
1

SatTerm experience: vocabulary control and facet analysis help improve the software

requirements elicitation process

Ricardo Eito-Brun

Universidad Carlos III de Madrid

Abstract

One of the most difficult steps in the software development process is moving from

requirements written in natural, uncontrolled language, to the formalisms required by the design

modelling languages. To solve this issue, practitioners should pay attention to the possibility of

applying vocabulary control and knowledge representation techniques to produce better

specifications. The use of controlled vocabularies and the modelling of the conceptual relationships

between concepts in a specific domain are expected to improve the quality of the specifications.

Vocabulary control and semantic modelling are promising tools to avoid the most frequent problems

in the requirements specification process: lack of consistency and ambiguity.

This paper provides a detailed description of the development process of an ontology used for

requirements modelling in the area of satellite control systems. The process applied is based on well-

established practices and guidelines applied for the construction of controlled vocabularies and

faceted classifications schemas. Engineers can use the ontology when writing system specifications

using predefined templates. The use of this ontology ensures the consistency of the specifications

written by different engineers improves the communication with other parties involved in the system

construction activities and sets the foundations for a semi-automated generation of models for

subsequent design activities.

1. Introduction

This paper describes an initiative to improve the elicitation of requirements in software-

intensive systems. The approach is based on the use of vocabulary control techniques to improve the

consistency of the specifications of software systems. Vocabulary control techniques help staff

working on system engineering share a common set of terms and concepts in the different phases of

the system development process. The objective of this work is to analyse how traditional vocabulary

control may help improve the requirements engineering activities: requirements capture, analysis

and verification.

Berztiss (2002, p. 121) defines requirements engineering as: “Requirements engineering can be

characterized as an iterative process of discovery and analysis, designed to produce an agreed-upon

set of clear, complete, and consistent system requirements”. Lamsweerde, (2009, p. 6) offers a

different definition as “a coordinated set of activities for exploring, evaluating, documenting,

consolidating, revising and adapting the objectives, capabilities, qualities, constraints and

assumptions that the system-to-be should meet based on problems raised by the system-as-is and

opportunities provided by new technologies”. ISO 9000:2000 and the IEEE glossary share this

definition for requirements as “Need or expectation that is stated, generally implied or obligatory”,

2

and Berztiss (2002, p. 121) defines a requirement as “a verifiable statement regarding some property

that a software system is to possess”.

As a discipline, requirements engineering is made up of the following activities (Lamsweerde,

2009, p. 30:

• Domain understanding: it consists on the study of the current system within its

organizational and technical context, to learn the environment where the problem and its causes

have been identified.

• Requirements elicitation: it focuses on the discovery of the requirements and hypothesis of

the system to be developed. This activity explores the problem space with the key participants to

acquire the necessary information about their objectives, constraints, scenarios and the desired

interactions between the new software and its environment. Requirements elicitation applies

techniques like interviews, prototyping, and analysis of existing documents and the direct

observation of the work environment.

• Assessment and agreement: during the process, it is necessary to deal with the conflicts

identified during the elicitation of the requirements.

• Specification and documentation: the agreed features of the target system needs to be

detailed, organized and documented in a requirements document where the objectives, concepts,

domain properties, responsibilities, requirements and hypothesis are explained.

• Requirements consolidation: its objective is to ensure the quality of the final specification.

The specification will be analysed and validated by the key participants. The specifications also need

to be cross-verified to identify inconsistencies before sending them to the programmers.

2. Knowledge Organization and Reuse in Software Development Processes

The term “requirements engineering” has replaced “requirements management”. Similarly,

there is a clear trend to use the term “knowledge reuse in software development processes” instead of

“software reuse”. Software development can be seen as a process that takes as an input the needs of

the users. From these initial specifications, different intermediate artefacts are created applying

different abstraction levels, to finally reach the software components and source code files that make

up the definitive solution. This is a process where new artefacts are created based on existing ones,

and different transformations are made between artefacts until the source code is ready. To do these

transformations, engineers need to complete different intellectual activities and systematically apply

a set of rules starting from artefacts with a high level of abstraction (user requirements) to the

computer-dependent source code with the lowest level of abstraction. Software development

methodologies propose the creation of different artefacts and the use of modelling techniques to

present the results of these transformations and intellectual activities and to ensure the traceability

among them.

Software development process requires the application of expert knowledge to solve the

problem initially stated by the software target users. To formulate and develop the software-based

3

solution it is necessary to capture and encode the knowledge about the problem and its context, and

to specify, model and represent the features of the potential solutions using different knowledge

representation techniques (natural language, formal or semi-formal languages, diagramming

techniques or the source code written in a specific programming language). Current trends on

software reuse try to achieve the reuse of the intermediate artefacts (software specifications, users

requirements, design models, etc.) to make the development of new software easier.

3. Requirements Modelling Techniques

The inputs of the requirements modelling process are the initial agreements on the new system

objective and features, the hypothesis about the target environment and the concepts that

characterize the domain where the software is going to be deployed. The output of the process is a

requirements document that contains all this information structured in a specific way. The

information in the requirements document is recorded on statements written in a specification

language that makes possible the communication between the key participants and end-users and

the engineering team. In an ideal situation, the specification language should support the automatic

verification of the correctness, completeness and coherence of the set of statements that make up the

specification. The specification languages in use include: free, non-restricted natural language,

structured or restricted natural language, semi-formal methods and formal languages like VDM or Z.

The main advantage of natural language is its major expressiveness due to the lack of

restrictions. It does not require any additional knowledge and does not establish any barrier between

the participants in the process. Natural language drawbacks lie on its potential ambiguity, and on

the complexity of making an automatic processing and analysis of statements, what makes the

automatic verification of the specifications extremely difficult.

Restricted natural language goes a step further and defines rules that govern: a) the way

engineers write the different types of statements and b) the structure that the requirements

document must conform to. The first set includes writing conventions and decision tables to represent

the conditional behaviour of the system. Some typical rules are summarized by Lamsweerde (2009, p.

121): a) ensure that all the concepts used in the statements are properly defined before they are used,

b) do not include more than one requirements, hypothesis of domain feature in each sentence, c) keep

statements and sentences short, d) use “shall” for statements that correspond to mandatory

requirements and “should” for desirable requirements, e) avoid acronyms and terms difficult to

understand, f) use examples to clarify abstracts declarations, g) include diagrams to represent

complex relationships between elements, h) avoid complex combinations of nested conditions that

may lead to ambiguity, etc. These simple rules may be combined with more complex syntactic and

semantic restrictions in the elaboration of statements, like the ones described in Durán Toro (1999);

Majumdar (2011) Tjong (2006) Renault (2009) Boyd (2007) Ketabchi (2011) or Fantechi (2002).

Different approaches have proposed the use of restricted natural language as a method to facilitate

the reuse and automatic verification of requirements.

A pioneer work is the one proposed by Durán Toro (1999) who proposed and approach that

combined “requirement patterns” (R-patterns) – and linguistic patterns (L-Patterns). The concept of

4

pattern used by the authors differ from the concept of pattern proposed by Lam and other authors,

who says a pattern is a set of related requirements that together implements a specific function of

the system.

R-patterns are templates made up of a set of fields or data elements that guide engineers in the

requirements elicitation process with the system’s end users. L-patterns are frequently used

sentences that can be combined to describe scenarios or interactions; L-patterns distinguish variable

textual fragments that can be replaced with the appropriate terms when writing the specification.

The textual fragments that can be replaced are called “customizable aspects of the linguistic

pattern”, and are written within the reserved characters < and >; The use of the characters { and } is

also proposed to indicate the need of choosing one option among a set of allowed values. When writing

requirements, the engineer will use a template that describe interactions made up of different

requirements based on L-patterns; the engineer must make the necessary changes in these L-

patterns to complete the description of the target interaction. Regarding the R-patterns, the

proposed templates are based in turn in those described by Alistair Cockburn to document use cases.

Having pre-defined templates to document recurrent use cases and requirements gives the choice of

reusing the work done in previous projects and to streamline the specification of the user

requirements.

Another study within this group – focused on the use of restricted natural language -, is

Fantechi (2002), where natural language processing techniques are applied to detect defects due to

natural language ambiguity in requirements documents base don use cases . Use case diagrams offer

a summary view of the system capabilities, but they do not allow specifying the behaviour of the

system, and natural language must be used to specify scenarios and extensions. Fantechi does not

describe techniques to write the specifications, but to assess their quality from a linguistic

perspective and alert engineers of potential problems and errors. A characterization of the quality of

the textual requirements is done by collecting a set of metrics that are indicators of the

expressiveness, consistency and completion of the specification. Use cases are made up of sentences

that are analysed from the lexical, syntactical and semantic dimensions, as all these factors may

have an effect on ambiguity (for example, one sentence may not be ambiguous from the syntactical

point of view, as just one single tree can be derived from it, but it may be ambiguous semantically if it

contains words with more than one meaning). The lexical analysis of the sentences is done to detect

sentences that may be interpreted in more than one way, and the syntactic assessment is done to

identify sentences with a complex structure. These analyses are done with different PLN tools:

QuARS, ARM y SyTwo.

• QUARS (Quality Analyzer for Requirements Specifications) is based on a set of indicators

that consist of terms and linguistic constructs that are representative of potential defects. QuARS

analyzed the sentences and identify the presence of words that make the document ambiguous or

complex, e.g.:

The C code shall be clearly commented

The system shall be as far as possible composed…

5

The system shall be such that… possibly without….

• ARM (Automated Requirements Measurement) is a tool developed by NASA that evaluates

the specifications by searching for terms and fragments that may potentially led to errors.

• SyTwo is a web-based tool that analyses text to verify whether the sentence fulfils the rules

of simplified English. It is an evolution of QUARS that calculates Coleman-Liau index and identifies

syntactically ambiguous sentences, like for example: “The system shall not remove faults and restore

service”.

Another approach in this line of work was described in Tjong (2006). The author proposes to

reduce the problem of the natural language ambiguity and lack of precision by means of language

quality patterns and guiding rules. Tjong reported that the use of connectors like and, or, but, and/or

and both usually result in ambiguous sentences. To avoid these situations, he proposed a set of

patterns called GAND (Generic AND Pattern), GOR (Generic AND Pattern), IFFP (If and Only If

Pattern), CACP (Compound AND Condition pattern), GP (Generic Pattern), GNP (Generic Negative

Pattern), ECP (Event Condition Patterns) and TP (Time Patterns). The last one represents

operations caused by events and conditions and requirements related to time. The guiding-rules are

combined with the linguistic patterns to reduce ambiguity. A set of fifteen rules are described, among

them: use positive sentences with a single verb [Rule 1], avoid passive verbs [Rule 2], avoid terms

like “either”, “whether”, “otherwise” [Rule 4], “eventually”, “at least” [Rule 5], use “at most” and “at

least” instead of “maximum” and “minimum” [Rule 6], avoid “both”, [Rule 7], “but” [Rule 8], “and/or”

[Rule 10], “not only”, “but also” [Rule 11], etc. Rules 13, 14 and 15 refer to the need of fixing a

glossary and a list of acronyms and abbreviations to be used in the specification of requirements. To

verify this approach, different requirements documents from different domains were analyzed and re-

written applying these rules and patterns, and the development of a tool called SREE (Systemized

Requirements Engineering Environment) was started to help the analysts write their specifications.

The requirements written using these rules could be analysed and tagged automatically to generate

diagrams and analysis models.

Videira et al. (2006) presented a language for requirements specification called ProjectIT-RSL.

This language was based on the identification of frequently used linguistic patterns. To language is

supported by the PIT-Studio/RSL tool with functions to autocomplete, annotate, display potential

errors, etc. With this tool, the engineer can write requirements documents and get alerts of potential

errors and incorrect or ambiguous sentences. The rules in the RSL specification language were

derived from an analysis of existing specifications. Most of the sentences follow the pattern “subject

executes and action – expressed by a verb – that affects an object”. Additional types of sentences may

be built by adding conditions or specifying the attributes that define an entity. This analysis led to

the development of a metamodel that included these elements: a) Actors – active resources like

external systems, end users, which execute actions on one or more entities. b) Entities – static

resources affected by the operations. They have properties that describe their status. c) Operations –

these are sequences of single actions that affect the entities and their properties. Videira remarked

the need of using a limited set of terms in the specification, and the control of the vocabulary

6

evolution by adding synonyms in a controlled way. The sentences are finally processed to generate

RDF/OWL output to further develop semantic reasoning on the specifications.

The use of restricted natural language was also the subject of the study lead by Boyd (2007)

who based his research on the Constrained Natural Languages (CNL) used in the elaboration of

technical documents. These languages restrict both the vocabulary and the syntax with the purpose

of reducing the ambiguity and keep under stability and expressiveness. Syntax constraints avoid

complex sentences; the constraints in the vocabulary are useful to remove unnecessary variations

and use only those terms with less ambiguity. Boyd remarked that the selection of the terms in

existing CNL was based on the preferences of lexicographers, and not in a detailed analysis of the

factors that may have an impact on the quality of the resulting documents. CNL are static languages

that impede the addition of additional terms to those identified in the preliminary analysis; the terms

in the CNL vocabulary are obtained from the analysis of text bases and corpus with the help of

subject experts. Boyd presented an automatic approach to restrict the vocabulary of a CNL based on

the semantic relationships between terms. To ensure the selection of the best terms (that is to say,

those with less ambiguity) the author introduced the concept of replaceability. Replaceability is based

on the lexical similarity that measures to which extent the meaning of two terms is similar with the

purpose of finding redundant terms. Boyd proposed to use the replaceability instead of the term

similarity, and limited its experiment to verbs. Replaceability is defined as the possibility of replacing

one term X with other term Y in a particular domain. It is calculated from the lexical similarity and

polysemy. A replaceability equal or greater than 1 means that a term can be replace with the other.

One term will be replaced by another one only if it is used more often in the specification or if the

polysemy (number of different meanings) is minor. The information about terms replaceability is

kept in two-dimensional matrices. For each term its Part of Speech is indicated as well as its

meaning (this is an index that points to the exact meaning of the term in the document among all the

possible meanings). One interesting aspect of this approach is the possibility of combining the

identification and selection of terms by engineers with this technique, to ensure a better selection of

terms and reduce, as much as possible, their potential ambiguity.

Renault et al., (2009a, 2009b) proposed another similar approach: PABRE, Pattern-Based

Requirements Elicitation Method. This method was designed to write requirements based on the

selection and integration of existing components or COTS (Commercial off the Shelf). PABRE was

based on the experience of the Public Research Centre Henri Tudor (CPRHT), Luxembourg, to

capitalize the knowledge acquired in past projects and to help transfer experience between projects.

Until PABRE was designed, requirements reuse was done by duplicating requirements from existing

projects, but this practice was not effective, and requirements were not normalized and they were

domain dependent. Analysts should also know about the existing requirements in order to reuse

them.

In PABRE, a catalogue of requirements patterns was made available, and new projects could

derive their own requirements from this catalogue. The requirements that appear several times, with

some variants, are considered as solutions to particular problems in a given context. Each pattern

will have a set of descriptive metadata (name, description, author, objectives, projects where it was

7

used, keywords) and a form. The form has a fixed part (this is a brief sentence written in natural

language that states what the system must do, not how to do that), and extensions that provide

additional details, constraints and complementary information to the fixed part. The extensions are

also text fragments that may have arguments or parameters, and it was possible to specify values for

these arguments and parameters. PABRE requirements patters also had dependencies and were

classified based on an schema created from the CPRHT experience. Renault mentioned that the size

of the catalogue was 48 patters identified by the analysis of existing specifications. The approach was

tested in a project to renew digital library software and in a CRM SaaS.

Ketabchi (2011) also proposed the use of restricted natural language. His concept of pattern is

based on the definition proposed by Ambler (2000): “a solution to a common problem, taking relevant

forces into account and enabling the reuse of proven techniques and strategies”. This proposal is

based on semiotics, discipline dedicated to the study of the signs and how they act on the society. One

sign is something with a meaning, like a word, sound, object or an image. The sign as an object as a

reference and there is an interpreter who interprets the sign following some guidelines or rules.

Ketabchi indicates that – as part of requirements engineering – the use of the signs and the nature of

the information that the users create, analyse, store and apply to communicate with other users

should be agreed. Ketabchi’s proposal is not the first one that relates semiotics and requirements

management: the author mentions the MITAIS domain analysis technique that establishes a

difference between the “decision space” and the “information space” as a relevant predecessor. In a

similar way, when specifying requirements it is necessary a) to develop the decision space to express

the problem to solve, and b) to set up the information space where the information needed by the

specified problem is represented. Within this theoretical framework, Ketabchi establish an approach

based on the use of problem patters linked to requirements patterns: each problem pattern identifies

the requirements needed for its resolution after applying these steps:

a) Domain analysis and modelling: based on the analysis of work processes, activities and

participants. The output of this activity is a set of problem-patterns that relates actors and activities

with business rules and process guidelines.

b) Definition of the problem space and configuration of the requirements space. The problems

are further detailed in a structured form and mapped to requirements.

These ideas were applied in the implementation of the library management software for the

University of Reading Library, supported by UML use cases and sequence diagrams. Business rules

were gathered using structured patterns, like, for example:

Whenever <condition>

if <state> then <agent> is <deontic-operator> to <action>.

Due to the importance of these rules, Ketabchi describes his approach as “norm-based”.

Majumdar (2011) proposes a formal syntax to write requirements using a restricted natural

language called ADV-EARS. The requirements written according to ADV-EARS rules could be

analysed automatically to identify actors, use cases and to generate use case diagrams. To enable the

8

automatic generation of use case diagrams from textual requirements it is necessary to apply some

control on the requirements’ text. The author uses the term “syntactic structures for requirements” to

refer to these constraints. His proposal is aligned to initiatives like the use of Simplified Technical

English, ACE (Attempt to Controlled English), ECA (Event-Condition-Action) o EARS (Easy

Approach to Requirements Syntax). In fact, ADV-EARS is an extension of EARS in which additional

syntactic structures for different types of requirements are added as well as a context free grammar

(CFC) for diagram generation. In ADV-EARS, requirements must be written following the restricted

syntax, and then an automatic analysis is done to generate syntactic trees for each statement and to

identify actors and use cases. When more than one use case is identified in a single statement, the

resulting use cases are related by means of an include relationship.

The predecessor of ADV-EARS, EARS, started from a classification of requirements into

different groups: ubiquitous or nominal, non-desired behaviour, event-driven and status-driven.

ADV-EARS added a new type called hybrid that combines the event-driven and conditional types to

support the modelling of requirements that correspond to behaviours that start in response to an

event plus a pre-condition. The syntax or set of sentence-types proposed by EARS was also extended

to “accommodate additional models of sentences”. The table below shows, for each type of

requirement, the syntax proposed in EARS and ADV-EARS:

R

eq

Type

Definition in EARS Definition in ADV-EARS

UB The <system name> shall <system

response>

The <entity> shall <functionality> |

The <entity> shall <functionality> the <entity> for

<functionality>

EV WHEN <optional preconditions>

<trigger> the <system name> shall

<system response>

When <optional preconditions> the <entity> shall

<functionality> |

When <optional preconditions> the <entity> shall perform

<functionality> | When <entity> <functionality> the <entity>

shall <functionality>

UW IF <optional preconditions>

<trigger>, THEN the <system name>

shall <system response>

IF < preconditions> THEN the <entity> shall <functionality> |

IF < preconditions> THEN the <functionality> of <functionality>

shall <functionality> |

IF < preconditions> THEN the <functionality> of <functionality>

shall <functionality> to <functionality> | IF < preconditions>

THEN the <functionality> of <functionality> shall

<functionality> to <functionality> and <functionality>

ST WHILE <in a specific state> the

<system name> shall <system

response>

WHILE <in a specific state> the <entity> shall <functionality> |

WHILE <in a specific state> the <functionality> shall

<functionality>

9

R

eq

Type

Definition in EARS Definition in ADV-EARS

OP WHERE <feature is included> the

<system name> shall <system

response>

WHERE <feature is included> the <entity>shall <functionality>

|

WHERE < preconditions> the <functionality> shall

<functionality> | WHERE < preconditions> the <functionality>

of <functionality> shall <functionality> to <functionality>

HY Not defined <While-in-a-specific-state> if necessary the <functionality> shall

<functionality> | <While-in-a-specificstate> if necessary the

<entity> shall perform <functionality> |

<While-in-a-specific-state> if <preconditions> the <functionality>

shall <functionality>

Table 1: Sample patters in EARS and ADV-EARS (Majumdar, 2011, p. 60)

4. Semantic Support to Requirements Engineering

The analysis of existing bibliography gives the opportunity to identify complementary lines of

work:

• Design of editing tools that give Access to controlled vocabularies when writing the

specifications, and that verifies the linguistic quality of the specification applying rules like those

described by Fancheti or Boyd.

• Establish methods to identify potential defects on requirements not only linked to their

syntax, but with the conceptual and semantic information they contain. The semantic coherence

within a set of requirements requires expert knowledge, and knowledge representation structures

(e.g. ontologies) may be applied not only to capture what we know, but also to identify what it is not

known and should be known by engineers working with specifications.

It is evident that the use of semantic instruments like ontologies may help improve the quality

of software specifications. Ontologies – understood as a shared conceptualization of knowledge in a

specific domain -, are key components in knowledge representation and sharing policies, and they

provide a common understanding of the concepts and the relationships between the concepts used by

end-users and engineering teams.

SatTerm is an academic research project that tries to combine the capabilities of ontologies

with restricted natural languages to support engineers in the creation of requirements specifications

for a specific domain: Satellite Control and Navigation software. SatTerm combines a predefined set

of linguistic patterns (e.g. types of sentences) and an ontology that encodes domain specific

knowledge. The generation of analysis models from textual descriptions elaborated with SatTerm

would be possible, as the requirements’ text clearly distinguishes the different actors, actions,

operations, objects, properties and constraints. The transition to an analysis model is made easier, as

the ontology already identifies what it is an entity of type actor, what is an entity of type object, what

10

are the objects’ properties and which are the instruments and events the target system must deal

with.

The collection of terms to build this ontology has been made from a set of existing software

specifications. The relationships between terms, and the identification of classes and properties and

they organization in different groups based on facets have been done manually by subject experts).

The resulting vocabulary includes a total of 437 terms. Concept organization is based on the following

schema or set of facets:

AGENTS: Actor executing a process or requesting the execution of a task to the target system.

The inclusion of a specific entity within this group implies that the entity has the capability of doing

something independently. Attending to this criterion, this category may include entities that receive

the results of the execution of a process by the target system (as long as they could make something

with them).

OBJECTS: This category includes the items affected or processed (used as inputs) by the

processes and tasks implemented by the target system. They can also be outputs of processes and

tasks. This category is divided into two main sub-categories: a) system components – at different

levels of granularity -, and b) operational data. The first group includes hardware and software items

that may be further subdivided into is-part-of relationships. For example, the ground system is

composed of baseband equipment, up-converter, high power amplifier, etc. The second group,

operational data, includes the main data elements received, processed or generated by the system, as

packages, telemetry, telemetry parameters, commands, command arguments, radiofrequency signals,

alerts, messages, etc. These classes are further subdivided by specialization: telemetry parameters

for example may be subdivided into acquired or derived (the last ones are calculated taking acquired

parameters as inputs) synchronous or asynchronous, etc. Different criteria are applied to classify the

objects of the same class (e.g.: provenance, need of post-processing, etc.)

The ontology includes properties linked to classes. Properties make possible a better

description of entities and objects. They also allow the detailed specification of the rules that govern

the behaviour of the target system and the events to which the target system must respond. For

example, telemetry parameters share properties like the raw value, last recorded value, value

obtained after interpolation, out of limit state or limit (values or range of values that, in case of being

exceeded, should raise an event to generate an alert)

PROCESSES: activity or set of activities that generates an output from an input, making some

kind of transformation. This category is further decomposed into BASIC TASKS, like for example

release, encode, encrypt, execute, verify, multiplex, archive, uplink, downlink, configure,

authenticate, count, calibrate, retransmit, convert, calibrate, receive, etc. Tasks actuate on objects,

for example, calibrate acts on telemetry parameters or multiplex acts on commands. Basic tasks are

combined into COMPLEX TASKS, usually following a sequencing constraint. For example, the

telemetry chain process is made up of the following sequence of tasks (all of them executed on

telemetry data): receive, packetize, archive, distribute, de-commutate.

11

A particular class of tasks and process are those related to verification activities. Verification is

a key component in software implementations, and different types of data items, events and tasks

may be the object of verification or quality checks. For example, telemetry correctness may be verified

applying different techniques (flow id checking, frame error control check, frame synchronization

check or frame locking, synchronization work check or spacecraft Id check). For commanding there

are other verification activities: pre-transmission, uplink, execution, etc. One of the most interesting

points of verification activities is that they usually act on other activities.

Actions and processes are defined by means of different object properties: the agent that

executes them, the object, process or action on which the action is executed (inputs), the resulting

object (outputs), the agent or object that will receive the result of the action, the constraints (rules

and instruments) to be used when executing the action, pre- and post-conditions.

CONSTRAINTS: This category includes the rules and guidelines to follow when executing a

process, process step or task. Standards for data formats and communication protocols (e.g. PCM,

CORTEX, COP-1, etc.), data transformation methods (Gray code, reverse bits, etc.), calibration and

verification methods are included within this group (for example, analogue calibration, digital or

textual calibration, polynomial calibration, linear discrete calibration, etc.) Items in this category are

usually organized through specialization relationships.

EVENTS: Events are situations that are notified (or identified) by the target system, that

require particular attention and some kind of response. Events may be originated in the system

environment (e.g. Infrared Earth Sensors Inhibit period or Eclipse period) or in response of an

anomalous state of one of the objects monitored by the system (e.g. one telemetry parameter value is

out of range). Events represent one of the most interesting aspects for modelling, as they establish a

relation between the condition that triggers the event, and the action to be executed in response to

the event. The trigger condition in turn usually implies a complex relationship between different

components.

TIME: it plays a relevant role in this ontology, as most of the aspects and data managed by this

type of systems are time-related (e.g. commands may be planned to be executed at a specific time,

and time synchronization between the system components is necessary). The time or period when an

action – or the response to an event - has to be done is relevant and it is usually included in the

specification of individual requirements.

OWL (Ontology Web Language) supported by the Protégé software tool has shown effective to

model the characteristics of the controlled language aimed to support engineers when writing

requirements. For example, statements like “onboard reception UV is an uplink verification stage

that assesses that a telecommand has successfully reached the spacecraft using mechanism like

COP-1 protocol” includes concepts (ontology classes and individuals) like verify (action) verification

type (constraint or method), verification stage, operational data item (telecommand), spacecraft,

receive (action), COP-1 (constraint, protocol), that need to be modelled to represent the relationships

between them. To model that relationships it is necessary to make a distinction between the actions

to be completed, the agent in charge of their execution, the item on which the action is done, the

12

element or component that receives the output of the action and the rules that govern the execution

of the action. The action is verify, it is planned to be done by the target system (or a subcomponent),

and the object affected by the action is in turn another action, the reception of a telecommand at the

spacecraft. The possibilities that offer OWL to represent relationships between classes and

individuals by means of object properties have been applied to model these statements.

5. Conclusions

The combination of controlled vocabularies with restricted syntax to write software

requirements is a promising area in those projects based on product-lines. Having an ontology that

models the behaviour, constraints, data and actions of an existing system may be directly used to fill

the requirements using predefined sentence patterns (filling the blanks with terms taken from the

ontology). These approaches are valuable not only to ensure consistency in the specifications, but to

help engineers having an overview of the main concepts managed (or to be supported) by the reused

or by the target system and explore its constraints. Modelling requirements in a structured way also

allows the semi-automatic verification of the specifications and improve our capabilities to generate

design models from textual requirements. Improvement opportunities identified in this study are the

need of user-friendly interfaces for browsing the contents of the ontology and capturing terms and the

need of reviewing the number of patterns to include additional models and guide users in the

selection of the most appropriates.

6. Bibliography

AMBLER, Scott. Requirements Engineering Patterns: Three approaches to motivate your

developers to invest time in taking care of first things first. Dr. Dobb’s , 2000. Disponible en línea:

http://www.drdobbs.com/architect/184414612, Fecha acceso: 21/01/2012

BERZTISS, Alfs T. “Requirements Engineering”. In: Handbook of Software Engineering &

Knowledge Engineering. S. K. Chang (ed.). New Jersey etc.: World Scientific, 2002, pp. 121-143

BOYD, Stephen; ZOWGHI, Didar; GERVASI, Vincenzo. “Optimal-Constraint Lexicons for

Requirements Specifications”. IN: REFSQ 2007, Heidelberg: Springer-Verlag, 2007, p. 203–217

(LNCS 4542)

DURÁN TORO, A.; BERNÁRDEZ JIMÉNEZ, B.; RUÍZ CORTÉS, A.; TORO BONILLA, M. “A

Requirements Elicitation Approach Based in Templates and Patterns”. In: Workshop em Engenharia

de Requisitos. Buenos Aires, 1999, p. 17-29

FANTECHI, A.; GNESI, S.; LAMI, G.; MACCARI, A. “Applications of linguistic techniques for

use case analysis”. IN: Proceedings of Requirements Engineering 2002. Society Press, 2002, p. 157-

164

ISO/IEC 9126-1:2001. Software engineering -- Product quality -- Part 1: Quality model

13

KETABCHI, Shokoofeh; SANI, Navid Karimi; LIU, Kecheng. “A Norm-Based Approach

towards Requirements Pattern”. IN: 35th IEEE Annual Computer Software and Applications

Conference, 2011. DOI 10.1109/COMPSAC.2011.82

LAMSWEERDE, Axel van. Requirements Engineering: from System Goals to UML Models to

Software Specifications. New Jersey: Wiley, 2009

LAMSWEERDE, Axel van. “Requirements Engineering in the Year 00: A Research

Perspective”. IN: Software Engineering, 2000. Proceedings of the 2000 International Conference on

2000, ACM, 2000, p. 5-19

MAJUMDAR, D.; SENGUPTA, S.; KANJILAL, A.; BHATTACHARYA, S. “Automated

Requirements Modelling with Adv-EARS”. International Journal of Information Technology

Convergence and Services (IJITCS) Vol.1, No.4, 2011. DOI : 10.5121/ijitcs.2011.1406

RENAULT, Samuel; MÉNDEZ-BONILLA, Óscar; FRANCH, Xavier; QUER, Carme. “PABRE:

Pattern-Based Requirements Elicitation”. IN: IEEE Proceedings of the 3rd International Conference

on Research Challenges in Information Systems (RCIS). IEEE, 2009, P. 81 - 92

RENAULT, Samuel; MÉNDEZ-BONILLA, Óscar; FRANCH, Xavier; QUER, Carme. “A

Pattern-Based Method for Building Requirements Documents in Call-for-Tender Processes”.

International Journal of Computer Science and Applications, Vol. 6, No. 5, 2009, p. 175-202.

TJONG, Sri Fatimah; HALLAM Nasreddine; HARTLEY, Michael. “Improving the Quality of

Natural Language Requirements Specifications through Natural Language Requirements” IN:

Patterns. Proceedings of The Sixth IEEE International Conference on Computer and Information

Technology (CIT'06) 2006

VIDEIRA Carlos; FERREIRA, David; RODRIGUES DA SILVA, Alberto. “A linguistic patterns

approach for requirements specification”. Proceedings of the 32nd EUROMICRO Conference on

Software Engineering and Advanced Applications (EUROMICRO-SEAA'06) 2006

