vocabulary)

may improve the quality of software specifications based on linguistic patterns.

 Ontologies – shared conceptualizations of knowledge in a specific domain -, provide

a common understanding of the concepts and the relationships between them, and

can be used to “fill in the blanks” in the linguistic patterns.

 Ontologies are better than other “vocabulary control tools”, as they allow engineers

to model any kind of relationships between entities.

SatTerm Approach
Linguistic Patterns and vocabulary control

 Examples:

 “Out of range is an event packet generated when a telemetry parameter raw

value is outside of the defined callibration range”.

 This sample definition deals with:

 Entities (Classes): Event Packets, Out of Range, Telemetry parameters,

Callibration Ranges.

 Properties: Telemetry parameter::raw value.

 Specialization relationships: “Out of range” IS A “Event packet”.

 Relationsihp: parameter::raw value IN callibration range

 Actions: “packet generation”

 Events/Conditions: Action happens when something happens (e.g. specific value

is met)

SatTerm Approach
Linguistic Patterns and vocabulary control

 SatTerm is an academic research project that tries to combine the capabilities of

ontologies with constrained natural languages to support engineers in the creation of

specifications for Satellite Control software.

 SatTerm intends to combine EARS-based linguistic patterns with an ontology that

contains domain specific knowledge and vocabulary.

 The collection of terms to build this ontology has been made from a set of existing

software specifications.

 The resulting vocabulary includes around 400 terms (Monitoring, Control and

Ranging).

 With this tools, requirements’ text can be tagged to identify actors, actions, methods

and tools, objects, properties, events and constraints.

SatTerm Approach
Linguistic Patterns and vocabulary control

 AGENTS:

 Actor executing a process or requesting the execution of a task to the target
system.

 The inclusion of a specific entity within this group implies that the entity has the
capability of doing something independently.

 Components of the SW product tree can play this role.

 OBJECTS:

 Items affected by or processed (inputs, outputs) of the tasks implemented by the
target system.

 This category is divided into two sub-categories:

 Domain components: items that correspond to the reality the SW “represents”.
Usually they are the source of data (data refers to their properties)

 System components: hardware and software items that may be further
subdivided into is-part-of relationships. For example, the ground system is
composed of baseband equipment, up-converter, high power amplifier, etc.

They receive, process or provide the operational data.

 Operational data, includes the main data elements received, processed or
generated by the system, as packages, telemetry, telemetry parameters,
commands, command arguments, radiofrequency signals, alerts, messages,
etc.

SatTerm Approach
Linguistic Patterns and vocabulary control

 OBJECTS:

 These classes are further subdivided by specialization.

Example: telemetry parameters may be subdivided into acquired or derived (the
last ones are calculated taking acquired parameters as inputs) synchronous or
asynchronous, etc. Different criteria are applied to classify the objects of the
same class (e.g.: origin, need of post-processing, etc.)

 The ontology includes properties linked to classes. Properties make possible a
better description of entities.

 Properties also allow the detailed specification of the rules that govern the
behavior of the target system and the events to which the target system must
respond.

Example, telemetry parameters share properties like the raw value, last recorded
value, value obtained after interpolation, out of limit state or limit (values or
range of values that, in case of being exceeded, should raise an event to generate
an alert)

SatTerm Approach
Linguistic Patterns and vocabulary control

 PROCESSES/TASKS:

 Activity or set of activities that generates an output from an input, making some
kind of transformation or processing.

 This category includes basic task: release, encode, encrypt, execute, verify,
multiplex, archive, uplink, downlink, configure, authenticate, count, calibrate,
retransmit, convert, calibrate, receive, etc.

 Tasks are classified as datalogical (copy, store, transmit), infological (concerned
about content) and Ontologicals (new, original things are brought about)

 Tasks actuate on objects, for example, calibrate acts on telemetry parameters or
multiplex acts on commands.

 Basic tasks are combined into COMPLEX TASKS, usually following an order
(sequence, process in parallel).

Example: telemetry chain process is made up of the following sequence of tasks
(all of them executed on telemetry data): receive, packetize, archive, distribute,
de-commutate.

 A particular task is verification. Example, telemetry correctness may be verified
applying different techniques (flow id checking, frame error control check,
frame synchronization check or frame locking, synchronization work check or
spacecraft Id check).

 Verification activities usually act on other activities.

SatTerm Approach
Linguistic Patterns and vocabulary control

 PROCESSES/TASKS:

 Actions and processes are defined by means of different “object properties”:

 agent that executes them,

 Entities used as input,

 Entity, process or action on which the action is executed (inputs),

 Resulting entities (outputs),

 Agent or entity that receives the result of the action,

 Constraints (rules and instruments) to be used when executing the action,

 Pre- and Post-conditions (usually related to values of specific entity properties).

 CONSTRAINTS:

 It includes the rules and guidelines to follow when executing a process, process
step or task:

 standards for data formats and communication protocols (e.g. PCM, CORTEX, COP-1, etc.),

 data transformation methods (Gray code, reverse bits, etc.),

 calibration and verification methods (analogue calibration, digital or textual calibration,
polynomial calibration, linear discrete calibration, etc.)

SatTerm Approach
Linguistic Patterns and vocabulary control

 EVENTS:

◦ Situation that are notified to (or identified by) the target system, that require
particular attention and some kind of response.

◦ Events may be originated in the system environment (e.g. Infrared Earth Sensors
Inhibit period or Eclipse period) or in response of an anomalous state of one of
the objects monitored by the system (e.g. one telemetry parameter value is out
of range).

◦ Events represent one of the most interesting aspects for modelling, as they
establish a relation between the condition that triggers the event, and the action
to be executed in response to the event.

 TIME:

◦ Most of the aspects and data managed by these systems are time-dependent
(e.g. commands may be planned to be executed at a specific time, time
synchronization between the system components is needed, etc.).

◦ The time or period when an action – or the response to an event - has to be done
is relevant and is usually included in the specification of requirements.

 MEASURES

SatTerm Approach
Linguistic Patterns and vocabulary control

 CONCEPT TYPES AND ROLES:

◦ In the classification of the concepts, the main categories listed before have been
applied.

◦ Entities within the category OBJECTS may play different roles:

 They can be the object of an action (the action is done on then),
◦ Telemetry Packet is stored.

◦ Polynomail calibration algorithm calculates the OOL with formula…:

 They provide support the execution of an action (instrumental):
◦ Telemetry Packet is stored in satelite onboard memory.

◦ The out of limit state of the parameter is calculated using polynomial calibration
algorithm.

 They can be the target of the action:
◦ Telemetry Packet is stored in onboard memory to be processed for uplink receptor.

◦ Our analysis gives the choice of using the same concept (OBJECTS category) with
different roles. The role is determined by the place of the concept in the linguistic
pattern.

SatTerm Approach
Linguistic Patterns and vocabulary control

 The combination of controlled vocabularies with restricted syntax (linguistic
patterns) to write software requirements is a promising area in product-line based
projects.

 With an ontology that models the behavior, constraints, data and actions of a system
(product or product-line) engineers can fill or add constraints to predefined sentence
patterns (filling the blanks with terms taken from the ontology).

 Value of Actions:

◦ It is not the same: “what this requirement is about” as…

◦ “What is requesting this requirement?”

◦ Analysis of requirements content must focus on actions|verbs.

◦ Analysis must consider the context of the action: when is executed, how often,
input data, output data, input format, output format, constraints, tools, agents,…

 These approaches ensure consistency in the specifications and give engineers an
overview of the main concepts supported by the system.

 Modeling requirements in a structured way allows the automated verification of
specifications and improve our capability to generate design models from text.

Conclusions

 Further verification of the ontology by third parties.

 Cover additional domain sub-areas (satellite navigation)

 Development of an XML-based editor to assist engineers when writing /
tagging requirements.

 Improvement opportunities are the need of user-friendly interfaces to
browse the ontologies and the need of reviewing the number of linguistic
patterns.

 Guidance to users to select the linguistic patterns when writing
requirements is also necessary.

 Collaboration is welcome!

Next Steps

	Slide 1: SatTerm Project: Vocabulary Control and Facet Analysis help improve the Software Requirements Elicitation Process
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

