
WARC-DL: SCALABLE WEB ARCHIVE PROCESSING FOR DEEP LEARNING
Niklas Deckers Martin Potthast

Leipzig University

PySpark
parallelize

Pickled
object stream

TensorFlow
interleave

StorageCPU cluster GPU cluster

Top: Keras
inference

......

1

WARC

3 4 5 6

Storage

Filter

FilterDecompression

FilterDecompression
WARC

2

...

Filter

FastWARC Bottom: Keras
training

Figure 1: The six steps of the WARC-DL web archive processing pipeline: Filters and the Keras training are customizable.

Introduction. Web archives have grown to petabytes. In
addition to providing invaluable background knowledge on
many social and cultural developments over the last 30 years,
they also provide vast amounts of training data for machine
learning. To benefit from recent developments in Deep
Learning, the use of web archives requires a scalable so-
lution for their processing that supports inference with and
training of neural networks. To date, there is no publicly
available library for processing web archives in this way, and
some existing applications use workarounds [1]. This paper
presents WARC-DL,1 a deep learning-enabled pipeline for
web archive processing that scales to petabytes.

Technical Setting. In many “traditional” data centers,
mass storage, CPU-bound processing, and GPU-bound pro-
cessing are separate clusters. Since the storage capacity
of the latter two does not usually match that of the former,
large web archives are traditionally processed in batches.
However, batch processing of web archives on GPU clusters
is wasteful: since web archive data is raw data, it must be
preprocessed before being passed to a GPU. This prepro-
cessing is usually CPU-bound and highly parallelizable, so
using a CPU cluster for this is desirable before streaming
the preprocessed data to the GPU cluster. In addition, the
data relevant to a particular task is usually sparse across the
archive (e.g., only certain images are needed for the train-
ing of image representations, and only certain plaintexts are
needed for argument mining), resulting in a variable data
flow after preprocessing. To optimize GPU usage, a constant
flow of data is required. WARC-DL solves both problems:
After loading web archive data from the memory cluster into
the CPU cluster for preprocessing, it streams the useful data
into the GPU cluster for interleaved processing.

Contact: <firstname>.<lastname>@uni-leipzig.de
This work was supported by the German Federal Ministry of Education
and Research (BMBF, 01IS18026B) by funding the competence center
for Big Data and AI “ScaDS.AI” Dresden/Leipzig.

1 https://github.com/chatnoir-eu/chatnoir-warc-dl

Web Archive Processing Pipeline. Figure 1 provides an
overview of the six-step pipeline implemented by WARC-
DL: (1) WARC files2 are distributed to the CPU workers
using PySpark. (2) FastWARC [2]3 is used to decompress
and iterate the records. The records can optionally be fil-
tered and CPU-bound preprocessing like feature extraction
or tokenization can be performed. (3) Pickled record streams
are sent to the GPU Cluster via TCP. (4) The streams are
converted into TensorFlow datasets and interleaved. (5) One
option is to use a pre-trained Keras model to batch process
the samples. The results are filtered and stored, including
the original data extracted from the WARC datasets. (6) Al-
ternatively, the samples can be used to train a Keras model
after an optional filtering step, e.g., for duplicate removal.
The filtering in (2) and (6) implements a basic MapReduce.

The preprocessing steps and the pre-trained models used
are fully customizable (an extension to frameworks other
than TensorFlow is planned). The pipeline enables extraction
of data from multiple modalities, including text for language
models and images for computer vision models. It also
supports the simultaneous extraction of linked web archive
records, such as the text of a web page and the image that was
originally linked on the page. This should enable efficient
multimodal learning, where the pipeline transparently solves
the problem of matching an image with its associated text.
To optimize the ratio of allocated CPU to GPU resources
depending on the model, a profiling method based on the
TensorFlow Profiler is provided.

REFERENCES
[1] H. Yang, L. Liu, I. Milligan, N. Ruest, and J. Lin, “Scalable

content-based analysis of images in web archives with tensor-
flow and the archives unleashed toolkit,” in JCDL 2019.

[2] J. Bevendorff, M. Potthast, and B. Stein, “Fastwarc: Optimizing
large-scale web archive analytics,” in OSSYM 2021.

2 https://www.iso.org/standard/68004.html
3 https://github.com/chatnoir-eu/chatnoir-resiliparse

https://doi.org/10.5281/zenodo.8309761

https://github.com/chatnoir-eu/chatnoir-warc-dl
https://www.iso.org/standard/68004.html
https://github.com/chatnoir-eu/chatnoir-resiliparse

