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Neuromorphic smart glove

ABSTRACT: During the past few decades, a significant amount of research effort has been
dedicated toward developing skin-inspired sensors for real-time human motion monitoring Wristbending
and next-generation robotic devices. Although several flexible and wearable sensors have
been developed in the past, the need of the hour is developing accurate, reliable,
sophisticated, facile yet inexpensive flexible sensors coupled with neuromorphic systems or
spiking neural networks to encode tactile information without the need for complex digital
architectures, thus achieving true skin-like sensing with limited resources. In this work, we
propose an approach entailing carbon nanofiber—polydimethylsiloxane composite-based rggy | mulaied Neusl Respone o apping
piezoresistive sensors, coupled with spiking neural networks, to mimic skin-like sensing. '

The strain and pressure sensors have been combined with appropriately designed neural
networks to encode analog voltages to spikes to recreate bioinspired tactile sensing and
proprioception. To further validate the proprioceptive capability of the system, a gesture 000
tracking smart glove, combined with a spiking neural network, was demonstrated. Wearable

and flexible sensors with accompanying neural networks such as the ones proposed in this

work will pave the way for a future generation of skin-mimetic sensors for advanced prosthetic devices, apparel integrable smart
sensors for human motion monitoring, and human-machine interfaces.
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B INTRODUCTION the hour is to develop facile, reliable, and inexpensive skin-like
artificial sensors integrated with intelligent systems to achieve
somatosensory perception in robots and next-generation
prosthetic devices. The present challenges can be solved by
adapting a bioinspiration approach entailing a two-pronged
strategy, wherein skin-like wearable/skin-mountable sensors
could be employed to emulate the skin, and an interface
neuromorphic circuit could be used to generate spike patterns,
emulating neural firing and mimicking human sense of touch.

The sense of touch is a crucial ability in humans. The
exploration of an unknown environment heavily relies on the
usage of touch since the first instance of every child’s life.” This
sense enables the recognition of the properties of objects like
texture, shape, and softness, which are fundamental for even a
simple task like grasping a glass without breaking it. Most of
the complex somatosensory abilities observed in human beings
lie in the skin, which can be considered as a large-area pressure,
tactile, vibration, and temperature sensor. The skin is

With the recent progress in flexible electronics and the
wearable smart technology, next-generation smart prosthetic
devices are becoming a reality. These devices can recreate the
sense of touch in prosthetic limbs and create sensing
possibilities which assist toward realizing smart apparels for
real-time human vital monitoring and soft sensors for human-
machine interactions. In particular, skin-like artificial sensors
based on polymer—nanomaterial composites are widely
researched for wearable and next-generation prosthetic
applications. Various conductive nanomaterials such as carbon
black, carbon nanotubes (CNTs), graphene, Mxene, and silver
nanowires in conjunction with polymer elastomeric materials
like ecoflex, polyimide, polydimethyl siloxane (PDMS), and
polyurethane have been used for developing skin-like flexible
and stretchable sensors.'° In addition to the vast variety of
two-dimensional (2D) nanomaterials already reported in the
literature, inexpensive nanomaterials like electrospun carbon
nanofibers (CNFs) have also been employed for developing
flexible and wearable sensors.”® The electrospinning method Received:  October 18, 2021
provides a facile and cheaper alternative to cumbersome Accepted: December 20, 2021
processes like chemical vapor deposition, laser ablation, arc

deposition, chemical and mechanical exfoliation, and graphite

oxidation—reduction employed for synthesizing carbonaceous

nanomaterials like CNTs and graphene. The crucial need of
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Figure 1. (a) Schematic representation of glabrous and hairy skins with their underlying mechanosensory receptors enabling their somatosensory
ability. Reproduced with permission,'® 2013, Cell press. (b) Schematic representation of the process steps involved in fabrication of the CNE-
PDMS piezoresistive sensors. (c) Photograph of the fabricated CNF-PDMS tactile sensor. (d) Conceptual scheme of the final architecture. The
glove will be equipped with tactile sensors on the palm and on the fingertips, with a wrist bending sensor and with stretch sensors able to detect
gestures. The data will be then collected using Wheatstone bridges, converted to currents, and fed to a neural network which will use neural coding.

innervated by mechanosensory afferents which enrich its
somatosensory ability as shown by the schematic in Figure la.
For instance, the glabrous skin of the human hand is populated
by low-threshold mechanoreceptors (LTMRs) consisting of a
combination of rapid and slow-adapting LTMRs (RA/SA-
LTMRs)."” While the SA-LTMRs such as the Ruffini endings
and the Merkel cells respond to skin stretch and constant
indentation, the RA-LTMRs such as the Pacinian and Meissner
corpuscles are more sensitive to dynamic stimuli and (RA/SA-
LTMRs)."” The schematic in Figure la summarizes the
mechanoreceptors innervating the human skin. Robots should
be endowed with sensors similar to mechanoreceptors in order
to perform complicated tasks like interacting with human
beings or unknown environments. While performing simple
tasks like object grasping, important information is provided by
touch in relation to both the shape of the held object, the
position in the hand, and the force exerted by the fingers.'’
Specifically, this requires both cutaneous tactile information,
like the intensity at which the hand is pressing the object, and
haptic proprioception, like the angle of the different fingers or
the position of the hand with respect to the arm."" Therefore,
to achieve true skin-like sensing, the system should have
sensors capable of detecting pressure on the fingers and strain
at the joints and accompanying circuitry to convert the sensor

signal to neural impulses. While several biomimetic sensors for
cutaneous touch have been proposed in the literature,"™"* few
of them considered haptic proprioception and, to our
knowledge, the combination between these two is only
conceptualized.”

To pursue the combination between these two concepts, in
this work, CNF-PDMS-based piezoresistive sensors have been
coupled with neuromorphic spiking neural networks to achieve
skin-like sensing and proprioception. In this approach, models
inspired by biological neurons were used to encode oncoming
signals from the sensors and to convert them into digital pulses
(called spikes), which preserve the information in the time of
the event.'® Several studies have already used this method for
converting analog signals from tactile stimuli into spiking
activity.'”~"*'” Furthermore, the kinds of networks used in this
study are increasingly becoming popular due to their versatility
and their ability to learn.'"® For example, in object tactile
orientation detection, several networks have been proposed for
decoding the angle at which a bar is pressed using only
neurons, synapses, and learning."”*’

In the first part of the paper, the sensing element is
investigated. The recorded behavior of a bundled CNF-based
piezoresistive sensing element is fed to a simulated neuron.
The outcome of the latter is shown to encode information
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Figure 2. (a) Sensor voltage generated by different periodic pressures on the sensor. Different pressure values have been used to explore the
response of the sensor with voltages up to 1.21 V. (b) Photo of the sensor along with the sensor readout schematic. (c) Number of spikes emitted
by the connected neuron when the piezoresistor is stimulated. (d) The membrane voltage reaches 0.4 V, its value is rebased to 0 V, and a spike is
generated. (e) Correspondence between the values of the sensor voltage (encoding the pressure) and the number of spikes emitted by the sensor.

The number of spikes is calculated per 100 ms.

through spike count, similar to an approach proposed for
prosthetics application demonstrated earlier.”’ In the second
(wrist conformation) and third (gesture recognition) parts
instead, the strain sensor signals are recorded and coupled with
simulated neurons for emulating proprioception. In the case of
wrist conformation, the experiment is conducted by sampling
the bending angle of a wrist through the fabricated strain
sensor. The outcome is fed to a simulated neuron that can
encode the bending angle in spike count using the sensor’s
voltage as input. For the third case (gesture recognition), a
more complex approach has been adapted. By considering
several CNF-PDMS strain sensors placed at the finger joints,
the simulated network was able to detect specific gestures. This
was done by a first layer of neurons, connected in a one-to-one
fashion coupled with a second layer, through synapses. The
latter was able to indicate which gesture was performed. The
interplay of these two layers of neurons, along with their
synapses, formed a spiking neural network. Such a combination
of networks with flexible, wearable yet facile and inexpensive
sensors could be a key factor for future generation of smart
apparel with cutaneous and haptic abilities capable of

recreating the somatosensory perception in prosthetics and
robotic interfaces.

B RESULTS

System Description. The ultralightweight, stretchable,
and facile CNF-PDMS skin-like sensors utilized in this work
have been introduced in our earlier work, which describe the
fabrication and characterization of this sensing element.” The
sensor design features a piezoresistive CNF bundle which acts
as a sensing element embedded in two layers of PDMS for
encapsulation. To demonstrate the capability of mimicking
proprioceptive perception and tactile sensing, the CNF sensing
elements were configured into various designs suitable for
strain and pressure sensing. The details of sensor fabrication
are schematically represented in Figure 1b. Further details of
the sensor design and fabrication steps are presented in the
Experimental Section. The sensing mechanism of the CNF-
PDMS strain sensor has been reported in our earlier works.”*
Within a CNF sensing element, electrons travel through the
CNF percolation network embedded in the PDMS elastomer
matrix. Any external strain or applied pressure results in the

https://doi.org/10.1021/acsaelm.1c01010
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change in overlap area between adjacent conductive domains,
leading to an overall change in the resistance of the sensor. In
addition, electrons can also tunnel across a thin (less than a
nanometer) insulating barrier separating two conductive
domains, which leads to associated tunneling resistance
which can be predicted using Simmon’s tunneling resistance
formula.””** The tunneling resistance is extremely sensitive to
the interdomain separation, and any changes arising due to
external pressure/strain are also manifested as an overall
resistance change of the sensor. When a pressure/strain is
applied on the CNF-PDMS sensor, its resistance changes
proportional to the magnitude of the applied force. Variation
of resistance can be sampled by ad hoc integrated circuits
coupled with a suitably designed Wheatstone bridge,”* even
with the possibility to gather multiple sensors using only one
circuit?® which exhibits linear behavior. In this work, an
appropriately designed Wheatstone bridge circuit is used to
convert the resistance changes in the sensors into readable
voltage signal outputs. The realization of the stage converting
the pressure applied on a piezoresistive element to the current
fed to a neuron is not explored. Instead, an ideal linear
dependence between the pressure and the current output is
used to run the simulation in this work.

In the following subsections, we demonstrate how current
coming from this ideal stage can be used in neuromorphic
signal processing instead of traditional digital signal processing.
The information in the former is conveyed using a new
medium: spikes. In this work, different types of encoding are
shown with different properties of touch to highlight how
versatile and useful a conversion to spikes can be. The signals,
converted into currents, are fed into a leaky integrate-and-fire
(LIF) simulated artificial neuron. The LIF model is a very
common implementation of a simplified biological neuron,*®
composed of a resistor—capacitor network and a threshold, as
further explained in the methods. The choice of this type of
model is given by the great amount of existing hardware: the
literature shows implementations on FPGA, 728 microcon-
trollers,”” and VLSI chips.’*™>* In the latter especially, the
system does not require any overhead for circuitry since the
readout and the neurons can be integrated in a single
monolithic chip. This paper focuses on showing how, using
neurons instead of traditional digital communication, compu-
tation can be achieved without using ADC or DSP. In the first
experiment, which involves applying different pressures on the
sensor, analog voltage response is observed, and the
subsequent behavior of neurons is investigated. In the second
case, which involves measurement of wrist bending, a similar
approach is adopted to convert the sensor’s voltage caused by
the movement of a wrist into meaningful neural activity. In the
last part, related to identification of various hand gestures, the
combined activation of several neurons is exploited to
reconstruct the occurrence of different finger configurations.

This technique of converting analog signals into events has
lower limitations than traditional digital systems. They can
encode analog information in their time interval between
spikes, keeping most of the meaning and relaxing the Shannon
theorem’s constraint. This means that regardless of the
stimulus’s transient speed, a neuron is still able to sample
most of the signal’s envelope. Second, neurons are excited and
spike only when a current is fed at their input. This ability,
called event-driven sampling, is useful when the desired signal
is sparse. Sparsity is a property typically observed in nature
where useful information is condensed in a small fraction of

the active time of a sampling agent. The event-driven nature
samples the environment only when necessary and with an
almost analog time step (only limited by the physical design of
the neuron).

B MIMICRY OF TACTILE SENSING

Under the effect of an external pressure stimulus, the resistance
of the CNF-PDMS sensor changes, which is manifested as
voltage signal output from the accompanying Wheatstone
bridge circuit. To demonstrate skin-like tactile sensing
capability, the sensor was pressed four times in quick
succession, followed by a gap of 10 s and subsequent repetition
of the sequence six times. As shown by the sensor voltage
response plot in Figure 2a, the sensor can generate different
voltages depending on the applied tapping pressure which can
be used to stimulate a simulated artificial neuron. To be
compatible with the neuron physical mechanism, the Wheat-
stone bridge output is converted through an analog voltage-to-
current converter into current and then injected into the
neuron.

Once the current is injected in the neuron, charge begins to
accumulate on its membrane capacitor that also has a leaky
component. The voltage difference present at the capacitor
pins increases with the charge as dV,/dt = (Lensor/c — Vinem/
(RC)), where C is the equivalent capacitive value of the
membrane and R is the equivalent resistance of the leaky
component. When the voltage reaches a specific value (defined
as threshold voltage or V), the neuron emits a digital event
(or spike). In Figure 2, the voltage on the membrane (V) is
plotted to highlight how the sensor’s voltage (Viensor)
influenced the neuron behavior. In the formula, I, is
related with the V., by an ideal component with linear
conductance G so that I, = G X Vo (exemplified in
Figure 2b by component G). The formula as it is highlights
that the membrane voltage acts as a low-pass filter.

Figure 2 also shows the encoding ability of a neuron, which
embeds the information about the amplitude of the sensor
voltage into its spiking activity. This is visible in 2¢ and 2d,
where spike count and the membrane potential of the neuron
are presented. Figure 2e highlights the close relationship
between the sensor voltage and the neuron activity by plotting
the voltage of the sensor and the equivalent spike response. For
low voltages (less than 0.2 V), the neuron does not generate
any spikes, while for higher voltages, the neuron generates
spikes proportional to the input. This is related to the property
of the LIF neuron, which does not reach the threshold if the
injected current is not high enough. This property can be
efficiently used to set an attention threshold under which the
communication stream is not active, avoiding the processing of
noise or spurious signals.

Wrist Conformation. SAII-LTMRs of the human skin are
extremely sensitive to skin stretch. For instance, the SAII-
LTMRs found in humans share their physiological traits with
proprioceptors which facilitate kinesthetic perception (finger
shape or conformation). The strain sensing mechanism of the
CNE-PDMS sensors can also be exploited for mimicking
proprioceptors capable of detecting the bending of the wrist.
When a uniaxial strain is applied, the resistance of the sensor
changes owing to the conductive domain disconnection
mechanism. The sensor bending generated tensile and
compressive strain, which resulted in a voltage proportional
to the applied angle then converted by the accompanying
Wheatstone bridge circuit. The sensor’s voltage can be used to

https://doi.org/10.1021/acsaelm.1c01010
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stimulate an LIF neuron, once converted into current, which
can also be applied for strain measurements. The information
about the bending can be encoded in the number of spikes that
the neuron emits for a given time step. The number of spikes
correlates well to the analog voltage generated by the neuron,
as visible in Figure 3a. In the latter, the higher the analog
voltage, the denser the spike activity.
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Figure 3. (a) Comparison between the response to wrist bending of
both the sensor and the neuron. The sensor generates a voltage
proportional to the bending of the wrist. This voltage is converted
into a current and fed into a neuron, simulated on a computer. The
number of spikes per 100 ms is here considered as spike count (or
spikes #). Different trials for different angles are shown. The neuron
follows the analog voltage with the number of spikes but does not
generate any spike when the stimulus is only noise (this is visible in
the lower part of the figure, where the spikes are 0 when no bending is
performed). (b) Statistical analysis of the analog voltage and spike
counts with different bending angles. The statistical deviation of the
sensor is given by the human error in bending the wrist at a specific
angle. This uncertainty is reflected quite well in the neuron with the
spike count, which highlights the direct connection between a neuron
spiking activity and a current coming from a piezo-resistive readout.
This is to demonstrate the high degree of reproduction that the
neuron has with respect to the analog values that it receives.

From Figure 3a, it can also be observed that the neuron
employment shows an advantage of filtering of noise in
encoding. This phenomenon is possible thanks to two
properties of neural coding. First, the neuron’s membrane
capacitor acts as a low-pass filter, removing the high-frequency
noise components. Second, the neuron spikes only when a
threshold voltage is reached. This means that an isolated
spurious signal that is injected into the neuron through current
will not be enough to generate a spike, while a consistent
stimulus is going to excite the neuron, resulting in multiple
spikes.

In Figure 3b, the statistical mean and standard variation
among trials of both voltage and spikes are plotted. It can be
seen from the plot that not only does the neuron have a
response proportional to consistent stimulus but also it is able
to maintain the same statistical properties observed in the
original sensor’s voltage. The variation is due to the
psychophysical uncertainty of human movements which leads
to subsequent angular discrepancies while bending the wrist at

certain prespecified angles and the fact that the neurons
transfer; also, this psychophysical uncertainty can be used to
process rich information, like fine grain movement.

Gesture Recognition. To further demonstrate applica-
tions of the CNF-PDMS sensors involving proprioceptive
perception, a smart glove system consisting of five identical
sensors secured on a nitrile glove coupled with appropriately
designed Wheatstone bridge circuits was developed. Different
sensors were placed at the hand joints, while a human
volunteer moved the fingers in defined ways. The hand
performed several digits with the glove. Nominally, number 5
(composed of the palm completely open), number 4
(composed of the thumb bending inward), number 3 (made
of the thumb and the pinky fingers closed), and numbers 2 and
1 shown by bending the middle and the index fingers and only
the index finger, respectively.

Each of these finger’s movements led to resistance changes
in the sensors, subsequently leading to voltage signals
generated by the readout circuits. The simultaneous activation
of multiple sensors can be used to spot the number mimicked.
As seen in Figure 4a, the succession of the numbers (S, 4, 3, 2,
and 1) generates in the five sensors time-varying responses.
Specifically, the bending of the finger creates a high value,
while the relaxed position gives no response. The signals from
the sensors are then fed into a simulated layer of five LIF
neurons. The response of different neurons, visible in Figure
4c, highlights that the layer (i.e., a group of neurons with the
same task) is able to transfer the analog value of the bending
quite faithfully in the number of spikes per time step. This
approach, like the one used in the case of tactile sensing
mimicry previously, exploits the spike activity of neurons to
encode the amplitude of the sensor’s voltage without noise and
spurious activity.

The coincidence activation of several neurons, connected in
a one-to-one fashion to the sensors, encodes the different digits
performed with the glove. Each number is obtained with the
simultaneous bending of several fingers. Therefore, by
analyzing which sensor was active at each moment, we can
understand which number was performed. The decoding part
(i.e., understanding which number the sensors’ activity
represents), while being traditionally obtained using micro-
controllers or computers, can be done using neuromorphic
components. This approach can reduce the need for complex
and power-consuming architectures. The full network
architecture is briefly shown in Figure 4d and described in
detail in the Experimental Section. The structure can recognize
which gesture was performed, without any digital support. In
Figure 4e, the outcome of the network is visible for each
gesture performed. In these, the network responds with a
spiking activity on the neuron carrying the gestures semantic.

The gesture task can be extended even further considering
that the neuron’s ability to encode into spikes the analog
voltage of a sensor can be used to recognize more complex
gestures. Figure 5 shows the correspondence between sensors’
output and spiking activity when the smart glove is used to
perform more refined gestures. A more complex neural
network could also decode these gestures, avoiding the need
for further steps in an acquisition chain.

B CONCLUSIONS

In this work, we proposed a combined approach between novel
CNF-PDMS-based piezoresistive sensors and spiking neural
networks to encode proprioception and tactile information

https://doi.org/10.1021/acsaelm.1c01010
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Figure 4. (a) Response in voltage output of the five different sensors
placed at the joint of the glove. The five sensors are plotted one over
the other, from the little finger to the thumb. The five different colors
superimposed to the graph highlight the different gestures performed
in that moment. (b) Order of execution of five different gesture tasks
performed with the glove. (c) Response in spike count of the five
different neurons connected to the five sensors, plus the Poisson
neuron, responsible for acting on the gesture “Five”. The five different
colors superimposed to the graph highlight the different gestures
performed in that moment. (d) Schematic describing the network
used in this example. (e) Response of the decoding layer to the
different gestures.

without the need for digital architectures like analog-to-digital
converters or digital signal processing. The fabricated
piezoresistive sensor is exploited by accompanying neurons
connected afterward, and the resulting system has been used
for converting different types of stimuli, from tactile sensors or
strain sensors, into spikes, showing how the number of the
pulses emitted by a neuron can communicate analog values
such as the tactile pressure or the deformation. Furthermore,
the potential behind this has been unveiled in this work,
showing how neural networks can also decode the information
contained in the sensors’ response without the need for any
digital processing as in the case of gesture recognition. A final
architecture, consisting of a direct interface between sensors
and neural network CMOS circuits can greatly improve the
abilities of robots, autonomous agents, or prosthetic devices to
detect complex stimuli, resulting in low power consumption
and low latency conversion,’ typical of embedded approaches.

B EXPERIMENTAL SECTION

Electrospinning and CNF Synthesis. The detailed recipe for
electrospinning polyacrylonitrile nanofibers and the subsequent
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Figure S. Response of the five sensors and the five neurons to various
hand gestures. The sensor output voltage sensors increase with the
increasing curvature of the finger, and the neuron response follows
this behavior.

pyrolysis has been reported by us previously.” Polyacrylonitrile
(PAN) powder (150,000 g/mol) and N,N-dimethyl formamide
(DMF) obtained from Sigma-Aldrich was used to form 9% (w/v)
PAN polymer solution in DMF for electrospinning. An Inovenso
NanoSpinner NE300 was used for electrospinning. The polymer
solution was fed through a 18G needle using a standard syringe pump
(model NE300) at a constant flow rate of 1 mL/h. The
electrospinning process was conducted for 30 min at 12 kV (applied
between the needle tip and a rotating mandrel collector) while
maintaining a constant tip to collector distance of 10 cm. The as-spun
nanofibers were transferred from the aluminum foil collector to a
ceramic crucible and placed inside a furnace for pyrolization (at 950
°C) to synthesize CNF bundles. Further details regarding the
pyrolization step are provided in our earlier work.”

Sensor Fabrication and Data Acquisition. The basic
fabrication steps include sandwiching a CNF bundle (bonded to
copper tapes at two ends) between two layers of PDMS, thus
achieving a complete encapsulation. In specific, the tactile sensor was
composed of an electrically bonded 2 X 2 cm CNF bundle
encapsulated with the PDMS elastomer. However, the five identical
strain sensors used for demonstrating proprioceptive perception and
gesture monitoring were composed of 4.5 X 0.2 cm bundled CNF
films embedded in PDMS elastomeric layers.

For all the experiments involving tactile sensing and gesture
monitoring, appropriately designed resistance-matched Wheatstone
bridge circuits were developed, to which the CNF-PDMS sensors
were connected. The voltage outputs from the Wheatstone bridge
circuit were obtained and logged using a National Instruments data
acquisition system (DAQ, NI USB-6009) with National Instruments
LabView software. A constant power supply of 9 V was used for
powering the Wheatstone bridge circuit during all the experiments.
Furthermore, the output signals from the bridge circuit were obtained
continuously at a sample acquisition rate of 2 kHz in a differential
configuration.

Neural Coding. Neuron Model. The conversion from the sensors’
voltage recorded during the different experiments was conducted on a
spiking neural network simulator called Brian2.** The latter is an

https://doi.org/10.1021/acsaelm.1c01010
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open-source python library used for recreating spiking neurons and
synapses with custom properties. In all the experiments, voltage has
been converted to a linear current I, = GVieneon Where G is a
transconductance constant, with value = 1 pS. This is made to
emulate an ideal voltage-to-current converter, able to stimulate the
neuron’s membrane capacitor.

The model used for simulating a neuron response is the LIF one.
This model has been chosen due to its simple software
implementation and the possibility to easily obtain a closed formula
for an analytical computation. It can be expressed with the formula

{dV _ ISyn + Isensor V

mem mem

dt C T,

mem

IfV o > Vi — spike

mem

If spike > V., =V,

em rest

where V., is the voltage difference between the neuron inside and
the neuron outside, C is the capacitive value of the membrane
capacitor present in biological neurons, 7., = RC is the time
constant of the membrane originating from the capacitive term and
the leaky component, while Vy, is the threshold voltage that generates
a spike. The capacitor integrates the current coming either from the
synapse (Isyn) or directly from the sensors (In.,). Both these currents
increase the voltage V... The voltage leaks through the membrane
with a time constant of 7,,.,,. When the threshold is reached, V..., is
rebased to its resting voltage (V,.,), ready for integrating new current.

Neurons communicate with each other through spikes. Spikes are
converted into currents through the synapses. Every time a neuron
spikes, an excitatory post-spike current is generated and injected in a
neuron. This is typically observed in biological neurons, and this also
has a circuit equivalent in the literature. The spike is here expressed as
a Dirac 6 that is 1 only when the spike comes. Each synapse has a
dimensionless weight, here expressed as W

dIS IS n
d_:" = _W_y X 5(t - tspike)
syn

Encoding. Neurons communicate with each other using different
paradigms. In this work, we exploited specifically two different cases:
the rate encoding and the spatial encoding. In the rate encoding, the
information is condensed in the spike rate of a single neuron. The
injected current charges the capacitor voltage and makes the neuron
spike. The higher the current, more are the times the neuron spikes
with that current. The spike number directly communicates the
amount of injected current into the neuron. Another way neurons
communicate with each other is spatial coding. Different neurons in a
specific layer have different roles, with each neuron representing a
specific concept. In the case, for example, of four possible stimuli at
the input and four different neurons, each neuron spikes when the
stimulus that it is representing appears.

Network for Gesture Recognition. In neural networks, the
connection between two layers of neurons through synapses can
extract meaningful information from raw data, dividing them in
semantic classes. In this work, the neurons that encoded the five
different sensors were connected with synapses to five different output
neurons in a second layer. Synapses are electrical components that
convert the spike of a neuron (which is a voltage difference) into a
current. The amount of current into which a spike is converted
depends on the synapse strength. In this experiment, the strength of
the different synapses was tuned to excite the upcoming neurons only
with the right combination of input neurons. The combination was
chosen to activate the semantic neurons only when the right gesture
was performed. The neuron that must spike for the gesture “FOUR”,
for example, has a very strong connection with the thumb sensor.
Neurons compete between each other, and only the strongest one
wins. In the case “FOUR”, this neuron is the one winning when only
the thumb is tilted. Gesture “FIVE” instead needs a detailed
description, given that the open palm encodes for it. This means
that no sensors are active while performing the gesture. This problem

can be solved by introducing a sixth neuron in the input layer that is
always spiking with a Poisson distribution. When only the sixth
neuron is active, then the network understands the presence of the
gesture “FIVE”.
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