

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Performance Portability of OpenCL

with Application to Neural Networks

Jan Christian Meyera* and Benjamin Adric Dunnb
a High Performance Computing Section, IT Dept., NTNU

b Faculty of Medicine, Kavli Institute for Systems Neuroscience / Centre for Neural Computation, NTNU

Abstract

This whitepaper investigates the parallel performance of a sample application that implements an approximate
expectation-maximization method for inferring the network structure and time varying states of a hidden
population within the framework of the kinetic Ising model. The size of networks that can yield informative
results can be made arbitrarily large, and the long-running computational demand is highly localized, making the
application a strong candidate for future exascale platforms.
Previous investigations using OpenMP on the Intel Xeon Phi architecture have suggested that the class of
accelerator unit may play a significant part in attainable application performance. An OpenCL parallelization
enables experiments with a variety of accelerator units. We examine how this programming model affects the
performance of a portable implementation, and use it to compare accelerator technologies in terms of their
suitability for future extreme-scale computations.

1. Introduction

Selecting an appropriate node architecture is essential to enable applications for extreme scale computing. This
whitepaper studies the performance portability of the OpenCL programming model at the heterogeneous node
level, with focus on evaluating performance using a model program which emulates the workload of a neural
network application. Specifically, we implement an approximate expectation-maximization method for inferring
the network structure and time varying states of a hidden population within the framework of the kinetic Ising
model.

In neural computational research, the problem of estimating structures of hidden neural networks based on
limited experimental data admits a wide range of computational techniques. From statistical physics, the kinetic
Ising model presents an efficient, highly parallel method to analyse non-equilibrium systems. The utility of this
model is related both to the size of network that can be represented, and the time required to infer its structure.
Thus, the highly parallel nature of the problem makes it an attractive candidate for exascale computations, both
in terms of access to greater memory resources, and obtaining results within a reasonable time frame. In a
previous study, we investigated a proof-of-concept adaptation of this method to Intel Xeon Phi accelerators using
OpenMP[1], and while we found that the computation scaled well with increasing thread counts, absolute
performance was not competitive with that of conventional multi-core processors.

On the path toward applying the method to exascale problems, a key component of exploiting the inherent
parallelism in the computation is to develop methods to evaluate candidate node architectures in terms of their

a* Corresponding author. E-mail address: Jan.Christian.Meyer@ntnu.no

2

application-specific performance. The OpenCL programming model [2] is suitable for this purpose, as it offers
portability across a range of accelerator architectures, thereby reducing the need to produce highly customized
tests for each candidate system.

We present experiments from three different heterogeneous node architectures with variable fitness for the task,
and evaluate their applicability. Our method and findings are relevant to communities involved in systems
benchmarking and dimensioning, such as the Performance optimization and Productivity (PoP) Centre of
Excellence.

2. Model Problem

To investigate how the computational requirements of the problem interact with target architectures without
imposing the constraints of particular problem data, we construct a model program with deterministic behaviour,
and parameterize it with respect to the dimensions of the input data.

2.1. Program State Representation

Program state is encoded in a set of matrices representing a set of matrices dimensioned according to three
problem specific parameters, K, N, and M, as shown in Figure 1.

Figure 1. Data structure in dimensions K, N and M.

The four KxPxP, KxPxM, KxMxP and KxMxM submatrices are stored separately, and extruded along a fourth
axis T, which can be expected to far exceed the other dimensions, and is modelled to have an exponential
magnitude relative to the other dimensions, as shown in Figure 2.

3

Figure 2. Regions extruded along T dimension. Note that the K dimension is collapsed for clarity.

The program predominantly operates by combining variables which represent various projections of this space,
12 of them proportional to KN2, 3 proportional to KTN2, and 13 proportional to NT. Sequential dependencies
occur between element-wise combinations of these, with the exception of dependencies along the T axis that
require a neighbourhood of K+1 points in both positive and negative directions. An example of one of the KTN2
operations is presented below, displaying how the core computation consists of independent arithmetic
combinations. The sole exception to this pattern is NT hyperbolic tangent values.

 for (int64_t k=0; k<K; k++)

 for (int64_t t=k; t<T; t++)

 for (int64_t y=0; y<(N-M); y++)

 for (int64_t x=0; x<M; x++)

 Ho(y,t) += JouI(k,y,x) * (real_t)Mu(x,t-k);

This suggests that interference and synchronization requirements are minimal when parallelizing the
computation, and the T axis is targeted for parallel execution as it admits the greatest task granularity. Such a
partitioning over distributed memory would require 1-dimensional periodic border exchanges of 20 constant
areas at most proportional to KN2.

Apart from these frequent element-wise operations, two less frequent reductions in the T direction are required.
These can be predicted to introduce an overhead which grows logarithmically with the number of
communicating nodes, and thus, represent the asymptotic limit to scalability. To maximize potential problem
scale, we will focus on identifying partition sizes to optimize computational throughput per node in a strong
scaling scenario. Therefore, we treat the problem dimensions as independent variables, and investigate
performance characteristics as functions of the parameter space, providing approximate ranges for how specific
problem data maps onto differing hardware architectures.

2.2. Initial Data Distribution

Arbitrary size input data is emulated using pseudo-random numbers with a Gaussian distribution. This ensures
that the numerical results will not destabilize the computation and affect performance by floating point
exceptions or related artefacts. The random number generator was seeded using a constant for correctness testing
purposes, as this produces a deterministic, repeatable state at any point throughout the computation.

Because we require consistent testing across different programming paradigms and platforms, random number
generation is manually implemented, in the form of an Xorshift pseudo-random generator 10, coupled with the
Box-Muller transform to produce normal distribution 10. This technique requires sequential execution from the
same seed value in order to produce identical sequences of values, but as this is an artificial constraint for testing
purposes, initialization cost is omitted from run time measurements.

The intention of admitting arbitrarily dimensioned input data is to carry out experiments which can treat the
problem parameters as independent variables, and thus focus on the performance characteristics of the
computing platform without regard to how well the computed results model any specific neural network of

4

interest. Our results show that the choice of programming tools that achieves highest performance is sensitive to
variations in these parameters, but in a specific, applied scenario, the data partitioning may be subject to
constraints determined by empirical data collection procedures, rather than by available computer architectures.

For the purpose of evaluating candidate node architectures for extreme scale computations, it is important to note
that our benchmarking approach must be used in conjunction with information about the specific structure of
interesting problem instances, as it indicates that neither of our tested programming models unilaterally obtains
superior performance for every problem configuration on newer architectures.

3. Methodology

3.1. General Performance Considerations

The structure of the computation can be divided in two major phases: an inner loop and an outer loop.

The inner loop consists of element-wise combinations of local matrices, and is an iteration to convergence. As
convergence criteria are ultimately data-dependent, we examine this in terms of the computation rate per
iteration rather than the absolute time to solution, and note that configurations with a better rate will accumulate
a performance advantage proportional to the convergence properties of the input data set.

The outer loop contains an update of the overall system according to the state after the inner loop, which requires
neighbourhoods along the t axis to be taken into consideration. It also measures progress by collecting statistics
on global state, requiring two global reductions. These steps are what introduce the application’s communication
requirements, and their frequency ultimately form the bottleneck to scalability.

It follows that the optimal configuration for a given data set is determined by the optimal rate of inner loop
iterations weighted by the convergence rate, and the performance of global reductions. In order to assess node
architectures with respect to scalability, we will compare their characteristics in these terms, with the expectation
that the optimal choice of node architecture will depend on the dimensions and nature of particular experiments.

3.2. OpenCL Parallelization

The fitness of a given accelerator technology is predominantly tied to the efficiency with which it can execute
the inner loop, as its computational load can be entirely hosted on the accelerator unit. The outer loop is less
frequently executed, but it was found during implementation that its two required reductions easily become a
serialization bottleneck that dominates the cost of transferring the required matrices to the host unit, using
OpenMP reduce directives, and transferring the results back to the accelerator. This hybrid approach was used in
our measurements, and is reported as a separate cost.

3.3. OpenMP Parallelization

A complete version of the program using OpenMP exclusively serves as a basis for comparison with the
OpenCL version, in order to provide a realistic picture of the trade-off between using homogeneous compute
nodes. Its data structure layout is identical to that of the OpenCL version, and parallelization is performed along
the same dimensions. It was found during development that performance is sensitive to synchronization
requirements between sockets in multi-socket systems, so each instance of the OpenMP program has been tested
with the thread count of a single chip, and pinned to its cores using process affinity masks.

3.4. Target Platforms

We investigate the effectiveness of our candidate implementations on three candidate CPU/accelerator
combinations, shown in Table 1.

Type CPU CPU cores / socket Accelerator Accelerator cores

A Intel E5-4627 8 Nvidia K6000 2880

B Intel i7-3770 8 AMD Radeon HD 7970 2048

C Intel i7-4930K 6 AMD Radeon HD 4650 320

Table 1. Evaluated node architectures.

It should be noted that these systems span a range of technology choices for the purpose of testing our method of
evaluation. Types A and B are clearly the more suitable candidates for an exascale system if only because of
their more recent architectures, but we expect further architectural developments before a large-scale installation
becomes feasible, and aim primarily to support rapid assessment of future architectures.

5

4. Results and Discussion

The test data sets in this section have been collected from runs of N=25 through N=200, in steps of 25, with
every combination of M=3 through M=12 in steps of 3, as this was sufficient to obtain clear tendencies in the
great majority of cases. Results in the figures are interleaved along the horizontal axis, with N as the major
tendency, and M the minor. Each result is a cost per iteration, averaged from a collection of 10.

4.1. Inner Loop

The parallelization of the inner loop is critical to the scalability of the application, as it has a significantly higher
trip count than the outer. For the OpenCL solution, the entire inner loop can utilize the data parallelism of the
accelerator unit, as all operations are independent combinations of individual matrix elements. Comparisons for
all node types are shown in Figure 3, Figure 4, and Figure 5.

Figure 3. Inner loop iteration times for node type A.

Figure 4. Inner loop iteration times for node type B.

6

Figure 5. Inner loop iteration times for node type C.

The most striking feature of Figs. 3, 4, and 5, is that inner loop performance of the OpenCL and OpenMP
versions is similar to within an order of magnitude, in spite of the fact that the computational work contains a far
greater number of independent operations than the available processing core counts in either case, and the
OpenCL implementation accesses between 53 and 360 times as many cores. We attribute this to the relatively
low numerical intensity of the computational kernels: apart from the hyperbolic tangent operations, the majority
amount to expressions of up to 7 unique values, with each appearing at most twice in an expression, for a ratio
only slightly more than 1 floating point operation per memory fetch operation.
It is still interesting to note that as these are costs per iteration of a frequently executed loop, small advantages
multiply with the trip count, so the fact that there are points where the OpenCL rate is slightly better than the
OpenMP one indicates that there are problem configurations where it can result in substantially shorter time to
solution. In order to verify that these slight advantages were not due to inaccurate measurements, test cases of
the 200/3 and 100/12 configurations were re-run with inner loop trip counts of 300 per outer loop iteration,
which resulted in a wall clock performance gain over the corresponding OpenMP configurations.
Finally, we can note that the type C node shows no case where OpenCL is the favorable version, and that its
accelerator unit is of an older design. Noting that memory latency sensitivity has been a concern for general-
purpose graphics processor use for a number of years, it can be expected that coming hardware generations may
shift the balance demonstrated here, which favours OpenMP in the great majority of cases.

4.2. Outer Loop

The parallelization of the outer loop encompasses reduction operations, and is thus not trivially parallel in the
same manner as the inner. The majority of these still prove to be efficiently executable on accelerator hardware;
as they aggregate sums over 2-dimensional matrices, they can be structured in two phases, with the first
aggregating sums in one direction into a temporary, linear array, and the second obtaining the overall sum. This
proved inefficient in two cases, which are discussed in the next subsection. The per-iteration costs of the outer
loop sections which were amenable to OpenCL parallelism are shown in Figure 6, Figure 7, and Figure 8.

7

Figure 6. Outer loop iteration times for node type A.

Figure 7. Outer loop iteration times for node type B.

8

Figure 8. Outer loop iteration times for node type C.

4.3. Vector Reductions

Two reductions that are carried out in the outer loop were badly suited to the two-phase scheme, as they operate
on vectors, causing a significant sequential bottleneck when run on accelerator units. The OpenCL program
handles these by copying the data to the CPU side, and using the reduction routines of the OpenMP
implementation. Figure 9, Figure 10, and Figure 11 report the costs of data transfer and reduction, in comparison
with the OpenMP version.

Figure 9. Vector reduction times for node type A.

9

Figure 10. Vector reduction times for node type B.

Figure 11. Vector reduction times for node type C.

The main point to note in Figures 9, 10, and 11 is that the transfer cost is insignificant compared to the cost of
the reduction operations, and thus, that this method has little impact on the choice of fastest implementation.
It is interesting to observe that on both node types B and C, the total time to carry out the reductions in question
is shorter than that of the full OpenMP implementation, despite the fact that the computational work is precisely
identical. This can be attributed to a locality effect: the memory space required for the vectors is a fraction of the
total memory footprint of the entire problem representation. When this is primarily hosted by the accelerator, the
working set for the reduction operations becomes smaller and denser in the CPU address space.

The memory requirements of the application are dominated by 17 matrices sized proportionally to NT,
representing the total network size and time variations, respectively. This creates a memory footprint on the
order of gigabytes already at our most modest problem configuration of 25 nodes and 106 observations. Parallel
speedup at the node level is sub-linear beyond the point where the application begins to exhibit memory bound
behaviour, but using the OpenMP implementation, we observe a consistent speedup factor 5 for 8 threads on
node type A, for a parallel efficiency of 62.5%, regardless of problem size. Distributed memory parallelization
would circumvent the memory bottleneck by increasing the aggregate memory bandwidth in proportion to the

10

number of participating nodes, and as increased network sizes can be compensated by reducing the size of each
node’s section of the T domain, we expect the limiting factor on the scale of admissible problems to be the cost
and frequency of global reductions, as dictated by the input data.

5. Conclusions

We have studied performance portability at the heterogeneous node level, by examining a range of
heterogeneous node architectures, and evaluating their suitability as components in large-scale systems for
inferring hidden network structures from time-varying samples. The portability of OpenCL programs allows us
to examine performance across a range of accelerator hardware without requiring porting work to vendor-
specific programming models. The resulting code is also performance-portable, in the sense that it exposes the
same architectural limitations on each platform. Specifically, the moderate numerical intensity of the
performance-critical inner loop of the application stresses memory latency masking, indicating that architectural
developments to address this will produce more suitable accelerator units.
Regrettably, the test platforms respond non-uniformly to changes in the dimensions of the input, making the
ideal choice of architecture a function of the specific problem instance. This implies that in order to identify the
most suitable architecture for large scale problems, it is recommended to carry out a preliminary exploration of
the parameter space similar to the one presented in this study, determine the most favorable sub-problem size per
node, and select architectures accordingly.
An interesting direction for future work will be to investigate the performance of the OpenMP port used in this
study on the Intel Knight’s Landing architecture, as its design specifically addresses the combined requirements
of a large number of cores and significant amounts of high-speed memory.

References

[1] Computational Throughput of Accelerator Units with Application to Neural Networks, http://www.prace-
ri.eu/IMG/pdf/ wp164.pdf, retrieved 12.12.2016.

[2] OpenCL – The open standard for parallel programming of heterogeneous systems,
https://www.khronos.org/opencl/, retrieved 12.12.2016.

[3] Xorshift RNGs, G.Marsaglia, Journal of Statistical Software, Vol. 8, No. 14.
[4] A Note on the Generation of Random Normal Deviates, G.E.P. Box, M.E. Muller, Annals of Mathematical

Statistics, Vol. 29, No. 2.

Acknowledgements

The authors would like to thank prof. Anne C. Elster and HPC-lab at the Dept. of Computer Science, NTNU, for
access to their AMD GPU resources.

This work was financially supported by the PRACE project funded in part by the EU’s Horizon 2020 research
and innovation programme (2014-2020) under grant agreement 653838.

	Jan Christian Meyer0F * and Benjamin Adric Dunnb
	a High Performance Computing Section, IT Dept., NTNU
	b Faculty of Medicine, Kavli Institute for Systems Neuroscience / Centre for Neural Computation, NTNU
	Abstract
	References
	Acknowledgements

