

Deliverable D6.3

PIACERE run-time monitoring and self-learning, self-
healing platform – v3

Editor(s): Gorka Benguria

Responsible Partner: TECNALIA

Status-Version: Draft v1.0

Date: 14.06.2023

Distribution level (CO, PU): PU

DRAFT

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 87

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable:
PIACERE run-time monitoring and self-learning, self-
healing platform –v3

Due Date of Delivery to the EC 31.05.2023

Workpackage responsible for the
Deliverable:

WP6 - Monitor plan and self-heal runtime of
Infrastructure as Code

Editor(s):
Gorka Benguria, Fundación Tecnalia Research &
Innovation

Contributor(s):

Tecnalia (Gorka Benguria, Jesus Lopez, Iñaki Etxaniz),
Ericsson (Cosimo Zotti), Polimi (Bin Xiang), XLAB (Ales
Cernivec, Tomaz Martincic, Alvaro Garcia Faura), 7bulls
(Radosław Piliszek, Marcin Bartmański)

Reviewer(s): Lorenzo Blasi, HPE

Approved by: All Partners

Recommended/mandatory
readers:

Recommended WP2, WP5, WP7

Abstract: This deliverable will contain the main outcomes from

M25 to M30 of T6.1-T6.4 due to the high dependency of
all the different tasks. It will include the monitoring stack
coming from task 6.1 with all the time series data
collected as well as the monitoring from the security
policies from task 6.4, the set of machine learning
algorithms (task 6.2) that comprise the self-learning
mechanisms and the self-healing strategies (task 6.3)
that trigger an optimized redeployment (see WP5). It will
be an iterative process. Each deliverable will comprise a
Technical Specification Report.

Keyword List: Monitoring, Forecast, Healing, Security, Availability,
Performance

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the authors’ views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 87

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 13.10.2023 First TOC and sections assignment TECNALIA

v0.2 19.10.2023 Comments and suggestions received
by consortium partners

TECNALIA

v0.3 16.05.2023 Contributions round 1 7BULLS, ERICSSON,
POLIMI, XLAB,
TECNALIA

v0.4 18.05.2023 Final Editing TECNALIA

v0.5 31.05.2023 Intermediate review HPE

v0.6 02.06.2023 Review addressing TECNALIA

v0.7 07.06.2023 Final review HPE

v0.8 09.06.2023 Review addressing XLAB, TECNALIA

v1.0 14.06.2023 Ready for submission TECNALIA

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 87

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 9

1 Introduction .. 10

1.1 About this deliverable ... 10

1.2 Document structure .. 10

2 KR11 Self-learning and self-healing mechanisms overview .. 11

2.1 Changes in v3 .. 11

2.2 Functional description and requirements coverage ... 25

2.3 Main Innovations... 37

3 KR12 Runtime security monitoring overview.. 38

3.1 Changes in v3 .. 38

3.2 Functional description and requirements coverage ... 41

3.3 Main Innovations... 45

4 Overview of preliminary experiments... 46

5 Lessons learnt and outlook to the future .. 53

6 Conclusions ... 55

Annex A. Implementation, delivery and usage... 56

A.1. Monitoring Controller ... 56

A.2. Performance Monitoring ... 62

A.3. Security Monitoring ... 68

A.4. Performance Self-learning... 73

A.5. Security Self-learning .. 78

A.6. Self-healing .. 81

 List of tables

TABLE 1 – CORE METRICS TARGETED IN V2 ... 11
TABLE 2 – CORE METRICS COVERED IN V3 .. 12
TABLE 3 – MONITORING RELATED USER REQUIREMENTS FROM WP2. .. 32
TABLE 4 – PERFORMANCE MONITORING RELATED INTERNAL REQUIREMENTS... 35
TABLE 5 – SECURITY MONITORING REQUIREMENTS FROM WP2. ... 44
TABLE 6 – SECURITY MONITORING RELATED INTERNAL REQUIREMENTS. ... 44
TABLE 7 – COMPONENTS AND KR RELATIONS ... 56

List of figures

FIGURE 1 – PERFORMANCE OVERVIEW .. 12
FIGURE 2 – PERFORMANCE DETAIL FOR INFRASTRUCTURE ELEMENTS .. 13
FIGURE 3 – ELAPSED REPRESENTATION IN INFLUXDB .. 15
FIGURE 4 – FILTERING USING ELAPSED IN INFLUXDB .. 15
FIGURE 5 – AVAILABILITY DETAILED VIEW ... 16

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 87

www.piacere-project.eu

FIGURE 6 – IDE ACCESS TO PERFORMANCE VIEWS ... 17
FIGURE 7 – PSL LOGIC REFACTOR ... 18
FIGURE 8 – GRAFANA PSL DASHBOARD UPDATE ... 19
FIGURE 9 – GRAFANA ALERTS .. 19
FIGURE 10 – MONITORING RULE .. 20
FIGURE 11 – GRAFANA DEPLOYMENT ALERTS ... 21
FIGURE 12 – GRAFANA DEPLOYMENT ALERTS ... 21
FIGURE 13 – EVOLUTION OF MONITORING AGENTS ... 22
FIGURE 14 – MONITORING AGENTS IN ICG .. 23
FIGURE 15 – SERVICE INSTANCE INFORMATION AT IEC ... 23
FIGURE 16 – IEC IN THE DOML CONCRETIZATION. ... 24
FIGURE 17 – PERFORMANCE MONITORING INTERNAL WORKFLOW. .. 25
FIGURE 18 – SELF-LEARNING WORKFLOW DIAGRAM. ... 26
FIGURE 19 – PSL MODELS STORED FOR EACH DOML ELEMENT. .. 27
FIGURE 20 – SELF-HEALING INTERNAL WORKFLOW. ... 28
FIGURE 21 – SELF-HEALING SEQUENCE DIAGRAM. ... 29
FIGURE 22 – DOML WITH DEFAULT MONITORING ACTIVATED. ... 30
FIGURE 23 – DOML WITH EXPLICIT MONITORING CONFIGURATION. .. 31
FIGURE 24 – ANSIBLE MONITORING RULE. .. 32
FIGURE 25 – HIGH-LEVEL ARCHITECTURE DIAGRAM OF SECURITY MONITORING COMPONENTS. 42
FIGURE 26 – SECURITY SELF-LEARNING APPROACH BASED ON LOMOS- ANOMALY DETECTION WORKFLOW FROM

LOGS. ... 43
FIGURE 27 – NGINX DEMO FIRST MONITORING INTEGRATION. ... 46
FIGURE 28 – POSIDONIA DEMO MONITORING INTEGRATION. .. 47
FIGURE 29 – POSIDONIA PERFORMANCE MONITORING AGENT IMPROVEMENT. .. 47
FIGURE 30 – AGENTS AT IEM. ... 48
FIGURE 31 – AGENTS THROUGH ICG. ... 49
FIGURE 32 – SUBMODULE LINK TO MONITORING AGENTS. .. 49
FIGURE 33 – SIMPA AT IEM. ... 51
FIGURE 34 – SIMPA AT PRC. ... 52
FIGURE 35 – MONITORING CONTROLLER INTERNAL ARCHITECTURE. ... 57
FIGURE 36 – MONITORING CONTROLLER SWAGGER UI. ... 61
FIGURE 37 – PERFORMANCE MONITORING LAST VERSION ARCHITECTURE. .. 62
FIGURE 38 – PERFORMANCE MONITORING CONTROLLER SWAGGER UI. .. 66
FIGURE 39 – INFLUXDB. .. 67
FIGURE 40 – GRAFANA ... 67
FIGURE 41 – ARCHITECTURE OF SECURITY MONITORING AND SECURITY SELF-LEARNING AND THE INTEGRATION

BETWEEN THESE. .. 68
FIGURE 42 – HIGH-LEVEL INTERNALS OF LOMOS. .. 69
FIGURE 43 – DEFAULT PAGE OF THE SECURITY MONITORING SERVICES. .. 71
FIGURE 44 – THE LIST OF REGISTERED AGENTS WITH THE WAZUH'S INSTANCE.. 72
FIGURE 45 – SECURITY MONITORING PART OF THE SECURITY MONITORING CONTROLLER API: THE UPPER FIGURE

DEPICTS “MONITORING” AND THE LOWER FIGURE DEPICTS “SELF_LEARNIN” PART OF THE API. 73
FIGURE 46 – ARCHITECTURE OF THE SELF-LEARNING COMPONENT. .. 74
FIGURE 47 – PERFORMANCE SELF-LEARNING OPENAPI. .. 78
FIGURE 48 – SELF-LEARNING API PROVIDED BY SECURITY CONTROLLER. ... 80
FIGURE 49 – DASHBOARD OF THE SECURITY SELF-LEARNING COMPONENT: MAIN PAGE. 81
FIGURE 50 – DASHBOARD OF THE SECURITY SELF-LEARNING COMPONENT: INSPECTION OF THE ANOMALIES

DETECTED. .. 81
FIGURE 51 – SELF-HEALING INTERNAL ARCHITECTURE. ... 82
FIGURE 52 – SELF-HEALING PROJECT STRUCTURE. ... 83
FIGURE 53 – SELF-HEALING CONFIGURATION. .. 85

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 87

www.piacere-project.eu

FIGURE 54 – SELF-HEALING PRODUCER. .. 85
FIGURE 55 – SELF-HEALING CONSUMER. ... 85
FIGURE 56 – MESSAGES RECEIVED IN THE SELF-HEALING COMPONENT. .. 87

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 87

www.piacere-project.eu

Terms and abbreviations

AD Anomaly Detection

AI Artificial Intelligence

AMEL Application Modelling and Execution Language

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

CAMEL Cloud Application Modelling and Execution Language

CSLA Cloud Service Level Agreements

CSP Cloud Service Provider

CSV Comma-separated values

DevOps Development and Operation

DHCP Dynamic Host Configuration Protocol

DNN Deep Neural Networks

DoA Description of Action

DOML DevOps Modelling Language

EC European Commission

ELK Elastic Logstasth Kibana

EMS Event Management System

EPA Event Processing Agents

EPM Event Processing Manager

EPN Event Processing Network

FP False Positive

FT-Tree Frequent template tree

GA Grant Agreement to the project

HIDS Host-based intrusion detection system

HTTPS Secure HTTP Hyper Text Transport Protocol

HVM Hypersphere Volume Minimization

IaC Infrastructure as Code

ICG Infrastructural Code Generator

IDE Integrated Development Environment

IDF Inverse Document Frequency

IDS Intrusion Detection System

IEC Infrastructure Elements Catalogue

IEM IaC execution Manager

IEP IaC execution Platform

IOP Infrastructure Optimizer Platform

IPS Intrusion Prevention System

KR Key Result

KPI Key Performance Indicator

LOMOS LOg MOnitoring System

LSTM Long Short Term Memory

MAE Mean Absolute Error

MAPE-K Monitor-Analyze-Plan-Execute over a shared Knowledge

MCSLAs Multi-Cloud Service Level Agreements

MLM Masked Language Modelling

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 87

www.piacere-project.eu

MSE Mean Square Error

MTBF Mean Time Between Failures

MTTR Mean Time To Recover

NFR Non-functional Requirements

NSM Network Security Monitoring

PCA Principal Component Analysis

PRC PIACERE Runtime Controller

PSL Performance Self Learning

QoS Quality of Service

RCA Root Cause Analysis

REST REpresentational “State” Transfer

SEM Security Event Management

SIEM Security Information and Event Managements

SLA Service Level Agreement

SLO Service Level Objective

SNMP Simple Network Management Protocol

SOTA State of the art

SW Software

TF Term Frequency

URL Uniform Resource Locator

UTM Universal Threat Management

VAST Visual Analytics Science and Technology

VAT Vulnerability Assessment Tool

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 87

www.piacere-project.eu

Executive Summary

This document is a supporting document of the PIACERE run-time monitoring and self-learning,
self-healing platform. Therefore, it is one part of the D6.3. The whole D6.3 is composed by:

• The source code of the components that implement the required functionality

• This document

The objective of this document is to present the KRs (Key Results) covered by the WP6, the
overview of the preliminary results and the lessons learnt out of this development and
experimentation.

The document focusses in the two KRs that build up the PIACERE run-time monitoring and self-
learning, self-healing platform. These are:

• KR11 - Self-learning and self-healing mechanisms that ensures that the conditions of
the Quality of Service (QoS) are met at all times and that a failure or non-compliance of
Non Functional Requirements (NFRs) is not likely to occur

• KR12 - Runtime security monitoring that verifies any security violation at runtime

For the presentation of each of the KR we present the changes in this last iteration. Following
we present the functional description and the requirements coverage. And we finally provide a
summary with the main innovations of the KR introduced during this last period.

The functional description provides an overview of the main functionalities of the KR, the main
elements that implement them, and the overall flow to accomplish them. The requirements
coverage reviews the requirements from the architectural work package (WP2) that are related
to the KR.

Additionally, the document includes an appendix (Annex A) for each major component of the
PIACERE run-time monitoring and self-learning, self-healing platform. For each one we include
information about its implementation, delivery and usage. The implementation section contains
key information to understand which is the overall internal structure of the components and
which technologies have been used to develop them. The delivery and usage sections in the
Appendix contain information that will be used during the deployment integration of the WP6
components together with other components from other work packages in the common
PIACERE framework.

The current version of the PIACERE run-time monitoring and self-learning, self-healing
platform, was evolved with three main targets in mind: Finalise the missing features, support
the deployment of the components in the use cases, and adapt from the lessons learnt during
the application of the KRs in the scenarios.

This version of the document finalises the PIACERE run-time monitoring deliverables series. It
extends the previous version with the aspects evolved during the third year of development.
Besides it includes a changelog version to understand the evolution during this third year.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 87

www.piacere-project.eu

1 Introduction

1.1 About this deliverable

This document is a supporting document of the third version (M30) of the PIACERE run-time
monitoring and self-learning, self-healing platform. It is a complementary document that
explains the approach, the implementation, and the way to deliver and use each one of the
current components that take part in the implementation of the functionalities expected from
the WP6. Besides, as it is a follow up version of the document, it also covers the evolution with
respect to the previous version.

The overall objective in this period has been the finalisation of the latest features and the
piloting of the features regarding the performance and security monitoring, self-learning and
self-healing components.

This document has been developed merging contributions from all the partners of all the tasks
of the WP6:

• Task 6.1 Runtime monitoring and self-healing preparation

• Task 6.2 Self-learning algorithms for failure prediction

• Task 6.3 Strategies and plans for runtime self-healing

• Task 6.4 Runtime security monitoring

The WP6 focusses on the provision of two key results:

• KR11 - Self-learning and self-healing mechanisms that ensures that the conditions of
the QoS are met at all times and that a failure or non-compliance of NFRs is not likely to
occur.

• KR12 – Runtime security monitoring that verifies any security violation at runtime

––The purpose of this document is threefold:

• To serve as a reference of the background of the technical decisions taken regarding the
approaches followed during the development of the components

• To contain information to support future development. This includes information to
understand how the components have been developed, which are their features and
how can be tested.

• To describe the evolution with respect to the previous version.

1.2 Document structure

The document is structured into six parts. Section 2, focussed on the KR11, presents the final
evolution, the functions covered and their main innovations. Section 3, focussed on the KR12,
in the same way presents the final evolution the functions covered and their main innovations.

Following the section 4 presents the overview of the preliminary results in the application of the
components in the WP6 scenarios. In the next section 5 we summarize the lessons learnt and
the outlook to the future.

Finally, we present the conclusions of the deliverable D6.3.

Besides, there is a final part Annex A that addresses the implementation, delivery and usage of
each component. The implementation the delivery and usage parts, have been designed to be
used in isolation by the developers, without requiring them to read the whole document. With
that objective in mind some figures may be repeated to improve that isolated readability.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 87

www.piacere-project.eu

2 KR11 Self-learning and self-healing mechanisms overview

KR11 is related with T6.1, T6.2, and T6.3.

KR11 – Self-learning and self-healing mechanisms ensures that the conditions of the QoS are
met at all times and that a failure or non-compliance of NFRs is not likely to occur.

KR11 provides mechanisms that allow to seamlessly embed monitoring mechanisms over the
infrastructure that run the applications. This monitoring mechanisms continuously inspect some
critical aspects that indicate situations in which the underlying infrastructure may fail to support
the application. Besides, applies Artificial Intelligence (IA). techniques to allow some prediction
capabilities for being able to foresee these situations with some time to be able to perform some
mitigation actions before the application is affected and thus the users. In that sense it provides
some self-healing infrastructure that allows to apply short term strategies to minimize potential
consequences of these infrastructure degradations.

2.1 Changes in v3

During this last period, we have mainly worked in the finalization and application of the KR11 on
the scenarios. Besides, some adjustments have been performed based on the lessons learnt
during the usage of the KR11 in the scenarios. In summary, the changes introduced in this last
period are:

• Metrics have been simplified

• Availability has been introduced

• DOML has been extended

• Self-healing strategies have been extended

• Monitoring agents have been integrated with ICG

• Self-healing reports alerts to the catalogue

2.1.1 Core metrics simplification

In the previous version we were focussing the self-learning and self-healing activities on eight
core metrics: three for CPU, two for memory, two for disk and an additional one, which is
availability, as shown in the following Table 1.

Table 1 – Core metrics targeted in v2

CPU Disk Mem availability

Idle percent
System percent
User percent

Free
Used percent

Free
Used percent

availability

These metrics were using different scales, for example free disk was measured in gigabytes while
CPU idle was percentual. Besides, even in the same category they should be interpreted in
different ways: idle percent is better the higher it is, while system and user percent are better
as they get lower. Finally, from an event identification perspective they were redundant. For
example, if we have low free memory, we are going to have high memory used percent,
therefore there was no point to track both in a default scenario. All this divergence and the
introduction of additional metrics were causing some problems:

• Add unnecessary complexity from a use case point of view.

• Require non necessary work in the backend, each extra metric requires additional
development, maintenance and processing.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 87

www.piacere-project.eu

• Require extra storage in the infrastructure

As a conclusion we have established a baseline configuration with four key metrics: CPU, Disk,
Mem and availability as shown in Table 2.

Table 2 – Core metrics covered in v3

CPU Disk Mem availability

Used percent Used percent Used percent Availability percent

All of them are percentual so they share the same scale: this will facilitate the metrics
understanding from the use case perspective in the default scenario. Besides, most of them are
interpreted in the same way: the higher they are the worst they are. The exception for this rule
is availability that is worst the lower it is. In the Figure 1 we show the performance overview
where we can see the metrics and the difference in the interpretation of the system availability.

Figure 1 – Performance overview

It is worth mentioning that, even if we are going to focus our default algorithms and processing
on this four metrics, we still collect the metrics used before, and we have added additional ones
that are useful to interpret the behaviour of the infrastructure elements as shown in Figure 2.
We will refer to them as supporting metrics. DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 87

www.piacere-project.eu

Figure 2 – Performance detail for infrastructure elements

Implementing these four metrics has been challenging as two of them, CPU and availability, were
not directly supported from the monitoring infrastructure chosen for the KR11. Telegraf
provides many metrics relative to the CPU, but there is no metric that reports directly the CPU
used percent. To calculate it, we compute the complement of the usage_idle.

cpu = deploymentData

 |> filter(fn: (r) => r["_measurement"] == "cpu")

 |> filter(fn: (r) => r["_field"] == "usage_idle")

 |> filter(fn: (r) => r["cpu"] == "cpu-total")

 |> map(fn: (r) => ({{ r with

 _field: r._measurement + "_" + "used_percent"

 }}))

 |> map(fn: (r) => ({{ r with

 _value: 100.0 - float(v: r._value)

 }}))

 |> keep(columns: ["_time", "_field","_value","doml_element_name", "host"])

This flux code snippet shows how the CPU used percent is calculated as the complement of the
usage idle percentage. DeploymentData is a range of time series data (for example metrics
during the last 30 min) for the deployment id under analysis. This data range contains all the
metrics CPU, memory, disk, system, etc. Therefore, the next step is to focus only in the metric
and field of interest, in this case CPU and usage idle. Then we use the map flux function to
redefine the field name to “cpu_used_percent” and the value to the complement of usage_idle
as we stated before.

This code snippet is used in flux queries in different components along the PIACERE run-time
monitoring and self-learning, self-healing platform. It is used in Grafana for populating the
dashboard and configure alerts. It is used in Performance Self-Learning (PSL) to gather the
information used for training and prediction. Regarding the computation of the availability, this
is summarized in an upcoming section.

Another action that has been introduced for the sake of simplification has been the introduction
of default thresholds. We have established for most of the metrics a warning threshold of the

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 87

www.piacere-project.eu

70% and a critical threshold of 90%. This has been applied to the three first metrics: memory,
disk and CPU. The exception again has been availability that due to its nature has different
default thresholds.

2.1.2 Availability

The availability metric has been added to check the readiness of the different DOML elements
in the infrastructure. The measurement of the availability of an infrastructure element is a
challenging activity as it usually cannot be reported from the involved element. In fact, there is
no direct support for this in the Telegraf package. Telegraf is the package that has been chosen
for the metrics collection. We have evaluated two strategies for gathering the availability:

• External strategy: The external strategy implies the configuration of an additional
monitoring component that will “ping” the infrastructure. This has a couple of
drawbacks. First it requires to expose a service on the network to be accessible to the
monitoring component. This obviously, implies a security risk. Second, the monitored
component must be accessible from the monitoring component: this may create
problems in complex networking scenarios. For example, in a perimetral network
security approach some components are not accessible unless the monitoring
component is inside the network. Another example are those cloud service providers
that constrain the number of public IP addresses available, forcing the use of internal
networks for some of the components of the infrastructure.

• Internal strategy: The internal strategy implies the usage of the metrics that we have, to
derive the availability. In this sense we can exploit the concept of gaps. To compute the
gaps we will exploit the elapsed() InfluxDB flux function1, which provides information
about the time elapsed between two records of the same metric.

We have chosen the internal strategy, as in cloud deployments the direct access to all the
monitorable infrastructure elements is not always guaranteed. Up to this period we have applied
monitoring in different kinds of infrastructure elements such as virtual machines and containers
with different operating systems.

The availability calculation makes use of the elapsed() flux function and the fact that usually the
time between metrics matches the Telegraf interval.

sourceData = from(bucket: "bucket")

 |> range(start: v.timeRangeStart, stop: v.timeRangeStop)

 |> filter(fn: (r) => r["_measurement"] == "system")

 |> filter(fn: (r) => r["_field"] == "uptime")

 |> filter(fn: (r) => r["deployment_id"] == "123e4567-e89b-12d3-a456-426614174000")

 |> filter(fn: (r) => r["host"] == "35069d0c3311")

 |> keep (columns: ["_time", "_measurement", "_field", "deployment_id", "_value",

"host"])

betweenRecordTime = sourceData

 |> elapsed()

This flux code snippet is used to represent how the elapsed function is used within the flux
language.

1 https://docs.influxdata.com/flux/v0.x/stdlib/universe/elapsed/,

DRAFT

http://www.medina-project.eu/
https://docs.influxdata.com/flux/v0.x/stdlib/universe/elapsed/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 87

www.piacere-project.eu

Figure 3 – elapsed representation in influxDB

Figure 3 represents the elapsed function effect in flux language, there we can see the additional
column that appears when applying the elapsed function in the flux language. The column
contains the number of seconds elapsed between values of the same metric and element.

This can be used to compute the past availability. If values over 10 that is the established
TELEGRAF_INTERVAL, we can add a filter to get only the values greater than 10, for example.

sourceData = from(bucket: "bucket")

 |> range(start: v.timeRangeStart, stop: v.timeRangeStop)

 |> filter(fn: (r) => r["_measurement"] == "system")

 |> filter(fn: (r) => r["_field"] == "uptime")

 |> filter(fn: (r) => r["deployment_id"] == "123e4567-e89b-12d3-a456-426614174000")

 |> filter(fn: (r) => r["host"] == "35069d0c3311")

 |> keep (columns: ["_time", "_measurement", "_field", "deployment_id", "_value",

"host"])

betweenRecordTime = sourceData

 |> elapsed()

 |> filter(fn: (r) => r.elapsed > 15)

This flux code snippet is used to represent how the elapsed function can be used to perform
additional transformations over the metrics sets obtained from influxDB. The visual result of this
filtering is shown in Figure 4.

Figure 4 – filtering using elapsed in influxDB

This approach is useful to calculate gaps inside a stream of metrics, but it is not capable to
calculate the gaps in the edges of the range. Elapsed flux function calculates the time between
consecutive metrics therefore if there is no metrics, then the elapsed function is not useful. To
solve this difficulty, we used the fill flux function to assume the lack of elapsed data as gaps.

bucket = "bucket"

start = -30m

deploymentId = "123e4567-e89b-12d3-a456-426614174000"

telegrafInterval = 10s

discardLevel = int(v: duration(v: uint(v: telegrafInterval) + uint(v: 5s)))/1000000000

deploymentData = from(bucket: bucket)

|> range(start: start)

|> filter(fn: (r) => r["deployment_id"] == deploymentId)

availability = deploymentData

|> filter(fn: (r) => r["_measurement"] == "system")

|> filter(fn: (r) => r["_field"] == "uptime")

|> elapsed()

|> map(fn: (r) => ({ r with

 _field: r._measurement + "_" + "availability_percent"

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 87

www.piacere-project.eu

}))

|> map(fn: (r) => ({ r with

 _value: if r.elapsed > discardLevel then 0 else 100

}))

|> keep(columns: ["_time", "_field","_value","host"])

|> aggregateWindow(every: telegrafInterval, fn: mean, createEmpty: true)

|> fill(column: "_value", value: 0.0)

|> tail(n: 1000000,offset: 1)

|> keep(columns: ["_time", "_field", "_value", "host"])

In the upper segment of flux code, we perform the following steps:

• We request a range of metrics for a given deployment, and we store in deploymentData,
this will include a stream with all the collected metrics for all the infrastructure elements
that are labelled with the deployment id.

• Next, we focus on a single metric to reduce the amount of data, for that purpose we use
uptime. We have introduced uptime in this release as we have seen it as interesting
complement for the availability metric. In case an availability issue, if the uptime suffers
a reset this will inform us about a possible reset. In case the uptime is not reset this may
be produced by network issue or a system freeze.

• Next, we evaluate the elapsed time between metrics, if we have elapsed time and it is
lower that the TELEGRAF_INTERVAL with some margin we assume it as an available
micro time period and we assign it 100% value. In case the value is greater we assume
as a availability gap and we assign 0%.

• Next we aggregate each Telegraf interval to have metrics every TELEGRAF_INTERVAL:
even if in reality we haven’t received nothing in those periods, it creates metrics with
empty values.

• Next, we force to 0% the empty values using the fill function

• Finally we remove the last availability metric, because it may not match exactly a metric
function, which leads to means with few seconds (< TELEGRAF_INTERVAL) of assumed
0 values, that are based on assumptions rather than on real values.

This provide us with a stream of 0%/100% every TELEGRAF_INTERVAL that we can latter
aggregate in more significant time periods to get an estimation of the availability for those
periods based on the assumption that the lack of Telegraf metrics flow from a monitored
infrastructure element is a sign of potential availability problem.

Besides, apart from the performance overview view (Figure 1), we have added a detailed
availability view, with details for specific elements in the infrastructure. It can be seen in the
next Figure 5.

Figure 5 – Availability detailed view

Both views are provided in the Grafana component of the monitoring element. These views are
accessible as before from the IDE component for each deployment.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 87

www.piacere-project.eu

Figure 6 – IDE access to performance views

The detailed availability view (Figure 5) provides four information elements:

• The availability percentage for the monitored range for a concrete element, this gives
us the possibility to calculate the percentages for a concrete day, hour, etc.

• The current total uptime, this may be useful for the diagnosis of availability problems

• The availability evolution for a concrete element in the monitored range.

• The uptime evolution for a concrete element in the monitored range.

2.1.3 Self-Learning

The self-learning component has evolved in several aspects:

• Fixes in stability

• Focus on four main metrics

• Increase granularity

• Update Grafana dashboard

• Delegate notification to Grafana

The stability improvement has come from the application of the self-learning module to a long-
term living deployment. We found out that after some hours or days the self-learning module
was stopping suddenly. The reason for that was that in some cases the InfluxDB fails to provide
metrics, which drives to a stop in the iterative process. We fixed the problem, allowing to skip
calculations in one iteration if influxDB fails to provide data.

The next change was the corresponding change related with the simplification of metrics already
reported in section 2.1.1. Apart from the removal of metrics, this also implied the
implementation and testing of self-learning processing for the new metrics introduced:

• CPU used percent

• System availability percent

We have also introduced a major change regarding the granularity of the metric analysis. In
previous releases we focussed on the deployment as a whole. In this release we have increased
the granularity to the different DOML elements in the infrastructure. This impacted on the
different parts of the algorithm:

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 87

www.piacere-project.eu

• We have changed the information request to return information on all the DOML
elements.

• We have introduced a cycle in the deployment processing to perform training and
predictions for each of the DOML elements inside each deployment.

• We save data in the InfluxDB for each DOML element in the deployment.

In the following Figure 7 we show the changes introduced in the main flow for the increase in
the granularity. We iterate each considered deployment (1) and each deployment has its own
model set (2). For each deployment we iterate its DOML elements (3) and we generate their
own training models (4) that are stored for their latter use and update by the predictions.

Figure 7 – PSL logic refactor

Grafana dashboard focused on the self-learning metrics, has been updated with the new
metrics, and the non-necessary ones have been removed, as shown in Figure 8.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 87

www.piacere-project.eu

Figure 8 – Grafana PSL dashboard update

Finally, we have introduced a change in the notification approach where we centralize both
monitoring and alerting by exploiting the Grafana capabilities, as shown in Figure 9.

Figure 9 – Grafana alerts

This allows more flexibility and the exploitation of the DOML extensions that will be explained
next.

2.1.4 DOML

Another change in this iteration has been the extension of DOML to support both KR11 and KR12
in two aspects:

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 87

www.piacere-project.eu

• Allow the user to disable monitoring for some elements

• Enable monitoring rules

One need was to have the possibility of disabling the performance or security monitoring for
specific elements of the infrastructure. To support this need DOML has been extended with the
capability of specifying a list of monitoring elements to be disabled.

infrastructure infra {

 vm igw_vm {

 os "Ubuntu-Focal-20.04-Daily-2022-04-19"

 size "small"

 iface igw_vm_oam {

 belongs_to subnet_oam_igw

 }

 iface igw_vm_net1 {

 belongs_to subnet_net1_igw

 }

 credentials ssh_key

 disabled_monitorings "performance,security"

 }

The upper DOML code snippet exemplifies how to disable monitoring features. Currently, we
implement two monitoring features: performance (which includes availability) and security.

To disable monitoring a “disabled_monitorings” element must be added indicating, inside a
comma separated list, the monitoring features to be disabled. This is latter processed by the ICG
that will add or skip the inclusion of the corresponding monitoring agents of that element based
on this information.

Another addition was the “monitoring_rules”. The objective is to extend the monitoring and
self-healing capabilities.

Figure 10 – Monitoring rule

From the monitoring perspective we can establish additional monitoring rules (see an example
in Figure 10) that will add additional monitoring alerts at Grafana (Figure 11).

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 87

www.piacere-project.eu

Figure 11 – Grafana deployment alerts

2.1.5 Self-healing

The self-healing component has been modified in the event reception and in the strategies
execution. Regarding the event reception a new channel has been added that enables the
receptions of web-hooks from Grafana. The channel added is shown in the Figure 11.

Figure 12 – Grafana deployment alerts

Regarding the strategies execution, it has been modified to receive and process the monitoring
rules from the DOML. Monitoring rules as shown in Figure 10, apart from the condition that is
used to trigger the webhook, contain information about the strategy to apply and the
configuration for that strategy. The strategies currently contemplated are: notify, restart,
ansible and scale. The configuration depends on the strategy, ansible strategy being the more
complex.

• Notify requires a message

• Restart does not require configuration

• scale requires information about how the scale will be apply

• Ansible requires identifying the source of the playbook and its attributes

Note: additional details on the strategies are provided in the following section 2.2

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 87

www.piacere-project.eu

Except for notify strategy, the other strategies require communication with the PRC in order to
interact with the IEM in a coordinated way.

• Restart is a preconfigured ansible strategy with reboot playbook

• Scale requests a redeploy changing the DOML regenerating the IaC and executing
Ansible if present.

• Ansible strategy executes an ansible playbook over the inventory of a preexisting
deployment.

2.1.6 Monitoring Agents

Another change area has been the monitoring agents. During this last iteration monitoring
agents have advanced in multiplatform support and in the integration with the ICG. Performance
monitoring agents have been proven to be multiplatform as they have been installed in Debian
and fedora systems deployed in OpenStack, vSphere datacenters and docker based containers.

Besides, the performance monitoring agent has been modified to:

• Include additional labels to support the correlation of deployed elements with DOML
elements in the infrastructure layer.

• Include new supporting metrics to support the understanding of availability issues.

Figure 13 – Evolution of monitoring agents

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 87

www.piacere-project.eu

The Figure 13 shows the changes that we introduced in the agents configuration presented
above. (1) Additional label was added to allow the focusing of the monitoring and the self-
healing over concrete DOML elements. In previous releases we were using hostname, but this
was not useful to correlate the monitored metrics with concrete DOML elements. (2) Additional
support metrics were activated to facilitate the interpretation of monitoring results.

Regarding the integration of the monitoring agents in the ICG, we switch to a git submodule-
based approach (Figure 14), with facilitates the agile development and evolution of the
monitoring agents while the ICG evolves. Monitoring agent submodules contain IaC code that
installs, configures, and starts the monitoring agents in the created infrastructure. This IaC code
is included in the IaC code generated by the ICG.

Figure 14 – Monitoring agents in ICG

2.1.1 Catalogue feedback

The self-healing component feeds the Infrastructure Element Catalogue (IEC) with information
about the alerts in the used services. Each time an event is received it is registered in the IEC as
an alert (Figure 15).

Figure 15 – Service instance information at IEC

To do so, each time an event is received for a DOML element in the infrastructure layer we need
to identify the service in the IEC which it is related to it and upload the event to that service.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 87

www.piacere-project.eu

Figure 16 – IEC in the DOML concretization.

Figure 16 shows how the IDE inserts elements from the IEC in the DOML. We use that structure
to correlate DOML elements with IEC services. When a service is added (1) a provider element
is created inside the concrete infrastructure, and inside that provider a vm element is added
with the name of the IEC service used. This is the name that we have to correlate with the DOML
element. Within the vm in the concretization layer, a maps element is added (2); this maps
element contains the DOML element name of the element in the infrastructure layer it maps to
(3).

2.1.2 Monitoring controller

Finally, monitoring controller, that is a utility component shared between KR11 and KR12, has
been updated to forward the deployment bundle to monitoring components and the self-
healing component.

• Monitoring components require the DOML specification included in the bundle to
extend the alerts in the Grafana component based on the conditions of the monitoring
rule. Alerts are configured based on the conditions and forward the strategy and
configuration through the webhook.

• Self-healing component requires the bundle in order to include changes based on the
strategies and configuration received. Modified bundle is then sent back to the PRC for
processing.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 87

www.piacere-project.eu

2.2 Functional description and requirements coverage

The KR11 provides functionalities focused on enabling and supporting self-learning and self-
healing mechanisms. To implement this objective, it implements three main functionalities:

• Basic performance monitoring

• Self-learning

• Self-healing

The first functionality is the basic performance and availability monitoring this is crucial to
support the self-learning and the self-healing. On one hand, the self-learning requires a metric
stream in order to be able to learn and provide insights. On the other hand, self-healing needs
to receive events when metrics require implementation of some mitigation actions.

The following Figure 17 represents the internal workflow of the performance monitoring
components and their internal parts. Based on the request from the user, typically done from
the IDE, the PRC (1) requests the activation of the deployment to the IEM (2) and to the
monitoring stack (3).

The IEM deploys the IaC generated by the ICG, that contains the monitoring agents (4). This will
create somewhere the infrastructure elements required by the application, and these
infrastructure elements will contain the monitoring agents. These monitoring agents will provide
basic information periodically that will be stored in a time series database (5). The time series
database selected for the project is InfluxDB. We include it as a containerized image, and it is
secured with a basic password protection. The database access details are parametrized in all
the elements that use it, so that we can replace it for a more capable database in case it is
necessary. In this sense InfluxDB, is deployable in many ways and it can even be contracted as a
SaaS.

The monitoring stack receives the deployment activation request from the PRC in the monitoring
controller (3). It forwards this request to lower-level monitoring components such as
performance monitoring controller (6). The performance monitoring controller configures the
appropriate dashboards and alerts (7). The dashboard will take care of the visualization of
metrics with different purposes, the alerts will take care of the communication of events to the
self-healing component.

Figure 17 – Performance monitoring internal workflow.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 87

www.piacere-project.eu

The second functionality is the performance self-learning. The objective of the self-learning
component is to observe the metrics that are continuously gathered and find insights that
improve the self-healing capabilities of the overall system.

The following Figure 18 describes the internal workflow in the performance self-learning. The
self-learning iteratively processes metrics (1). It takes the list of tracked deployments (2), which
are loaded by the monitoring controller under request from the PRC.

For each active deployment the self-learning issues a query to the time series database (3) to
retrieve the latest metrics for all the infrastructure elements active in the last period. This can
potentially return metric values for several DOML elements: those DOML elements that are
defined in the DOML specification and have been available during the last half hour.

The processing starts with checking if the training has been done (4); if the training is not done,
(5) it checks if enough metrics are in place to create the initial models (training requires a
minimum of 200 metric values by default, but this is configurable). Each covered metric will have
its own model for each DOML model element of each deployment id (Figure 19). In this last
version four metrics are considered as presented before: CPU, memory, disk, and availability.

Figure 18 – Self-learning workflow diagram.

After the initial model has been generated, each follow up metric value is used in the online
learning and prediction algorithm (6) that also considers anomalies and drifts. Besides, that
information is stored back in the time series database (7) for its latter usage in the metrics’
visualization (8) and alerts’ issuing for self-healing procedures.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 87

www.piacere-project.eu

Figure 19 – PSL models stored for each DOML element.

The third functionality is the self-healing. It reacts to situations detected in the performance
monitoring, applying different strategies (Figure 20). The overall flow starts with the reception
of events (1) from the monitoring components, specifically performance and security.

Once an event is received (2) through an asynchronous method it is queued for processing. An
executor process takes events from the queue and process them. For each event received a
strategy to apply is identified (3). The strategies to apply for each event are selected based on
three sources with different priority on a deployment basis.

• Higher priority are the strategies specified in the DOML, these are applicable on a
deployment basis

• Normal priority are the strategies predefined in the self-healing component

• Default is the notify strategy

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 87

www.piacere-project.eu

Then each strategy is executed following its own flow, which may involve the communication
with external components (4) such as PRC.

Figure 20 – Self-healing internal workflow.

Based on the strategy, different workflows and interactions will be executed. The different
workflows defined are described in the sequence diagram in Figure 21.

• Notify: sends a message to the PIACERE administrator, unless redefined based on
monitoring rules

• Redeploy: it will request the PRC to redeploy the deployment

• Scale: it will modify the DOML to scale the infrastructure following the provided
configuration.

• Ansible: it will execute an Ansible playbook for the deployment. The playbook to be
executed.

The following sequence diagram describes how the different strategies work and the interaction
required with other components. DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 87

www.piacere-project.eu

Figure 21 – Self-healing sequence diagram.

In the following lines we will detail the scale scenario. As it was already indicated, the default
behavior for any event that arrives to the self-healing component is to notify. For example, if we
have the DOML infrastructural definition shown in Figure 22, PIACERE will include performance
and security agents that will send metrics to the monitoring infrastructure. DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 87

www.piacere-project.eu

Figure 22 – DOML with default monitoring activated.

The monitoring infrastructure will apply the default alerting scheme over those metrics and the
default notify strategy will be applied.

For example, if at runtime the memory is over 70% during more than 5 minutes, which is a
default alerting scheme for memory (as explained above). Self-healing receives an event from
the monitoring. Then, as that deploy has no defined processing for that event, it will apply the
default strategy. As described above the default strategy is notify.

But designer may want to apply a more refined and possibly proactive behaviour for that
scenario. The way to do that, is through monitoring rules.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 87

www.piacere-project.eu

Figure 23 – DOML with explicit monitoring configuration.

The monitoring rules (Figure 23) are specified in the DOML and received by the self-healing
component with the activation of the deployment at the top of the sequence diagram in Figure
21. This configures a specific behaviour (1) for that DOML element (2) in the self-healing
component.

Now, when the event arrives from the monitoring component the scale strategy will be applied
instead of the default strategy. The first thing that will happen is that the DOML will be modified
following the strategy configuration. Different configurations are supported such as Memory
and CPU. In this case it will modify DOML by adding additional memory.

The strategy configuration in the monitoring rule may define some limits, as in the case of Figure
23 where an upper limit is defined for memory. In case that limit is reached and the strategy
cannot be applied the workflow stops and a message is added to the deployment dashboard.

If a new DOML is produced, then a series of checks are performed following the same manual
flow that is applied in the manual design time. First, IOP is checked to verify if we are still in the
optimized solution. If not, the scale process is stopped.

This behaviour can be modified by adding IOP to the ‘ignore_doml_checking’ array in the
monitoring rule configuration.

The same is done with model checker, and again, if the DOML designer wants, (s)he can ignore
the DOML checking step.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 87

www.piacere-project.eu

After that ICG is called to get the new IaC code, which is then sent to the IaC scan runner. Again,
if the DOML designer wants, (s)he can specify to ignore the IaC scan runner results.

Finally, a new bundle is sent to the PRC for execution, and that finishes the scale strategy
workflow.

In the case of the ansible strategy, the configuration will indicate the playbook to be executed
and its parameters. For the moment the only supported ansible-playbook params are extra_vars
and play_book. The playbook should be provided with the assets of the bundle. The next Figure
24 shows a monitoring rule with the ansible strategy, where the specific configuration can be
seen.

Figure 24 – ansible monitoring rule.

Results of every step are notified in the deployment dashboard of the self-healing component
that can be accessed from the IDE.

The user requirements satisfied by this final version are described in Table 3. All these
requirements have been obtained from the PIACERE WP2 Requirements internal document.

Table 3 – Monitoring related user requirements from WP2.

Req ID Description Status Requirement Coverage at M30
REQ11 The learning algorithm (anomaly and

drift) should be executed as fast as
possible as it should provide an
outcome before more data arrives.

completed A REST API has been provided and
deployed to be a single point of entry for
the configuration of the PIACERE
monitoring, self-learning and self-healing
components each time that a deployment
is requested to the PIACERE runtime
controller.

The whole Performance Self-Learning
component has direct access to the data
in the Performance Monitoring database.

At the moment execution is fast enough in
the application on the use cases.

REQ16 Runtime security monitoring should
contribute to mitigation actions taken
when considering plans and
strategies for runtime self-healing
actions

Completed Basic mitigation strategies have been
defined notify, redeploy, scale and ansible
in the last period.

Besides we have introduced the concept
of monitoring rules at DOML level that
allow to modify that behaviour at DOML
level.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 87

www.piacere-project.eu

REQ17 Seamless security monitoring
deployment

Deployment of runtime security
monitoring should happen seamlessly
or with minimal effort and
configuration required by the user.

completed A REST API has been provided and
deployed to be a single point of entry for
the configuration of the PIACERE
monitoring, self-learning and self-healing
components each time that a deployment
is requested to the PIACERE runtime
controller.

REQ46 IOP focused infrastructure metrics

The monitoring component shall
gather metrics from the instances of
the infrastructural elements at run
time. These metrics need to be related
to the NFR and accessible to the IOP
(through the dynamic part of the
infrastructural catalogue).

completed The self-healing will feed the
infrastructure element catalogue with
information about the instances of the
services present on it.

To do so each time an event is received
DOML is analysed to check if a VM flavor
is association with the involved DOML
element.

If present it finds the flavour as service in
the service catalogue if available it
updates realtime metrics for the service in
the service catalogue.

REQ47 Full monitoring stack

The monitoring component shall
include the needed elements in the
stack to monitor the infrastructural
elements.

Completed The Performance Monitoring includes all
the elements required to monitor
infrastructure elements: The agents to
gather the information, the database to
store the data, the analysis and
presentation layer to show the metrics
and follow the thresholds, and the
component to configure the
deployments.

REQ48 Self-learning focused monitoring

The monitoring component shall
transform the real time values into
the correct format/type/nature for
the self learning component.

Completed Real time data is stored, and the
performance self-learning prototype is
actually capable of consuming that
information using the provided interface.

REQ50 Monitor performance, availability,
and security

The monitoring component shall
monitor the metrics associated with
the defined measurable NFRs (e.g.
performance, availability, and
security through the runtime security
monitoring).

Completed The monitoring components covers the
monitoring of performance and
availability requirements.

It provides default monitoring capabilities
as well as customised monitoring
capabilities through monitoring rules.

REQ51 Deployment non-functional
requirements tracking

The self-learning component shall
ensure that the conditions are met
(compliance with respect to SLO) and
that a failure or a non-compliance of
a NFRs is not likely to occur. This
implies the compliance of a
predefined set of non-functional
requirements (e.g. performance).

Completed The component will forward all the
necessary information to the self-learning
components to be able to track the
infrastructure related non-functional
requirements.

We have defined a predefined set of
thresholds based on the state of the
practice experiences. We have
implemented a simplification of the scales
of the metrics in order to refactor the

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 87

www.piacere-project.eu

 notifications base on those simplified
thresholds.

In case different monitoring threshold are
required we have implemented the
monitoring rules mechanism to allow this
refinement.

REQ52 Monitored data based self-learning

Self-healing shall consume the data
monitored and store it in a time-series
database to create discriminative
complex statistical variables and train
a predictor, which will learn potential
failure patterns in order to prevent
the system from falling into an NFR
violation situation.

Completed The Performance Monitoring currently
provides the time series database for the
usage by the performance self learning
component. This covers a part of this
requirement, the other part is covered by
the performance self learning
component.

Dashboards for self-learning have been
implemented and are accessible from the
IDE for each deployment.

Thanks to the integration of the
Performance Monitoring database access
implementation, the Performance Self-
Learning component is able to consume
the data in an incremental way and to
create the necessary variables.

REQ72 monitoring user interface

The runtime monitoring component
should provide an UI for the end
users to see the monitored resources
and the corresponding metrics/NFRs
in real time.

Completed The current version of the Performance
Monitoring includes a graphical user
interface that renders the information
coming from the time series database.

We have introduced a deployment-based
dashboard that includes information
related to the NFR thresholds coming
from the DOML specification.

REQ93 Self-healing should classify the
events notified

Completed We receive notifications from some of the
monitoring elements based on the
identification of the monitoring event and
applying a classification scheme a strategy
is assigned and executed.

If the identifier of the monitoring event
has no strategy associated notify strategy
is applied.

The association identifiers to strategies
comes from two sources: pre-
configuration of default strategies and
deployment specific rules based on
monitoring rules.

REQ94 Self healing component shall inform
the run time controller about the
different components to orchestrate
(the workflow to be executed)

Completed Self-healing request the redeployment of
deployments to the runtime controller
when appropriate.

More concretely with redeploy, scale and
ansible strategies.

REQ97 The Self-Healing components
provide feedback on the DOML code,
without doing automatic writes. The
end user can choose to accept or not

Completed Self-healing has notification procedures in
case the DOML modifications do not
match some requirements.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 87

www.piacere-project.eu

the feedback received. (ex
REQ56&75)

For scale scenarios IOP is queried with the
change and if the suggestion changes a
notification is provided.

Besides, the scale scenarios require
configuration to establish limits on how
much the resources can grow.

The internal requirements satisfied by this latest version are described in the Table 4. All these
requirements are as well polished and adapted as the project advances.

Table 4 – Performance Monitoring related internal requirements.

Description Status Requirement Coverage at M30
Add code into the
project source
repository

Completed The repository has been created and the code is being uploaded regularly

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/mc/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pmc/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pma/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/self-healing/-/blob/y3

https://git.code.tecnalia.com/piacere/public/agents/pma-playbook/-
/tree/y3

Implement REST API
specification

Completed The final version of the OpenAPI has been defined and put under
configuration control

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-
/blob/y3/git/pmc/openapi.yaml

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/mc/-
/tree/main/src/mc/openapi.yaml

• https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning/-
/blob/y3/src/psl/openapi/openapi.yaml

• https://git.code.tecnalia.com/piacere/public/the-
platform/self-healing/-/blob/y3/openapi.json

The OpenAPI have been implemented and put in integration.
Implement
specification first
approach

Completed In order to speed-up the implementation of changes derived from the
expected evolution of the REST API, we have implemented a
specification first approach with OpenAPI generator. Besides, the usage
of OpenAPI generator brings additional benefits in the sense of
introduction of good practices in structuring and configuring the code.

Prepare for
deployment

Completed In order to ensure that we are prepared to deploy the component in the
integration environment we have integrated this component with the
remaining monitoring components in a Docker-compose file that
includes a reverse proxy to receive all the requests using secure
standard HTTPS protocol.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pmc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pmc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pma/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pma/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/agents/pma-playbook/-/tree/y3?ref_type=heads
https://git.code.tecnalia.com/piacere/public/agents/pma-playbook/-/tree/y3?ref_type=heads
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/git/pmc/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/git/pmc/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/git/pmc/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/main/src/mc/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/main/src/mc/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/main/src/mc/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/src/psl/openapi/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/src/psl/openapi/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/src/psl/openapi/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/self-healing/-/blob/y3/openapi.json
https://git.code.tecnalia.com/piacere/public/the-platform/self-healing/-/blob/y3/openapi.json
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 87

www.piacere-project.eu

https://git.code.tecnalia.com/piacere/public/the-platform/runtime-
monitoring/pm

Provide fast
deployment
alternative for
deployment, testing
and evaluation

Completed To allow a seamless infrastructure requirements free alternative to test
this component we have provided a docker compose based build and
deployment option.

This docker compose based option has been used as the basis for the
development during the life of the project.

Besides, we have tested it in a Vagrant based deployment option. This
reduces the list of software requirements to two: VirtualBox and Vagrant.

These two tools (VirtualBox and Vagrant) are available for most of the
operating systems: Windows, Mac, Linux, BSD, …

Include usage
documentation

Completed We have included usage documentation at different levels:

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/mc/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pmc/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pma/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/the-
platform/self-healing/-/blob/y3

• https://git.code.tecnalia.com/piacere/public/agents/pma-
playbook/-/tree/y3

We update continuously the documentation as we advance in the coding
and pre-integration of the monitoring components

Unitary test Planned We will include unitary tests as part of the exploitation strategy.

Integration test Completed We have completed the end-to-end deployment scenario for both the
demo project and for the use cases.

Continuous
integration

Completed Continuous integration has been implemented based on gitlab-ci and
integrated with the rest of components of the PIACERE framework

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pm/-/blob/y3/.gitlab-ci.yml

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/mc/-/blob/y3/.gitlab-ci.yml

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pmc/-/blob/y3/.gitlab-ci.yml

• https://git.code.tecnalia.com/piacere/public/the-
platform/runtime-monitoring/pma/-/blob/y3/.gitlab-ci.yml

• https://git.code.tecnalia.com/piacere/public/the-
platform/self-learning/-/blob/y3/.gitlab-ci.yml

• https://git.code.tecnalia.com/piacere/public/the-
platform/self-healing/-/blob/y3/.gitlab-ci.yml

There are some components that do not require integration as they are
integrated in other components. Specifically, the monitoring agents.

• https://git.code.tecnalia.com/piacere/public/agents/pma-
playbook/-/tree/y3?ref_type=heads

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pmc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pmc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pma/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pma/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/agents/pma-playbook/-/tree/y3?ref_type=heads
https://git.code.tecnalia.com/piacere/public/agents/pma-playbook/-/tree/y3?ref_type=heads
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pmc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pmc/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pma/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pma/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/blob/y3/.gitlab-ci.yml
https://git.code.tecnalia.com/piacere/public/agents/pma-playbook/-/tree/y3?ref_type=heads
https://git.code.tecnalia.com/piacere/public/agents/pma-playbook/-/tree/y3?ref_type=heads

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 87

www.piacere-project.eu

Which are integrated in the ICG using submodule mechanisms. This code
is packaged as part of the ICG continuous integration.

2.3 Main Innovations

Main innovations introduced during this period are:

• Establish a default simplified and easy to understand monitoring scheme based on four
metrics, all of them using percentual scale. Where in general the greater the percentage
is we worst the situation is.

• Definition of the infrastructure availability metric based on the gaps in the reception of
metrics from the monitoring agents deployed in the infrastructure elements that build
up the setup deployments.

• DOML monitoring rules have been defined and implemented to allow the adaptation
and extensibility of the monitoring features to the project needs. On the one hand, with
these rules we can customize the conditions under which events are sent to the self-
healing. On the other hand, providing the possibility to modify the behaviour of some
of the healing strategies.

• Ansible strategies have been introduced for the execution of ansible playbooks on the
elements of the infrastructure, allowing a high customization of the framework.

• Catalogue feedback have been implemented to add information about the events
captured in the monitoring framework, for the individual monitored elements.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 87

www.piacere-project.eu

3 KR12 Runtime security monitoring overview

KR12 is related with tasks T6.2, T6.4.

KR12 – Runtime security monitoring provides verification and detection of security violations
at runtime.

KR12 provides a monitoring system capable of detecting security-related events and incidents
in the deployed application's environment. It is (to the extent possible) deployable automatically
and notifies users about security alerts.

3.1 Changes in v3

In the reported period the work has been done mostly on implementation updates of the
Security Monitoring Deployment and Security Monitoring Controller. Moreover, there were
updates to the Security Monitoring Agents.

Changes in the Security Monitoring Deployment:

• Integration of custom-decoders and rules, also supporting security self-learning
monitoring component

• Supporting IEM with the deployment of Security Monitoring infrastructure.

Changes of the Security Monitoring Controller:

• Updated Event reports helper – support for the self-learning mechanism

Changes of the Security Monitoring Agents:

• Support deployment to different architectures (CentOS, debian, Docker environment)

For the components listed above components e have supported infrastructure tasks (updates
to the CI/CD).

3.1.1 Integration of custom-decoders and rules for self-learning

Wazuh allows you to create your own custom rules and decoders. This enables you to introduce
additional detection logic that is tailored to specific requirements. You can define specific
conditions, keywords, or patterns to identify security events or anomalies that are relevant to
your environment. By creating custom rules and decoders, you can expand the coverage and
depth of detection provided by Wazuh. The idea of using custom-decoders and rules for the self-
learning purposes is that the security infrastructure (Wazuh) defines custom rules and decoders
in a way, so that all raw logs from the agent are aggregated towards the servers and collected
within the dedicated Elasticsearch. This is not being done by default by Wazuh.

Local Decoder residing in configuration of Wazuh’s instance is located in the file:
Config/local_decoder.xml:

<decoder name="allow_all">

<prematch>\.</prematch>

</decoder>

<decoder name="allow_all">

<parent>allow_all</parent>

<regex type="pcre2">(?i)(.*)(EventChannel)(.*)</regex>

<order>data,action,extra_data</order>

</decoder>

Local Rule residing in the configuration of Wazuh’s instance - Config/local_rules.xml:

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 87

www.piacere-project.eu

<rule id="101010" level="9">

<regex type="pcre2">.*</regex>

<description>Allow all logs not caught by inbuilt rules</description>

</rule>

These rules enable infrastructure to gather all raw logs from infrastructure to be injected into
the monitoring services and index that is later used by self-learning mechanisms. The raw logs
are then used by the LOMOS (LOg MOnitoring System, see section 3.2.1) system in order to do
the model for the anomaly detection and process the logs on top of the raw logs.

3.1.2 Supporting IEM with the deployment of Security Monitoring
infrastructure

Modifications related to the deployment of the Security Monitoring infrastructure we provided
so that the deployment was made more efficient (and cloud native) supporting different
operating system flavours (Centos, Debian, Docker-specifics). Specifically, updates have been
made to the sma-playbook (deployment for the agents).

3.1.3 Extensions to DOML to support Security Monitoring and Security Self-
Learning

Referring to the section 2.1.4, extensions to DOML have been made from the security
monitoring perspective. We have also defined specific DOML rules with respect to security
monitoring and security self-learning.

Examples of three security monitoring rules are given below. The first is an example of a
monitoring rule notifying user that some anomaly related to security has been detected.
“Notify” strategy has been enforced here implying that the user will get a notification about the
anomaly being detected.

Monitoring_rule sec_anomaly_notify {

 /*

 * A formal string attribute, whose value is dependent on the strategy attribute,

 * that defines the condition that will trigger the monitoring.

 */

 cond "sec_anomaly > 0.5"

 // A string attribute to specify the name of the monitoring strategy this rule

will use.

 Strat "notify"

 // An optional string attribute to specify parameters valid for the given

monitoring strategy.

 Config "Security anomaly detected. Please, check the logs of security monitoring."

}

The following is another example of a rule about notification to the user that Security
Component Analysis’ threshold has been reached (or smaller to the one being acceptable):

 monitoring_rule sec_sca_scan_rule {

 cond "sca.policy < 0.5"

 strat "notify"

 config "SCA summary: sca.policy : Score less than 50% (sca.score). SCA scan

threshold is below the accepted level. Please consider hardening the OS."

 }

The last is an example of an ansible strategy that enforces running an Ansible script towards the
target infrastructure:

 monitoring_rule sec_port_rule {

 cond "sec_unattended_port"

 strat "ansible"

 config " { 'playbook': 'playbook/harden_ports_fw.yml',

'extra_vars': { 'allow_ports': [80, 443] }}"

 }

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 87

www.piacere-project.eu

In the last example we assume that the “harden_ports_fw.yml” Ansible playbook is made
available (in the assets folder) and is specific to this target infrastructure.

3.1.4 Updated Event reports helper

Security Monitoring Controller has been updated with the capability to upload specific
notifications towards Self-Healing endpoint taking into account a specific timeout and threshold
which is part of the configuration and the rule’s input.

With this in mind, additional configuration attributes have been introduced within the Security
Monitoring Controller:

SM_POLL_WEBHOOK_URL = https://sh.ci.piacere.digital.tecnalia.dev/api/self-healing/notify

SM_POLL_WEBHOOK_USERNAME = admin

SM_POLL_WEBHOOK_PASSWORD = xxxxx

SM_POLL_TIMEOUT = 10

SM_POLL_THRESHOLD = 9

This configuration sets the service’s API towards the reports are pushed. Timeout and threshold
effect the mechanisms w.r.t. the default settings (in case no specific thresholds are set, these
settings are taken into account). Basic authentication is supported (as supported by Security Self
Healing).

Event reports helper within Security Monitoring Controller embeds a process with a time-
window of the size of SM_POLL_TIMEOUT seconds). As soon as the security monitoring rules are
being triggered within this time window, the events are being sent to the
SM_POLL_WEBHOOK_URL using the scheme from Wazuh events.

Log entry related to a security monitoring system - explanation of the key fields from the report:

• Agent: Represents the agent or device that generated the log entry. It includes
information such as the agent's IP address, name, ID, and labels.

• Rule: Contains information about the rule that was triggered. It includes details like the
number of times the rule has fired, the rule's level, and various compliance standard
details tagged associated with the rule.

• Full Log: Presents the complete log message or output generated by the agent or device.

• Manager: Represents the name of the security management system or manager.

• Decoder: Indicates the name of the decoder responsible for parsing and interpreting the
log message.

• Input: Specifies the type of input received, in this case, it is a log.

• @timestamp: Indicates the timestamp when the log entry was created.

• Location: Describes the location or context of the log entry, in this case, it refers to
"netstat listening ports".

• _id: Represents the unique ID assigned to the log entry.

In this specific log entry, the rule with ID "533" from Wazuh was triggered because the status of
the listened ports (as determined by the "netstat" command on the infrastructure) changed. It
indicates that a new port was opened or closed. The log message shows the difference between
the current and previous states of the listened ports.

Example of an event reported (detection of an unattended port being opened on the
infrastructure):

{

 "agent": {

 "ip": "172.20.0.29",

 "name": "aa7a325d72fb",

 "id": "001",

DRAFT

http://www.medina-project.eu/
https://sh.ci.piacere.digital.tecnalia.dev/api/self-healing/notify

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 87

www.piacere-project.eu

 "labels": {

 "piacere-deployment-id": "123e4567-e89b-12d3-a456-426614174001"

 }

 },

 "rule": {

 "firedtimes": 1,

 "mail": false,

 "level": 7,

 "pci_dss": [

 "10.2.7",

 "10.6.1"

],

 "hipaa": [

 "164.312.b"

],

 "tsc": [

 "CC6.8",

 "CC7.2",

 "CC7.3"

],

 "description": "Listened ports status (netstat) changed (new port opened or

closed).",

 "groups": [

 "ossec"

],

 "id": "533",

 "nist_800_53": [

 "AU.14",

 "AU.6"

],

 "gpg13": [

 "10.1"

],

 "gdpr": [

 "IV_35.7.d"

]

 },

 "full_log": "ossec: output: 'netstat listening ports':\ntcp 0 0

127.0.0.11:44783 0.0.0.0:* LISTEN - \nudp

0 0 127.0.0.11:54828 0.0.0.0:* -

",

 "previous_log": "ossec: output: 'netstat listening ports':\ntcp 0 0

127.0.0.11:40069 0.0.0.0:* LISTEN - \nudp

0 0 127.0.0.11:42571 0.0.0.0:* -

",

 "id": "1680702615.19456",

 "timestamp": "2023-04-05T13:50:15.832+0000",

 "previous_output": "Previous output:\nossec: output: 'netstat listening

ports':\ntcp 0 0 127.0.0.11:40069 0.0.0.0:* LISTEN

- \nudp 0 0 127.0.0.11:42571 0.0.0.0:*

- ",

 "manager": {

 "name": "wazuh-manager"

 },

 "decoder": {

 "name": "ossec"

 },

 "input": {

 "type": "log"

 },

 "@timestamp": "2023-04-05T13:50:15.832Z",

 "location": "netstat listening ports",

 "_id": "bU6uUYcBIjeGvwXZtzW_"

}

3.2 Functional description and requirements coverage

KR12 provides functionalities focused to support monitoring and self-healing capabilities with
respect to security events/metrics detected on the infrastructure. Similarly to KR11, the
objective is to implement similar main functionalities:

• Basic security monitoring

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 87

www.piacere-project.eu

• Self-learning

• support Self-healing process

3.2.1 Functional description

Since security monitoring is very different in PIACERE comparing to runtime monitoring, mostly
due to the nature of events being detected and analysed (the events are based on events
detected in the logs, and are not numerical metrics), in order to achieve the result, the
monitoring facility is based on log-based monitoring infrastructure. Basic security monitoring
also provides specific rules that are taken into account while triggering the self-healing process.

The monitoring agents can detect the following type of events:

1. Listened Ports: The agent monitors changes in the status of listened ports. It can detect
if new ports are opened or closed.

2. Rootkit Files and Trojans: The agent performs rootcheck scans to detect rootkit files
and trojans on the system.

3. System Inventory: The agent uses the Syscollector module to collect system inventory
information such as hardware details, operating system information, network
configurations, installed packages, and running processes.

4. File Integrity: The agent performs file integrity monitoring using the syscheck module.
It monitors specified directories and files for any changes or modifications, ensuring the
integrity of critical system files.

5. Log Analysis: The agent performs log analysis on specific files and commands. The
provided XML configuration includes log analysis for the output of the df -P command,
netstat command for listening ports, and the last command for system login
information.

These metrics allow the Wazuh Agent to monitor and detect changes, anomalies, and potential

security threats in the system's network, file system, system configuration, and log files. By

analyzing these metrics, the agent can provide valuable insights and trigger alerts or automated

response actions when necessary.

Figure 25 – High-level architecture diagram of Security Monitoring components.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 87

www.piacere-project.eu

The Security monitoring system consists of subsystems (Wazuh deployment – manager and
agents – with specific components for data transformation) collecting data (Figure 25, left hand-
side) in order to provide values for security metrics. The system stores (1) data aggregated by
the (security) monitoring system and (2) data generated by underlying anomaly detection
system using dedicated ELK stack. The ElasticSearch storage of the is located in the SM-W (The
Manager in the picture above).

Self-learning is based on the system named LOMOS2 (Log Monitoring System, Figure 25, right
hand-side name Security Self-learning) – it is an ML-based anomaly detection solution. Self-
learning component is hooked on the SM-W component from the figure above in order to track
raw logs from the storage system. It compares the logs towards the model which is pre-built (in
the learning phase of the use). Security Self-learning's role in PIACERE is to provide a second
layer of analysis of gathering data and metrics. The Self-healing part is outsourced to the existing
self-healing PIACERE component that is capable of triggering specific strategies based on the
configured basic security monitoring rules and Self-learning security monitoring rules.

Figure 26 – Security Self-learning approach based on LOMOS- anomaly detection workflow from logs.

Figure 26 presents the approach used by LOMOS in order to detect anomalies from the logs.
LOMOS operates on raw logs without pre-processing and focuses on two main objectives:
learning patterns and identifying anomalous behaviour. To achieve this, LOMOS employs an
algorithm that seeks to establish structure within the logs by identifying log templates that can
be matched against the log data.

The underlying algorithm of LOMOS (based on the extension of LogBERT3 algorithms, using
Drain4 for log template parsing), is designed to extract key parameters such as IDs, services,
ports, and other relevant information. These parameters play a critical role in transforming the
initially unstructured logs into structured log templates. The log templates are organized
hierarchically, following a tree-like structure. Within this structure, certain elements remain
constant across multiple logs, while other elements are variable and represented by
placeholders or wildcards. These wildcards allow for flexibility in capturing and analysing logs
with varying parameters from log to log.

2 J. Antić et al., "Runtime security monitoring by an interplay between rule matching and deep learning-
based anomaly detection on logs," 2023 19th International Conference on the Design of Reliable
Communication Networks (DRCN), Vilanova i la Geltru, Spain, 2023, pp. 1-5, doi:
10.1109/DRCN57075.2023.10108105.
3 H. Guo, S. Yuan, and X. Wu. Logbert: Log anomaly detection via bert, 2021
4 P. He, J. Zhu, Z. Zheng, and M. R. Lyu. Drain: An online log parsing approach with fixed depth tree. In
2017 IEEE international conference on web services (ICWS), pages 33–40. IEEE, 2017.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 87

www.piacere-project.eu

3.2.2 Requirements coverage

Table 5 – Security Monitoring requirements from WP2.

Req ID Description Status Requirement Coverage at M30
REQ14 Runtime security monitoring must

provide monitoring data from the
infrastructure's hosts w.r.t. security
metrics

completed Security Monitoring Controller provides
API call in order to get the alerts/events
from the stored database.

REQ15 Runtime security monitoring could
provide monitoring data from the
application layer (infrastructure's
guest) w.r.t. security metrics

completed This is possible through the configuration
of the Security Monitoring Manager
(specifically, Wazuh configuration).

REQ16 Runtime security monitoring should
contribute to mitigation actions taken
when considering plans and
strategies for runtime self-healing
actions

completed The integration with the self-healing
components – through DOML you are
capable of expressing different self-
healing actions

REQ17 Deployment of runtime security
monitoring should happen
seamlessly or with minimal effort and
configuration required by the user.

completed The deployment is integrated with the
complete deployment of a specific DOML.

REQ18 Runtime security monitoring must be
able to detect different types of
metrics in run-time: integrity of IaC
configuration, potential attacks to the
infrastructure, IaC security issues
(known CVEs of the environment).

completed The data of these metrics are already
available in the Security Monitoring
infrastructure. However, this is possible
through the configuration of the Security
Monitoring Manager (specifically, Wazuh
configuration). The configuration needs to
be provided through the configuration
step.

REQ19 Runtime security monitoring and
alarm system (self-learning)
integration must be implemented.

Completed The integration between the monitoring
in self-learning (LOMOS) is available.

REQ21 Runtime security monitoring and
Runtime monitoring infrastructure
should be integrated with minimal
extensions.

completed The integration is done through the
deployment of the Security Monitoring
Agents and their deployment code.

REQ50 The monitoring component shall
monitor the metrics associated with
the defined measurable NFRs (e.g.
performance, availability, and
security through the runtime security
monitoring)

completed Integration between “expressing NFRs”
and configuration of the security
monitoring infrastructure through DOML
is available.

REQ51 The self-learning component shall
ensure that the conditions are met
(compliance with respect to SLO) and
that a failure or a non-compliance of
a NFRs is not likely to occur. This
implies the compliance of a
predefined set of non-functional
requirements (e.g. performance)

completed The self-learning component of security
monitoring can be used to build a specific
model to be used for detecting metrics
with respect to anomaly detection
(anomalies detected on the
infrastructure). It is possible to express
these metrics and related NFRs through
the integration with DOML components
and the rest of PIACERE flow (NFRs to be
consumed by Security Monitoring).

Table 6 – Security Monitoring related internal requirements.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 87

www.piacere-project.eu

Description Status Requirement Coverage at M30
Add code into the
project source
repository

Completed The repository has been created and the code is being uploaded regularly
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-controller

and

https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-deployment

Agents deployment

https://git.code.tecnalia.com/piacere/public/agents/sma-playbook
Implement REST API
specification

Completed OpenAPI of security monitoring controlled is made available:

https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-controller

Implement
specification first
approach

Completed In order to speed-up the implementation of changes derived from the
expected evolution of the REST API, we have implemented a specification
first approach with OpenAPI generator.

Prepare for
deployment

Completed Part of the code provided on the Gitlab.

https://git.code.tecnalia.com/piacere/private/t64-runtime-security-
monitoring/security-monitoring-deployment

https://git.code.tecnalia.com/piacere/public/agents/sma-playbook

Provide fast
deployment
alternative for
deployment, testing
and evaluation

Completed Part of the code provided on the Gitlab.

Include usage
documentation

Completed Part of the code provided on the Gitlab.

Unitary test Planned We will include unitary tests as part of the exploitation strategy.

Integration test Completed We have completed the end-to-end deployment scenario for both the
demo project and for the use cases.

Continuous
integration

Completed Continuous integration has been implemented based on gitlab-ci and
integrated with the rest of components of the PIACERE framework.

3.3 Main Innovations

The main innovations of the KR12 are:

• Seamless deployment of security monitoring infrastructure together with infrastructure
expressed through DOML

• Integration of the self-learning (log-based) anomaly detection system with security
monitoring infrastructure

• Integration of anomaly detection system with self-healing systems (triggering specific
self-healing strategies based on detected anomalies)

• Custom decoders and rules supporting security self-learning components with raw log
events for building the model and for the inspection process

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/public/agents/sma-playbook
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/public/agents/sma-playbook

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 87

www.piacere-project.eu

4 Overview of preliminary experiments

During this period, we have advanced in the deployment and un-deployment of IaC generated
by the ICG containing the monitoring agents. The overall procedure with all the use cases has
been:

• Identification of input DOML

• Execution of the DOML with ICG to generate the IaC

• Ensure the provider details

• Execute the IaC using the PRC

• Achieve the successful deployment of the IaC

• Feedback to the used components

The experiments carried out for the monitoring component included:

• Demo nginx

• Posidonia

• Agents integration at IEM

• Agents with ICG

• SIMPA

• Ericsson

Demo nginx was used initially to check the deployment of the performance monitoring agents
over the existing deployment that was including Terraform and nginx IEM stages. We added the
PIACERE monitoring stages Figure 27.

Figure 27 – nginx demo first monitoring integration.

From that experiment we learnt some lessons:

• The usage of IEM with the creation of machines required some time

• The installation of the performance monitoring agents was subject to be merged in one
single stage, reducing the maintenance complexity

• There were issues with the clean-up of the resources, as the key pair were not removed
when manually issuing the terraform destroy command.

Posidonia was the next experiment as shown in Figure 28.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 87

www.piacere-project.eu

Figure 28 – Posidonia demo monitoring integration.

The experiment was used with two aims: to understand the deployment process with the use
case and its interaction with the IDE, and to improve the monitoring agents. From the
experiment we implemented:

• The monitoring controller link to customize the monitoring components, that was called
by the PRC

• The IDE link to the monitoring dashboard

• Performance self-learning specific dashboard

From the experiment we also improved the monitoring agents, reducing them to a single stage.

Figure 29 – Posidonia performance monitoring agent improvement.

Next experiment, agents integration at IEM Figure 30, was centred in the integration of both
performance and security agents. For this experiment and due to the required agility in this
endeavour we switched from a Terraform based approach to a Docker based approach in which
we used Docker containers as virtual machines. To do so we developed Docker images with SSH
services running in a privileged mode to allow full control with systemctl, and be as much similar
as possible to virtual machines.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 48 of 87

www.piacere-project.eu

Figure 30 – Agents at IEM.

From this experiment we obtain a fast and easily replicable way to check monitoring agents from
the IEM. It was fast because containers are created much faster than virtual machines. It was
easily replicable because only one Docker enabled machine is required to replicate the
experiment.

Besides, from this experiment we understood how to configure the IEM in the integration
environment, and we identified some improvements in the IEM logging capabilities that were
implemented and highly improved the understanding of the errors that IEM finds when applying
Ansible playbooks.

Next experiment, agents with ICG Figure 31, was centred in going one step forward and generate
the IaC using the DOML and apply it through the IEM.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 49 of 87

www.piacere-project.eu

Figure 31 – Agents through ICG.

From this experiment we identified critical problems in the configuration management of the
agents. ICG versions and the latest versions that we were applying were different and the
synchronization procedures were not agile enough.

To solve this situation, on the one hand we refactored the ICG to use git submodules Figure 32,
on the other hand we changed the time in which the agents are included in the deployment
bundle.

Figure 32 – Submodule link to monitoring agents.

The submodule approach allows to easily transfer the improvements introduced in the
monitoring agents in the ICG by simply doing a git checkout inside the submodule. A side effect
of using the same code for deployable IaC and for templates was that some configured by ICG
were overwritten when copying the content of the agent submodule. We were including some
critical files, i.e. inventory.j2. and ssh_key.j2 in the agents for local testing. We find out that due

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 50 of 87

www.piacere-project.eu

to the time when ICG was copying the template the generated jinja files were overwritten.
Therefore, we changed the order to copy first the template and then generating the files.

Next experiment was centred in the SIMPA use case. For this use case we were asked to deploy
the agents in an on-premise cloud, specifically vSphere.

For the implementation of this experiment, we followed a hybrid approach similar to the
previous agents with ICG experiment: a Docker based approach for testing the deployment in
docker simulated infrastructure and a Terraform based approach for real deployment
experience. In this experiment we faced several challenges:

• The hybrid approach

• The easy replication by the use case owners in a separate on-premise cloud
infrastructure

• The deployment time, as we planned to show SIMPA how to replicate during a series of
short telcos, having as much time as possible for discussions

• The clean-up of resources, as we were using an alternative on premise infrastructure for
our deployment

There were some main steps in this scenario:

• Implementation of Docker based scenario

• Modification of their Terraform code

• Introduction of PRC

• Demo to SIMPA

• Adaptation to SIMPA

The first step was to implement a Docker based scenario, the SIMPA scenario was using two
infrastructure resources while all our previous experimentations where deploying into one. To
clear out all the possible contingencies, starting from our previous experience with agents at
IEM, we created a new experiment project SIMPA at IEM Figure 33.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 51 of 87

www.piacere-project.eu

Figure 33 – SIMPA at IEM.

This was interesting to understand what we require from the previous Terraform stage. Once
we verified that the agents were deployed in the two instances and reporting measurements to
the monitoring dashboard, we shifted to the next step.

The next step is the implementation of the Terraform based deployment. To do this adjustment
we used an alternate on-premise infrastructure different from the one that will be potentially
used by SIMPA. Both virtualization platforms were technologically similar, as both were vSphere
clusters. In this way the Terraform to be applied was similar. Different adjustments were
necessary in this stage:

• IEM was modified to accept vSphere credentials

• The Terraform code provided by the use case, was adjusted due to three main
differences:

o The type of infrastructure was different: one was hyper-convergent (vsan) while
the other was not

o One was based on DHCP
o The name of the centos 7 operating system templates in each vSphere cluster

where different as well as other template internal aspects. Aspects such as the
user name, password, boot type, etc

From this step we also reported a change request as the user and password in the template is a
sensible credential that was required to be supplied somehow. Following we held a meeting
with the ICG team and we decided to route these credentials in the same way as other
credentials are passed to the IEM. As a result:

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 52 of 87

www.piacere-project.eu

• IEM was modified to accept custom secrets

• ICG was modified to consume those credentials from environment variables using a
convention

• IEM un-deployment feature was integrated in the test

Next, a meeting was planned to show SIMPA the IaC used and the procedure to deploy in an
infrastructure similar to the one they are using. But before the meeting we decided to shift the
approach and apply the IaC through the PRC as it was then ready to accept bundles.

Therefore, we introduce PRC in the SIMPA experiment Figure 34. Bundling the IaC was a late
decision based on the feedback from the usage of the IDE, and the deployment workflow. The
new approach also covered the un-deployment feature of PRC.

Figure 34 – SIMPA at PRC.

The demo took one hour: we explained to SIMPA the approach followed and we verified that
the infrastructure was deployed, the agents were installed, and the information was received.

Following week we held a meeting with SIMPA, in which we updated the Terraform to their on-
premise settings. During that deployment, the virtual machines were created but the agents
were failing to install. The following week they reported that they adjusted the infrastructure,
and the agents were installed as well.

Finally, we are currently experimenting the deployment with Ericsson, the deployment of the
infrastructure in their scenario. They are currently experiencing issues with the agents’
installation that are being analysed.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 53 of 87

www.piacere-project.eu

5 Lessons learnt and outlook to the future

During the implementation and piloting of the WP6 monitoring components we have find out
that:

• A single point of entry is good for use cases, but it adds problems

• For testing a monitoring feature, many requirements must by in sync

• For being able to develop, some elements must be in place for some time

• Automation and ease of use are many times a good investment

• Extensibility is important in DevSecOps

The first lesson learnt is that it was very important to drive all features from the IDE, from the
deployment of the monitoring to the access to the different features. On the dark side it involved
that for the monitoring to work, it was necessary that IDE, ICG, PRC and IEM were developed
and in sync.

Sometimes the introduction of a change in a component requires a chain of changes back to the
IDE that take time and affects the ability to test the new features or changes.

In this sense a good approach has been to use the components one by one as they were available
and synchronised enough. In order to implement this approach, the Docker and the Docker-
compose technology have been an unvaluable resource.

Some of the components of this Work package require some pre-existing assets for being
developed. The availability of such assets or “faked versions of them” is critical for supporting
the agile development and the consistency in the results.

In this sense the establishments of fake monitoring agents in the infrastructure have been a
crucial element for the development of other components such as the self-learning components
or the monitoring dashboard. But it was not perfect: there were situations in which, after a reset
of the environment, the lack of pre-existing metrics in the time-series database has been a
problem. Problem in the sense that we were forced to wait, and problem in the sense that we
were not able to replicate the behaviour as the input data was not the same.

Another lesson learnt has been that automation and means to repeat tests fast and consistently,
were very useful tools. During the agents test with the IEM and ICG, and especially in the
experimentation with SIMPA, we learnt that having ways to do and replicate tests was an
important communication mechanism.

For this automation we used Docker, Docker-compose and shell scripting in order to reduce to
the minimum the number of steps required to replicate some tests and to make them access to
as much information technology profiles as possible.

Another lesson was that providing extensibility mechanism is very important for providing the
necessary adaptation features. During this last period, we have introduced the monitoring rules
and the Ansible strategy as mechanisms to adapt Monitoring to cover a greater number of
situations.

As an outlook to the future, we would like to explore:

• Ways to feed the same time series data

• Knowledge base for monitoring rules

• Complement the availability metric

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 54 of 87

www.piacere-project.eu

Having ways to feed the same time series data will help in the development and in tracing issues
in the monitoring components. For some purposes, such as the PSL development, we have
exported ranges of times to csv and used them in the PSL algorithm. It will be nice to find a way
to “record” some ranges of time from the time series database in a way that we are able to
replicate the injection from the fake agents in the same rate. This will help us to replicate the
behaviour activating most of the PIACERE workflows.

The creation of a knowledge base for monitoring rules, will correlate monitoring conditions with
strategies that can be applied, and specifically Ansible related playbooks to solve the issues.

During this last period, it has not been possible to have a stable source of metrics from the
scenarios as they are continuously improving other aspects of PIACERE such as DOML which
requires continuous redeployments. As a mitigation mechanism we have been monitoring the
PIACERE integration platform which have provided a stable flow of metrics, allowing to feed the
training algorithms. Additional platforms can be monitored to check more complex scenarios
looking forward to the exploitation of PIACERE.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 55 of 87

www.piacere-project.eu

6 Conclusions

Along this document, we have presented the current state of the development of the PIACERE
run-time monitoring and self-learning, self-healing platform, together with the rationale that
supports the decisions taken in this period.

As we have stated in the executive summary, the objective in this period has been finalization
and application of the Key results to the scenarios. Specifically, KR11 - Self-learning and self-
healing mechanisms and KR12 - Runtime security monitoring.

During this process we have introduced many final changes in the existing components of the
covered key results:

• Metrics have been simplified

• Availability has been introduced

• DOML has been extended

• Self-healing strategies have been extended

• Monitoring agents have been integrated with ICG

• Self-healing reports alerts to the catalogue

But the main focus has been the experimentation with the use cases, and the adjustments of
the components from that experimentation. Central point of the experimentation has been in
the deployment of the agents in different use cases with different architectures.

From that testing we have interacted with many other components providing the necessary
feedback to make things work at this level: IEM, PRC and ICG.

The experimentation of the remaining features will be done in the following months in the
context of the support of the use cases. The testing will be focussed on the long-term
maintenance of the systems, rather than in the exploration of the deployment and un-
deployment capabilities.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 56 of 87

www.piacere-project.eu

Annex A. Implementation, delivery and usage

In this section we describe the implementation delivery and usage details of the different
components that build up the WP6 key results KR11 and KR12.

Table 7 – Components and KR relations

Disk KR11 KR12

Monitoring Controller X X

Performance Monitoring X

Security Monitoring X

Performance Self-learning X

Security Monitoring X

Security Self-learning X

Self-healing X

A.1. Monitoring Controller

A.1.1. Implementation

This subsection is devoted to describing the implementation details of the monitoring controller
component. First, we describe the internal architecture and then we describe the technical
details.

The main architecture of the component is depicted in the following Figure 35. In this
architecture, seven different components can be distinguished: Connexion, Monitoring
Controller, and five clients to communicate with the rest of the components of PIACERE
monitoring, self-learning and self-healing components.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 57 of 87

www.piacere-project.eu

Figure 35 – Monitoring Controller internal architecture.

This final version of the Monitoring Controller makes use of five client components, as self-
healing requires to know that a concrete deployment has been activated. We have integrated
this fifth component “Self-healing” during the development of the last strategies. During this
development we have identified the need to setup refined strategies in the self-healing
component for each active deployment.

The Monitoring Controller internal components are the following.

• Connexion: This is an open-source component from Zalando5 that enables the
specification-first approach in Python.

• Monitoring Controller: This is the main component where the forwarding and the
configuration are managed.

• Performance Monitoring Client: This is an autogenerated component from the OpenAPI
of the performance monitoring with the OpenAPI generator6.

• Security Monitoring Client: This is also an autogenerated component with the OpenAPI
generator.

5 https://github.com/zalando/connexion
6 https://github.com/OpenAPITools/openapi-generator

DRAFT

http://www.medina-project.eu/
https://github.com/zalando/connexion

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 58 of 87

www.piacere-project.eu

• Performance Self-learning Client: This is also an autogenerated component with the
OpenAPI generator.

• Security Self-learning Client: This is also an autogenerated component with the OpenAPI
generator.

• Self-healing Client: This is also an autogenerated component with the OpenAPI
generator.

This prototype has been developed using Python, which is an interpreted class-based, high level,
object-oriented and general-purpose programming language. We have chosen Python as it is
easier to read, learn and write and is ideal for the fast implementation of low complexity code
as the one we have done in this component.

The component is packaged using Docker technology to simplify the Python requirements and
environment management. This is also a requirement for the future integration of PIACERE
components into the PIACERE framework.

A.1.2. Delivery

The component code is available at PIACERE code repository at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/y3

There are many ways to run this component:

• Run the component in isolation

• Run with Docker

• Run with Docker compose

• Run with Vagrant

Each approach is described into its corresponding README in the PIACERE code repository.

A.1.2.1. Component in isolation

The installation of the component in isolation is described at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/y3

The requirement to run the component in isolation is to have Python 3.5.2+. In order to execute
the component we have to carry out three steps:

• Download the code

• Install the requirements

• Launch the Python module

To download the code we will use git:

git clone https://git.code.tecnalia.com/piacere/public/the-platform/runtime-

monitoring/mc.git

To install the requirements we will use pip, so we will require to have the pip3 Python tool:

cd mc

pip3 install -r requirements.txt

NOTE: the module has been developed on linux and therefore even if Python is multi-platform,
we cannot ensure that the requirements are multiplatform as well. Therefore, running this step
in non linux systems may have some issues. In case you have a different operating system, you
can proceed as indicated in A.1.2.4.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/y3
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/y3
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc.git
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc.git

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 59 of 87

www.piacere-project.eu

To launch the Python module we require to have the port 8080 available and run:

python3 -m mc

A.1.2.2. Docker

The installation with Docker is also described at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/y3

The requirements to run the component with Docker is to have Docker installed, we have used
Docker version 20.10.10 with linux/amd64 architecture. In case you have a different operating
system, you can proceed as indicated in A.1.2.4. In order to execute the component we have to
carry out three steps:

• Download the code

• Build the image

• Run the image

To download the code we will use git:

git clone https://git.code.tecnalia.com/piacere/public/the-platform/runtime-

monitoring/mc.git

To build the image:

cd mc

docker build -t mc .

NOTE: the image relies on linux kernel, therefore it requires a Docker installation able to run
linux based machines.

To run the image in a container we require to have the port 8080 available and run:

docker run -p 8080:8080 mc

A.1.2.3. Docker compose

The installation with docker-compose is described at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/tree/y3

This docker-compose is a partial integration of components of WP6, currently we cover two
components: monitoring controller and performance monitoring; in the future we will cover all
the remaining components: (security monitoring, performance self-learning, security self-
learning and self-healing.).

The requirements to run the component with Docker is to have Docker installed, we have used
Docker version 20.10.10 with linux/amd64 architecture and docker-compose version 1.29.0 . In
case you have a different operating system, you can proceed as indicated in A.1.2.4. In order to
execute the component, we have to carry out three steps:

• Download the code

• Setup relevant variables

• Build the images

• Run the docker-compose

To download the code we will use git:

git clone –recurse-submodules https://git.code.tecnalia.com/piacere/private/t61-runtime-

monitoring/pm/pm-deploy.git

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/tree/y3
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc.git
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc.git
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/tree/y3

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 60 of 87

www.piacere-project.eu

To setup relevant variables we need to identify the variables without values, and give value to
them:

echo list variables to be setup

cat .env | grep -e ".*=\s*$"

Assign values to those variables. The current set of values are the ones show below, but they
are subject to change as the development advances, therefore it is advisable to check the
current list using the instruction above (cat …)

export SERVER_HOST=192.168.56.1.nip.io

NOTE: https://nip.io is a service that allows doing a mapping between any IP to a hostname.

To build the images:

cd pm-deploy

docker-compose build

NOTE: the image relies on linux kernel, therefore it requires a Docker installation able to run
Linux-based machines.

To run the docker-compose we will need the port 443 available:

docker-compose up

A.1.2.4. Vagrant

In case we do not have a Docker compatible operating system, or we cannot install the Docker
desktop version, we will be able to use VirtualBox to instantiate a virtual machine. The easiest
way to do so is to use Vagrant.

mkdir piacere-vagrant

cd piacere-vagrant

vagrant init --minimal ubuntu/jammy64

edit the file named Vagrantfile with the following content

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box = "ubuntu/jammy64"

 config.vm.network "forwarded_port", guest: 443, host: 443

end

after that we can create the virtual machine and connect to it

vagrant up

vagrant ssh

inside we proceed to install Docker and Docker Compose
https://docs.docker.com/compose/install/linux

Then we follow the Docker compose delivery method described in the previous section

A.1.2.5. Licensing information

This component is offered under Apache 2.0 license. More detailed information can be found
in the GitLab repository.

DRAFT

http://www.medina-project.eu/
https://docs.docker.com/compose/install/linux

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 61 of 87

www.piacere-project.eu

A.1.3. Usage

The Monitoring controller can be used through its REST API, described at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-
/blob/y3/src/mc/openapi/openapi.yaml

In order to access that API in the running component, we need to specify the HTTP protocol, the
host and the port. Then it will be possible to access the REST API documentation in the same
running instance where we can invoke the services.

For the component in isolation, the way to access the swagger UI, showing the REST API, will be
http://localhost:8080/api/v1/ui/, in the rest of the execution options the access will depend on
the server and the port specified and it will look like
https://192.168.56.1.nip.io:8443/mc/api/v1/ui/

In that address we will find the standard swagger UI shown in Figure 36. The swagger UI will list
the operations available and it will allow us to invoke them.

Figure 36 – Monitoring Controller swagger UI.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y3/src/mc/openapi/openapi.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/mc/-/blob/y3/src/mc/openapi/openapi.yaml
http://localhost:8080/api/v1/ui/
https://192.168.56.1.nip.io:8443/mc/api/v1/ui/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 62 of 87

www.piacere-project.eu

Anyway, even if the swagger UI provides a valuable resource to understand and test the API, the
real way to use the component will be to integrate it with other components. To do so the best
way is to get profit from the OpenAPI based client code generators such as:

• Openapi-generator: https://github.com/OpenAPITools/openapi-generator

• Swagger-codegen: https://github.com/swagger-api/swagger-codegen

A.2. Performance Monitoring

A.2.1. Implementation

This subsection is devoted to describing the implementation details of this last version of the
performance monitoring. First, we describe the internal architecture and then we describe the
technical details.

The main architecture of this last version is depicted in the following Figure 37. In this
architecture, four different components can be distinguished (highlighted in green):
Performance Monitoring Controller, Influxdb, Grafana and Performance Monitoring Agents. The
main purpose of these components is described below.

From the previous version we have added links from the IDE to the performance monitoring
dashboard to provide the users an easier access to the monitoring information.

Figure 37 – Performance Monitoring last version architecture.

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 63 of 87

www.piacere-project.eu

This last version of the Performance Monitoring is composed by four components, three of them
will run together with the PIACERE runtime framework and the other one will run in the
deployed infrastructures. The components in the PIACERE runtime framework are:

• Performance Monitoring Controller: this is the main component that receives the start
and stop requests by the Monitoring controller and configures Grafana in consequence.

• Influxdb: is a time series database that will receive the information from all the
Performance Monitoring agents throughout all the active deployments: This is an open-
source component7 that enables the storage of time series.

• Grafana: is a time series rendering web interface that includes functionalities to keep
track of thresholds and sends notifications when the thresholds are exceeded. This is an
open-source component8

The component running in the deployed infrastructures is the Performance Monitoring agent.
The monitoring agent gathers multiple parameters from the runtime infrastructure that run the
components of the deployed application. The Performance Monitoring agent is implemented
using an open-source component9.

The Performance Monitoring Controller prototype has been developed using Java, more
specifically the Java Spring Boot framework10 that is an open source, enterprise-level framework
for creating standalone, production-grade applications. We have created the application using
the OpenAPI generator technology, that starting from the OpenAPI specification is capable to
generate a Spring Boot architecture to implement that functionality.

Internally we have developed a client from the recent Grafana OpenAPI
https://github.com/grafana/grafana/blob/main/public/api-spec.json. This allows us to easily
adapt to higher versions of Grafana in case we need to evolve to bring new features or security
patches.

Additional dashboard has been integrated to show self-learning computed data, this has
introduced the usage of dashboard folders to aggregate the dashboard of each deployment.

A.2.2. Delivery

The component code is available in the PIACERE code repository at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/tree/y3.

Besides, a testing oriented agent infrastructure can be deployed using the code available at
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pma/-
/tree/y3. This enables the feeding of data into the PIACERE monitoring platform without
requiring to perform real deployments that may involve some costs.

This component shares the part of the development environment with the Monitoring
controller. In that sense it shares some of their ways to be executed:

• Run with Docker Compose

• Run with Vagrant

7 https://www.influxdata.com/
8 https://grafana.com/
9 https://www.influxdata.com/time-series-platform/telegraf/
10 https://spring.io/projects/spring-boot

DRAFT

http://www.medina-project.eu/
https://github.com/grafana/grafana/blob/main/public/api-spec.json
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-/tree/y3
https://spring.io/projects/spring-boot

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 64 of 87

www.piacere-project.eu

Besides, as this component is composed by separate running services, it makes no sense to apply
some of the execution methods available in the Monitoring controller such as: run the
component in isolation or run with Docker. However, focussing in the Performance monitoring
controller there can be situations, such as during development, where it can make sense to run
this component in isolation. For this specific case we provide specific guidelines.

Each approach is described into its corresponding README in the PIACERE code repository.

A.2.2.1. Performance monitoring controller in isolation

The installation of the component in isolation is described at:
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc

The requirements to run the component in isolation is to have Java and Maven. In order to
execute the component we have to carry out two steps:

• Download the code

• Launch the spring boot application

To download the code we will use git:

git clone https://git.code.tecnalia.com/piacere/private/t61-runtime-

monitoring/pm/pmc.git

To run the spring boot application

mvn run

A.2.2.2. Docker compose

The installation with docker-compose is described at:
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-deploy.

This docker-compose is a partial integration of WP6 components. Currently we cover two
components: monitoring controller and performance monitoring; in the future we will cover all
the remaining components: (security monitoring, performance self-learning, security self-
learning and self-healing.). The installation details are available above in section A.1.2.3.

A.2.2.3. Vagrant

In case we do not have a Docker compatible operating system or we cannot install the Docker
desktop version, we will be able to use VirtualBox to instantiate a virtual machine. The easiest
way to do so is to use Vagrant.

mkdir piacere-vagrant

cd piacere-vagrant

vagrant init --minimal ubuntu/jammy64

edit the file named Vagrantfile with the following content

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box = "ubuntu/jammy64"

 config.vm.network "forwarded_port", guest: 443, host: 443

end

after that we can create the virtual machine and connect to it

vagrant up

vagrant ssh

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc.git
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc.git
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pm-deploy

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 65 of 87

www.piacere-project.eu

inside we proceed to install docker and docker-compose
https://docs.docker.com/compose/install/linux

Then we follow the Docker compose delivery method described in the previous section

A.2.2.4. Licensing information

This component is offered under Apache 2.0 license. More detailed information can be found
in the GitLab repository.

A.2.3. Usage

This component has three different sub-components. In the following subsections we provide
the user manual for each of them.

A.2.3.1. Performance Monitoring controller

The Performance Monitoring controller is used through its REST API, described at:
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-monitoring/pm/-
/tree/y2/git/pmc/openapi.yaml

In order to access that API in the running component, we need to specify the HTTP protocol, the
host and the port. Then it will be possible to access the REST API documentation in the same
running instance where we can invoke the services.

For the component in isolation, the way to access the swagger UI, showing the REST API, will be
http://localhost:8080/pmc/api/v1/ui/, in the rest of the execution options the access will
depend on the server and the port specified and it will look like
https://192.168.56.1.nip.io:8443/pmc/api/v1/ui/

In that address we will find the standard swagger UI shown in Figure 38. The swagger UI will list
the operations available and it will allow us to invoke them.

DRAFT

http://www.medina-project.eu/
https://docs.docker.com/compose/install/linux
https://git.code.tecnalia.com/piacere/private/t61-runtime-monitoring/pm/pmc/-/blob/main/openapi.yaml
http://localhost:8080/pmc/api/v1/ui/
https://192.168.56.1.nip.io:8443/pmc/api/v1/ui/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 66 of 87

www.piacere-project.eu

Figure 38 – Performance Monitoring Controller swagger ui.

Anyway, even if the swagger UI provides a valuable resource to understand and test the API, the
real way to use the component will be to integrate it with other components. To do so the best
way is to get profit from the OpenAPI based client code generators such as:

• Openapi-generator: https://github.com/OpenAPITools/openapi-generator

• Swagger-codegen: https://github.com/swagger-api/swagger-codegen

A.2.3.2. Influxdb

Influxdb will be used following the standard user guideline
https://docs.influxdata.com/influxdb/v2.0/. The instance will be available in different URLs
depending on the execution method selected. For example, if we use the Vagrant method, it will
be accessible at https://influxdb.192.168.56.1.nip.io:8443/. As another example, as shown in
the Figure 39, in our internal continuous integration framework the component is accessible at
https://influxdb.piacere.esilab.org:8443/

DRAFT

http://www.medina-project.eu/
https://github.com/swagger-api/swagger-codegen
https://docs.influxdata.com/influxdb/v2.0/
https://influxdb.192.168.56.1.nip.io:8443/
https://influxdb.piacere.esilab.org:8443/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 67 of 87

www.piacere-project.eu

Figure 39 – Influxdb.

A.2.3.3. Grafana

Grafana will be accessible at https://192.168.56.1.nip.io:8443/grafana/

Grafana will be used following the standard user guideline
https://grafana.com/docs/grafana/latest/getting-started/getting-started/. The instance will be
available in different URLs depending on the execution method selected. For example, if we use
the Vagrant method, it will be accessible at https://192.168.56.1.nip.io:8443/grafana, as shown
in the Figure 40. As another example, in our internal continuous integration framework, the
component is accessible at https://piacere.esilab.org:8443/grafana

Figure 40 – Grafana

DRAFT

http://www.medina-project.eu/
https://192.168.56.1.nip.io:8443/grafana
https://grafana.com/docs/grafana/latest/getting-started/getting-started/
https://192.168.56.1.nip.io:8443/grafana
https://piacere.esilab.org:8443/grafana

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 68 of 87

www.piacere-project.eu

A.3. Security Monitoring

A.3.1. Implementation

This subsection is devoted to describing the implementation details of this final version. First,
we describe the internal architecture and then we describe the technical details.

Figure 41 depicts the architecture of the Security Monitoring and Security Self-learning
components.

Figure 41 – Architecture of Security Monitoring and Security Self-learning and the integration between
these.

Controller exposes underlying APIs of the Monitoring Manager and Model Trainer via RESTful
(OpenAPI spec) API. Model Trainer (LOMOS) internally stores trained models in the internal
Model Repository (blue component in the upper left of Figure 42). Anomaly Detection
component (dark blue component labelled “Python packages”) uses the data feed provided by
the Monitoring Manager (Celery services in Figure 42) in order to detect anomalies based on the
pre-built anomaly detection model built by the Model Trainer (and stored within its internal
component – Model Repository). DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 69 of 87

www.piacere-project.eu

Figure 42 – High-level internals of LOMOS.

Monitoring Manager’s Agents residing on the underlying infrastructure provide continuous data
feed into the Monitoring Manager’s data storage. There are possibilities to extend Monitoring
Manager’s Agents with other modules such as Vulnerability Assessment Tool (VAT), in order to
provide different security-based metrics into the data feed: this is to be considered in the
evaluation process.

The Security Monitoring components are developed mainly using Python and Ansible
deployment scripts. OpenAPI specification has been developed for the Controller’s API (publicly
accessible at https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-
monitoring/security-monitoring-controller/-
/blob/main/swagger_server/swagger/swagger.yaml).

The Controller uses the Flask framework and its underlying Authentication/Authorization
mechanisms. Through the API it provides, it exposes alerts where additional search queries are
possible.

Monitoring Manager is developed using deployment of Wazuh 4.2 which already provides
agents and ELK stack (based on OpenDistro Elasticsearch) used for storing a plethora of different
security metrics. It aggregates and stores alerts stemming from the Agents deployed on the
infrastructure. Filebeat deployment is part of these agents. Data stemming from ELK (specifically
from Filebeat11) is being consumed by the anomaly detection mechanism within the Security
Monitoring architecture. Monitoring Manager provides Kibana dashboard so that the user can
review all the alerts provided by the Security Monitoring Manager.

11 https://www.elastic.co/beats/filebeat

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller/-/blob/main/swagger_server/swagger/swagger.yaml
https://www.elastic.co/beats/filebeat

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 70 of 87

www.piacere-project.eu

Vulnerability Assessment Tool (VAT) is the tool developed by XLAB. Its deployment is optional
at this point. The planned use of the tool is to provide additional security metrics that could be
expressed through NFRs.

A.3.2. Delivery

The Security Monitoring Controller’s code is available on the project repository. The Controller
provides API endpoints to the Security Self-learning component:
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-
monitoring-controller

or the public link:

https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-
monitoring/security-monitoring-controller

To install the Monitoring Controller and Monitoring Manager you should use

https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-
monitoring-deployment or on public link:

https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-
monitoring/security-monitoring-deployment

The repository provides deployment scripts you can use (docker-compose scripts for running
the whole stack locally).

A.3.2.1. Licensing information

This component is offered under Apache 2.0 license. More detailed information can be found
in the GitLab repository.

A.3.3. Usage

A.3.3.1. Configuration of the deployment

All the configuration can be provided with through the deployment process, however, the

default configuration is generated by the PIACERE CI/CD process. If needed, these can be

manually changed or configured. The main sections of the provided Monitoring Manager’s

configuration are:

1. Client Configuration: This section configures the connection between the agent and the
manager. It includes settings for the server address, port, protocol, configuration profile,
notification time, reconnect time, and encryption method.

2. Client Buffer: This section defines the agent buffer options, including the maximum
queue size and the maximum number of events per second that can be sent from the
agent to the manager.

3. Policy Monitoring: This section controls the behavior of the rootcheck module, which
performs system integrity checks. It includes settings for the frequency of rootcheck
executions, files and trojans to check, and skipping NFS (Network File System).

4. Wodles: This section configures various integration modules:
o cis-cat: Configures the CIS-CAT module for security configuration assessment.
o osquery: Configures the Osquery integration module for querying system

information.
o syscollector: Configures the Syscollector module for system inventory, including

hardware, operating system, network, packages, and processes.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-controller
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/private/t64-runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-deployment
https://git.code.tecnalia.com/piacere/public/the-platform/runtime-security-monitoring/security-monitoring-deployment

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 71 of 87

www.piacere-project.eu

5. SCA: This section configures the Security Content Automation Protocol (SCAP) module,
including the scan frequency and skipping NFS.

6. File Integrity Monitoring (Syscheck): This section controls the behavior of the syscheck
module, which performs file integrity monitoring. It includes settings for the frequency
of syscheck executions, directories to check, files or directories to ignore, file types to
ignore, and skipping NFS, devices, and system files.

7. Log Analysis (Localfile): This section configures log analysis for specific files or
commands. It includes settings for the log format, the command to execute or file to
monitor, alias, and frequency of checks.

8. Active Response: This section controls the behavior of active response actions, which
are automated responses triggered by specific events. It includes settings for
enabling/disabling active response, certificate authority settings, and response actions.

9. Logging: This section specifies the format for internal logs generated by the agent. It
includes settings for the log format, which can be "plain," "json," or a combination of
both.

10. Labels: This section defines custom labels that can be used in the agent's configuration
or rules. It includes a key-value pair for a specific label.

A.3.3.2. Monitoring Manager

When the Security Monitoring is deployed you should be able to navigate to the URL of the
deployment, e.g.

https://sm-wazuh-kibana.ci.piacere.digital.tecnalia.dev/app/wazuh?security_tenant=global

You should be able to log in to the dashboard provided by the deployment of Security
Monitoring services, represented in Figure 43and Figure 44.

Figure 43 – Default page of the Security Monitoring services.

DRAFT

http://www.medina-project.eu/
https://sm-wazuh-kibana.ci.piacere.digital.tecnalia.dev/app/wazuh?security_tenant=global

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 72 of 87

www.piacere-project.eu

Figure 44 – The list of registered agents with the Wazuh's instance.

Figure above depicts a list of registered agents with the Wazuh’s instance provided by Security
Monitoring components. Figure 45 depicts Security Monitoring’s API as it is served by the
Security Monitoring Controller after it is made available (deployed).

Open your browser to here:

https://sm.ci.piacere.digital.tecnalia.dev/security-monitoring/v1/ui/

or, depends on the deployment:

http://localhost:8080/security-monitoring/v1/ui/

Your Swagger definition lives here:

https://sm.ci.piacere.digital.tecnalia.dev/security-monitoring/v1/openapi.json DRAFT

http://www.medina-project.eu/
https://sm.ci.piacere.digital.tecnalia.dev/security-monitoring/v1/ui/
http://localhost:8080/security-monitoring/v1/ui/
https://sm.ci.piacere.digital.tecnalia.dev/security-monitoring/v1/openapi.json

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 73 of 87

www.piacere-project.eu

Figure 45 – Security Monitoring part of the Security Monitoring Controller API: the upper figure depicts
“monitoring” and the lower figure depicts “self_learnin” part of the API.

Check the running instances:

- Navigate browser to: https://192.168.33.10:5601 (the IP from the inventory file - the
inventory file resides in the ansible deployment scripts, this can be reconfigured if
needed), login with default credentials (admin:changeme). Navigate to wazuh section
on the left hand-side.

- You should see agents registered and running with Wazuh.

In order to check that the service is operative, the user can check whether indices of the
ElasticSearch deployment are available and initial listing of entries from the storage’s index can
be retrieved. This can be useful for debugging purpose:

• List of indices:

curl -X GET https://192.168.33.10:9200/_cat/indices?v -u admin:changeme -k

• List all entries in the index wazuh-alerts:

$ curl -X GET https://192.168.33.10:9200/wazuh-alerts-4.x-2021.11.03/_search -u

admin:changeme -k

A.4. Performance Self-learning

A.4.1. Implementation

This subsection is devoted to describing the implementation details of this final version of the
performance self-learning. First, we describe the internal architecture and then we describe the
technical details.

DRAFT

http://www.medina-project.eu/
https://192.168.33.10:5601/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 74 of 87

www.piacere-project.eu

The Performance Self-learning component is composed by different solutions and approaches
to deal with its goal. In order to achieve its main objective, the Performance Self-learning is
composed by different subcomponents portrayed in the following Figure 46.

Figure 46 – Architecture of the Self-learning component.

In this architecture, two main different components can be distinguished: PerformanceSelf
LearningCore and PerformanceSelfLearningAPI. The PerformanceSelfLearningCore component
is also composed by two components: River and InfluxDB.

• PerformanceSelfLearningCore: This component will be in charge of loading or creating
Concept Drift and Anomaly Detection learning models whenever a deployment loading
has been notified or stopping the learning process on any unloading. This component
will also be in charge of feeding the models with data. Finally, once data is analysed,
SelfHealing component is notified in case of exceeding the idle threshold for the metric
being monitored.

• PerformanceSelfLearningAPI: This component will be in charge of notifying the
PerformanceSelfLearningCore component of the loading or unloading of any
deployment.

The PerformanceSelfLearningCore is also split in two components:

• River: The library that implements the Concept Drift and Anomaly Detection algorithm

• InfluxDB: The time series database from which the PerformanceSelfLearningCore will
receive the data to feed the models.

River12 is a library for developing online machine learning solutions in Python. It was created by
the combination of two of the most popular stream learning packages: scikit-multiflow and
creme. Its main innovation is the use of pipelines to transform data in the process of data
digestion. It also provides different learning models out of the box, specialized in jobs such as
anomaly detection, classification, clustering, regression, etc. The library also offers the Half
Space Trees (anomaly detection), Random Forest Regressor (incremental learning) and ADWIN
(drift detection) used in the component. River has been the basis for the development of the
incremental learning and anomaly detection, and it will also be the basis for the drift detection.
After using River with the toy dataset, we have successfully confirmed that it is the suitable
library to develop the Self-learning component in the PIACERE project.

12 https://riverml.xyz/

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 75 of 87

www.piacere-project.eu

For data provision, the official InfluxDB Python library is used, due to the use of InfluxDB as the
data storage. Its use is seamlessly integrated in the current implementation, allowing data
retrieval for different date ranges providing the ability to use online learning that best fits the
component.

This component will also require the integration with different components with a RESTful API
to be aware of new deployments to be analysed and to warn the Self-Healing component about
any differing behaviour. A Flask server is used to provide the API easing the integration with
different components.

Due to the use of Python programming language by the previous libraries, Python has also been
selected as the main language of the prototype.

A.4.2. Delivery

The Performance Self Learning’s code is available on the project repository:

https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3

Inside at root level it contains the typical python project plus a Dockerfile and a docker-compose
structure.

The structure of the Performance Self-learning inside src folder is split in two main sections. The
first section, the clients (folder “clients”), contains REST clients’ APIs generated with
OpenApiGenerator13.

The second section (folder “psl”), contains the structure of the component. PSL was refactored
to a specification first approach where part of the structure has been created with
OpenApiGenerator. The relevant folders that contain the logic of PSL, apart from those parts in
charge of managing the REST API calls, are:

• Adapters: in includes a generic adapter to get input data from InfluxDB or from CSV
(comma-separated values) files in a seamless way. InfluxDB adapter is necessary for the
runtime usage while CSV was used to check the process with a repeateable set of data.

• Flows: this folder contains the code that implements the PSL flow: get metrics, store
inputs, train or predict, store results.

• Openapi: this folder contains the openapi.yaml that is used to generate the stub of this
project.

• Predictor: is the part in which the IA algorithm is implemented

• Repository: is the part that persists the deployments_id to be monitored

• Runners: it implements the background runner that checks the deployments every one
minute (configurable)

Besides, in the psl folder, there is a config.yaml file with the default settings of the PSL: here is
where we can adjust many aspects of the behaviour of the PSL.

It follows the same delivery approach of the monitoring controller. There are many ways to run
this component:

• Run the component in isolation

• Run with Docker

• Run with Docker compose

13 https://github.com/OpenAPITools/openapi-generator

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 76 of 87

www.piacere-project.eu

• Run with Vagrant

Each approach is described into its corresponding README in the PIACERE code repository.

A.4.2.1. Component in isolation

The installation of the component in isolation is described at:
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3

The requirement to run the component in isolation is to have Python 3.5.2+. In order to execute
the component we have to carry out three steps:

• Download the code

• Install the requirements

• Launch the Python module

To download the code we will use git:

git clone https://git.code.tecnalia.com/piacere/public/the-platform/self-learning.git

To install the requirements we will use pip, so we will require to have the pip3 Python tool:

cd self-learning

pip3 install -r requirements.txt

NOTE: the module has been developed on linux and therefore even if Python is multi-platform,
we cannot ensure that the requirements are multiplatform as well. Therefore, running this step
in non linux systems may have some issues. In case you have a different operating system, you
can proceed as indicated in A.1.2.4.

To launch the Python module we require to have the port 8080 available and run:

python3 -m psl

A.4.2.2. Docker

The installation with Docker is also described at:
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3

The requirements to run the component with Docker is to have Docker installed, we have used
Docker version 20.10.10 with linux/amd64 architecture. In case you have a different operating
system, you can proceed as indicated in A.1.2.4. In order to execute the component we have to
carry out three steps:

• Download the code

• Build the image

• Run the image

To download the code we will use git:

git clone https://git.code.tecnalia.com/piacere/public/the-platform/self-learning.git

To build the image:

cd self-learning

docker build -t psl .

NOTE: the image relies on linux kernel, therefore it requires a Docker installation able to run
linux based machines.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning.git
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning.git

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 77 of 87

www.piacere-project.eu

To run the image in a container we require to have the port 8080 available and run:

docker run -p 8080:8080 psl

A.4.2.3. Docker compose

The installation with docker-compose is described at:
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3

The requirements to run the component with Docker is to have Docker installed, we have used
Docker version 20.10.10 with linux/amd64 architecture and docker-compose version 1.29.0 . In
case you have a different operating system, you can proceed as indicated in A.1.2.4. In order to
execute the component, we have to carry out three steps:

• Download the code

• Setup relevant variables

• Build the images

• Run the docker-compose

To download the code we will use git:

git clone –recurse-submodules https://git.code.tecnalia.com/piacere/public/the-

platform/self-learning.git

To setup relevant variables we need to identify the variables without values, and give value to
them:

echo list variables to be setup

cat .env | grep -e ".*=\s*$"

Assign values to those variables. The current set of values are the ones show below, but they
are subject to change as the development advances, therefore it is advisable to check the
current list using the instruction above (cat …)

export SERVER_HOST=192.168.56.1.nip.io

NOTE: https://nip.io is a service that allows doing a mapping between any IP to a hostname.

To build the images:

cd self-learning

docker-compose build

NOTE: the image relies on linux kernel, therefore it requires a Docker installation able to run
Linux-based machines.

To run the docker-compose we will need the port 443 available:

docker-compose up

A.4.2.4. Vagrant

In case we do not have a Docker compatible operating system or we cannot install the Docker
desktop version, we will be able to use VirtualBox to instantiate a virtual machine. The easiest
way to do so is to use Vagrant.

mkdir piacere-vagrant

cd piacere-vagrant

vagrant init --minimal ubuntu/jammy64

edit the file named Vagrantfile with the following content

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-/tree/y3

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 78 of 87

www.piacere-project.eu

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box = "ubuntu/jammy64"

 config.vm.network "forwarded_port", guest: 443, host: 443

end

after that we can create the virtual machine and connect to it

vagrant up

vagrant ssh

inside we proceed to install Docker and Docker Compose
https://docs.docker.com/compose/install/linux

Then we follow the Docker compose delivery method described in the previous section

A.4.2.5. Licensing information

This component is offered under Apache 2.0 license. More detailed information can be found
in the GitLab repository.

A.4.3. Usage

The Performance Self-learning component behaviour expects notifications through the RESTful
API. The specification of the API can be found at:

https://git.code.tecnalia.com/piacere/public/the-platform/self-learning/-

/blob/y3/src/psl/openapi/openapi.yaml

Figure 47 – Performance Self-learning OpenAPI.

A.5. Security Self-learning

A.5.1. Implementation

The Security Self Learning component consists of a single architecture element, referred to as
Model Trainer. Its architectural integration with the Security Monitoring is depicted in Figure 41.

DRAFT

http://www.medina-project.eu/
https://docs.docker.com/compose/install/linux

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 79 of 87

www.piacere-project.eu

The Security Monitoring controller triggers via API the model training, providing the necessary
data and configuration files. As a result of the training process, a new log parser based on Drain
method, and a new anomaly detection model based on LogBERT are created. These objects
belong to the Model Trainer component (Figure 41) and are accessible via API as well.

Additionally, a dashboard is available as a submodule of the existing UI to interact with the
Model Trainer both for the training of the log parsers and anomaly detection models, as well as
for visualization of intermediate and final results.

Input:

• Data stemming from the Security Monitoring component. The data is already
aggregated from different sources by the Security Monitoring component using ELK,
which is directly accessed by the Model Trainer.

• Security Self-learning component uses dedicated Elasticsearch’s indexes that are
considered as input for the anomaly detection process.

Programming languages/tools:

• Python: popular data science and machine learning libraries are used, mainly numpy14,
pandas15, pytorch16 and transformers17.

Dependencies:

• Grafana dashboard (deployment).

• ELK stack: storing raw log data.

A.5.2. Delivery

Security Self-Learning is a proprietary component, not available for delivery within PIACERE.

A.5.2.1. Licensing information

This component is a proprietary component.

A.5.3. Usage

As described earlier in this document, the interaction with the Security Self-Learning service will
be done exclusively by the Security Monitoring controller, which exposes an API (included below
in Figure 48) for such purposes.

Example of reading all available ad_models trained by the self_learning instance that are
available to be used by the Security Monitoring Anomaly Detector:

curl -X 'GET' 'https://localhost:8080/security-monitoring/v1/ad_models' -H 'accept:

application/json'

Result (returning object with parent train_id reference and other details of the model:

[

 {

 "id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

 "train_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",

 "name": "string",

 "description": "string",

14 https://numpy.org/
15 https://pandas.pydata.org/
16 https://pytorch.org/
17 https://huggingface.co/docs/transformers/index

DRAFT

http://www.medina-project.eu/
https://numpy.org/
https://pandas.pydata.org/
https://pytorch.org/
https://huggingface.co/docs/transformers/index

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 80 of 87

www.piacere-project.eu

 "configuration": "string"

 }

]

Figure 48 – Self-learning API provided by Security Controller.

The dashboard is based on Grafana (see Figure 49 and Figure 50) and is provided as an
informative tool that would provide insights on the intermediate steps and results of the training
process.

The Security Self-Learning service is expected to be deployed as a single microservice that will
be exposed to the Security Monitoring Controller and will coordinate the whole training process,
from the connection to the data source containing raw logs, to the training of the log parser and
AD model and their storage in the Model Repository

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 81 of 87

www.piacere-project.eu

Figure 49 – Dashboard of the Security Self-learning component: main page.

All the different services composing the Security Self-Learning are currently running as
standalone services which have to be manually executed. In all cases, conda18 environments are
used to handle dependencies in an isolated manner. The codebase is closed and hosted on
private repositories.

Figure 50 – Dashboard of the Security Self-learning component: inspection of the anomalies detected.

A.6. Self-healing

A.6.1. Implementation

This subsection is devoted to describing the implementation details of this last version. First, we
describe the internal architecture and then we describe the technical details.

18 https://docs.conda.io/en/latest/

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 82 of 87

www.piacere-project.eu

Self-healing architecture is based on a microservices style which splits the front-end, only for
testing purposes in this stage, and the backend, so that´s it´s easier to scale and survive
infrastructure issues.

In order to manage the events-oriented architecture, Kafka streaming solution has been chosen.

Figure 51 – Self-healing internal architecture.

This last version of the Self-healing is composed by two principal components, which main
purpose are briefly described as follows.

• Self-healing service: this component manages all the logic of the self-healing. It
implements the necessary logic to treat the notifications received by the components
involved in the self-healing mechanism, exposing a REST service in order to simplify the
interaction, and the work for communicating with the runtime controller in order to
propose the self-healing mechanisms.

• Self-healing test frontend: This component has been developed to simplify the
integration and test of the self-healing with the rest of the components.

In addition, some considerations about the other components of the self-healing:

• Access control. JSON Web Token (JWT)19 mechanism is used. A stateless security
mechanism which uses a secure token that holds the user´s login name and authorities.

• Data persistence in MySQL database.

• JHipster Registry20. Service discovery using Netflix Eureka21.

19 https://jwt.io/introduction
20 https://www.jhipster.tech/
21 https://spring.io/projects/spring-cloud-netflix

DRAFT

http://www.medina-project.eu/
https://jwt.io/introduction
https://www.jhipster.tech/
https://spring.io/projects/spring-cloud-netflix

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 83 of 87

www.piacere-project.eu

• Apache Kafka22: Event streaming solution to capture real-time data from the related
components which need to send notifications to the Self-healing component.

This prototype has been developed using JHipster Framework, which provides all the needed
technologies and configuration options for a modern web application and microservice
architecture.

This framework uses Spring Boot to develop, deploy and test the application. In the client side,
the test frontend gateway uses Yeoman, Webpack, Angular and Bootstrap technologies. In the
server side the Self-healing microservice uses Maven, Spring, Spring MVC Rest, Spring Data JPA
and Netflix OSS.

The technology used to manage the events received is Kafka.

The main structure of the prototype developed in this third stage of the project is composed by
the packages shown in the following Figure 52.

Figure 52 – Self-healing project structure.

22 https://kafka.apache.org/

DRAFT

http://www.medina-project.eu/
https://kafka.apache.org/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 84 of 87

www.piacere-project.eu

Each of these packages has its own objective and its context within the whole prototype.
Furthermore, these packages are also comprised by several JAVA classes. With all this, the main
purpose and composition of each component is as follows:

• com.piacere.selfhealing.backend.aop.logging: this package is composed by
LoggingAspect.java, which defines the aspect for logging execution of service and
repository Spring components.

• com.piacere.selfhealing.backend.client: Composed by UserFeignClientInterceptor.java
which implements RequestInterceptor.java. This class checks and add JWT token to the
request header.

• com.piacere.selfhealing.backend.config: this package contains all classes related
to configuration purposes.

• com.piacere.selfhealing.backend.consumer: this package contains classes to consume
messages from the queue configured.

• com.piacere.selfhealing.backend.domain: this package contains data model classes.

• com.piacere.selfhealing.backend.domain.enumeration: this package contains enum
objects.

• com.piacere.selfhealing.backend.producer: this package contains classes to produce
messages to the queue configured.

• com.piacere.selfhealing.backend.repository: this package contains Spring Data SQL
repository classes.

• com.piacere.selfhealing.backend.security: this package contains Spring Security related
classes for security management.

• com.piacere.selfhealing.backend.security.jwt: this package contains Java Web Token
security configuration related classes.

• com.piacere.selfhealing.backend.serde: this package contains classes to
serialize/deserialize queue messages received.

• com.piacere.selfhealing.backend.service: this package contains self healing services for
CRUD operations and other requirements needed.

• com.piacere.selfhealing.backend.service.dto: this package contains self healing data
transfer objects.

• com.piacere.selfhealing.backend.service.mapper: this package contains mapping
classes to map data transfer objects.

• com.piacere.selfhealing.backend.web.rest: this package contains classes to expose Self-
healing rest end points.

• com.piacere.selfhealing.backend.web.rest.errors: this package contains error classes
used in the rest end points.

In the context of Self-healing component, it has been implemented the necessary logic to
manage the notifications received with the Kafka streaming solution.

The configuration needed can be found in data/jhipster-registry/central-
config/sh/shBackend.yml:

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 85 of 87

www.piacere-project.eu

Figure 53 – Self-healing configuration.

• Topic: Topic queuing.iec_self_healing.self_healing_message has been defined to associate
all the events related to the Self-healing logic.

• In the context of Kafka, we need one producer and one consumer to manage the events
received

• Producer: In charge of sending messages to the topic defined Figure 54.

• Consumer: In charge of processing the messages asynchronously Figure 55.

Figure 54 – Self-healing producer.

Figure 55 – Self-healing consumer.

A.6.2. Delivery

The code is available in Tecnalia GitLab repository:

https://git.code.tecnalia.com/piacere/public/the-platform/self-healing/-/tree/y3

There are many ways to run this component:

• Run the components in isolation

• Run with Docker compose

• Run with Vagrant

Each approach is described into its corresponding README in the PIACERE code repository.

A.6.2.1. Self-healing in isolation

The installation of the component in isolation is described at:
https://git.code.tecnalia.com/piacere/public/the-platform/self-learning

The requirements to run the component in isolation is to have Java and Maven. In order to
execute the component we have to carry out several steps:

• Download the code

• Prepare mysql

DRAFT

http://www.medina-project.eu/

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 86 of 87

www.piacere-project.eu

• Start jhipster

• Start backend

• Start frontend

git clone https://git.code.tecnalia.com/piacere/public/the-platform/self-healing.git

cd self-healing

echo start mysqld

cd git\jhipster-registry\

mvnw -Pdev,webapp,api-docs -Dskip-tests

cd ..\..

cd git\sh-backend\

mvnw -Pdev,webapp,api-docs -Dskip-tests

cd ..\..

cd git\sh-gateway\

mvnw -Pdev,webapp,api-docs -Dskip-tests

Frontends Available services after initialization:

• JHipster registry: http://localhost:8761

• Self-healing test web app: http://localhost:8080

• Self-healing Api Documentation:
http://localhost:8080/services/selfhealingservice/v3/api-docs

A.6.2.2. Docker compose

The installation with docker-compose is described at:
https://git.code.tecnalia.com/piacere/public/the-platform/self-healing

git clone https://git.code.tecnalia.com/piacere/public/the-platform/self-healing.git

cd self-healing

docker-compose up -d

A.6.2.3. Vagrant

In case we do not have a Docker compatible operating system or we cannot install the Docker
desktop version, we will be able to use VirtualBox to instantiate a virtual machine. The easiest
way to do so is to use Vagrant.

mkdir piacere-vagrant

cd piacere-vagrant

vagrant init --minimal ubuntu/jammy64

edit the file named Vagrantfile with the following content

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box = "ubuntu/jammy64"

 config.vm.network "forwarded_port", guest: 443, host: 443

end

after that we can create the virtual machine and connect to it

vagrant up

vagrant ssh

inside we proceed to install docker and docker-compose
https://docs.docker.com/compose/install/linux

Then we follow the Docker compose delivery method described in the previous section

A.6.2.4. Licensing information

This component is offered under Apache 2.0 license. More detailed information can be found
in the GitLab repository.

DRAFT

http://www.medina-project.eu/
http://localhost:8761/
http://localhost:8080/
http://localhost:8080/services/iecbackend/v3/api-docs
https://git.code.tecnalia.com/piacere/public/the-platform/self-healing
https://docs.docker.com/compose/install/linux

D6.3 – PIACERE run-time monitoring Version 1.0 – Final. Date: 14.06.2023

and self-learning, self-healing platform - v3

© PIACERE Consortium Contract No. GA 101000162 Page 87 of 87

www.piacere-project.eu

A.6.3. Usage

To test the self-healing functionalities:

• Login to the web app with user/password: admin/admin

• In the administration menu, access openApi.

• Choose SelfHealingService.

• Post a message through the Self-healing notify rest service.

• In this web app, entities menu, can be seen the message received and its status Figure
56.

Figure 56 – Messages received in the Self-Healing component.

DRAFT

http://www.medina-project.eu/

