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ABSTRACT 11 

In our project "Classifications and Representations for Networks: From types and 12 

characteristics to linked open data for Celtic coinages" (ClaReNet) we had image data for one 13 

of the largest Celtic coin hoards ever found: Le Câtillon II with nearly 70,000 coins. In the initial 14 

stages of our approach, the main problem was how to deal with the dataset without having 15 

any information about it. First, we separated the dataset into groups of coins of different sizes 16 

using object recognition combined with the scale contained in the images. The main approach 17 

was to treat the coins independently of the underlying classification and analyse how an 18 

unsupervised method could group them. We later evaluated our results against the table 19 

provided and produced by the expert team. In addition, we have reviewed these expert 20 

classifications to improve them and provide a quality check, but also to get a better 21 

understanding of how the experts classify the coins, especially for those in poor condition. 22 

Additionally, we  took a closer look at a single class and tried to identify coins fstruck with the 23 

different dies used. The phases of our work have been presented at CAA 2022 in Oxford and 24 

at CAA 2023 in Amsterdam. 25 
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Introduction 29 

In our Classifications and Representations for Networks (ClaReNet) project, we are exploring and 30 

evaluating computer-based methods applied to three different Celtic coin series. One of them is the staters 31 

attributed to the Coriosolitae in the hoard of Le Câtillon II found in Jersey in 2012. We are grateful to our 32 

collaboration partner Philip de Jersey and Jersey Heritage for allowing us to work on this huge dataset of 33 

120,000 images (around 60,000 per coin face).  Before the work began, Jersey Heritage invested a huge 34 

amount of labour and time (including 25 volunteers) to dismantle the hoard, take the photos and make a 35 

first identification of each coin. They also provided us with this data during the project. Our goal was to 36 

support the numismatic process, but also to show the potential of machine learning based methods. We 37 

aimed to evaluate different issues, from pre-sorting and classifying to the recognition of different dies. The 38 

main focus was on the use of unsupervised methods to also present how to approach an as yet unknown 39 

dataset, i.e. without any information other than the images themselves. Finally, we compared the results 40 

with the classification created by the Jersey team and also involved the expert into our process. This paper 41 

also presents tools, visualisations and extensions that have proven useful for the task, in communicating 42 

with the numismatists and integrating their opinion. 43 

Data 44 

The data set made available to us includes about 60,000 photos per coin face and contains various coins 45 

including staters, quarter staters and petit billions. In addition to the coins, the photos mostly include a 46 

scale and further information such as the assigned identification number (ID) or occasionally the assigned 47 

class. Both the coins and the photos are of mixed quality: there are broken, worn and corroded coins, as 48 

well as blurred, overexposed and underexposed photos (fig. 1). We focused on the staters, as they 49 

represent the largest part of the hoard (about 50,000) and their research is also more advanced. The staters 50 

are generally divided into six classes (I to VI, Appendix 1), which were originally formed on the basis of the 51 

obverse, or ‘heads’ face(Colbert de Beaulieu 1957), therefore we concentrated our work on the obverse 52 

too. The information we had to evaluate the process is:  53 

• Staters have an average diameter of about 22 mm, quarter staters and petit billions about 13 54 

mm.  55 

• During the project, we received a table from the expert with information about the kind of 56 

coin (stater, quarter stater, …) and the assigned class.  57 

• For one class of the staters (VI ~ 1300 images) there is an unpublished die study.  58 

 59 

 60 

Figure 1 - Variation of the photos and conditions of the coins. (Photos: Jersey Heritage) 61 



Overview of the pipeline 62 

With the intention of extracting and analysing the staters, we followed a divide and conquer 63 

methodology. It aims at sequentially dividing the dataset into smaller batches in order to analyse each one 64 

more efficiently. Our pipeline thus includes the following steps: 65 

 66 

1. Object Detection - For the rest of the process, the focus should be on the coin image, therefore 67 

the     images need to be cropped. At the same time the size can be calculated by detecting of the 68 

scale, which allows a first sorting. 69 

 70 

2. Unsupervised learning - In order to use only the images as input, methods were used that do 71 

not require any further domain knowledge. This step of the pipeline was repeated to extract 72 

groups of high similarity and with the goal of identifying groups similar to the expert’s 73 

classification, while removing corroded and worn coins to eliminate the bias they can cause. 74 

 75 

From here, the pipeline splits into two paths.  76 

 77 

3a. Supervised learning - The result of step two was checked against the classification of the expert 78 

team and a classification model was trained to reassign the coins from the other batches. The 79 

domain expert was also involved in the process. 80 

 81 

3b. In addition to sorting by class, methods for recognising and sorting by different matrices were 82 

tested. In this case, only the images of one class were used. 83 

Object Detection 84 

As already mentioned, the quality of the photos varies, but the format of the photos was consistent. 85 

For most of the photos four areas could be defined, although the last two may be missing: the assigned ID, 86 

the coin, the scale and the class (rare). For us, the coin and the scale were relevant, while the ID can be 87 

retrieved via the file name and the class was available in the spreadsheet provided by the expert and could 88 

be found via the ID (fig.  2). 89 

 90 
Figure 2 - The positions of the defined areas are consistent overall. (Photo: Jersey Heritage) 91 



The implementation was done in a supervised process in which two classes, coin and scale, were 92 

defined, and a training and a test dataset were created. The position of the two objects on the images was 93 

consistent and the scale was also a less complex target due to its representation as a simple black box. This 94 

led us to select a relatively small data set in relation to the total number. 100 images were chosen as 95 

training data and 25 as test data; the images were chosen on a more random basis, but it was also 96 

important to cover observations such as small and large coins as well as broken coins. Annotation of the 97 

data was done using the open source tool labelImg (Tzutalin 2015). The evaluation of the test dataset after 98 

training gives a mean average precision of 95%. The evaluation for the whole dataset could not be given as 99 

a percentage, but by calculating the size of the coins it was possible to identify outliers and thus improve 100 

the procedure in a targeted way. In addition to the outliers detected by size, we manually re-measured 10 101 

coins to get a feeling for the quality of the result, which turned out to be very accurate. Finally, we cropped 102 

the images and verified whether the coin is still completely displayed. Although 100 coins was only a small 103 

sample, it did prove that this number of images was sufficient for the task.  An overall evaluation would 104 

require the annotation of all data, which is time-consuming and not essential for the further process. For 105 

the implementation, we used Tensorflow's Object Detection API1 and its Model Zoo2 in order to select a 106 

model architecture. We have not attempted to evaluate different architectures against each other in this 107 

paper. However, for our task we finally decided to use the CenterNet Hourglass104 512x512 by Duan et al. 108 

(2019) because it had a good 109 

balance between time and 110 

accuracy. In the Model Zoo, 111 

benchmarks are given that have 112 

been calculated on the COCO 113 

dataset3, such as the mean 114 

average precision. These can be 115 

used as a guide when deciding on 116 

such an architecture.  117 

 118 

Once the model had been 119 

trained and tested, it was applied 120 

to the entire dataset. In the same 121 

prediction step, each image was 122 

cropped and the size was 123 

calculated. An optimal prediction 124 

is shown in Figure 3. The size 125 

calculation focuses on sorting the 126 

data set, not on an exact 127 

calculation of a minimum and 128 

maximum diameter. Therefore, we decided to take only two measurements: the width and height of the 129 

detected coin bounding box, dividing these two values by the width of the detected bounding box of the 130 

scale, which gives the value in centimetres. The cases where the size differed greatly from the others, and 131 

was therefore to be classified as an outlier, were considered separately. Figure 4 shows such a case. There 132 

are several reasons that could lead to an incorrect calculation. It can be seen that darker areas are classified 133 

as scale, which is not surprising when the target is a black box. In figure 4 there is also an area that achieved 134 

the same percentage as the scale itself, which can cause selection problems during the calculation. To 135 

counteract such cases, these and other suitable images (e.g. images with shadows) have been annotated, 136 

thus broadening the training base. 137 

 
1 https://github.com/tensorflow/models/tree/master/research/object_detection 
2 https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md 
3 https://cocodataset.org/#home 

Figure 3 - Optimal Prediction of the model. Calculated values: height: 
2.321cm, width: 2.194cm. (Photo: Jersey Heritage. Graphic: C. Deligio, 
Big Data Lab) 

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://cocodataset.org/#home


 138 
Figure 4 - Shadowy areas can lead to a wrong prediction by the model, resulting in an incorrect size 139 
calculation. (Photo: Jersey Heritage. Graphic: C. Deligio, Big Data Lab) 140 

The calculation was made for each photo, i.e. for both sides of the coin, resulting in  four measurements 141 

for each coin. Comparing these also provides confirmation, as cases where the values are very different 142 

were examined more closely. The calculated values in centimetres can be viewed in a scatter plot in Figure 143 

4. The colour coding is as follows: Coins with a height and width deviation of more than 40% are defined 144 

as damaged and marked in black. Small coins (probably quarter staters and petit billions) are marked red 145 

and large coins (probably staters) are marked blue. Where we can separate the different groups exactly 146 

needs to be examined more closely, but the visualisation shows that there is a gap at about 1.75cm, so we 147 

have chosen this as the separation. The blue area is the focus of our work because it should contain the 148 

staters, but as we want to analyse it in more detail first, we will call this group the 'Staters?'. 149 

Figure 5 - Scatter plot of the approximated diameter. (Graphic: C. Deligio, Big Data Lab) 150 

If we look at the peaks of the two point clouds, most of the elements are at around 1.3cm and 2.2cm. 151 

These two values correspond to the information provided by the expert and thus provide the first 152 

confirmation of our process. The dataset can therefore be divided into four groups: "Staters?" (54.227 - 153 

91.29%), "Small Coins" (3.340, 5.64%), "Damaged" (97, 0.16%) and "Not Detected" (1.778, 2.91%). The 154 

latter contains photos where no scale was available or it was not detected, and therefore the calculation 155 

could not take place. 156 



Unsupervised Learning 157 

Taking our divide and conquer approach one step further, we selected the "Stater" group as the dataset 158 

for unsupervised learning. The main aim was to see if we can achieve a pre-sorting and to see how far it 159 

complies to the expert classification. Deep Learning and convolutional neural networks (CNNs) were the 160 

first choice for image classification, and a promising approach we found was the DeepCluster (Figure 6) 161 

method developed by Caron et al. (2018). This combines a convolutional neural network, which was what 162 

we wanted to use, with a clustering algorithm to train a CNN in an unsupervised manner. The idea in this 163 

approach is to use the generated clusters as pseudo-labels to train the CNN, and the extracted features in 164 

turn serve as input to the clustering algorithm. This process is then repeated for the desired number of 165 

epochs. 166 

 167 
Figure 6 - DeepCluster implements a  method of training a CNN in an unsupervised way. (Caron et 168 

al. 2018) 169 

In the Paper by Caron et al. 2018, the method was used with the two CNN architectures alexnet and 170 

VGG16. We used the architecture with VGG16, and as the clustering algorithm k-Means. Thus, the required 171 

inputs were the images and the number of desired clusters (k). The choice of k was initially a challenge, for 172 

the paper recommends a much larger k (e.g. the best results are obtained with a k 10 times larger than the 173 

actual number of classes). On the other hand, the number of expected classes is known (6), but since we 174 

wanted to analyse the dataset without using any information, we started with a k equal to 100. To measure 175 

another factor of the effectiveness of the method, for our first exercise we entered both the obverse and 176 

reverse photos to see if they would be separated. For the evaluation of the resulting clusters, we avoided 177 

the use of additional information and performed it manually. Based on this manual evaluation, the 178 

following observations were made (fig. 7): 179 

 180 

• Obverse and reverse were generally not mixed within the clusters → showing that the method 181 

is already working at a high level. 182 

• Coins in poor condition were grouped together → showing the potential to clean up the 183 

dataset for further processing. 184 

• Clusters with different levels of wear were identified. 185 

• There were mixed clusters with no common features → CNNs are complex and have been 186 

described as black boxes, so sometimes it is not clear how the results were obtained.  187 



 188 
Figure 7 - Example of clusters generated. (Photos: Jersey Heritage) 189 

Many clusters emerged that showed a strong similarity (based on our manual evaluation). Clusters with 190 

corroded and poorly preserved coins which had been identified were sorted out. This allowed us to divide 191 

the dataset into "High Quality" - clusters with a high similarity and well preserved coins - and "Low Quality" 192 

- corroded and worn coins - or also clusters with a significant mix. In order to provide another degree of 193 

certainty, we focused on the coins at the centre of the size point cloud, i.e. 2.2cm +- 0.2cm (fig. 5). In this 194 

way, we wanted to ensure that only staters were present in the dataset (fig. 8). Also, we only used the 195 

obverse images.  196 

 197 

Figure 8 - Using the divide and conquer methodology, the data set could be divided step by step into 198 
more easily analysable parts. (Graphic: C. Deligio, Big Data Lab) 199 

This new, reduced dataset (ca. 26,000 images) was now to be divided into clusters (25) once again, and 200 

when checking the results we evaluated them against the spreadsheet of the expert team. The first 201 

evaluation was to determine whether our selected dataset really did contain only staters. This could be 202 

confirmed. By comparing our results with the experts’ spreadsheet, we could also calculate exactly which 203 

classes each cluster was composed of: the result was that 18 out of 25 clusters contained at least 70% of 204 

elements of only one single assigned class (15,063 images). Within this threshold, only 8% do not 205 

correspond to an assigned class (1208 images). The evaluation of the cluster is presented in Appendix 2. 206 

One drawback was that we did not manage to find any clusters of class VI coins which, with about 1300 207 

occurrences, is by far the smallest class in the dataset. The images of class VI coins were mostly mixed into 208 



clusters of class V or sometimes IV, which is probably a result of the similarity of the classes. In total, 13,855 209 

coins (23% of the total data set) were confirmed by the comparison with the spreadsheet This data set, 210 

verified by two systems, by deep learning and the team's classification, now formed the basis for the 211 

supervised approach and verification of the coins previously excluded. 212 

From unsupervised to supervised 213 

The reduced and validated dataset was used as the basis for building a supervised, trained CNN model. 214 

As the dataset was highly unbalanced (ranging from 615 to 5317 images per class) and we could not 215 

automatically extract class VI with our method, we adapted the dataset slightly. As we did not want to lose 216 

class VI, we added the coins validated by the expert. As the unbalance was high, we rebalanced the dataset 217 

by downsampling to the smallest class. The goal was to increase the training material step by step. As a 218 

choice of CNN architecture, we started with VGG16. With the supervised model, we intended to evaluate 219 

and revise the other batches in our tree (fig.8). At the same time, we involved the domain expert, because 220 

the predictions had two outcomes: if the prediction matches the assigned one, it is basically confirmed. 221 

However, cases where the prediction differs are not automatically classified as false, but instead saved 222 

separately, to be reviewed. Confirmed coins were added to the training set so that the model constantly 223 

receives more material (fig. 9). This means we improved the model and checked the data quality at the 224 

same time. 225 

 226 

 227 
Figure 9 - The 13,855 images from the previous step were selected as the first training base (green). 228 
The 1208 wrongly selected ones as the first test set (red). The percentages are the results of the 229 
predictions on the test set. (Graphic: C. Deligio, Big Data Lab) 230 

Whether the prediction or the given class was correct had to be decided by someone with domain 231 

knowledge, and therefore we involved the domain expert. We also used this step to design a kind of 232 

experiment. We created a list of coin images with two options, prediction and original assignment, but 233 

which were masked so that the expert did not know which was which, along with the ID. The domain expert 234 

could then choose one of the options or specify a new one. Comments were also welcome as especially in 235 

the case of difficult decisions, they helped us to understand them as non-experts. In our first test set 236 

(explained in Figure 9), the model was off by 30% (328 out of 1208 images). The review by the expert for 237 

these cases could be divided into four cases:  238 

 239 

1. The assigned class was actually wrong and was improved by the model --> data quality 240 

improvement (115 cases - ~35%). 241 

2. The determination was not clear --> problematic cases (26 cases - ~8%) 242 

3. The model was wrong (175 cases - ~53% - mostly between class IV and V - 126 cases) 243 

4. Both were wrong (12 cases - ~4%) 244 

 245 



The model mainly had problems distinguishing between classes IV and V, but this phenomenon  also 246 

occurs with humans. We also distributed the list to our team (i.e. to non-experts) and asked them to fill it 247 

out. With the result that exactly these two classes also led to problems. In figure 10 we can see the 248 

evaluation of the 1208 images with the old classification (the one originally supplied) and with the expert's 249 

revised classification for these cases. The F1 metric on the revised classification increased by 10%.  This 250 

shows above all that the performance of such a model cannot be calculated exclusively on the basis of 251 

metrics if the underlying data quality is not given. 252 

 253 

Figure 10 - Same predictions, different results. Comparison between two classifications (old vs 254 
revised). (Graphic: C. Deligio, Big Data Lab) 255 

This process could now be repeated step by step for the remaining batches that had previously been 256 

sorted out. Ultimately, this could be used to improve the model and provide higher data quality. 257 

 258 

An important question we also asked ourselves was how to deal with the coins defined by us as 'low 259 

quality', or to what extent such a model can help us. Using a random sample of 20 images per class from 260 

this set, we evaluated a small case study. It was of particular interest to see if the model that had been 261 

trained on very good images can be applied here. Our case study achieves an accuracy of 47%. Figure 11 262 

shows the confusion matrix. The figure also visualises three examples with GradCam. It can be seen that 263 

correct regions (such as the hair or eye) are detected, but that there is also a bias due to the condition. The 264 

two images on the left are correctly classified by the model. Comparing the right-hand image with the 265 

images in Appendix 1, it could indeed very well be class III (based on the style of the eye). This was only a 266 

preliminary test, but it showed the importance of the ground truth, and that it can and should be 267 

questioned. It is also clear that in order to improve the model, more such material should be integrated to 268 

counteract the bias of the condition of the coins. 269 

 270 

 271 

 272 



 273 

Figure 11 - On the left is the visualisation of the prediction with the top 3, on the right is the matrix 274 
of the 120 predictions. An F1 value of 44% and an accuracy of 47% were achieved. (Photos: Jersey 275 
Heritage. Graphic: C. Deligio, Big Data Lab) 276 

Visualisations and Augmentations 277 

The involvement of the expert also led to exciting insights, e.g. that the 278 

nose area plays a central role for him when assigning the class, but the 279 

visualisations of the predictions by GradCam, for example, did not reflect 280 

this focus. In the example of the coin in figure 13 (left), the right class is 281 

indeed in the top 3, but with only a 12.8% certainty. The important 282 

features,  not always receive as much weight as desired. To address this 283 

issue and to try to incorporate the insights of the domain expert, as well as 284 

to influence the training process, we tried several augmentation methods. 285 

Two of them turned out to be particularly helpful for our case. The cutout 286 

method involves hiding parts of the image, thus leading it to pay attention 287 

to several other areas (fig. 12). The cutout can be targeted or randomised 288 

and used with a fixed seed to replicate the training. Looking at the same 289 

coin with the model trained with the cutout augmentation (fig. 13b), we can 290 

see that certain areas have a stronger weighting, especially the eye region. 291 

 292 

 293 

 294 

 295 

Figure 13 - GradCam visualisation and top 3 prediction of a model trained based on full coin (a), 296 
cutout (b), circle crop (c) images. Colour scale: blue (weak) - red (strong). On the right a visualisation 297 
with the use of XRAI (circle crop images) and cropping the top 20% area. (Photos: Jersey Heritage. 298 
Graphic: C. Deligio, Big Data Lab) 299 

Another augmentation, we simply call it the circle crop, was chosen because sometimes the edge of 300 

the coin, which can be very irregular, is focussed on and so can also cause noise. To counteract this, we 301 

Figure 12 – Cutout random parts 
of the image. (Photos: Jersey 
Heritage. Graphic: C. Deligio, Big 
Data Lab) 



applied a simple circle crop oriented on the centre of the image to remove the edges. Figure 13 (c) shows 302 

that the focus of GradCam was very much in the centre, but less weighted compared to the cutout 303 

augmentation. In both cases you can also see that the class has been correctly identified.  304 

 305 

As one can see, it is possible to direct the focus a little, and this offers the possibility of incorporating 306 

domain knowledge and to some extent also preferences. When it comes to explaining how a CNN works 307 

to a numismatic team, things can quickly get complicated. CNNs are difficult to understand due to their 308 

complexity and large number of parameters. To overcome this, there are various methods (SHAP, Lundberg 309 

and Lee 2017; LIME, Riberio et al. 2016; XRAI, Kapishnikov et al. 2019; and many more) of explanation, 310 

including visual ones, such as the GradCam method shown here. We recommend trying different methods 311 

and to communicate with the team to find a suitable one. In addition to GradCam, we also decided to use 312 

XRAI.  While GradCam expands from one point and is more coherent, XRAI is meant to be independent and 313 

more focused on the relevant features regardless of the location (Kapishnikov et al. 2019). The 314 

implementation4 used also offered the option to extract the most important features instead of displaying 315 

a heat map, which was well received by the team and could be interpreted quickly 316 

Implementing a die study 317 

For a die study we dug further into a single class in order to try to distinguish individual coin dies within 318 

it. As noted above, for one of the six classes (VI with about 1300 images) an unpublished die study was 319 

available to us in order to evaluate our applied methods. The recognition of dies brings another level of 320 

challenge for, although we are dealing with less data, the coins are very similar (same class) and there are 321 

many dies. For example, previously we had about 60,000 images with the goal of distinguishing six classes, 322 

but now we had only 1300 images with over 30 defined dies (based on the unpublished die study). For the 323 

implementation, we tested three methods against each other:  324 

 325 

1. Reapplying DeepCluster.  326 

2. Using our trained supervised model to extract features and then cluster them.  327 

3. Algorithms comparing the key points in the image, which has also been successfully used in 328 

other publications. 329 

 330 

The first two methods are similar in principle but differ in the trained CNN, in (1) it is trained from 331 

scratch using the DeepCluster algorithm, in (2) we used our trained model on the six classes and used it to 332 

extract features. (3) is a very different method to the ones used so far and will be discussed briefly here. 333 

The algorithms used are from the field of image matching. The best known are probably SIFT (Scale-334 

invariant feature transform by Lowe, 2004), and SURF (Speeded Up Robust Features by Bay et al., 2006). 335 

As the first two are patented algorithms, a popular open source alternative is ORB (Oriented FAST and 336 

rotated BRIEF by Rublee et al., 2011). Such algorithms have also been successfully applied to ancient coins 337 

in various publications (Kampel and Zaharieva 2008; Taylor 2020; Heinecke et al. 2021). For our procedure 338 

we used ORB. There are also some pre-processing steps that had a positive effect on the results in terms 339 

of reducing bias (like scratches from the usage of the coin). The images were converted to greyscale in 340 

order to avoid a colour bias. The images were also blurred and contrast adjusted (see Heinecke et al. 2021). 341 

Finally, a circle crop was applied to remove the edges of the coins and to focus only on the motif (fig. 14 342 

shows the output).  343 

 344 

 
4 https://github.com/PAIR-code/saliency 

https://github.com/PAIR-code/saliency


 345 

Figure 14 - On the left, an image with detected keypoints. On the right, an example of two supposedly 346 
identical die pieces (according to the GT) and their matches. (Photos: Jersey Heritage. Graphic: C. 347 
Deligio, Big Data Lab) 348 

The process is then as follows, the first step consists of the key point detection algorithm and matching 349 

the key points between two images. This comparison is carried out  in pairs between all images and the 350 

matches found are captured as a vector for each image (resulting in an n x n matrix). For the exact method 351 

of calculating the key points, we recommend the ORB publication (Rublee et al., 2011). 352 

 353 

The second step is the same for all three methods, the features from (1) and (2), which are also stored 354 

as a vector, and the result from (3) are all used as input to a clustering algorithm, in this case we used 355 

hierarchical clustering. We used the Orange Data Mining tool for calculating distances (based on Spearman 356 

distance metric), clustering and visualisation. Figure 15 shows the visualisation of the clustering as a 357 

dendrogram, in which we compare the result of the clustering with the existing die study of the expert. In 358 

order to evaluate the methods equally, there are now various possibilities; we decided to evaluate them 359 

all with the same distance value.  We started with the image matching method (3) and the value 0.3 360 

proved to be optimal and was also chosen for the other two methods for direct comparison. Table 361 

1 is a summary of the results that were obtained with this value. It shows the best value achieved within a 362 

cluster in terms of the number of coins from an individual die identified, the mean value of all clusters and 363 

the total number of clusters formed. 364 

 365 

 366 

https://orangedatamining.com/


Figure 15 - On the left, part of the dendrogram. On the right, an overview of a cluster successfully 367 
containing the coins of one die. (Photos: Jersey Heritage. Graphic: C. Deligio, Big Data Lab) 368 

It is noticeable that the DeepCluster method performs better with a larger amount of data and in this 369 

case struggled with the relatively high number of classes on this small amount of images. The second 370 

method, our supervised trained model, performed slightly better. The advantage was that the model 371 

already existed and no additional training time was required. The third method based on ORB worked best. 372 

Looking more closely at the results of the third method, of the 256 clusters, 208 clusters had at least 70% 373 

coins from the same die. Furthermore, 194 of them had only coins of exactly one die. The 194 cluster cover 374 

489 coins and that was 40% of the dataset considered here. 375 

Tabel 1 - To compare the methods we used the same threshold (0.3), we calculated two values to get an impression of the performance: 376 
Highest matching cluster with gt and the mean over all clusters. 377 

Method 
DeepCluster 

(k=15) 
Supervised 

model (CNN) 
Keypoint detection & 
matching (with ORB) 

Nr. of clusters at 
distance threshold (0.3) 

45 172 256 

Highest 
correspondance  

60% 75% 100% 

Mean 24% 37% 84% 

 378 

Recapitulation and outlook 379 

We started this research by treating the dataset as a case study of a new find, with no information 380 

available at the outset. With the first step of object detection, it was possible to automatically crop the 381 

images and, with the scale, calculate the size of the coins and perform some sorting, which helped to 382 

identify the staters. The next step of unsupervised learning was to see how far the dataset could be sorted 383 

or grouped, and whether it could even match the classification of the expert. By repeatedly applying the 384 

method with manual evaluation and then combining it with the size calculation, it was possible to extract 385 

a dataset containing only staters and to extract about 14,000 coins, which were correctly grouped 386 

according to the provided spreadsheet. 387 

 388 

Re-evaluating the data with a supervised method leads to an improvement in data quality and in critical 389 

cases the AI’s and the expert’s decision can be compared . It is necessary to involve the domain expert in 390 

the process. 391 

 392 

Specific additions can influence the choice of features and bring a model closer to the expert's 393 

expectations. 394 

 395 

Sometimes it is also useful to use have a look on other algorithms (in terms of complexity and computing 396 

power required), in our case image matching (ORB), especially with small datasets (many classes, high 397 

similarity of data), as is shown by the positive results of our die study and of tests presented in other 398 

publications. Selecting the right approach and algorithm is still a challenge, also for IT experts. This is partly 399 

due to the fact that each approach is also accompanied by various subtasks (e.g. different ways for 400 



preprocessing or augmentation) and possibilities for fine tuning (e.g. the number of clusters, 401 

hyperparameter settings, choosing the best loss function).  402 

 403 

The results show that semi-automatic support can be helpful in conducting sorting, classification, or even 404 

a die study. A tandem approach where domain and IT experts work closely together will probably have the 405 

best success rate. 406 
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Appendix 478 

 479 

Appendix 1 - The six classes of staters as defined by numismatists. (Photos: Jersey Heritage) 480 
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Clu

ster 
Cla

ss_I 
Clas

s_II 
Class

_III 
Clas

s_IV 
Clas

s_V 
Clas

s_VI 
Ot

her 
To

tal 
Class

_I_% 
Class_

II_% 
Class_

III_% 
Class_

IV_% 
Class_

V_% 
Class_

VI_% 
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7 
0.0 0.012 0.959 0.013 0.0 0.0 

1 0 21 646 2 0 0 6 67

5 
0.0 0.031 0.957 0.003 0.0 0.0 

2 114

0 
24 7 0 7 0 7 11

85 
0.962 0.02 0.006 0.0 0.006 0.0 

3 0 0 0 153 966 55 1 11

75 
0.0 0.0 0.0 0.13 0.822 0.047 

4 22 1120 24 0 0 0 34 12

00 
0.018 0.933 0.02 0.0 0.0 0.0 

5 2 721 7 0 0 0 8 73
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0.003 0.977 0.009 0.0 0.0 0.0 

6 3 1 2 501 802 130 20 14

59 
0.002 0.001 0.001 0.343 0.55 0.089 

7 0 0 0 6 762 197 0 96

5 
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52
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0.0 0.013 0.932 0.051 0.0 0.0 

10 13 842 2 0 5 0 18 88
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0.015 0.957 0.002 0.0 0.006 0.0 
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Appendix 2 - The result of the clustering for ~26,000 frontal images with k=25. Values above the 482 
threshold of 0.7 are shown in green. 483 


