

DOI: 10.5281/zenodo.8300481

1260 | V 1 8 . I 0 8

DESIGN OF 3-BIT CMOS WALLACE MULTIPLIER

Dr. MANGALA GOWRI S G

Associate Professor, Department of Electronics and Communication Engineering, Atria Institute of Technology,

Bengaluru. Email: Mangalag21@gmail.com

Dr. SHASHIDHAR T M

Professor, Department of Computer Science and Engineering, Acharya Institute of Technology, Bengaluru.

Email: shashilara@gmail.com

Dr. SUNITHA R

Associate Professor, Department of Electronics and Communication Engineering, Rajarajeswari College of

Engineering, Bengaluru. Email: ecesunitha2022@gmail.com

SHYLAJA V

Assistant Professor, Department of Electronics and Communication Engineering, Bangalore Institute of

Technology, Bengaluru. Email: shylajav@bit-bangalore.edu.in

Dr. GIRISH H

Associate Professor, Department of Electronics and Communication Engineering, Cambridge Institute of

Technology, Bengaluru. Email: hgirishphd@gmail.com, girish.ece@cambridge.edu.in

Abstract

A multiplier is one of the key hardware blocks in most digital and high performance systems such as FIR filters,

digital signal processors and microprocessors etc. With advances in technology, many researchers have tried and

are trying to design multipliers which offer either of the following- high speed, low power consumption , regularity

of layout and hence less area or even combination of them in multiplier. Thus making them suitable for various

high speed, low power, and compact VLSI implementations. However area and speed are two conflicting

constraints. So improving speed results always in larger areas. So here we try to find out the best trade off solution

among the both of them. Generally as we know multiplication goes in three basic steps. Partial product generation,

reduction and final stage is addition. Hence in this paper we have first tried to design different adders and compare

their speed and complexity of circuit i.e. the area occupied. And then we have designed Wallace tree multiplier

then followed by Conventional, proposed Wallace multipliers and have compared the speed and Power

consumption in both of them. While comparing the adders we found out that Ripple Carry Adder had a smaller

area while having lesser speed, in contrast to which sklansky Adders are high speed but possess a larger area.

After designing and comparing the adders we turned to multipliers. Initially we went for Parallel Multiplier and

then Wallace Tree Multiplier. In the mean time we learned that delay amount was considerably reduced when

sklansky adder were used in Wallace Tree applications.

INTRODUCTION

A Wallace multiplier is a hardware implementation of a binary multiplier, a digital circuit that

multiplies two integers. It uses a selection of full and half adders (the Wallace tree or Wallace

reduction) to sum partial products in stages until two numbers are left. Wallace multipliers

reduce as much as possible on each layer, whereas Dadda multipliers try to minimize the

required number of gates by postponing the reduction to the upper layers.

mailto:Mangalag21@gmail.com
mailto:ecesunitha2022@gmail.com
mailto:shylajav@bit-bangalore.edu.in
mailto:girish.ece@cambridge.edu.in
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Binary_multiplier
https://en.wikipedia.org/wiki/Binary_multiplier
https://en.wikipedia.org/wiki/Binary_multiplier
https://en.wikipedia.org/wiki/Binary_multiplier
https://en.wikipedia.org/wiki/Binary_multiplier
https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Dadda_multiplier
https://en.wikipedia.org/wiki/Dadda_multiplier

DOI: 10.5281/zenodo.8300481

1261 | V 1 8 . I 0 8

Wallace multipliers were devised by the Australian computer scientist Chris Wallace in 1964.

The Wallace tree has three steps:

1. Multiply each bit of one of the arguments, by each bit of the other.

2. Reduce the number of partial products to two by layers of full and half adders.

3. Group the wires in two numbers, and add them with a conventional adder.

Compared to naively adding partial products with regular adders, the benefit of the Wallace

tree is its faster speed. It has reduction layers, but each layer has only propagation delay. A

naive addition of partial products would require time. As making the partial products is and the

final addition is, the total multiplication is, not much slower than addition. From a complexity

theoretic perspective, the Wallace tree algorithm puts multiplication in the class NC1. The

downside of the Wallace tree, compared to naive addition of partial products, is its much higher

gate count.

These computations only consider gate delays and don't deal with wire delays, which can also

be very substantial. The Wallace tree can be also represented by a tree of 3/2 or 4/2 adders.

Figure 1

Ngspice

Ngspice is the open source spice simulator for electric and electronic circuits. Ngspice

implements various circuits elements, like resistors, capacitors, inductors (single or mutual),

transmission lines and a number of semiconductor devices like diodes, bipolar transistors,

MOSFETs, MESFETs, JFETs and HFETs.

Sky130 PDKs: Open source PDK

The Sky Water Open Source PDK is a collaboration between Google and Sky Water

Technology Foundry to provide a fully open source Process Design Kit and related resources,

which can be used to create manufacturable designs at Sky Water's facility

https://en.wikipedia.org/wiki/Chris_Wallace_(computer_scientist)
https://en.wikipedia.org/wiki/Chris_Wallace_(computer_scientist)
https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/NC_(complexity)
https://en.wikipedia.org/wiki/NC_(complexity)
https://en.wikipedia.org/wiki/NC_(complexity)
https://en.wikipedia.org/wiki/NC_(complexity)
https://en.wikipedia.org/wiki/Gate_delay
https://en.wikipedia.org/wiki/Gate_delay

DOI: 10.5281/zenodo.8300481

1262 | V 1 8 . I 0 8

LITERATURE SURVEY

Various types of multipliers are discussed in the literature to achieve power and performance

optimization. Column compression architecture for fast multiplication proposed by Wallace

offers a total delay which is proportional to the logarithm of the operand word length of the

multiplier. These column compression multipliers are faster than array multipliers, because

delay in an array multiplier varies linearly with the operand word length.

A unique placement strategy for reducing the stage counters in column compression

architecture was proposed by Dadda. To achieve a compact layout, Goto et al have proposed a

regularly structured tree multiplier with recurring blocks. Different methods for compressing

the bits in a Wallace tree to achieve improved column compression was proposed by Oklobdzija

and Villeger .Itoh et al have proposed a rectangular styled tree multiplier by folding to achieve

a compact layout at the expense of more complicated interconnects. . Andrea Bickerstaff et al,

have reported that Wallace multipliers have slightly more area and approximately the same

worst case delay as that of Dadda multipliers in deep submicron technologies.

Wallace tree multipliers based on adiabatic 4-2 compressors proposed by Xien Ye et al achieve

considerable amount of energy savings but with increased latency. Karthick et al have proposed

XOR-XNOR based 3:2, 4:2 and 5:2 compressors for partial product reduction in Wallace tree

multiplier. Naveen Kr. Gahlan et al have constructed a Wallace tree multiplier using 3:2, 4:2,

5:2, 6:2 and 7:2 compressors. They have reported that the propagation delay is reduced but

with slight over head in power and area. Dakupati. Ravi Sankar et al have proposed a Wallace

tree multiplier with Sklansky Adder in final stage of addition.

The fans out of some signals are high in Sklansky Adder which may account for delay penalty.

B. Ramkumar et al proposed a new design technique for Dadda multiplier by partitioning

partial products which has slight improvement in the speed, area and power for wider operand

word-lengths. Palaniappan Ramanathan et al have proposed high speed multiplier using

decomposition logic and reported that decomposition logic improves speed and parallelism

with little increase in power dissipation. The multipliers presented in the most of the existing

literatures do not offer sufficient parallelism to minimize the glitch power.

METHODOLOGY

An AND gate is a logic gate having two or more inputs and a single output. An AND gate

operates on logical multiplication rules. In this gate, if either of the inputs is low (0), then the

output is also low. If all of the inputs are high (1), then the output will also be high. An AND

gate can have any number of inputs, although 2 input and 3 input AND gates are the most

common. An AND gate may have any number of input probes but only one output probe. A

high digital signal means logically 1 and a low digital signal means logically 0.

DOI: 10.5281/zenodo.8300481

1263 | V 1 8 . I 0 8

Figure 2

Construct the "and gate" as shown in the figure below using eSim:

i. Once every step is followed perfectly open the Netlist that is generated and make the

necessary changes to add the Sky130 models ii. The Netlist generated initially is as shown

below :

Step2 Construct XOR Gate

XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate

that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate

implements an exclusive or ({\displaystyle \nleftrightarrow}\nleftrightarrow) from

mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate

is true. If both inputs are false (0/LOW) or both are true, a false output results. XOR represents

the inequality function, i.e., the output is true if the inputs are not alike otherwise the output is

false. A way to remember XOR is "must have one or the other but not both". XOR gate XOR

DOI: 10.5281/zenodo.8300481

1264 | V 1 8 . I 0 8

can also be viewed as addition modulo 2. As a result, XOR gates are used to implement binary

addition in computers. A half adder consists of an XOR gate and an AND gate. Other uses

include subtractors, comparators, and controlled inverters.

Figure: 3

i. Construct the "and gate" as shown in the figure below using eSim :

 Follow the similar steps as shown for AND Gate to implement XOR Gate and generate

subcircuit & Netlist for the same.

 Once every step is followed perfectly open the Netlist that is generated and make the

necessary changes to add the Sky130 models.

Step3 Construct Half Adder

A half adder is used to add two single-digit binary numbers and results into a two-digit output.

It is named as such because putting two half adders together with the use of an OR gate results

in a full adder. In other words, it only does half the work of a full adder. He adder works by

combining the operations of basic logic gates, with the simplest form using only a XOR and an

AND gate. This can also be converted into a circuit that only has AND, OR and NOT gates.

This is especially useful since these three simpler logic gate ICs (integrated circuits) are more

DOI: 10.5281/zenodo.8300481

1265 | V 1 8 . I 0 8

common and available than the XOR IC, though this might result in a bigger circuit since three

different chips are used instead of just one.

1 Construct the "Half Adder" as shown in the figure below using eSim:

1. Follow the similar steps as shown for AND Gate and implement Half Adder using the

subcircuits of And Gate, XOR Gate and then generate the subcircuit & Netlist for the

same.

2. Once every step is followed perfectly open the Netlist that is generated and make the

necessary changes to add the Sky130 models.

DOI: 10.5281/zenodo.8300481

1266 | V 1 8 . I 0 8

Step4 Construct Full Adder

The difference between a half-adder and a full-adder is that the full-adder has three inputs and

two outputs, whereas half adder has only two inputs and two outputs. The first two inputs are

A and B and the third input is an input carry as C-IN. When a full-adder logic is designed, you

string eight of them together to create a byte-wide adder and cascade the carry bit from one

adder to the next.

Figure 4

The output carry is designated as C-OUT and the normal output is represented as S which is

‘SUM’.

With the above full adder truth-table, the implementation of a full adder circuit can be

understood easily. The SUM ‘S’ is produced in two steps:

1. By XORing the provided inputs ‘A’ and ‘B’

2. The result of A XOR B is then XORed with the C-IN

This generates SUM and C-OUT is true only when either two of three inputs are HIGH, then

the C-OUT will be HIGH. So, we can implement a full adder circuit with the help of two half

adder circuits. Initially, the half adder will be used to add A and B to produce a partial Sum and

a second-half adder logic can be used to add C-IN to the Sum produced by the first half adder

to get the final S output.

 Construct the "Full Adder" as shown in the figure below using eSim :

DOI: 10.5281/zenodo.8300481

1267 | V 1 8 . I 0 8

 Follow the similar steps as shown for AND Gate and implement Half Adder using the

subcircuits of Half Adder, XOR Gate and then generate subcircuit & Netlist for the

same.

 Once every step is followed perfectly open the Netlist that is generated and make the

necessary changes to add the Sky130 models.

3-Bit Wallace Multiplier

 Construct the "Wallace Multiplier" as shown in the figure below using eSim :

Figure 5

DOI: 10.5281/zenodo.8300481

1268 | V 1 8 . I 0 8

 Generate a Schematic and construct the Wallace Multiplier for a 3-bit date using the

subcircuits of AND Gate, Half Adder and Full Adder & generate the Netlist for the

same.

 Once every step is followed perfectly, open the Netlist that is generated and make the

necessary changes to add the Sky130 models.

RESULTS

Type the command as shown in the figure below: Syntax for the command : [Go to the Location

of the ngspice folder] followed by typing "ngspice" (Location where the wallace3multiplier.cir

file is present)

Figure 6

Obtained Output Waveforms (Fig 7)

1 a0, a1, a2 and b0, b1, b2 waveforms obtained are :

DOI: 10.5281/zenodo.8300481

1269 | V 1 8 . I 0 8

2 z0, z1, z2, z3, z4, z5 waveforms obtained are :

DOI: 10.5281/zenodo.8300481

1270 | V 1 8 . I 0 8

CONCLUSION AND FUTURE WORK

It can be concluded that Wallace Multiplier is superior in all respect like speed, delay, area,

complexity, power consumption. However Array Multiplier requires more power consumption

and gives optimum number of components required, but delay for this multiplier is larger.

Hence for low power requirement and for less delay requirement Wallace tree multiplier is

suggested. This gives efficient algorithms or formulae for multiplication which increase the

speed of devices. Wallace multiplier is an efficient parallel multiplier .If the multiplication is

of NxN bits, then it produces N square partial product. Wallace tree multiplier or Wallace

multiplier is the most popular multiplier among the existing multipliers. Wallace multiplier is

also known for its fast speed and low power consumption. In multimedia and communication

systems, FIR filters, digital signal processor, microprocessors etc. Many current DSP

applications are targeted at portable, battery-operated systems, so that power dissipation

becomes one of the primary design constraints. DSP, Image processing architectures and

microprocessors. Fast Fourier Transform (FFT), Discrete and in Wavelet Transform (DWT)

and autocorrelation.

References

1) G. C. Ram, D. S. Rani, R. Balasaikesava and K. B. Sindhuri, "Design of delay efficient modified 16 bit

Wallace multiplier," 2016 IEEE International Conference on Recent Trends in Electronics, Information &

Communication Technology (RTEICT), Bangalore, India, 2016, pp. 1887-1891, doi:

10.1109/RTEICT.2016.7808163.

2) B. C. Devnath, S. N. Biswas and M. R. Datta, "4-bit Wallace and Dadda Multiplier design using novel hybrid

3-2 Counter," 2020 2nd International Conference on Advanced Information and Communication Technology

(ICAICT), Dhaka, Bangladesh, 2020, pp. 189-194, doi: 10.1109/ICAICT51780.2020.9333511.

3) H. Girish, T. G. Manjunat and A. C. Vikramathithan, "Detection and Alerting Animals in Forest using

Artificial Intelligence and IoT," 2022 IEEE Fourth International Conference on Advances in Electronics,

Computers and Communications (ICAECC), 2022, pp. 1-5, doi: 10.1109/ICAECC54045.2022.9716679.

4) A. Devipriya, H. Girish, V. Srinivas, N. Adi Reddy and D. Rajkiran, "RTL Design and Logic Synthesis of

Traffic Light Controller for 45nm Technology," 2022 3rd International Conference for Emerging Technology

(INCET), 2022, pp. 1-5, doi: 10.1109/INCET54531.2022.9824833.

5) S. Vaddadi, V. Srinivas, N. A. Reddy, G. H, R. D and A. Devipriya, "Factory Inventory Automation using

Industry 4.0 Technologies," 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET),

2022, pp. 734-738, doi: 10.1109/GlobConET53749.2022.9872416.

6) T G Manjunath , A C Vikramathithan , H Girish, “Analysis of Total Harmonic Distortion and implementation

of Inverter Fault Diagnosis using Artificial Neural Network”, Journal of Physics: Conference Series, Volume

2161, 1st International Conference on Artificial Intelligence, Computational Electronics and Communication

System (AICECS 2021) 28-30 October 2021, Manipal, India. https://iopscience.iop.org/issue/1742-

6596/2161/1

7) GIRISH H , “Internet of Things Based Heart Beat Rate Monitoring System”, © September 2022 | IJIRT |

Volume 6 Issue 4 | ISSN: 2349-6002 IJIRT 156592 INTERNATIONAL JOURNAL OF INNOVATIVE

RESEARCH IN TECHNOLOGY 227

8) Dr Girish H, Dr. Mangala Gowri , Dr. Keshava Murthy , Chetan Naik J, Autonomous Car Using Deep

Learning and Open CV, PAGE NO: 107-115, VOLUME 8 ISSUE 10 2022, Gradiva review journal, ISSN

DOI: 10.5281/zenodo.8300481

1271 | V 1 8 . I 0 8

NO : 0363-8057, DOI:10.37897.GRJ.2022.V8I8.22.50332

9) Girish H. "Intelligent Traffic Tracking System Using Wi-Fi ." International Journal for Scientific Research

and Development 8.12 (2021): 86-90.

10) Girish H, Shashikumar D R, “Emission monitoring system using IOT”, Dogo Rangsang Research Journal,

UGC Care Group I Journal, ISSN: 347-7180, Vol – 8 Issue-14, No.6, 2020.

11) Girish H, Shashikumar D R, “Display and misson computer software loading”, International journal of

engineering research & Technology (IJERT), ISSN: 2278-0181, Vol – 10 Issue-08, No.13, August 2020.

12) Girish H, Shashikumar D R, “A Novel Optimization Framework for Controlling Stabilization Issue in Design

Principle of FinFET based SRAM”, International Journal of Electrical and Computer Engineering (IJECE)

Vol. 9, No. 5 October 2019, pp. 4027~4034. ISSN: 2088-8708, DOI: 10.11591/ijece.v9i5.pp.4027-4034

13) Girish H, Shashikumar D R, “PAOD: a predictive approach for optimization of design in FinFET/SRAM”,

International Journal of Electrical and Computer Engineering (IJECE) Vol. 9, No. 2, April 2019, pp. 960~966.

ISSN: 2088-8708, DOI: 10.11591/ijece.v9i2.pp.960-966

14) Girish H, Shashikumar D R, “SOPA: Search Optimization Based Predictive Approach for Design

Optimization in FinFET/SRAM”, © Springer International Publishing AG, part of Springer Nature 2019

Silhavy (Ed.): CSOC 2018, AISC 764, pp. 21–29, 2019. https://doi.org/10.1007/978-3-319-91189-2_3.

15) Girish H, Shashikumar D R, “Cost-Effective Computational Modelling of Fault Tolerant Optimization of

FinFET-based SRAM Cells”, © Springer International Publishing AG 2017 R. Silhavy et al. (eds.),

Cybernetics and Mathematics Applications in Intelligent Systems, Advances in Intelligent Systems and

Computing 574, DOI 10.1007/978-3-319-57264-2_1.

16) Girish H, Shashikumar D R, “A Survey on the Performance Analysis of FinFET SRAM Cells for Different

Technologies”, International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958,

Volume-4 Issue-6, 2016.

17) Girish H, Shashikumar D R, “Insights of Performance Enhancement Techniques on FinFET-based SRAM

Cells”, Communications on Applied Electronics (CAE) – ISSN: 2394-4714, Foundation of Computer Science

FCS, New York, USA .Volume 5 – No.6, July 2016 – www.caeaccess.org

18) Girish H, Shashikumar D R, “DESIGN OF FINFET”, International Journal of Engineering Research ISSN:

2319-6890) (online), 2347-5013(print) Volume No.5 Issue: Special 5, pp: 992-1128, doi:

10.17950/ijer/v5i5/013 2016.

