

Deliverable D5.9

IOP prototype – v3

Editor(s): Eneko Osaba, Iñaki Etxaniz, Gorka Benguria

Responsible Partner: TECNALIA

Status-Version: Final-v1.0

Date: 31.05.2023

Distribution level (CO, PU): PU

DRAFT

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 94

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: IOP prototype – v3

Due Date of Delivery to the EC 31.05.2023

Workpackage responsible for the
Deliverable:

WP5 - Package, release and configure Infrastructure as
Code

Editor(s): Eneko Osaba (TECNALIA)

Contributor(s): Gorka Benguria (TECNALIA), Iñaki Etxaniz (TECNALIA)

Reviewer(s): Elisabetta Di Nitto

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP5, WP6

Abstract: This deliverable describes Key Result 9 – IaC

Optimization Platform, which is the main outcome of
T5.3 from M1 to M30.
The deliverable includes a Technical Specification
Report and a software prototype of the tool called
Infrastructure as Code Optimization Platform (IOP)
[KR9]. It includes also an explanation of the optimization
algorithms implemented in the tool.
This is the third (and final) version after D5.6 and D5.7
and reports the final innovations, lessons learnt and
outlook to the future.

Keyword List: IOP, Catalogue of Infrastructural Elements,
Optimization, Multi-Objective Algorithm.

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 94

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 20.04.2023 First TOC and sections assignment TECNALIA

v0.2 05.05.2023 IOP new version included TECNALIA

v0.3 15.05.2023 IEC new version. General edition TECNALIA

v0.4 18.05.2023 Internally reviewed version POLIMI

v0.5 25.05.2023 Reviewer comments addressed TECNALIA

v1.0 29.05.2023 Final quality check. Ready for
submission

TECNALIA

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 94

www.piacere-project.eu

Table of contents

TERMS AND ABBREVIATIONS ... 7

EXECUTIVE SUMMARY ... 8

1 INTRODUCTION ... 9

1.1 ABOUT THIS DELIVERABLE .. 9
1.2 DOCUMENT STRUCTURE .. 9

2 KR9 OVERVIEW .. 10

2.1 CHANGES IN V3 ... 10
2.1.1 Changes regarding the IEC .. 11
2.1.2 Changes regarding the IOP Optimizer .. 24

2.2 FUNCTIONAL DESCRIPTION AND REQUIREMENTS COVERAGE .. 35
2.3 MAIN INNOVATIONS ... 37

3 OVERVIEW OF PRELIMINARY EXPERIMENTS .. 38

3.1 SCIENTIFIC EXPERIMENTATION .. 38
3.2 EXPERIMENTATION FOR SHOWING THE IOP APPLICABILITY ... 41

4 LESSONS LEARNT AND OUTLOOK TO THE FUTURE ... 43

5 CONCLUSIONS ... 45

6 REFERENCES .. 46

APPENDIX A: IMPLEMENTATION, DELIVERY AND USAGE ... 49

1 IEC IMPLEMENTATION ... 49

1.1 FITTING INTO OVERALL PIACERE ARCHITECTURE ... 49
1.2 TECHNICAL DESCRIPTION ... 51

1.2.1 Architecture and component’s description ... 51
1.2.2 Technical specifications .. 51

1.3 DELIVERY AND USAGE ... 52
1.3.1 IEC-Backend .. 52
1.3.2 IEC-Frontend ... 53

1.4 INSTALLATION INSTRUCTIONS ... 56
1.5 USER MANUAL .. 56

1.5.1 Using the catalogue via webpage... 56
1.5.2 Using the Catalogue from the IDE .. 61

1.6 LICENSING INFORMATION .. 62
1.7 DOWNLOAD .. 62

2 IOP OPTIMIZER IMPLEMENTATION.. 63

2.1 FITTING INTO OVERALL PIACERE ARCHITECTURE ... 63
2.2 TECHNICAL DESCRIPTION ... 64

2.2.1 Prototype architecture and components description ... 64
2.2.2 Technical specifications .. 65

2.3 OPTIMIZER DELIVERY AND USAGE .. 67
2.3.1 Package information .. 67

2.4 INSTALLATION INSTRUCTIONS ... 69
2.5 USER MANUAL .. 70

2.5.1 Running the IOP Optimizer via JAVA code .. 70
2.5.2 Running the IOP Optimizer via PIACERE IDE ... 71
2.5.3 Running the IOP Optimizer via OpenAPI ... 72

2.6 LICENSING INFORMATION .. 73
2.7 DOWNLOAD .. 73

APPENDIX B: INPUT DOML FILE FOR UC3 ... 74

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 94

www.piacere-project.eu

APPENDIX C. ABOUT GAIA-X .. 91

 List of tables

TABLE 1: VMWARE VIRTUAL MACHINES DEFINED .. 11
TABLE 2: USER REQUIREMENTS SATISFIED BY THE IOP. ... 35
TABLE 3. INTERNAL REQUIREMENTS SATISFIED BY THE IOP. ... 36
TABLE 4. MAIN CHARACTERISTICS OF THE 12 INPUT DOMLS GENERATED. REGARDING THE OPTIMIZING

OBJECTIVES: C - COST; A - AVAILABILITY; P - PERFORMANCE. INSTANCES OPTIMIZING THREE OBJECTIVES CONSIDER

C & P & A ... 39
TABLE 5. GENERAL OVERVIEW OF THE EXPERIMENTATION CARRIED OUT. ... 40
TABLE 6. AVERAGE FRIENDMAN RANKINGS FOR EACH CONSIDERED ALGORITHM. THE LESS THE RANKING, THE

BETTER THE PERFORMANCE.. 40
TABLE 7. SEPARATED FRIENDMAN'S TEST FOR INSTANCES OPTIMIZING TWO AND THREE OBJECTIVES. RANKINGS

FOR EACH CONSIDERED ALGORITHM. THE LESS THE RANKING, THE BETTER THE PERFORMANCE 41

List of figures

FIGURE 1: API TO MANAGE IMAGES IN THE CATALOGUE ... 12
FIGURE 2: RESPONSE TO THE GETALLIMAGES API CALL. ... 13
FIGURE 3: API TO MANAGE PRE-EXISTING RESOURCES IN THE CATALOGUE .. 14
FIGURE 4: RESPONSE TO THE GETALLEXISTINGRESOURCES API CALL. ... 15
FIGURE 5: PARTICIPANT IN GAIA-X. .. 15
FIGURE 6: SERVICE OFFERING IN GAIA-X. .. 16
FIGURE 7: SERVICE OFFERING IN GAIA-X. .. 16
FIGURE 8: EXCERPT OF A POSSIBLE INPUT DOML .. 25
FIGURE 9: EXAMPLE OF THE NEW REQUIREMENT ... 26
FIGURE 10: SOLUTION COMPLIANT WITH THE NEW REQUIREMENT ... 27
FIGURE 11:EXAMPLE OF A NON-RESTRICTIVE NON-FUNCTIONAL REQUIREMENTS .. 28
FIGURE 12: SOLUTION PROVIDED BY THE IOP FOR THE DOML .. 28
FIGURE 13: AN EXCERPT OF AN EXAMPLE INFRASTRUCTURE LAYER, WITH TWO VMS AND A NETWORK. 29
FIGURE 14: EXAMPLE OF HOW THE IOP MODIFIED THE ACTIVE INFRASTRUCTURE. 30
FIGURE 15: HOW TO OPTIMIZE A DOML IN THE IDE ... 31
FIGURE 16: IDE ERROR RELATED TO THE NON-EXISTENCE OF THE OPTIMIZATION SECTION. 32
FIGURE 17: EXAMPLE OF AN INPUT DOML WITH NO OBJECTIVES SECTION. ... 32
FIGURE 18: ERROR ALERT REGARDING THE NON-EXISTENCE OF OPTIMIZATION OBJECTIVES. 32
FIGURE 19: EXAMPLE OF AN OBJECTIVE BADLY INTRODUCED. .. 33
FIGURE 20: ERROR MESSAGE REGARDING A BADLY INTRODUCED OBJECTIVE. .. 33
FIGURE 21: INPUT DOML WITH A NON-CONSIDERED REQUIREMENT. ... 33
FIGURE 22: IOP ERROR RELATED WITH NON-CONSIDERED REQUIREMENT. ... 33
FIGURE 23: A DOML WITH A NON-CONSIDERED ELEMENT INTRODUCED. ... 34
FIGURE 24: IOP ERROR RELATED WITH THE INTRODUCTION OF A NON-CONSIDERED ELEMENT 34
FIGURE 25: EXAMPLE OF SO RESTRICTIVE DOML. ... 35
FIGURE 26: IOP ALERT REGARDING SO RESTRICTIVE DEMANDS. ... 35
FIGURE 27: OPTIMIZATION SECTION OF THE PRELIMINARY ERICSSON USE CASE ... 41
FIGURE 28: THE FIVE SOLUTIONS PROVIDED BY THE IOP TO THE PRELIMINARY ERICSSON USE CASE 42
FIGURE 29: PIACERE DESIGN TIME DIAGRAM (V2.2) WITH THE CATALOGUE INTERACTIONS. 49
FIGURE 30: PIACERE RUN TIME DIAGRAM (V2.2) WITH THE CATALOGUE INTERACTIONS. 50
FIGURE 31: SEQUENCE DIAGRAM OF THE INFRASTRUCTURAL ELEMENTS CATALOGUE 50
FIGURE 32: MAIN ARCHITECTURE OF THE INFRASTRUCTURAL ELEMENTS CATALOGUE 51
FIGURE 33: STRUCTURE OF THE CATALOGUE .. 52

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 94

www.piacere-project.eu

FIGURE 34: STRUCTURE OF CONFIG PACKAGE ... 53
FIGURE 35: STRUCTURE OF DOMAIN PACKAGE .. 53
FIGURE 36: RELATION OF PACKAGES ... 54
FIGURE 37: ANGULARJS PACKAGE .. 55
FIGURE 38: WELCOME PAGE OF IEC. .. 57
FIGURE 39: SERVICE CLASSES PAGE OF IEC. ... 57
FIGURE 40: VIEW SERVICE CLASSES PAGE OF THE IEC. ... 57
FIGURE 41: SERVICES PAGE OF IEC. .. 58
FIGURE 42: VIEW SERVICE PAGE OF IEC. ... 58
FIGURE 43: EDIT SERVICE PAGE OF IEC. .. 59
FIGURE 44: INSTANCES PAGE OF IEC. .. 59
FIGURE 45: IMAGES PAGE OF IEC. .. 60
FIGURE 46: EXISTING RESOURCES PAGE OF IEC .. 60
FIGURE 47: EXISTING RESOURCES DETAILS PAGE ... 61
FIGURE 48: SHOW VIEW OPTION IN THE IDE. ... 61
FIGURE 49: CATALOGUE VIEW. .. 62
FIGURE 50: LIST OF SERVICES OF DATABASES TYPE. ... 62
FIGURE 51: PIACERE RUN TIME DIAGRAM ON ITS 2.2 VERSION ... 63
FIGURE 52: PIACERE DESIGN TIME DIAGRAM ON ITS 2.2 VERSION ... 64
FIGURE 53: COMPOSITION OF THE IOP OPTIMIZER ... 64
FIGURE 54: COMPOSITION OF THE PACKAGES THAT CONTAIN THE JMETAL ALGORITHM ADAPTATIONS 67
FIGURE 55: COMPOSITION OF THE COM.PIACERE.IOP.OPTIMIZER.PROBLEMS PACKAGE 68

FIGURE 56: STRUCTURE OF THE COM.PIACERE.IOP.OPTIMIZER.UTIL PACKAGE 68
FIGURE 57:COMPOSITION OF THE PACKAGE COM.PIACERE.IOP.OPTIMIZER.SERVICE 68
FIGURE 58: PACKAGES GENERATED BY JHIPSTER. ... 69
FIGURE 59: AN EXCERPT OF THE OPTIMIZERSERVICEIT.JAVA CLASS .. 71
FIGURE 60: POSTMAN LINK IMPORT .. 72
FIGURE 61: IOP OPTIMIZER API AFTER IMPORT .. 73
FIGURE 62: IOP OPTIMIZER API IN THE ADMINISTRATION API TOOL IN IEC. ... 73
FIGURE 63: GAIA-X CONCEPTUAL MODEL [3] ... 91
FIGURE 64: ASSETS CATEGORIES [3] ... 92

 List of Lists

LIST 1: SELF-DESCRIPTION OF THE TECNALIA PARTICIPANT (V22.06). .. 18
LIST 2: SELF-DESCRIPTION OF THE TECNALIA PARTICIPANT (V22.10). .. 19
LIST 3: SIGNED SELF-DESCRIPTION OF THE TECNALIA PARTICIPANT (V22.10). .. 19
LIST 4: SERVICE OFFERING FOR THE CATALOGUE. .. 21
LIST 5: SOFTWARE RESOURCE FILE FOR THE CATALOGUE. .. 22
LIST 6: INSTANTIATED RESOURCE FILE FOR THE CATALOGUE. ... 23
LIST 7: SELF-DESCRIPTION FILE OF THE CATALOGUE DATACENTER. ... 24

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 94

www.piacere-project.eu

Terms and abbreviations

CSP Cloud Service Provider

DevOps Development and Operation

DoA Description of Action

EC European Commission

GA Grant Agreement to the project

IaC Infrastructure as Code

IEP IaC execution platform

IOP IaC Optimization Platform

KPI Key Performance Indicator

SW Software

IEC Infrastructural Elements Catalogue

KR Key Result

SOA Service Oriented Architecture

REST Representational State Transfer

OAS Open API Specification

API Application Programming Interface

JWT Java Web Token

SD Self Description

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 94

www.piacere-project.eu

Executive Summary

This manuscript includes the technical description of the third version of the Infrastructure as
Code (IaC) Optimization Platform (IOP) [KR9]1 implemented in PIACERE project. The main role
of the IOP in the whole project is to find the most optimized combination of infrastructural and
resource configuration for properly deploying a service. In order to do that, the IOP counts on
an Infrastructural Elements Catalogue (IEC), which contains a set of resource descriptions, each
one characterized by its own features, such as the cost, performance, availability… The results
provided by the IOP tools depend on the elements included in the IEC, and also on the
objectives to optimize and non-functional requirement introduced by the user, which are
introduced in the IOP through a DOML file.

The IOP architecture and its design are described in this manuscript, allowing the comparison
of the different tool variants and their evolution to the last version of the IOP. Finally,
requirements and functionalities are described in this deliverable, as well as the coverage
provided by this last version of the tool.

In addition to the technical and functional description of the IOP and IEC, this document also
contains the installation and usage information of this last version of the IOP and the IEC.
Furthermore, this deliverable describes what should be done for properly testing the software
implemented.

This document, D5.9, is the last of a deliverable series on the IOP which has included also D5.7

[1] and D5.8 [2]. It is based on these previous versions to make the document self-contained,
and hence a major part of the previous content has been preserved in the appendixes and
updated to reflect the changes. The principal sections are devoted on the final results,
including the latest work and new sections for experimentation, lessons learnt and outlook to
the future.As a summary, the work developed between M24 and M30 has been focused on
two main topics. The first one has been related with making the IOP more use-case-oriented,
with the main intention of providing the best service to the PIACERE use cases and developing
a tool that answers real-world situations. The second objective has been to conduct a
scientific-oriented experimentation with the IOP, in order to clearly determine which are the
main algorithms that compose the tool. Thanks to the work carried out in the last six months
the new version of the IOP has been correctly integrated with the PIACERE IDE, it has been
tested on the project use cases and we have also deepened on the correct choosing of the
solving technique.

1 The IOP was defined since the DoA as the Key Result 9 (KR9) component in PIACERE framework. A sub-component
of the IOP, that is necessary for the optimization process, is the Infrastructural Elements Catalogue (IEC). Hence, we
include also the IEC description in this document. However, due to the very different nature of the Catalogue part
and the Optimization part, and to that we have not a proper name for the “optimization part of the IOP”, in this
document we will use “IOP” to refer only to the Optimization sub-module, in the same way as we use “IEC” to refer
the Catalogue sub-module.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 94

www.piacere-project.eu

1 Introduction

1.1 About this deliverable

This manuscript represents the third and last release of the IOP Prototype deliverable, and it is
based on the work carried out in WP5 - Package, release and configure Infrastructure as code,
and more specifically, in the task T5.3 - Best configuration deployments based on optimization
algorithms. For this reason, the objective is to outline the principal advancements and
evolutions of IOP and IEC compared to the versions released at M24. These advancements
regard the transformation of the IOP into a more use-case-oriented tool. Also, the activity
carried out in this last period contemplates a scientific-oriented experimentation for properly
deciding the algorithms that compose the IOP Optimizer. Thus, this document details different
concepts around the IOP and IEC such as technical description, implementation, and
installation.

1.2 Document structure

This manuscript is composed of 6 sections. Section 2 is devoted to providing a general
description of KR9, which is the Key Result that regards the IOP and IEC. In this section, we also
provide a clear explanation of the advances achieved between M24 and M30. Also, in this
section we outline the requirements covered by the IOP and IEC and we highlight the main
innovations of the tools. In Section 3 we delve into the experimentations conducted for testing
the effectiveness of the tools. The following Section 4 is devoted to deepening on the lessons
learnt, spotlighting also the future work planned for the tool. Finally, Section 5 presents the
conclusions, while in Section 6 we summarize the references.

Also, it is necessary to point out that this deliverable is constituted by several appendixes,
highlighting the implementation, delivery, and usage details, which in previous releases where
part of the core document. Even if these aspects present little modifications - due to the short
period of time that has elapsed between D5.8 and this D5.9, we have included them as
appendixes for the sake of completeness.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 94

www.piacere-project.eu

2 KR9-IOP overview

KR9 – IaC Optimized Platform (IOP) is related with the work conducted in Task T5.3 - Best
configuration deployments based on optimization algorithm. This task is devoted to the
implementation of an intelligent optimization engine able to select and deploy the most
optimized IaC configuration, subject to a set of objectives and requirements. To reach these
goals, the IOP also contemplates an infrastructural elements catalogue (IEC) in which the
features of all elements available are contained.

Firstly, the IEC is a persistence component whose principal function is to contain all the
infrastructural elements data required by different PIACERE components. As a persistence
tool, two crucial aspects are covered on the development of the IEC, how the information is
added and how it is fetched. The IEC is pre-loaded with a list of cloud services from different
providers. Regarding the information flow, three principal interactions are contemplated
between IEC and other PIACERE tools: i) the Eclipse-based GUI/IDE, which is able to extract the
data and present it to the user; ii) the Monitoring components and the Runtime Controller,
which will feed the IEC with the information about deployed instances; and iii) the Optimizer,
which consumes the list of services looking for the best alternatives.

Secondly, the optimization problem designed for giving an answer to the need fixed in the
project involves a group of services to be deployed, and the objective of searching an
appropriate IaC deployment configuration the best meets the preestablished constraints and
restrictions. In this context, the IOP needs to find these optimized configurations after
analysing the input data received. In this regard, this input information is offered in DOML
format, and it encompass the objectives to optimize the non-functional requirements to meet.
After retrieving all the input information, the optimizer executes a multi/many-objective
optimization technique against the IEC content, aiming to find the most appropriate elements
for building the deployment configuration.

Finally, two crucial aspects must be considered regarding the IOP Optimizer. On the one hand,
the problem to be solved could be composed by several conflicting objectives, so that it
requires the development of a multi- or even a many-objective approach. On the other hand,
the IOP will be needed in two different phases of the whole PIACERE system: the initial
deployment (in the design-time phase) and the redeployment of a service (in runtime phase,
and after the Self-Healing component requires it).

As can be read in the DoA, the IOP is considered successful if it is able to propose the most
optimized deployment configuration of the infrastructural code, taking into consideration the
constraints predefined. To this end, several deployment configurations will be presented to
the user and ranked.

2.1 Changes in v3

Main changes affect the technical advancement of the tools, covering a wider spectrum of
needs and deeming additional functionalities. Thus, the sections less affected by changes are
those related to the implementation, delivery, technical specification and user manual
(sections that have been moved to Appendix A).

Regarding the implementation of the Catalogue, some changes have been introduced with
respect to the previous version, D5.8. As the workflow of PIACERE framework involving the
Catalogue was established quite a while ago and is stable, no interactions with new
components are contemplated. The past version of the Catalogue was already integrated with
the IOP, the IDE and the PRC. However, in light of the advances made in the knowledge of the

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 94

www.piacere-project.eu

problem domain in this period, some adaptations have been made to the Catalogue, which are
detailed in the following.

On the other hand, and related to the IOP Optimizer, in the first version on this deliverable
(D5.7) the first laboratory prototype was introduced, which included some multi-objectives
algorithms codified using two different well-known optimization frameworks: jMetal [1] and
MOEA2. This first version was not DOML compliant, and it was not integrated with the IDE.
Also, it was not tested by the use case owners.

Besides that, an advanced version of the IOP was presented in the second version of this
deliverable (D5.8), which was more oriented to give an answer to the use case needs. For this
reason, this version of the IOP was DOML compliant, it was embedded in the IDE and it was
preliminary tested by use case owners. To develop this version of the tool, the jMetal
framework has been chosen as the basis. Furthermore, the NSGA-II has been contemplated for
single and two-objective multi-objective problems, and the NSGA-III for three-objective multi-
objective problems. This first tests were crucial for the evolution conducted from M24 to M30.

With all this, the main innovation of the work proposed in this last version of this document
gravitates on three different axes: i) advances made in the problem formulation, ii) works
conducted regarding the integration with the IDE and iii) tests for determining the evolutionary
multi-objectives algorithms included in the tool.

While the progresses performed regarding the third of these aspects are deepen in the
upcoming Section 3 Overview of preliminary experiments, we detail in this section the
developments carried out on the first two pivotal points.

2.1.1 Changes regarding the IEC

2.1.1.1 New elements in the Catalogue

2.1.1.1.1 New providers
As one of the Use Cases expected to use the VMware3 vSphere technology to set up its
infrastructure, the content of the Catalogue has been enlarged with the inclusion of some
services by the VMware provider. A set of Virtual Machines have been defined, with a
granularity that offers to the users a basic range of options.

The list of virtual machines included in this version is reflected in the following table. The list
can be expanded in the future if it is considered necessary for the Use Case.

Table 1: VMware virtual machines defined

Name Provider vCPUs RAM HD (GB)

Nano VMware 1 0,5 10

Micro VMware 1 1 20

Small VMware 1 2 40

Medium VMware 2 4 40

Large VMware 2 8 80

2large VMware 4 8 80

Xlarge VMware 4 16 160

2 http://moeaframework.org/
3 https://www.vmware.com/

DRAFT

http://www.medina-project.eu/
http://moeaframework.org/
https://www.vmware.com/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 94

www.piacere-project.eu

x2large VMware 8 16 160

X3large VMware 8 32 320

X4large VMware 8 64 320

In the same line, a set of virtual machines of the IONOS4 provider is foreseen to be included in
the Catalogue too. At the time of writing, the details of the selected IaaS services are still not
decided.

2.1.1.1.2 Images
As a result of the discussions in WP3, it was detected the convenience to store somewhere
information related with images that are then used during the design workflow. The obvious
place to store them was the Catalogue. The “image” word here can refer to two different types
of images: an image of a virtual machine or an image of a docker container.

A simple data structure was defined to maintain these images, that are defined by the user
early in the workflow.

• Name (string)

• Type: (string) [Docker | VM]
• Description (string)

• Provider (string)

A simple API, image-resource5, has been provided to manage addition/deletion of the images
in the Catalogue:

GET /api/images getAllImages

GET /api/images/count countImages

POST /api/images createImage

GET /api/images/{id} getImage

PUT /api/images/{id} updateImage

DELETE /api/images/{id} deleteImage

Figure 1: API to manage images in the Catalogue

As an example, a call to the getAllImages end point will return a json with an array of the
images:

[
 {
 "id": 1,
 "imageType": "Docker",
 "imageName": null,
 "imageUrl": "docker.hub.io/Ericsson/tia:1.0",
 "imageDescription": null,
 "imageProvider": "Provider A"
 },
 {
 "id": 2,
 "imageType": "VM",

4 https://cloud.ionos.com/
5 https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource

DRAFT

http://www.medina-project.eu/
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource/getAllImagesUsingGET
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource/countImagesUsingGET
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource/createImageUsingPOST
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource/getImageUsingGET
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource/updateImageUsingPUT
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource/deleteImageUsingDELETE
https://cloud.ionos.com/
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/image-resource

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 94

www.piacere-project.eu

 "imageName": "Ubuntu_6.4.2",
 "imageUrl": null,
 "imageDescription": "VM file for Ubuntu 6.4.2",
 "imageProvider": "Provider B"
 },
 {
 "id": 3,
 "imageType": "VM",
 "imageName": "Ubuntu_6.4.1",
 "imageUrl": "",
 "imageDescription": " VM file for Ubuntu 6.4.1",
 "imageProvider": "Ubuntu"
 }
]

Figure 2: Response to the getAllImages API call.

2.1.1.1.3 Pre-existing resources
Another data object that has been detected that is needed for some Use Cases is what we call
the “pre-existing-resource”. This refers to elements of the infrastructure that are defined
outside the PIACERE workflow, but that are needed when the IaC is being defined for a specific
environment. Existing network elements in the company, or templates of already used virtual
machines are examples of these type of elements.

This kind of data is needed, for example, when the Infrastructural Code Generator (ICG) is
constructing a Terraform script that defines the IaC deployment.

The data model defined to maintain these pre-existing-data is composed by:

• Data Name (string)

• Data type (string) [dc | compute_cluster | datastore | pool | template | network]

• Name (string)

• Datacenter id (int)

• Provider (string)

• User (string)

The Provider and the User fields are added in order to be able to filter the data and for
authorization purposes. Six types of pre-existing-data have been defined, by the moment: dc,
compute cluster, datastore, pool, template and network.

As in the case of the “images”, a separate API6 has been defined for the pre-existing resources,
that is shown in the next figure:

6 https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-
resource-resource

DRAFT

http://www.medina-project.eu/
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-resource-resource
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-resource-resource

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 94

www.piacere-project.eu

GET /api/existing-resources getAllExistingResources

POST /api/existing-resources createExistingResource

GET /api/existing-resources/count countExistingResources

GET /api/existing-resources/{id} getExistingResource

PUT /api/existing-resources/{id} updateExistingResource

DELETE /api/existing-resources/{id} deleteExistingResource

Figure 3: API to manage pre-existing resources in the Catalogue

As an example, a call to the getAllExistingResources end point will return a json with an array
of the resources (in this moment there are six resources defined):

[
 {
 "id": 1,
 "dataName": "vsphere_datacenter",
 "dataType": "dc",
 "name": "MB",
 "datacenterId": "",
 "user": "User A",
 "provider": "Provider A"
 },
 {
 "id": 2,
 "dataName": "vsphere_compute_cluster",
 "dataType": "compute_cluster",
 "name": "MB-PIAC-NIC-1",
 "datacenterId": "${data.vsphere_datacenter.dc.id}",
 "user": "User X",
 "provider": "Provider X"
 },
 {
 "id": 3,
 "dataName": "vsphere_datastore",
 "dataType": "datastore",
 "name": "VNX01-0200-NIC-TA-PIAC-DRO-VMW-P",
 "datacenterId": "${data.vsphere_datacenter.dc.id}",
 "user": "User X",
 "provider": "Provider Y"
 },
 {
 "id": 4,
 "dataName": "vsphere_resource_pool",
 "dataType": "pool",
 "name": "PIAC",
 "datacenterId": "${data.vsphere_datacenter.dc.id}",
 "user": "User Y",
 "provider": "Provider X"
 },
 {
 "id": 5,
 "dataName": "vsphere_virtual_machine",
 "dataType": "template",
 "name": "Centos7_PIAC",
 "datacenterId": "${data.vsphere_datacenter.dc.id}",
 "user": "User Y",
 "provider": "Provider Y"
 },
 {
 "id": 6,
 "dataName": "vsphere_network",

DRAFT

http://www.medina-project.eu/
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-resource-resource/getAllExistingResourcesUsingGET
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-resource-resource/createExistingResourceUsingPOST
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-resource-resource/countExistingResourcesUsingGET
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-resource-resource/getExistingResourceUsingGET
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-resource-resource/updateExistingResourceUsingPUT
https://iec.ci.piacere.digital.tecnalia.dev/swagger-ui/index.html?urls.primaryName=iecbackend#/existing-resource-resource/deleteExistingResourceUsingDELETE

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 94

www.piacere-project.eu

 "dataType": "network",
 "name": "DRO-MB-P-BG001-2098",
 "datacenterId": "${data.vsphere_datacenter.dc.id}",
 "user": "User B",
 "provider": "Provider B"
 }
]

Figure 4: Response to the getAllExistingResources API call.

2.1.1.2 Gaia-X compatibility

In the previous version of the deliverable, an introduction to Gaia-X conceptual model was
included, along with the intention to provide the Catalogue as a Gaia-X compliant service. Four
steps were defined there.

The first two, related to the creation and validation of the Self-Description (SD) of Tecnalia as
Participant, were achieved and presented. Since then, we have worked on the next two steps,
related with the creation of the self-description for the PIACERE Catalogue and its validation,
the results are presented in next paragraphs.

An aspect worth mentioning here is that the Gaia-X specification is an evolving one, that is not
definitive, nor yet totally completed. For example, some of the important entities defined in
the Gaia-X Trust Framework [2] are the Participant (although their roles — as provider,
consumer, and federator — are to be defined in future releases of the Framework) and the
ServiceOffering. A Participant (see Figure 5) is a Legal Person or Natural Person, which is
identified, onboarded and has a Gaia-X Self-Description. Instances of a Participant neither
being a legal nor a natural person are prohibited. The roles a Participant can have within the
Gaia-X Ecosystem are Provider, Consumer, and Federator. These are not yet part of Trust
Framework and are to be defined in future releases.

Figure 5: Participant in Gaia-X.

The ServiceOffering, in turn, is the aggregation of resources. These resources can be physical
or virtual, being the latter a SoftwareResource or a DataResource, either one of them can be
instantiated (see diagram in Figure 6).

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 94

www.piacere-project.eu

Figure 6: Service Offering in Gaia-X.

Gaia-X Self-Descriptions (SD) describe Entities from the Gaia-X Conceptual Model in a machine
interpretable format. This includes Self-Descriptions for the Participants, as well as the
Resources and Service Offerings from the Providers. The Participants are responsible for the
creation of their Self-Descriptions. In addition to self-declared information by Participants
about themselves or their offerings, a Self-Description may comprise statements issued and
signed by trusted parties.

Figure 7: Service Offering in Gaia-X.

Self-Descriptions are W3C Verifiable Presentations7 in the JSON-LD8 format. Self-Descriptions
comprise one or more Verifiable Credentials. Verifiable Credentials themselves contain a set of
Claims: assertions about Entities expressed in the RDF data model. Both Verifiable Credentials
and Verifiable Presentations come with cryptographic signatures to increase the level of trust.

Self-Descriptions contain verifiable credentials about the attributes of Entities and relations to
other Entities based on subject-predicate-object triples (cf. the RDF data model). Cross-
referencing between Self-Descriptions is enabled by unique Identifiers for the Entities.
Identifiers in Gaia-X are URIs and follow the specification of RFC 3986

7 https://www.w3.org/TR/vc-data-model/#presentations
8 https://www.w3.org/TR/json-ld11/

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 94

www.piacere-project.eu

With all this in mind, we detail in the following the self-description files prepared for the
Catalogue. The documents have been signed using the Gaia-X wizard9, and the result has been
validated against the online Gaia-X compliance tool10. At the moment of writing, only the
LegalParticipant and ServiceOffering categories can be validated in this tool –as can be
checked in the shapes-implemented endpoint11– but we have also developed the files for the
SoftwareResoure, InstantiatedResource and DataCenter categories.

2.1.1.2.1 Tecnalia Self-description
The definition of the Participant SD in the has suffered changes since the previous version of
this deliverable, due to the evolution of the Gaia-X Architecture Document from V22.06 [3] to
the actual version, v22.10. The former version is presented again here (see List 1), while the
actual version of the participant Tecnalia, takes the form shown in List 2.

{

- selfDescriptionCredential: {

− @context: [

− "https://www.w3.org/2018/credentials/v1",

− "https://registry.gaia-x.eu/v2206/api/shape"

],

− type: [

− "VerifiableCredential",

− "LegalPerson"

],

− id: "https://hodeix.digital.tecnalia.dev/.well-

known/participantTecnalia.json",

− issuer: "did:web:hodeix.digital.tecnalia.dev",

− issuanceDate: "2022-09-27T09:36:23.235Z",

− credentialSubject: {

− id: "did:web:hodeix.digital.tecnalia.dev",

− gx-participant:legalName: "Fundacion Tecnalia Research &

Innovation",

− gx-participant:website: "https://www.tecnalia.com/",

− gx-participant:registrationNumber: {

gx-participant:registrationNumberType: "vatID",

gx-participant:registrationNumberNumber: "ESG48975767"

},

− gx-participant:headquarterAddress: {

gx-participant:addressCountryCode: "ES",

gx-participant:addressCode: "ES-PV",

gx-participant:street-address: "Parque Cientifico y

Tecnologico de Bizkaia, Edificio 700",

gx-participant:postal-code: "48160",

gx-participant:locality: "Derio"

},

− gx-participant:legalAddress: {

gx-participant:addressCountryCode: "ES",

gx-participant:addressCode: "ES-PV",

gx-participant:street-address: "Parque Cientifico y

Tecnologico de Gipuzkoa, Mikeletegi Pasalekua 2",

gx-participant:postal-code: "20009",

gx-participant:locality: "San Sebastian"

},

− gx-participant:termsAndConditions:

"70c1d713215f95191a11d38fe2341faed27d19e083917bc8732ca4fea497670

9 https://wizard.lab.gaia-x.eu/v1
10 https://compliance.lab.gaia-x.eu/development/docs/#/credential-offer/CommonController_issueVC
11 https://registry.lab.gaia-x.eu/v1/api/trusted-shape-registry/v1/shapes/implemented

DRAFT

http://www.medina-project.eu/
https://www.w3.org/2018/credentials/v1
https://registry.gaia-x.eu/v2206/api/shape
https://hodeix.digital.tecnalia.dev/.well-known/participantTecnalia.json
https://hodeix.digital.tecnalia.dev/.well-known/participantTecnalia.json
https://www.tecnalia.com/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 94

www.piacere-project.eu

0"

},

− proof: {

type: "JsonWebSignature2020",

created: "2022-10-18T06:51:48.649Z",

proofPurpose: "assertionMethod",

verificationMethod: "did:web:hodeix.digital.tecnalia.dev",

jws:

"eyJhbGciOiJQUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..kbjXzBzvS

E7fPDKHoPIs0SceNjC7nYAR9tk6_... "
}

},

- complianceCredential: {

− @context: [

"https://www.w3.org/2018/credentials/v1"

],

− type: [

"VerifiableCredential",

"ParticipantCredential"

],

− id: "https://catalogue.gaia-

x.eu/credentials/ParticipantCredential/1666075916527",

− issuer: "did:web:compliance.gaia-x.eu",

− issuanceDate: "2022-10-18T06:51:56.527Z",

− credentialSubject: {

id: "did:web:hodeix.digital.tecnalia.dev",

hash:

"cd4671eb4fa46e9ae80284dae339e6171f7738d481e1bc72db88bfa632452917"

},

− proof: {

type: "JsonWebSignature2020",

created: "2022-10-18T06:51:56.527Z",

proofPurpose: "assertionMethod",

jws:

"eyJhbGciOiJQUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..qDGT7bU1W

9tG3hl9VpsxCIv67HeCNsc_nd3lYleseQ...",
verificationMethod: "did:web:compliance.gaia-x.eu"

}

}

List 1: Self-description of the TECNALIA participant (V22.06).

The main difference with the previous version —apart of the minimalist definition of Tecnalia
adopted to avoid mislead the structure with much information— is the simplification it has
suffered, with the removal of all the selfDescriptionCredential header, maintaining only the
credentialSubject part.

{

 "id": "did:web:hodeix.digital.tecnalia.dev",

 "type": "gx:LegalParticipant",

 "gx:legalName": "Fundacion Tecnalia Research & Innovation",

 "gx:webAddress": "https://www.tecnalia.com",

 "gx:legalRegistrationNumber": {

 "gx:vatID": "ESG48975767"

 },

 "gx:headquarterAddress": {

 "gx:countrySubdivisionCode": "ES-PV"

 },

 "gx:legalAddress": {

 "gx:countrySubdivisionCode": "ES-PV"

 },

 "gx:termsAndConditions":

DRAFT

http://www.medina-project.eu/
https://www.w3.org/2018/credentials/v1
https://catalogue.gaia-x.eu/credentials/ParticipantCredential/1666075916527
https://catalogue.gaia-x.eu/credentials/ParticipantCredential/1666075916527

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 94

www.piacere-project.eu

"70c1d713215f95191a11d38fe2341faed27d19e083917bc8732ca4fea

 4976700"

}

List 2: Self-description of the TECNALIA participant (V22.10).

The self-description is then signed using the Gaia-X wizard12, with the private key of the
participant, which implies the verification method to be the Tecnalia DID,
“did:web:hodeix.digital.tecnalia.dev”. The result (see List 3) is to wrap the raw SD (marked in
grey) with the VerifiableCredential type and context, and add in the end a proof of the
signature, that allows in the future the validation that the content remains unchanged.

{

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://registry.lab.gaia-x.eu/development/api/trusted-shape-

registry/v1/shapes/jsonld/trustframework#"

],

 "type": [

 "VerifiableCredential"

],

 "id": "did:web:hodeix.digital.tecnalia.dev",

 "issuer": "did:web:hodeix.digital.tecnalia.dev",

 "issuanceDate": "2023-05-23T14:23:41.839Z",

 "credentialSubject": {

 "id": "did:web:hodeix.digital.tecnalia.dev",

 "type": "gx:LegalParticipant",

 "gx:legalName": "Fundacion Tecnalia Research & Innovation",

 "gx:webAddress": "https://www.tecnalia.com",

 "gx:legalRegistrationNumber": {

 "gx:vatID": "ESG48975767"

 },

 "gx:headquarterAddress": {

 "gx:countrySubdivisionCode": "ES-PV"

 },

 "gx:legalAddress": {

 "gx:countrySubdivisionCode": "ES-PV"

 },

 "gx:termsAndConditions":

"70c1d713215f95191a11d38fe2341faed27d19e083917bc8732ca4fea4976700"

 },

 "proof": {

 "type": "JsonWebSignature2020",

 "created": "2023-05-23T14:23:42.207Z",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "did:web:hodeix.digital.tecnalia.dev",

 "jws":"eyJhbGciOiJQUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19..h9xezrJcc

rpuMngrh9yuyjY1q_RCZUjB6CzaGD2Hj2ycPCTwT1urChvI2OV4OXx0mqPk_xfUe49nVzMygCGvwFM

hQ4UIQ9NPfHFj_5rHlbLrIkff89Q1KkPBLMjTDTZGyRbSM3eymPu2Qe_vKIM89TQTL93Yd36vesdzf

KoIDb0gstFXpCgBpLC1VXLndIImwM3NdR3rSfavUX21CZ2wo7A6QYPSKMI8Am1ZJRWm3B1smBmGbZX

FwC3PgQKWhrMicXIT2jFV49g8FSv-UQ6B8F8f6dmxzDuuAf0kN6sFEbFszFSpwg-

_vJ2Z_tRWUp7xB9wCORnS5sUYjFxeWguBaw"

 }

}

List 3: Signed self-description of the TECNALIA participant (V22.10).

12 https://wizard.lab.gaia-x.eu/

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 94

www.piacere-project.eu

2.1.1.2.1 Service offering
The ServiceOffering is an abstraction of the offered service in the form of a
VerifiablePresentation that contains two VerifiableCredentials, the first one as LegalName for
the participant (Tecnalia) as the issuer of the service; and the second one as the proper
ServiceOffering. The List 4 shows the Service Offering file.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 94

www.piacere-project.eu

List 4: Service offering for the Catalogue.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 94

www.piacere-project.eu

2.1.1.2.2 Software resource
The SoftwareResource file contains basic information about the service, serving as an
abstraction of the real resource behind:

List 5: Software resource file for the Catalogue.

2.1.1.2.3 Instantiated resource
The InstantiatedResource offers more information about the service being instantiated, the
data center in which is located and where to obtain the service API (in this case, in the
integration environment of PIACERE):

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 94

www.piacere-project.eu

List 6: Instantiated resource file for the Catalogue.

2.1.1.2.4 Data Center
Finally, we have defined the DataCenter file that supports the service instantiation. It defines
the physical address where the data center is located:

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 94

www.piacere-project.eu

List 7: Self-description file of the Catalogue DataCenter.

2.1.2 Changes regarding the IOP Optimizer

This subsection is devoted to highlight the main changes done in Y3 regarding the IOP
Optimizer.

2.1.2.1 Advances made in the optimization problem formulation

To adequately comprehend the optimization problem at hand, let us introduce an example in
this section. First of all, as mentioned before, for properly conducting the optimization
process, the IOP counts on the IEC to be full of resources that the solver can consider in order
to select the most optimal deployment configuration.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 94

www.piacere-project.eu

For the purpose of this explanation, we introduce here a simplified IEC composed of three
kinds of elements, [Storage (ST), Database (DB), Virtual Machine (VM)], having five
options for each of these categories:

 ST: [St_EU, St_Italy, AZ_USA, G_2, St_Germany, St_2]

 DB: [mysq.dyn, db.sql, postgre.GR, r2.small, m5.large]

 VM: [C1Italy, C2Spain, m3.small, t4.medium, DS15v3]

Additionally, all elements have some associated attributes, such as the expected
performances, the overall availability, provider, or cost. Having said that, the main objective of
the IOP is to find the best combination of these elements that comply with the user
requirements.

In this regard, and for obtaining all the information about the user's needs, the IOP should
obtain as input a file written in DOML. This file includes a specific section in which users
introduce their optimization objective and requirements. At the same time, it is also
interesting to spotlight that the DOML is also the output of the IOP Optimizer. More
specifically, the output produced is the same DOML introduced as input, but with the
information of the optimization introduced on it. Despite different DOML excerpts are
depicted along the following subsections, interested reader can find complete files in this same
document, in APPENDIX B. Also, we refer readers to [4] for further details on DOML.

For the sake of clarity, we depict in Figure 8 an excerpt of a DOML example. Analyzing this file,
we can see how the user wants to find the most optimized configuration, composed of a single
ST, one DB and three VMs (depicted in the part elements) optimizing three different

objectives: cost, availability, and performance. Furthermore, the user deepens on its
requirements, introducing three different ones: the cost of the whole deployment should be
less than 100€, the overall expected availability must be higher than 98%, and all the chosen
elements should be deployed in Europe. As mentioned in the last deliverable D5.8, the user
has also the chance of introducing a minimum performance desired for the whole deployment.

Figure 8: Excerpt of a possible input DOML

Considering these objectives and requirements, and resorting the reduced IEC presented
above, the IOP codifies candidate solutions as a list of integer values, each one depicting the
index of a specific element. Thus, a tentative solution looks like: [0, 1, 0, 2, 3]: [100,
98.5, 10]. On the one hand, and deeming that the combination that the user wants to

deploy is [ST, DB, VM, VM, VM], the solution [0, 1, 0, 2, 3] is equal to [St_Eu,
db.sql, C1Italy, m3.small, t4.medium]. On the other hand, [100, 98.5,

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 94

www.piacere-project.eu

10] array represents the cost of the whole deployment (100), the expected availability (98.5)

and the overall performance (10).

On the basis of this formulation, the following advances have been conducted in the last six
months of the project.

2.1.2.1.1 Adding new requirements
Since March 2023, the PIACERE Working group organizes weekly session dedicated to test the
different tools implied in the Design Time phase of the whole system. Being the IOP part of this
phase, it has been tested in these sessions, in which the need for an additional requirement
arised. This requirement regards the maximum memory that the elements that compose the
deployment must have, and it is included as depicted in Figure 9.

Figure 9: Example of the new requirement

More specifically, the new requirement is the one identified as Req4, which in combination
with the rest of the requirements implies that the IOP should find a deployment composed of
two different virtual machines, deployed in Europe, provided by Amazon and each one with a
maximum of 1024MB. In Figure 10 we depict a possible solution found by the IOP, in which the
memory of the selected virtual machines is 900 and 1024, respectively.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 94

www.piacere-project.eu

Figure 10: Solution compliant with the new requirement

2.1.2.1.2 Showing the best solutions
One of the main needs detected during the Design Time sessions regards the number of
solutions provided by the IOP. When the optimization problem to solve is not much restrictive,
the previous version of the tool provides an amount of solutions that could be considered as
excessive for the user. In other words, the user will not find useful to receive, for example, 20
different deployment configurations.

For this reason and based on the ranking criterion followed by the IOP, the tool provides the
five best solutions founds even if the problem to solve is not very restrictive (such as the one
depicted in Figure 11, where no non-functional requirements are introduced). For the sake of
completeness, the IOP ranks the outcomes based on the first of the objectives introduces. In
this case, the five solutions with the less cost will be offered to the user.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 94

www.piacere-project.eu

Figure 11:Example of a non-restrictive non-functional requirements

Thus, in Figure 12 we represent the output DOML built by the IOP for the objectives and
requirements shown in previous figure.

Figure 12: Solution provided by the IOP for the DOML

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 94

www.piacere-project.eu

2.1.2.1.3 Mapping elements
An additional improvement included in the new version of the IOP regards the mapping of the
elements that compose the solutions provided by the IOP. In this sense, and in order the tool
to know the mappings that should be considered, the IOP first analyses the input DOML in
order to retrieve the information about the mapping elements. More concretely, the layer to
check is the coined as infrastructure layer. In Figure 13 we represent an example DOML,
in which two different VMs should be mapped: nginx_vm and mysql_vm. Furthermore, a
network named as common_network must also be included in each of the concretizations

found by the IOP.

Figure 13: An excerpt of an example infrastructure layer, with two VMs and a network.

In Figure 8, an example of a solutions including this mapping is shown. In this figure, the
mapping of the elements can be seen inside the concretization of the solution opt_infra1.
It should be clarified that the criterion for assigning the mapping is based on the order in which
they appear in the infrastructure layer. For example, the first VM appearing in the
infrastructure layer is the first to be assigned in the concretization.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 94

www.piacere-project.eu

2.1.2.1.4 Modifying the active infrastructure
The last of the evolutions included in the new version of the IOP regarding the problem solving
is related with the active infrastructure. In few words, each DOML should have one active
infrastructure in order to be properly validated. In the new version of the IOP, the tool
modifies the active infrastructure putting as the new one the best of the solutions found. In
Figure 14 we represent an example including just one optimized solution, aiming to facilitate
the visualization of this new feature. In this example, the new active infrastructure is the one
found by the IOP: opt_infra1.

Figure 14: Example of how the IOP modified the active infrastructure.

2.1.2.2 Advances made regarding the IDE integration

In the period that goes from M12 to M24 we elaborated on the preliminary integration of the
IOP in the Eclipse based IDE that is being developed in the context of PIACERE project. In this
regard, the steps that a user should conduct in order to optimize a DOML are quite simple, and
consist of just clicking the right mouse button on a DOML file, select PIACERE and then
Optimize DOML. We represent in Figure 15 a graphical example of this process.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 94

www.piacere-project.eu

Figure 15: How to optimize a DOML in the IDE

After this first integration, use case owners started to conduct preliminary tests of the tool in
the IDE. This first experiments arise a need that directly affect the operation of the IOP: the
necessity of having a more descriptive error message. Up to M24, the IDE just shown a
message saying “The model cannot be optimized” when the IOP chases or when it does not
find any solution. For this reason, and in order to guide the user in the process of performing
an optimization, use case owners propose the improvement of generating better message
errors.

With this motivation in mind, six different alerts have been generated, giving an answer to six
specific situations related to the IOP. We describe now these scenarios and how the IDE
provides the error message.

2.1.2.2.1 Non-existence of Optimization section in the input DOML
The first of the errors regards the non-existence of the Optimization section in the input
DOML. This section is the one containing the objectives to optimize and the requirements that
the optimizer should meet. As can be seen in Figure 16, if this situation occurs the IDE triggers
an alert saying “The input DOML has no optimization part. It is compulsory for conducting the
optimization process”.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 94

www.piacere-project.eu

Figure 16: IDE error related to the non-existence of the optimization section.

2.1.2.2.2 Objectives non introduced
In order the IOP perform the optimization, it need a pull of objectives. As mentioned along
these deliverables, the objectives can be any combination among cost, availability, and
performance. If the user does not introduce any of it, such as depicted in the example in Figure
17, an alert saying No objectives in the input DOML. Objectives should be "cost", "availability"
or "performance" is arisen. This error is shown in Figure 18.

Figure 17: Example of an input DOML with no objectives section.

Figure 18: Error alert regarding the non-existence of optimization objectives.

2.1.2.2.3 Objectives badly introduced
As mentioned in the previous section, the IOP can build a problem optimizing any combination
of cost, availability, and performance objectives. The IOP is a tool flexible enough for
contemplating additional objectives to these three, but at this moment the tool just works
with them. For this reason, if the user introduces another objective, as can be seen in Figure
19, the IDE shows an There is an objective badly introduced in the input DOML. Objectives
should be "cost", "availability”, or "performance" error. This error is represented in Figure 20.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 94

www.piacere-project.eu

Figure 19: Example of an objective badly introduced.

Figure 20: Error message regarding a badly introduced objective.

2.1.2.2.4 Non- considered requirement introduced
As in the case of the objectives, the IOP is a tool flexible enough for consider additional
requirements needed by the user. In any case, at this time, seven requirements are
considered, regarding the i) cost, ii) performance, iii) availability, iv) elements to deploy, v)
providers, vi) region of the elements and vii) memory. For this reason, if the input DOML
contemplates a requirement not considered by the IOP, as can be seen in Figure 21, so the
system triggers an alert saying There is a requirement badly introduced in the input DOML.
Requirements should be cost, availability, performance, region, provider, or elements. Figure 22
represents this situation.

Figure 21: Input DOML with a non-considered requirement.

Figure 22: IOP error related with non-considered requirement.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 94

www.piacere-project.eu

2.1.2.2.5 Non-considered element introduced
At this moment, the IOP considers three different types of elements for building the
deployment configuration: Virtual Machines, Storages and Data Bases. This is so because in the
IEC these elements are deemed. For this reason, the IOP could work with further elements if in
the future the IEC stores additional kind of elements.

With this situation, the IOP contemplates errors in which the user introduces infrastructural
elements in the elements non-functional requirements part that are outside the scope of
the current version of the tool. In Figure 23 we represent this situation with a DOML asking for
a system element. In Figure 24 we show the corresponding error depicted by the IDE, which is
There is an element badly introduced in the input DOML. Elements should be VM, DB or
Storage.

Figure 23: A DOML with a non-considered element introduced.

Figure 24: IOP error related with the introduction of a non-considered element

2.1.2.2.6 Very restrictive requirements
The IOP has the advantage of finding the most optimized deployment configurations based on
the objectives predefined by the user. Furthermore, the tool provides the possibility of
introducing some requirements for refining the search. For example, it could be possible that
the user only wants elements given by the one specific provider, such as Azure or Amazon.

This functionality offered by the IOP arises a tentative situation: the potential of finding no
solutions if the user requirements are very restrictive. This scenario should also be taken into
account by the IOP in order to guide the practitioner to the best use of the system.

In Figure 25 we represent a DOML that fits with the error that we are describing in this
subsection. In this case, the user needs a deployment composed of two virtual machines
provided by Amazon, asking for an outstanding availability and a very low cost. Of course, this
deployment does not exist, so the IOP cannot find a solution that meets the requirements
employed as input. For this reason, as shown in Figure 26, the IDE returns a “No possible
solutions found. Maybe the restrictions are so strict to find a possible solution” error message.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 94

www.piacere-project.eu

Figure 25: Example of so restrictive DOML.

Figure 26: IOP alert regarding so restrictive demands.

2.2 Functional description and requirements coverage

The user requirements satisfied by this interim version are described in Table 2. All these
requirements have been obtained from the PIACERE WP2 Requirements internal document.

Table 2: user requirements satisfied by the IOP.

Req ID Description Status Requirement Coverage at M30
REQ03 IOP will include a catalogue of

infrastructural elements (e.g.
(edge, node) computation,
networks, cloud services (e.g.
IaaS, PaaS, SaaS)) classifiable by a
set of constraints (e.g. memory,
disk, …). This catalogue of
infrastructural elements should
be clearly defined, including
possible restrictions and dynamic
variations. These infrastructural
elements will be transformed as
optimization variables, and they
will be intelligently treated by
the optimization algorithm
seeking to find the best
configuration deployment.

Satisfied The connection between the
Optimizer and the IEC is already
made, and it works properly. The
optimization is performed using the
elements that compose the IEC.

REQ04 Provide the means for the IOP to
properly consume all the data
related with the catalogue of
infrastructural elements status,
as well as their characteristics
and possible variations. Special
mention shall be done here to
the values monitored by the self-

Partially
satisfied

The Optimizer properly consumes
the data of the IEC, and it properly
takes all its characteristics for
conducting the optimization. Next
steps include the consideration of
the measures coming from self-
learning and monitoring for updating
the characteristics of the IEC

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 94

www.piacere-project.eu

learning algorithm / monitoring
component. This module shall
provide real measures regarding
the infrastructural elements in
order to update their
characteristics.

elements.

REQ12

The IEM shall allow
redeployment and
reconfiguration, both full and
partial, as allowed by the used
IaC technology.

Discarded This requirement was finally
discarded, since it corresponds to
other KR.

REQ37
CSE to have a simulated mode
limited to provisioning.

Discarded This requirement was finally
discarded, since it corresponds to
other KR.

REQ46 The monitoring component shall
gather metrics from the
instances of the infrastructural
elements at run time. These
metrics need to be related to the
NFR and accessible to the IOP
(through the dynamic part of the
infrastructural catalogue)

Partially
satisfied

The metrics are gathered and stored
in the monitoring system. The
connection between the IEC and the
monitoring system has not been
done yet. When done, is expected
that the IOP will be able to access
the information modified by the
monitoring component, since these
modifications are directly done on
the IEC data.

REQ98 The IOP components provide
feedback on the DOML code,
without doing automatic writes.
The end user can choose to
accept or not the feedback
received. (ex REQ56&75)

Satisfied The Optimizer receives a DOML as
input, and it provides as solution the
same DOML but with the results of
the optimization inserted.

Furthermore, the internal requirements satisfied up to M30 are described in Table 3. These
requirements are the continuation of those depicted in the previous version of this deliverable,
and they have been polished and adapted as the project advances.

Table 3. internal requirements satisfied by the IOP.

Req ID Description Status Requirement Coverage at M30
WP5.3-REQ1 Load/read information about the

catalogue of infrastructural
elements

Satisfied The connection between the IEC and
the Optimizer has been satisfactorily
carried out.

WP5.3-REQ2 IOP shall consider both functional
and non-functional requirements
for searching the best solutions
that fit the user demand.

Satisfied This requirement was already
satisfied in M12. In any case, in this
new stage of the project, the
consideration of this requirements is
done thought DOML language.
Furthermore, in this second year of
the project additional requirements
have been considered and
implemented (such as the multi-
element optimization or the choosing
of a provider).

WP5.3-REQ3 IOP shall use optimization
algorithms such as genetic
algorithms and provide a set of

Satisfied This requirement has also been
satisfied in M12. In any case, up to
M24 further advances have been

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 94

www.piacere-project.eu

potential combinations of
elements that fulfill the
established user requirements.

conducted on this aspect. These
advances contemplate the
adaptation of the algorithms to the
use-case oriented problem and the
ranking of the provided solutions.

WP5.3-REQ4 The IOP should be able to obtain
the information provided by the
user in DOML language

Satisfied The IOP understands DOML language
and can obtain the information
related to the optimization objectives
and requirements properly.

2.3 Main innovations

The IOP is a tool that counts with a group of innovations. These novelties are crucial both to
respond to the needs identified by customers over the 30 months of the project, and to ensure
both the replicability and scalability of the tool. We present now a summary of the innovations
of the IOP:

• The IOP has been developed for solving the problem of finding the most optimized
combination of infrastructural and resource configuration for properly deploying a
service. Additionally, the IOP allows the user to configure the optimization problem,
being able to choose different objectives to optimize and non-functional requirements
to consider. This approach has been scarcely considered in the literature before [5]. As
a result of this innovation, three different publications have been achieved with their
focus put on the IOP [6] [7] [8].

• The IOP is a multi-method tool, which resorts on two different multi-objective
algorithms depending on the needs of the user. This feature has been endowed to the
IOP after the conduction of a comprehensive scientific oriented experimentation,
which has been detailed in the upcoming Section 4.

• Despite the IOP works with two evolutionary computation multi-objective methods
(how they work are described in the following Section 3), its structure allows the easy
introduction of further multi-objective techniques, just for testing purposes or for
exploring the improvement of its performance.

• The IOP is an open tool, flexible enough for considering further objectives and
requirements, aiming to contemplate additional real-world situations. Furthermore,
and because of its multi-method nature, the consideration of more objectives will not
impact in the performance of the tool, having the NSGA-III method for dealing with
many-objective problems.

• The Catalogue of the IOP offers a multi-provider service catalogue. This allows the user
to search and select multiple services in a single tool, without having to worry about
looking different providers offerings.

• The Catalogue offers also the possibility to define user-specific templates for its in-
house services (for example, those provided by VMware vSphere). This way, the user
can specify a set of his favourite configurations and use them in a recurrent manner in
PIACERE.

• The compliance of the Catalogue of services with Gaia-X standards makes the
Catalogue tool more trustable and interoperable. This compliance has been worked
out and has been verified as far as the actual specification and tools of Gaia-X allow. In
a further step, the inclusion in the future Gaia-X Catalogue of Services will allow more
interaction with users and tools in the European cyberspace.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 94

www.piacere-project.eu

3 Overview of preliminary experiments

The experiments conducted with the IOP can be divided into two different branches. The first
one, which can be coined as scientific experimentation, is the one with the goal of clearly
determining which are the best optimizing algorithms to use in the IOP. The second tests have
the objective of showing the applicability of the tool and how it can be adapted to solve the
needs of the users.

3.1 Scientific experimentation

In that previous version of the IOP, which was described in D5.8, the tool resorts to NSGA-II
and NSGA-III for carrying out the optimization. This selection was made based on the intuition
and the experience of the developers involved in T5.3 of the project. In any case and being
aware that it could be a good choice, we must take a step forward in the development of the
IOP, undertaking a detailed experimentation to determine which is really the most suitable
multi-objective method to deal with the problem of finding optimized IaC deployment
configurations.

With this motivation, we have conducted a comprehensive experimentation, in which we have
tested the behaviour of nine different multi-objective evolutionary computation solvers over
12 DOML instances. These use cases are heterogeneous enough to assure that the conclusions
drawn are significant.

The interest on conducting this study is remarkably high since the IOP is expected to work on a
real environment. For this reason, its performance should be as good as possible, and the
selection of the optimization algorithms employed should be made after a thorough and
rigorous study.

So, in order to perform a significant experimentation, we have measured the performance of
the following nine different evolutionary computation based multi-objective techniques:

• Non-dominated Sorting Genetic Algorithm (NSGA-II, [9])

• Weighting Achievement Scalarizing Function Genetic Algorithm (WASFGA, [10]).

• Global Weighting Achievement Scalarizing Function Genetic Algorithm (GWASFGA,
[11]).

• Many-Objective Metaheuristic Based on the R2 Indicator (MOMBI, [12]).

• Improved Many-Objective Metaheuristic Based on the R2 Indicator (MOMBI2, [13]).

• Multiobjective Cellular Genetic Algorithm (MoCell, [14]).

• S metric selection evolutionary multi-objective optimization algorithm (SMSEMOA,
[15]).

• Strength Pareto evolutionary algorithm 2 (SPEA2, [16]).

• Non-dominated Sorting Genetic Algorithm III (NSGA-III, [17])

All these algorithms have been chosen for three main reasons: i) they are well-known, and
they have been previously validated by the scientific community, ii) they can be easily adapted
to the discrete problem dealt by the IOP, and iii) they can be implemented through the multi-
objective framework embraced by the IOP: jMetal JAVA framework [1].

In order to properly assess the performance of all the nine multi-objective solvers, an in-depth
experimentation has been carried out using 12 different input DOMLs. Each of these input files
has been generated with the intention of emulating real situations that the IOP will face once
it is deployed in a real environment. Thus, these DOML files present different objectives to
optimize, as well as a variable number of elements to deploy. This directly impacts on the
complexity of the problem, depending on the number of objectives and the size of the solution

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 94

www.piacere-project.eu

to be found. We summarize in ¡Error! No se encuentra el origen de la referencia. the main
characteristics of the benchmark composed. As can be seen, each instance has been named as
DOML_A_x-y-z, where A represents the number of objectives, and x,y,z the number of

VMs, DBs and STs to deploy, respectively. For the sake of replicability, the generated
benchmark is openly available under demand, or online at [18].

Furthermore, regarding the IEC that composes the problem, we have created an extended
version of the current IEC, comprised of a total of 156 elements. Divided by type, the IEC
contains 99 Virtual Machines, 24 Databases and 33 Storage elements. All these elements have
realistic features, coming from providers such as Amazon, Google, Openstack or Azure.
Arguably, the size is the employed catalogue is big enough for reaching rigorous conclusions.

Table 4. Main characteristics of the 12 input DOMLs generated. Regarding the optimizing objectives: c -
cost; a - availability; p - performance. Instances optimizing three objectives consider c & p & a

Regarding the parameterization employed for each technique, as recommended in studies
such as [19], similar parameters have been employed in all the methods developed. Thus, all
methods count on a population composed of 50 individuals, while for the crossover and
mutation functions, SBX [20] and Polynomial Mutation have been chosen, respectively. For the
selection, Binary Tournament mechanism has been utilized. Finally, regarding the maximum
number of evaluations, it has been fixed in 2500.

Having said that, we depict in Table 5 the main results obtained for each technique in all the
generated instances. Every instance has been run 10 independent times, in order to obtain
statistically relevant results. Thus, we represent the average hypervolume value obtained by
each method.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 94

www.piacere-project.eu

Table 5. General overview of the experimentation carried out.

At a first glimpse, we can conclude that the best performing methods along the benchmark are
the NSGA-II and the NSGA-III. In any case, and following the guidelines provided in [21], the
Friedman's non-parametric test for multiple comparisons has been conducted for confirming
these preliminary conclusions. For performing this statistical test, the results average obtained
by each method has been used. Thus, we depict in Table 6¡Error! No se encuentra el origen de
la referencia. the results gathered after performing the test through KEEL platform [22].

Table 6. Average Friendman Rankings for each considered algorithm. The less the ranking, the better the
performance.

Analysing the results provided by the Friedman's test, we can certify that the best performing
technique along the whole benchmark is the NSGA-II, which is the one that has reached the
best ranking. In any case, a deeper analysis of the results shown in Table 4 can lead us to much
more interesting and valuable conclusions, taking into account that the IOP will work in a real
environment in which its performance should be improved as much as possible.

Thus, if we analyse the performance of each technique according to the number of objectives
it has to optimize, we reach to much more accurate insights. Thus, we have conducted two
separate Friendman's non-parametric tests. On the one hand, the first test has been
performed employing the outcomes obtained for instances DOML_2_0-4-4, DOML_2_1-
1-1, DOML_2_2-2-2, DOML_2_4-3-3, DOML_2_5-5-5 and DOML_2_6-0-0. On
the other hand, results got in use cases DOML_3_0-4-4, DOML_3_1-1-1, DOML_3_2-

2-2, DOML_3_4-3-3, DOML_3_5-5-5 and DOML_3_6-0-0 have been used for
performing the second test. In Table 7, we represent the outcomes of these separated
Friendman's non-parametric tests.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 94

www.piacere-project.eu

Table 7. Separated Friendman's test for instances optimizing two and three objectives. Rankings for each
considered algorithm. The less the ranking, the better the performance

The findings that can be drawn by examining the results shown in the table are even more
valuable than those described above. Despite NSGA-II is, in overall, the method that performs
better for the whole benchmark, if we undertake a separate analysis we see that NSGA-III
behaves better for instances where the number of objectives to optimize is three.

As a final conclusion, and after carrying out the experimentation described in this study, we
determine that the most appropriate way for implementing the IOP is to convert it into a
multi-method system. Thus, the IOP should have a pool composed of two solving algorithms,
using each of them according to the user needs: for problems with two optimizing objectives,
NSGA-II should be used; while for situations with three objectives, the IOP should resort to
NSGA-III.

3.2 Experimentation for showing the IOP applicability

For showing the applicability of the IOP in a use-case oriented scenario, we depict in this
manuscript an example inspired on the use-case owned by Ericsson. On this regard, we should
clarify that, because of the length of both input and output DOMLs, we have added these files
as part of APPENDIX B of this same deliverable. As can be seen in the DOML input, in this
preliminary version of the Ericsson’s use case, the user asks the IOP to conduct an optimization
under the following conditions:

Figure 27: optimization section of the preliminary Ericsson use case

Which implies the optimization of the whole three considered objectives (cost, availability, and
performance), and the consideration of three requirements: i) a maximum cost of 300, ii) a
minimum performance of 70, and iii) the searching of a deployment including a Virtual
Machine and a Storage.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 94

www.piacere-project.eu

Under these optimization conditions, the IOP returned five different solutions, considering all
the features described in this same manuscript. As a summary, these are the solutions found.

Figure 28: the five solutions provided by the IOP to the preliminary Ericsson use case

As explained, the complete input and output DOMLs are available in the APPENDIX B of this
manuscript.

 DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 94

www.piacere-project.eu

4 Lessons learnt and outlook to the future

Regarding the IOP Optimizer, along these 30 months of work, several valuable lessons have
been learnt. During the early stages of the project, and while the specifications where being
consolidated, we designed and developed an academic-oriented IOP prototype, which had the
objective to preliminarily solve the problem of searching the most appropriate IaC deployment
configuration the best meets the preestablished objectives.

At this first step, the IOP did not even consider requirements, and it received and provided the
information using JSON format. The main goal of the development team was to determine
how to design the problem and decide which will be the JAVA framework used for
implementing the tool. Thanks to this work, the first lessons was learnt:

• Lesson learnt #1: After analysing some well-known multi-objective optimization
frameworks, such as MOEA13, JCLEC-MO14, Jenetic15, ECJ16 and jMetal17, we
decided to resort on the last of these frameworks for implementing the IOP.
Several reasons encourage us to choose jMetal over the rest of alternatives: i)
jMetal works better with single-objective problems, ii) jMetal offers more
algorithms for working with many-objective problems, iii) Algorithms are more
flexible to configure and modify in jMetal, and iv) the definition of the PIACERE
problem has been demonstrated to be easier to conduct in jMetal in comparison
to MOEA.

Once this first prototype of the IOP was built, the most challenging work was to make it usable
for the use case owners of the project, and to really give an answer to the real-world oriented
requirements that compose the problem. In this regard, several improvements were
conducted, and a second lesson was learnt:

• Lesson learnt #2: in order the IOP to be utilizable in the context of PIACERE
project, a more productive version was needed. The IOP was adapted to the
DOML language, in order to be able to receive and provide the information in
this format. Also, the IOP must resort on a single algorithm for conducting the
optimization, and it should consider the existence of several non-functional
requirements related with the cost, performance, availability, elements to
deploy, region, provider, and memory. Furthermore, the IOP must provide the
information in a way easy to understand to the user and fully compliant for the
DOML checker.

Lastly, in the last phase of the project, a special effort has been conducted for accurately chose
which should be the evolutionary computation based multi-objective algorithms used for the
IOP. This last experimentation led us to another lesson learnt:

• Lesson learnt #3: after the conduction of a comprehensive experimentation, using 12
different DOML instances and 9 multi-objective algorithms, we have concluded that
NSGA-II and NSGA-III should be the algorithms to be employed in the IOP Optimizer
tool The first of the algorithm should be used for solving two-objective problems, while
when the number of objectives is higher, the IOP should resort on the NSGA-III. In any

13 moeaframework.org
14 https://cs.gmu.edu/~eclab/projects/ecj/
15 https://www.uco.es/kdis/research/software/jclec-mo/
16 https://jenetics.io/
17 jmetal.github.io/JMetal/

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 94

www.piacere-project.eu

case and embracing the no-free-lunch theorem, it should be highlighted that these
conclusions are based on the experimentation conducted under the conditions
explained in this manuscript.

Regarding the IOP Catalogue, a number of lessons can be extracted from the work done in the
project:

• Lesson learnt #4 The Catalogue has suffered some adaptations towards the
final phase of the project, to include data types that where not initially
foreseen to be contained (images, pre-existing data). Although it has not
involved big troubles, maybe an earlier definition of the workflow and data in
the use cases would avoid re-engineering or repeated work.

In relation with the idea of having to change some things that were presupposed at the
beginning, we can consider another lesson:

• Lesson learnt #5: The specification of the Catalogue has to be flexible enough
to include different types of assets. In their original form, it included services
as virtual machines, databases and storage. The requirements of the project
have made necessary to introduce other types of resources, and it should be
prepared to easily include even more until the end of the project.

Regarding the future work related with the IOP Optimizer, several research lines have been
established to continue the interesting work developed in this project. On the one hand, we
have planned to consider further objectives and non-functional requirements, in order the IOP
to be able to provide efficient answers to further real-world scenarios. On the other hand, we
have planned to conduct even a wider experimentation in order to test the efficiency of other
evolutionary computation algorithms, searching to improve even more the quality of the IOP
Optimizer.

As for the Catalogue, one of the main tasks foreseen is to extend the database of resources,
offering more services for each provider and including more different providers. In this line, to
maintain the services offered in the Catalogue synchronized with the real offer of the providers
can be a tedious, day-to-day, thorough job, and to find some help for it or an automatic
solution is desirable. Finally, an integration with the monitoring tools already provided by
different cloud providers is a feature that will avoid the use of specific agent that have to be
deployed along with the infrastructure.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 94

www.piacere-project.eu

5 Conclusions

This document has been devoted to detailing the third and last version of the IOP, which is
comprised of the Infrastructural Elements Catalogue and the IOP Optimizer. First, the IEC in
PIACERE has the goal of storing the characteristics of the elements available at service
providers, and also the instances of every service being employed by the applications being
deployed in the infrastructure.

Secondly, the IOP Optimizer resorts on multi-objective EC methods for finding the most
optimized deployment configurations for the IaC. To do that, the optimizer obtains the
features of the elements stored on the IEC. The correct choosing of the elements should be
conducted following the need of the user, in terms of optimizing objectives and non-functional
requirements. Thus, the IOP is considered as successful if the solutions offered are good
enough for meeting the users’ demands.

In the last version of this deliverable, we have put the focus on introducing the main
improvements conducted in the months that go from M24 and M30. Also, we have highlighted
the main innovations of the tools, and we have also put attention on discussing the lessons
learnt and future work plan. Lastly, an important part of this deliverable has been dedicated to
the description of the experimentation carried out for demonstrating the effectiveness of the
tools developed.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 94

www.piacere-project.eu

6 References

[1] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-objective optimization,”
Advances in Engineering Software, vol. 42, no. 10, pp. 760-771, 2011.

[2] Gaia-X, “Gaia-X Trust Framework,” [Online]. Available: https://gaia-x.gitlab.io/policy-rules-
committee/trust-framework/gaia-x_trust_framework/. [Accessed 15 05 2013].

[3] Gaia-X European Association for Data and Cloud AISBL, , "Gaia-X Architecture Document,
21.06 Release," 2021.

[4] PIACERE Consortium, “PIACERE Abstractions, DOML and DOML-E v3,” 2023.

[5] M. Ciavotta, G. Gibilisco, D. Ardagna, E. Di Nitto, M. Lattuada and M. da Silva,
“Architectural design of cloud applications: A performance-aware cost minimization
approach,” IEEE Transactions on Cloud Computing, vol. 10, no. 3, pp. 1571-1591, 2020.

[6] E. Osaba, J. Diaz De Arcaya, J. Alonso, J. L. Lobo, G. Benguria and I. Etxaniz, “Multiobjective
Optimization Analysis for Finding Infrastructure-as-Code Deployment Configurations.,” in
ACM-11th International Conference on Computer and Communications Management
(ICCCM 2023). Accepted for being presented in August 2023., 2023.

[7] E. Osaba, J. Diaz De Arcaya, J. L. Lobo, G. Benguria, I. Etxaniz and J. Alonso, “An
Evolutionary Computation based Platform for Optimizing Infrastructure-as-Code
Deployment Configurations.,” in 9th International Congress on Information and
Communication Technology, 2023.

[8] E. Osaba, J. Diaz de Arcaya, L. Orue-Echevarria, J. Alonso, J. L. Lobo, G. Benguria and I.
Etxaniz, “PIACERE project: description and prototype for optimizing infrastructure as code
deployment configurations.,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion (pp. 71-72), 2022.

[9] K. Deb, A. Pratap, S. Agarwal and T. Metarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-
197, 2002.

[10] A. B. Ruiz, R. Saborido and M. Luque, “A preference-based evolutionary algorithm for
multiobjective optimization: the weighting achievement scalarizing function genetic
algorithm,” Journal of Global Optimization, vol. 62, pp. 101-125, 2015.

[11] R. Saborido, Ruiz A. B. and M. Luque, “Global WASF-GA: An evolutionary algorithm in
multiobjective optimization to approximate the whole Pareto optimal front,” Evolutionary
computation, vol. 25, no. 2, pp. 309-349, 2017.

[12] R. H. Gómez and C. A. C. Coello, “MOMBI: A new metaheuristic for many-objective
optimization based on the R2 indicator,” IEEE congress on evolutionary computation, pp.
2488-2495, 2013.

[13] R. Hernández Gómez and C. A. C. Coello, “Improved metaheuristic based on the R2
indicator for many-objective optimization,” 2015 annual conference on genetic and

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 94

www.piacere-project.eu

evolutionary computation, pp. 679-686, 2015.

[14] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro and E. Alba, “Mocell: A cellular genetic
algorithm for multiobjective optimization,” International Journal of Intelligent Systems,
vol. 24, no. 7, pp. 726-746, 2009.

[15] N. Beume, B. Naujoks and M. Emmerich, “SMS-EMOA: Multiobjective selection based on
dominated hypervolume,” European Journal of Operational Research, vol. 181, no. 3, pp.
1653-1669, 2007.

[16] E. Zitzler, M. Laumanns and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary
algorithm,” TIK-Report, vol. 103, 2001.

[17] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems with box
constraints,” IEEE transactions on evolutionary computation, vol. 18, no. 4, pp. 577-607,
2013.

[18] E. Osaba, “DOML instances for optimizing Infrastructure-as-Code deployment
configurations,” Mendeley Data, 2023. [Online]. Available:
https://data.mendeley.com/datasets/gs5kw9hmz8.

[19] E. Osaba, R. Carballedo, F. Diaz, E. Onieva, A. D. Masegosa and A. Perallos, “Good practice
proposal for the implementation, presentation, and comparison of metaheuristics for
solving routing problems,” Neurocomputing, vol. 271, pp. 2-8, 2018.

[20] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,”
Complex systems, vol. 9, no. 2, pp. 115-148, 1995.

[21] J. Derrac, Garcia S, D. Molina and F. Herrera, “A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3-18,
2011.

[22] J. Derrac, S. Garcia, L. Sanchez and F. Herrera, “Keel data-mining software tool: Data set
repository, integration of algorithms and experimental analysis framework.,” J. Mult.
Valued Logic Soft Comput, vol. 17, 2015.

[23] JHipster, “JHipster,” [Online]. Available: http://www.jhipster.tech/. [Accessed November
2017].

[24] Eco - Association of the Internet Industry, “Core Catalogue Features,” [Online]. Available:
https://www.gxfs.de/federation-services/federated-catalogue/core-catalogue-features/.

[25] (OAI), The OpenAPI Initiative, "OpenAPI Specification v3.1.0," 15 February 2021. [Online].
Available: https://spec.openapis.org/oas/v3.1.0.html. [Accessed 08 11 2021].

[26] PIACERE Consortium, «D5.7 IOP Prototype v1,» 2021.

[27] PIACERE Consortium, «D5.8 IOP Prototype v1,» 2022.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 48 of 94

www.piacere-project.eu

[28] G.-X. E. A. f. D. a. C. AISBL, «Gaia-X Architecture Document, 21.06 Release,» 2021.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 49 of 94

www.piacere-project.eu

APPENDIX A: Implementation, delivery and usage

1 IEC Implementation

The main purpose of the catalogue is to manage the different infrastructure elements, using a
data model that allows their classification based on properties. These characteristics,
associated with the services registered in the catalogue, allow an optimal deployment
configuration by the optimization algorithms.

1.1 Fitting into overall PIACERE Architecture

The Infrastructural Elements Catalogue (IEC) is one of the components of the PIACERE
architecture. Although it is considered part of the IOP (KR9), in this section we detach them, to
better understand its specificities

The Catalogue interacts with several tools in the PIACERE ecosystem, as can be seen in the
following Workflow Diagrams (Figure 29 and Figure 30) and in the Sequence Diagram (Figure
31):

• The GUI/IDE, that is used by the user to include/edit element information in the
Catalogue.

• The IOP, to whom it provides information about available elements and its related
dynamic information.

• The Runtime Controller (PRC), from which receives information (that is originated in
the IEM) about deployed instances or tore down instances.

• The Runtime Monitoring, that provides monitoring information of the running
instances.

Figure 29: PIACERE Design Time Diagram (v2.2) with the Catalogue interactions.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 50 of 94

www.piacere-project.eu

Figure 30: PIACERE Run Time Diagram (v2.2) with the Catalogue interactions.

Figure 31: Sequence Diagram of the Infrastructural Elements Catalogue

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 51 of 94

www.piacere-project.eu

1.2 Technical description

This subsection describes the technical specification of this third prototype. First, the main
architecture of the prototype is shown and described, along with the description of all
components. This subsection finishes with the technical specifications of the developed
system.

1.2.1 Architecture and component’s description

IEC architecture is based on a microservices style, hence it is divided in a front-end and a
backend, so that it´s easier to scale and survive infrastructure issues. The components are
described in the following figure, and main purposes are detailed below.

Figure 32: Main architecture of the Infrastructural Elements Catalogue

The IEC is composed by two principal components, which main purposes are briefly described
as follows (for further details, see the section Package Information in Appendix 1.3 Delivery
and usage).

• IEC-Frontend: this component is the entry point of the IEC system. All the external
callings to the whole IEC are made through it. There are two main uses of this
component, the frontend for managing the service Catalogue and the API exposed
services to interact with other components.

• IEC-Backend: this component cannot be accessed externally. It manages all the
logic of the IEC and exposes the rest API services to the other components.

1.2.2 Technical specifications

The technical specification of the prototype can be summarized in the following points:

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 52 of 94

www.piacere-project.eu

• This prototype has been developed using JHipster Framework [20]. The framework
provides all the needed for a modern web application and microservice architecture.

• It uses Spring boot for application configuration.

• In the client side, IEC-Frontend gateway uses Yeoman, Webpack, Angular and
Bootstrap technologies.

• In the server side, IEC-Backend microservice, uses Maven, Spring, Spring MVC Rest,
Spring Data JPA and Netflix OSS.

• For access control the JSON Web Token (JWT) mechanism is used. This is a stateless
security mechanism which uses a secure token holding the user´s login name and
authorities.

• Data persistence is implemented in a MySQL database.

• The JHipster Registry offers service discovery using Netflix Eureka.

1.3 Delivery and usage

1.3.1 IEC-Backend

The main structure of the prototype developed in this first stage of the project is composed by
the packages shown in the following Figure 33.

Figure 33: Structure of the catalogue

Each of these packages has its main objective and its context within the whole prototype.
Furthermore, these packages are also comprised by several JAVA classes. With all this, the
main purpose and composition of each component is as follows:

• com.piacere.iec.backend.aop.logging: this package is composed of
LoggingAspect.java which define the aspect for logging execution of service and
repository Spring components.

• com.piacere.iec.backend.aop.client: Composed by

UserFeignClientInterceptor.java which implements
RequestInterceptor.java. This class checks and add JWT token to the request

header.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 53 of 94

www.piacere-project.eu

• com.piacere.iec.backend.aop.config: this package contains all classes

related to configuration purposes.

Figure 34: structure of config package

• com.piacere.iec.backend.aop.domain: this package contains data model

classes.

Figure 35: structure of domain package

• com.piacere.iec.backend.repository: this package contains Spring Data
SQL repository classes.

• com.piacere.iec.backend.security: this package contains Spring
 Security related classes for security management.

• com.piacere.iec.backend.service: this package contains Iec-backend
services for CRUD operations and other requirements needed.

• com.piacere.iec.backend.web:this package contains classes to expose Iec-
backend rest end points.

1.3.2 IEC-Frontend

The main structure of the prototype developed in this first stage of the project is composed of
JAVA classes related to Spring boot project and AngularJS files.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 54 of 94

www.piacere-project.eu

1.3.2.1 Spring boot package information

Figure 36: relation of packages

Each of these packages has its main objective and its context within the whole prototype.
Furthermore, these packages are also comprised by several JAVA classes. With all this, the
main purpose and composition of each component is as follows:

• com.piacere.iec.frontend.aop.logging: This package is composed by
LoggingAspect.java which define the aspect for logging execution of service and
repository Spring components.

• com.piacere.iec.frontend.config: This package contains all classes related

to configuration purposes.

• com.piacere.iec.frontend.domain: This package contains user data model

and Authority classes.

• com.piacere.iec.frontend.repository: This package contains Spring Data

SQL repository classes for user and security management.

• com.piacere.iec.frontend.security: This package contains Spring
 Security related classes for security management.

• com.piacere.iec.frontend.service: This package contains Iec-frontend
 services for CRUD operations and other requirements needed for user and security
management.

• com.piacere.iec.frontend.web: This package contains classes to expose

Iec-frontend rest end points for user and security management.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 55 of 94

www.piacere-project.eu

1.3.2.2 AngularJS package information

Figure 37: AngularJS package

Each of these packages and typescript files has its main objective and its context within the
whole prototype.

The main purpose and composition of each file/component is as follows:

• app/app.constants.ts:Global application constants.

• app/app.module.ts: Declaration of all the needed modules, providers and
components loaded in the web application.

• app/app-routing.module.ts: Routing configuration.

• app/account:Account management module. It contains components and

services related to the user account management.

• app/admin:Admin related modules. Api documentation module, Gateway route
module and user management module.

• app/config: Global configuration and constant typescript files.

• app/core: Global utils files, core models and services.

• app/entities/iecBackend: All files related to the iecBackend data model.
Services, components and models.

• app/home: Home component

• app/layout: Layout components; error, footer, navbar, main and profile
components.

• app/login: User Login component.

• app/shared: Shared module with common components, directives and pipes.

• content: Static files of webapp. Css and images.

• i18n: Internationalization files.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 56 of 94

www.piacere-project.eu

1.4 Installation instructions

This project is executed in a docker container. There are docker compose files for each
environment development/production. To execute this project in a development environment:

1. Clone repository
git clone https://git.code.tecnalia.com/piacere/public/the-platform/iop/iec-catalogue.git

2. Run docker compose to start Jhipster registry and MySQL instances
docker-compose --env-file .env.dev -f docker-compose-local-dev.yaml up --build -dFrontends

3. Build and deploy Catalogue backend
./mvnw -Pdev,api-docs -DskipTests

4. Build and deploy Catalogue frontend
./mvnw -Pdev,webapp,api-docs -DskipTests

Available services after initialization (User with admin role: admin / admin; User with non-
admin role: user / user):

Once we successfully deploy the docker-compose, and supposing the following values for
SERVER_HOST (192.168.56.1.nip.io) and HTTPS_PORT (8443) we will be able to access the
services at:

• https://iec.192.168.56.1.nip.io:8443/ IEC for development

• https://iec.192.168.56.1.nip.io:8443/services/iecbackend/v3/api-docs IEC API

And to those generic services described at development-services:

• https://traefik.192.168.56.1.nip.io:8443/ Traefik dashboard

• https://traefik.192.168.56.1.nip.io:8443/api/http/routers Traefik API

• https://portainer.192.168.56.1.nip.io:8443/ to access Portainer

• https://ca.192.168.56.1.nip.io:8443/ Tecnalia CA

Apart from those, in case we are using the ".env.int" we will have access to additional
endpoints

• https://jhipster-registry.192.168.56.1.nip.io:8443/ jhipster registry

1.5 User Manual

The catalogue is not intended to be used directly by the user. It is part of the optimization
component and is used behind de scenes (mainly by the IOP) to calculate and provide its
results. This use is made via the APIs provided by the IEC and is transparent for the final user.

However, the Catalogue provides a GUI (Graphical User Interface) that allows to check its
contents and interact with it. Also, the integrated PIACERE IDE offers a way of show the
content of the catalogue in a specific view.

1.5.1 Using the catalogue via webpage

The home page of the Catalogue shows a table of the number of services contained, organized
by providers (files) and service types (rows):

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/iop/iec-catalogue.git
https://iec.192.168.56.1.nip.io:8443/
https://iec.192.168.56.1.nip.io:8443/services/iecbackend/v3/api-docs
https://traefik.192.168.56.1.nip.io:8443/
https://traefik.192.168.56.1.nip.io:8443/api/http/routers
https://portainer.192.168.56.1.nip.io:8443/
https://ca.192.168.56.1.nip.io:8443/
https://jhipster-registry.192.168.56.1.nip.io:8443/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 57 of 94

www.piacere-project.eu

Figure 38: Welcome page of IEC.

The Service Classes option lists the types of services contained in the Catalogue:

Figure 39: Service Classes page of IEC.

Clicking the “View” button shows the attributes of the selected type of service.

Figure 40: View Service Classes page of the IEC.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 58 of 94

www.piacere-project.eu

The “Services” menu option list all the services in the catalogue. A search box allows to filter by
the name of the service.

Figure 41: Services page of IEC.

A click on the “View” button of one of the services shows its properties:

Figure 42: View Service page of IEC.

While a click on the “Edit” button of the service allows to edit its properties:

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 59 of 94

www.piacere-project.eu

Figure 43: Edit Service page of IEC.

The “Instances” menu option shows a list of instances of the deployed services:

Figure 44: instances page of IEC.

The “Images” menu option shows a list of images defined in the system:

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 60 of 94

www.piacere-project.eu

Figure 45: Images page of IEC.

There are two different types of images:

• the Docker images, whose main attribute is a URL from where it can be downloaded

(e.g docker.hub.io/Ericsson/tia:1.0)

• The Virtual Machine (VM) images, whose name defines the VM (e.g. Ubuntu_6.4.1)

The “Existing Resources” menu option shows a list of the pre-defined resources in the deploy
environment. A button there allows the user to create a new Existing Resource.

Figure 46: Existing Resources page of IEC

A click on the “View” button of one of the items shows its properties:

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 61 of 94

www.piacere-project.eu

Figure 47: Existing Resources details page

1.5.2 Using the Catalogue from the IDE

Prior to using the Catalogue itself, you need to open the right view.

1. We use the “Window” toolbar menu, click on “Show view” option and select the
“PIACERE Infrastructure Elements Catalogue” option.

Figure 48: Show view option in the IDE.

2. Once in the view, the different types of elements of the Catalogue are shown in a list.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 62 of 94

www.piacere-project.eu

Figure 49: Catalogue View.

3. Clicking in any of these types, all the services of the type are listed (a further click in
any of the services shown its properties and values).

Figure 50: List of services of Databases type.

1.6 Licensing information

This component is offered under Apache 2.0 license. More detailed information can be found
in the GitLab repository.

1.7 Download

The code is available at the public GitLab repository of the PIACERE project:

https://git.code.tecnalia.com/piacere/public/the-platform/iop/iec-catalogue

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/iop/iec-catalogue

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 63 of 94

www.piacere-project.eu

2 IOP Optimizer Implementation

In this appendix, we describe the most important aspects regarding the implementation of the
IOP. It should be considered at this point that this information has experienced few
modifications in the last six months. For this reason, the content is almost the same as in D5.8.
In any case, and for the sake of completeness, we have decided to include it in this last
deliverable.

2.1 Fitting into overall PIACERE Architecture

Regarding the fitting of the IOP Optimizer in the PIACERE architecture, as described in D5.8,
the component is placed both in Run Time (Figure 51) and Design Time (Figure 52) phases.
Having said that, the role of the IOP in both Run Time and Design Phase can be summarized as
follows:

• Role of the IOP in the Run Time phase: in this phase, the IOP is involved in the seal-
healing process when needed asking for a re-deployment, and it is called by the
PIACER Runtime Controller.

• Role of the IOP in the Design Time Phase: in this case, the IDE can call the IOP as an
optional step (user choice), after the DOML Model Checker interaction. Thus, the IOP
will return the optimization to the IDE, and the user can accept or not the proposed
optimization.

Figure 51: PIACERE Run Time Diagram on its 2.2 version

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 64 of 94

www.piacere-project.eu

Figure 52: PIACERE Design Time Diagram on its 2.2 version

2.2 Technical description

This subsection is devoted to describing the technical specification of this third version of the
IOP Optimizer. First, the main composition of the component is shown and described in
Section 2.2.1. Prototype architecture and components description. After that, the technical
specifications of the developed system are described in Section 2.2.2. Technical Specifications

2.2.1 Prototype architecture and components description

First, we depict in Figure 53 the main composition of the IOP Optimizer tool.

Figure 53: Composition of the IOP Optimizer

Thus, the main components of the Optimizer can be summarized as follows. It should be noted
that further detail of this components is provided in the upcoming Section 4.2 Package
information.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 65 of 94

www.piacere-project.eu

• Optimizer Service: the optimizer service is the entry point of the system, and

the class that is called by external components. In a nutshell, the optimizer service
gathers the input data (provided in DOML language), builds the optimization problem,
and initialize both the solving algorithm algorithms and the data reader procedure.
Classes devoted to this duty are placed
com.piacere.iop.optimizer.service.

• Data Reader: this component has the main objective of gathering the data from
the IEC and process them for being used as optimization variables by the solver. This
component conducts some data-processing procedures such as data cleaning,
normalization, discretization or integration. Classes devoted to this duty are placed in
com.piacere.iop.optimizer.service.

• Solving algorithms: This is the component in which the solving algorithms are
comprised. Despite NSGA-II and NSGA-III methods have been chosen for being the
solving techniques used in the IOP, the rest of the testing algorithms have been
maintained for further testing purposes. Classes devoted to this duty are placed in
com.piacere.iop.optimizer.algorithm.jmetal.continuous and
com.piacere.iop.optimizer.algorithm.jmetal.discrete.

• Optimization problem building: This component is dedicated to build the
optimization problem for being subsequently solved by the artificial intelligence
algorithms. It should be considered that the user preferences demand to the IOP the
flexibility of generating optimization problems of different nature (single-objective,
multi-objective, considering multi-element optimization…). Classes devoted to this
duty are placed in com.piacere.iop.optimizer.problem.

• Solution Processing Mechanism: the purpose of this component is to obtain

the outcomes reached by the solving algorithm and return them to the user in an
understandable and ranked form. This component is also in charge of traducing the
solutions to DOML format. Classes devoted to this duty are placed in
com.piacere.iop.optimizer.util.

• Web Service Component: the last component is charge of preparing the whole

tool for being accessible by external components and tools of the PIACERE project.
Classes devoted to this duty are placed in com.piacere.iop.optimizer,
com.piacere.iop.optimizer.aop.logging,com.piacere.iop.opti

mizer.client,com.piacere.iop.optimizer.config,com.piacere.

iop.optimizer.domain,com.piacere.iop.optimizer.repository,

com.piacere.iop.optimizer.security,com.piacere.iop.optimiz

er.security.jwt,com.piacere.iop.optimizer.web.rest,com.pia

cere.iop.optimizer.web.rest.errors and
com.piacere.iop.optimizer. More specifically, the classes devoted to

trigger the alerts described in Section 2.1 are placed in
com.piacere.iop.optimizer.web.

2.2.2 Technical specifications

The IOP Optimizer has been developed using JAVA, which is a high-level, general-purpose,
class-based and object-oriented programming language. JAVA was conceived for having few
dependencies, in order to be more efficient than other similar languages. Also, JAVA embraces
the philosophy known as WORA, which is Write Once and Run Anywhere. This philosophy
implies that the compiled JAVA code can be run in all platforms that support JAVA without
requiring any additional recompilation.

Additionally, jMetal framework, crucial for the optimization algorithms, is imported using
MAVEN mechanism, which is a is a software project management and comprehension tool.
MAVEN is based on a concept named as Project Object Model (POM). Thus, MAVEN can

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 66 of 94

www.piacere-project.eu

manage a build, reporting and documentation in a project from a unique file of information.
Regarding the versions, jMetal 5.1 has been used, and 11 JDK of JAVA.

Additionally, following the service-oriented architecture (SOA) approach that is shared among
the different pieces of the PIACERE Framework, the logic of the IOP has been packaged as a
service using Jhipster Framework. The Jhipster Framework is a free and open-source
application generator used to develop web applications and Microservices using Angular and
the Spring Framework. Jhipster has many goodness, that drove us to its usage. Some of the key
ones were:

• The implementation of REST APIs

• The support of the Open API Specification (OAS)

• The inclusion of different security mechanism

• The horizontal scale capabilities

The Open API specification was quite important as it provides a standard way to describe the
REST API. This issue allows us to quickly generate clients in different languages that facilitates
the integration of other components inside and outside the PIACERE framework.

Finally, like other components in the PIACERE framework, the component is packaged using
the docker technology and its integration in the piacere framework has been specified using
the docker-compose choreography mechanisms.

It is worth mentioning that the Docker file used for the containerization of the IOP follows a
multistage approach that covers both the compilation and packaging of the source code in a
jar, and the running of that jar to provide the expected service. This is very beneficial to ensure
the homogeneity of the behavior of the service provided by the resulting image.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 67 of 94

www.piacere-project.eu

2.3 Optimizer Delivery and usage

As in the previous annex related with the IOP Optimizer, the delivery and usage of this tool has
remained the same in the last six months. In any case, and because this is the last version of
this deliverable, we have decided to include this context as annex for the sake of
completeness.

2.3.1 Package information

We have depicted in the previous Figure 52 the structure of the IOP Optimizer. For analysing
this structure, we divide the explanation into two thematic groups: the first one dedicated
with the packages oriented to the IOP optimization problem solving (Section 4.1.1), and the
other one dedicated to those packages created for making the whole IOP accessible for
external components (Section 4.1.2)

2.3.1.1 Packages related with the optimization problem solving

The main role of the packages that fall within this category is to solve the PIACERE optimization
problem described previously. Probably, the most representative examples are the packages
coined as com.piacere.iop.optimizer.algorithm.jmetal.continuous and
com.piacere.iop.optimizer.algorithm.jmetal.discrete. We depict in the

next Figure 54 the composition of these both packages.

Figure 54: Composition of the packages that contain the jMetal algorithm adaptations

Essentially, these packages contain the jMetal implementations of the algorithms. In this
regard, it should be taken into account that the algorithms that have been used for the tool,
and the ones employed for solving the PIACERE use cases are the
NSGAIIDiscreteOptRunner.java, and NSGAIIIDiscreteOptRunner.java in
their discrete variants. In any case, the rest of the algorithms have been left on their
corresponding packages for future additional performance testing purposes.

Additionally, the package com.piacere.iop.optimizer.problems contains the
classes that define the optimization problem itself. In this package, the four classes regarding

the jMetal adaptation of the problem have been considered.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 68 of 94

www.piacere-project.eu

Figure 55: composition of the com.piacere.iop.optimizer.problems package

Regarding the output of the results, the class in charge of this crucial aspect is the one coined
as IOPSolutionLustOutput.java. As shown in Figure 56,
IOPSolutionListOutput.java is contained in a com.piacere.iop.optimizer.

util package.

Figure 56: structure of the com.piacere.iop.optimizer.util package

Finally, the last of the packages dedicated to the optimization problem solving, is the one
coined as com.piacere.iop.optimizer.service. This package contains three

different classes of a crucial importance for the correct working of the IOP component. In
Figure 57 we depict the composition of this package:

Figure 57:Composition of the package com.piacere.iop.optimizer.service

Going deeper on this package, each of the classes that comprise it have the following role
within the whole IOP Optimizer:

• CatalogService: This class is specifically dedicated to access the IEC for obtaining
all the elements and their features for being used for the optimization procedure.
Thus, this class deals with all the security aspects needed for acceding the IEC thought
the JAVA code.

• DataReaderService: Once the data is obtained in its raw form, this
DataReaderService class is in charge of reading all the information and transform
it in optimization variables. This class has also some filtering methods, in order to
properly contemplate optimization requirements related, for example, with the region
or the provider.

• OptimizerService: this class is, probably, the most important one of the whole
IOP Optimizer. OptimizerService.java is the main class, which orchestrates all

the optimization process. This is the entry point of the IOP for both of its execution
ways: from the JAVA code or as external service, and it is in charge of receiving the
DOML inserted as input and staring the complete pipeline of execution of the IOP.
After all the optimization is executed, this class is also the one that returns to the user
the main outcome provided by the internal class
IOPSolutionLustOutput.java.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 69 of 94

www.piacere-project.eu

2.3.1.2 Packages dedicated to make the whole IOP accessible

The packages dedicated to providing the IOP functionality are, in most of cases, generated

using Jhipster. In Figure 58 we depict the packages of the IOP, most of them, except those
indicated with (1), have been automatically generated based on the initial configuration of the
Jhipster. Besides, most of the customization for the service provision is implemented in (2),
where the request is received and the jMetal packages are used.

Figure 58: packages generated by jhipster.

Besides, there are some other packages manipulated in other to declare, expose and
characterize the IOP services. These are com.piacere.iop.optimizer.web.rest and

com.piacere.iop.optimizer.security. In the first one, we declare the endpoint
and the data received and the response sent. The second one the package that allow us to
manage the access security together with the YAML configuration of the service. The
configuration allows us to define multiple mechanism to specify who can or who cannot access
the service. i.e. json web token (JWT), Open ID, etc.

Jhipster users yeoman to generate the microservice elements the configuration used to the
generation is stored in .yo-rc.json. This is useful in case we want to regenerate the
microservice from scratch or update to a newer version of Jhipster that will help us to keep our
microservice with the latest libraries that include the latest security patches.

2.4 Installation instructions

The installation instructions for this third version of the tool are similar to the ones provided
for the first version of the IOP Optimizer. The whole tool is built in a compressed folder, which
can be imported by any JAVA development framework such as NetBeans of Eclipse.
Furthermore, the project can also be imported as a Maven project, being this option even
more comfortable than just importing the whole project folder. Related also with this last
aspect, jMetal framework is imported to the project and used by the IOP using Maven
functionality.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 70 of 94

www.piacere-project.eu

Additionally, the last version of the jMetal framework has been used for this third version of
the IOP, which at the time of writing this deliverable, is version 5.1. Regarding the MOEA
optimization framework, which was considered in the first version of the prototype, it has
been finally discarded from the project as described in previous Section 5.3.3. for this reason,
it is not necessary to include it in the pom.xml related to the project.

Finally, we depict the dependencies added to the pom.xml file for correctly importing jMetal
framework to the JAVA project.

 <dependency>

 <groupId>org.uma.jmetal</groupId>

 <artifactId>jmetal-core</artifactId>

 <version>5.1</version>

 </dependency>

 <dependency>

 <groupId>org.uma.jmetal</groupId>

 <artifactId>jmetal-problem</artifactId>

 <version>5.1</version>

 </dependency>

 <dependency>

 <groupId>org.uma.jmetal</groupId>

 <artifactId>jmetal-algorithm</artifactId>

 <version>5.1</version>

 </dependency>

 <dependency>

 <groupId>org.uma.jmetal</groupId>

 <artifactId>jmetal-exec</artifactId>

 <version>5.1</version>

 </dependency>

2.5 User Manual

Three different alternatives are available for properly testing the IOP Optimizer. The first one
resorts to the execution of the JAVA project using a JAVA framework and a unitary test. The
second alternative is related to using it through the Eclipse based IDE, developed in the
context of PIACERE project. Finally, the IOP can also be run via webpage-based platform. These
three methods are explained in this Section.

2.5.1 Running the IOP Optimizer via JAVA code

The entry point of the IOP Optimizer if the user wants to run it via JAVA code is the class
named as OptimizerServiceIT.java, which is part of the package
com.piacere.iop.optimizer.service, within the test branch of the code. We

depict in the following figure an excerpt of the class OptimizerServiceIT.java. More
concretely, we show the part of the code in which the IOP is called through the
optimizedService.run(call) method.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 71 of 94

www.piacere-project.eu

Figure 59: An excerpt of the OptimizerServiceIT.java class

As mentioned, the method that runs the IOP is the one coined as
optimizedService.run(call). This is the method that it is called by the PIACERE
components to make the IOP run and to find the most optimized deployment configurations.
Two different important aspects can be seen in this little excerpt of code:

• For properly run the Optimizer, a String should be introduced as input. As explained
before, this input should a fully working DOML file, formatted as String, in which the
optimization opt part should be correctly introduced. As mentioned, this
optimization opt part must have the following format:

optimization opt {

objectives {

}

nonfunctional_requirements {

}

}

In which objectives contains the optimization objectives (such as cost,
performance or availability) and nonfunctional_requirements slot includes

main optimization requirements (such as the maximum cost, the minimum
performance or the elements to search).

• The output of the IOP is a String (represented as result), which is the same DOML
introduced as input (call variable). In a nutshell, the output string introduces the
main results as an adding in the optimization opt section of the input DOML,

following this format:

solution solX {

 objectives {

 }

 Decisions[]

}

It should be considered that one solution excerpt in introduced by each of the
solutions found by the Optimizer. More concretely, this solution part includes an
objectives part representing the main values for each optimization objective

introduced in the input DOML, and a Decisions part, which represents the solution
itself, that is, the elements chosen from the IEC and which built the deployment
configuration.

2.5.2 Running the IOP Optimizer via PIACERE IDE

In addition to executing the code as mentioned in previous section, the IOP can also be used
through the PIACERE IDE, developed in the context of this project. In this sense, the IOP

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 72 of 94

www.piacere-project.eu

Optimizer is completely integrated with this tool. In the previous Section 2.1.4 - Advances
made regarding the IDE integration we represent an example of how the IOP should be used in
the PIACERE IDE.

2.5.3 Running the IOP Optimizer via OpenAPI

In case we want to execute the IOP optimizer by its OpenAPI specification we have several
options, some of them are:

• We can get the OpenAPI specification and import in a testing tool such as Postman

• We can use the API explorer tool in IEC, https://iec.ci.piacere.digital.tecnalia.dev/
admin/docs

• We can use any swagger explorer providing a proper CORS configuration.

First step is how to get the OpenAPI specification that describes the IOP service following and
standardized syntax. In order to get the OpenAPI specification, we use the same component
that as part of the basic features provided by Jhipster, so we can retrieve the Jhipster
specification. Thus, to get the specification we can access an endpoint in the IOP, for example:
 https://iop.ci.piacere.digital.tecnalia.dev/v3/api-docs. This file can be used in any of the
methods specified before. Figure 60 shows how the URL is used to import the IOP OpenAPI in
Postman.

Figure 60: Postman link import

Figure 61 shows how the API looks like in postman after importing.

DRAFT

http://www.medina-project.eu/
https://iec.ci.piacere.digital.tecnalia.dev/%20admin/docs
https://iec.ci.piacere.digital.tecnalia.dev/%20admin/docs
https://iop.ci.piacere.digital.tecnalia.dev/v3/api-docs

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 73 of 94

www.piacere-project.eu

Figure 61: IOP Optimizer API after import

Finally, Figure 62 shows how the IOP API looks like in the IEC Administration API tool.

Figure 62: IOP Optimizer API in the Administration API tool in IEC.

2.6 Licensing information

This component is offered under Apache 2.0 license. Detailed information can be found in the
GitLab repository.

2.7 Download

The code is available at the public GitLab repository of the PIACERE project:

https://git.code.tecnalia.com/piacere/public/the-platform/iop/optimizer

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/iop/optimizer

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 74 of 94

www.piacere-project.eu

APPENDIX B: input DOML file for UC3

In this Appendix B, we provide the input DOML file for the preliminary version of the Ericsson
use case. The main reason of placing the DOML files here is because of their length:

doml uc3_openstack
application app {
 software_component iwg {
 provides { net_info }
 }
 software_component osint {
 provides { osint_info }
 consumes { net_info, get_twitter, ewcf_rest_interface }
 }
 software_component ewcf {
 provides { ewcf_rest_interface }
 consumes { get_firebase }
 }
 saas external_twitter {
 provides { get_twitter @ "https://twitter_api/get" }
 }
 saas external_firebase {
 provides { get_firebase @ "https://firebase_api/get" }
 }
}
infrastructure infra {
 vm igw_vm {
 os "CentOS-7-2111"
 size "small-centos"

 iface igw_vm_oam {
 belongs_to subnet_oam_igw
 }

 iface igw_vm_net1 {
 belongs_to subnet_net1_igw
 }

 iface igw_vm_net2 {
 belongs_to subnet_net2_igw
 }

 credentials ssh_key
 }
 vm osint_vm {
 os "CentOS-7-2111"
 size "small-centos"

 iface osint_vm_oam {
 belongs_to subnet_oam_osint
 }

 iface osint_vm_net1 {
 belongs_to subnet_net1_osint
 }

 iface osint_vm_net3 {
 belongs_to subnet_net3_osint
 }

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 75 of 94

www.piacere-project.eu

 credentials ssh_key
 }
 vm ewcf_vm {
 os "CentOS-7-2111"
 size "small-centos"

 iface ewcf_vm_oam {
 belongs_to subnet_oam_ewcf
 }

 iface ewcf_vm_net1 {
 belongs_to subnet_net1_ewcf
 }

 iface ewcf_vm_net3 {
 belongs_to subnet_net3_ewcf
 }

 credentials ssh_key
 }

 container cont_tia {

 host osint_vm {

 container_port 80
 vm_port 8080
 iface osint_vm_oam

 }
 }

 container cont_tis {
 host osint_vm {
 container_port 80
 vm_port 8080
 iface osint_vm_oam
 }
 }

 container cont_twr {
 host osint_vm {
 container_port 81
 vm_port 8081
 iface osint_vm_oam
 }
 }

 container c1 {
 host igw_vm {
 container_port 82
 vm_port 8082
 iface igw_vm_oam
 }
 }

 container c2 {
 host igw_vm {

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 76 of 94

www.piacere-project.eu

 container_port 83
 vm_port 8083
 iface igw_vm_oam
 }
 }

 container c3 {
 host igw_vm {
 container_port 84
 vm_port 8084
 iface igw_vm_oam
 }
 }

 container cont_mongodb {
 host ewcf_vm {
 container_port 85
 vm_port 8085
 iface ewcf_vm_oam
 }
 }

 container cont_ewcf {
 host ewcf_vm {
 container_port 86
 vm_port 8086
 iface ewcf_vm_oam
 }
 }

 net oam {
 protocol "TCP/IP"
 cidr "16.0.0.0/24"

 subnet subnet_oam_igw {
 protocol "TCP/IP"
 cidr "16.0.1.0/26"
 }

 subnet subnet_oam_osint {
 protocol "TCP/IP"
 cidr "16.0.1.64/26"
 }

 subnet subnet_oam_ewcf {
 protocol "TCP/IP"
 cidr "16.0.1.128/26"
 }
 }

 net net1 {
 protocol "TCP/IP"
 cidr "16.0.1.0/24"

 // Subnets definition
 subnet subnet_net1_igw {
 connections {
 subnet_net1_osint
 }

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 77 of 94

www.piacere-project.eu

 protocol "TCP/IP"
 cidr "16.0.1.0/25"
 }

 subnet subnet_net1_osint {
 connections {
 subnet_net1_igw
 subnet_net1_ewcf
 }
 protocol "TCP/IP"
 cidr "16.0.1.64/26"
 }

 subnet subnet_net1_ewcf {
 connections {
 subnet_net1_osint
 }
 protocol "TCP/IP"
 cidr "16.0.1.128/26"
 }
 }
 net net2 {
 protocol "TCP/IP"
 cidr "16.0.2.0/24"

 subnet subnet_net2_igw {
 protocol "TCP/IP"
 cidr "16.0.2.0/25"
 }

 }

 net net3 {
 protocol "TCP/IP"
 cidr "16.0.3.0/24"

 subnet subnet_net3_osint {
 protocol "TCP/IP"
 cidr "16.0.3.0/25"
 }

 subnet subnet_net3_ewcf {
 protocol "TCP/IP"
 cidr "16.0.3.128/25"
 }

 }

 // credentials region
 key_pair ssh_key {
 user "ubuntu"
 keyfile "/home/ubuntu/.ssh/openstack.key"
 algorithm "RSA"
 bits 4096
 }
 security_group sg {
 egress icmp {
 protocol "ICMP"
 from_port -1

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 78 of 94

www.piacere-project.eu

 to_port -1
 cidr ["0.0.0.0/0"]
 }
 ingress http {
 protocol "TCP"
 from_port 80
 to_port 80
 cidr ["0.0.0.0/0"]
 }
 ingress https {
 protocol "TCP"
 from_port 443
 to_port 443
 cidr ["0.0.0.0/0"]
 }
 ingress ssh {
 protocol "TCP"
 from_port 22
 to_port 22
 cidr ["0.0.0.0/0"]
 }

 ifaces igw_vm_oam, igw_vm_net1, igw_vm_net2, osint_vm_oam, osint_vm_net1, osint_vm_net3,
ewcf_vm_oam, ewcf_vm_net1, ewcf_vm_net3
 }
}

deployment config1 {
 osint -> osint_vm,
 iwg -> igw_vm,
 ewcf -> ewcf_vm
}

active deployment config1

concretizations {
 concrete_infrastructure con_infra {

 provider openstack {

 vm concrete_osint_vm {
 properties {
 // Actually, this is not recognized by ICG, so it's useless
 vm_name = "osint";
 // vm_flavor property moved to "size" attribute
 vm_key_name = "ubuntu";
 }
 maps osint_vm
 }

 vm concrete_igw_vm {
 properties {
 vm_name = "igw";
 vm_key_name = "ubuntu";
 }
 maps igw_vm
 }

 vm concrete_ewcf_vm {

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 79 of 94

www.piacere-project.eu

 properties {
 vm_name = "ewcf";
 vm_key_name = "ubuntu";
 }
 maps ewcf_vm
 }

 // Concrete Network region
 net concrete_oam {
 properties {
 name = "uc3_oam";
 }
 maps oam
 }

 net concrete_net1 {
 properties {
 name = "uc3_net1";
 }
 maps net1
 }

 net concrete_net2 {
 properties {
 name = "uc3_net2";
 }
 maps net2
 }

 net concrete_net3 {
 properties {
 name = "uc3_net3";
 }
 maps net3
 }

 }
 }
 active con_infra
}
optimization opt {
 objectives {
 "cost" => min
 "performance" => max
 "availability" => max
 }
 nonfunctional_requirements {
 req1 "cost <= 300" max 300.0 => "cost";
 req2 "performance >= 7%" min 7.0 => "performance";
 req3 "elements" => "VM, Storage";
 }
}

Using this input DOML, the solution provided by the IOP is the following one:
doml uc3_openstack

application app {

 software_component iwg {

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 80 of 94

www.piacere-project.eu

 provides { net_info }
 }
 software_component osint {
 provides { osint_info }
 consumes { net_info, get_twitter, ewcf_rest_interface }
 }
 software_component ewcf {
 provides { ewcf_rest_interface }
 consumes { get_firebase }
 }
 saas external_twitter {
 provides { get_twitter @ "https://twitter_api/get" }
 }
 saas external_firebase {
 provides { get_firebase @ "https://firebase_api/get" }
 }

}

infrastructure infra {
 vm igw_vm {
 os "CentOS-7-2111"
 size "small-centos"

 iface igw_vm_oam {
 belongs_to subnet_oam_igw
 }

 iface igw_vm_net1 {
 belongs_to subnet_net1_igw
 }

 iface igw_vm_net2 {
 belongs_to subnet_net2_igw
 }

 credentials ssh_key
 }

 vm osint_vm {
 os "CentOS-7-2111"
 size "small-centos"

 iface osint_vm_oam {
 belongs_to subnet_oam_osint
 }

 iface osint_vm_net1 {
 belongs_to subnet_net1_osint
 }

 iface osint_vm_net3 {
 belongs_to subnet_net3_osint
 }

 credentials ssh_key
 }

 vm ewcf_vm {

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 81 of 94

www.piacere-project.eu

 os "CentOS-7-2111"
 size "small-centos"

 iface ewcf_vm_oam {
 belongs_to subnet_oam_ewcf
 }

 iface ewcf_vm_net1 {
 belongs_to subnet_net1_ewcf
 }

 iface ewcf_vm_net3 {
 belongs_to subnet_net3_ewcf
 }

 credentials ssh_key
 }

 container cont_tia {

 host osint_vm {

 container_port 80
 vm_port 8080
 iface osint_vm_oam

 }
 }

 container cont_tis {
 host osint_vm {
 container_port 80
 vm_port 8080
 iface osint_vm_oam
 }
 }

 container cont_twr {
 host osint_vm {
 container_port 81
 vm_port 8081
 iface osint_vm_oam
 }
 }

 container c1 {
 host igw_vm {
 container_port 82
 vm_port 8082
 iface igw_vm_oam
 }
 }

 container c2 {
 host igw_vm {
 container_port 83
 vm_port 8083
 iface igw_vm_oam
 }

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 82 of 94

www.piacere-project.eu

 }

 container c3 {
 host igw_vm {
 container_port 84
 vm_port 8084
 iface igw_vm_oam
 }
 }

 container cont_mongodb {
 host ewcf_vm {
 container_port 85
 vm_port 8085
 iface ewcf_vm_oam
 }
 }

 container cont_ewcf {
 host ewcf_vm {
 container_port 86
 vm_port 8086
 iface ewcf_vm_oam
 }
 }
 net oam {
 protocol "TCP/IP"
 cidr "16.0.0.0/24"

 subnet subnet_oam_igw {
 protocol "TCP/IP"
 cidr "16.0.1.0/26"
 }

 subnet subnet_oam_osint {
 protocol "TCP/IP"
 cidr "16.0.1.64/26"
 }

 subnet subnet_oam_ewcf {
 protocol "TCP/IP"
 cidr "16.0.1.128/26"
 }
 }

 net net1 {
 protocol "TCP/IP"
 cidr "16.0.1.0/24"

 // Subnets definition
 subnet subnet_net1_igw {
 connections {
 subnet_net1_osint
 }
 protocol "TCP/IP"
 cidr "16.0.1.0/25"
 }

 subnet subnet_net1_osint {

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 83 of 94

www.piacere-project.eu

 connections {
 subnet_net1_igw
 subnet_net1_ewcf
 }
 protocol "TCP/IP"
 cidr "16.0.1.64/26"
 }

 subnet subnet_net1_ewcf {
 connections {
 subnet_net1_osint
 }
 protocol "TCP/IP"
 cidr "16.0.1.128/26"
 }
 }

 net net2 {
 protocol "TCP/IP"
 cidr "16.0.2.0/24"

 subnet subnet_net2_igw {
 protocol "TCP/IP"
 cidr "16.0.2.0/25"
 }

 }

 net net3 {
 protocol "TCP/IP"
 cidr "16.0.3.0/24"

 subnet subnet_net3_osint {
 protocol "TCP/IP"
 cidr "16.0.3.0/25"
 }

 subnet subnet_net3_ewcf {
 protocol "TCP/IP"
 cidr "16.0.3.128/25"
 }

 }

 key_pair ssh_key {
 user "ubuntu"
 keyfile "/home/ubuntu/.ssh/openstack.key"
 algorithm "RSA"
 bits 4096
 }
 security_group sg {
 egress icmp {
 protocol "ICMP"
 from_port -1
 to_port -1
 cidr ["0.0.0.0/0"]
 }
 ingress http {
 protocol "TCP"

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 84 of 94

www.piacere-project.eu

 from_port 80
 to_port 80
 cidr ["0.0.0.0/0"]
 }
 ingress https {
 protocol "TCP"
 from_port 443
 to_port 443
 cidr ["0.0.0.0/0"]
 }
 ingress ssh {
 protocol "TCP"
 from_port 22
 to_port 22
 cidr ["0.0.0.0/0"]
 }

 ifaces igw_vm_oam, igw_vm_net1, igw_vm_net2, osint_vm_oam, osint_vm_net1, osint_vm_net3,
ewcf_vm_oam, ewcf_vm_net1, ewcf_vm_net3
 }
}

deployment config1 {
 osint -> osint_vm,
 iwg -> igw_vm,
 ewcf -> ewcf_vm
}

active deployment config1

concretizations {
 concrete_infrastructure con_infra {

 provider openstack {

 // Concrete computing nodes region

 vm concrete_osint_vm {
 properties {
 vm_name = "osint";
 vm_key_name = "ubuntu";
 }
 maps osint_vm
 }

 vm concrete_igw_vm {
 properties {
 vm_name = "igw";
 vm_key_name = "ubuntu";
 }
 maps igw_vm
 }

 vm concrete_ewcf_vm {
 properties {
 vm_name = "ewcf";
 vm_key_name = "ubuntu";
 }
 maps ewcf_vm

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 85 of 94

www.piacere-project.eu

 }
 net concrete_oam {
 properties {
 name = "uc3_oam";
 }
 maps oam
 }

 net concrete_net1 {
 properties {
 name = "uc3_net1";
 }
 maps net1
 }

 net concrete_net2 {
 properties {
 name = "uc3_net2";
 }
 maps net2
 }

 net concrete_net3 {
 properties {
 name = "uc3_net3";
 }
 maps net3
 }

 }
 }

 concrete_infrastructure opt_infra1{
 provider multi {
 storage Storage1_USA {
 properties {
 st_flavor = "Storage1_USA";
 st_name = "Storage1_USA";
 st_Availability = 99.5;
 st_Zone = "United_States";
 st_Request_Response_time_Storage_Performance = 5;
 st_Cost_Currency = 6;
 st_Region = "North_America";
 st_Storage_Subtype = "Block";
 st_Storage_Capacity = 40;
 st_Storage_Type = "General";
 st_Storage_Data_Redundancy = "Locally_redundant_storage__LRS";
 st_provider_OU = "Arsys";
 }
 }
 vm t2_nano{
 properties {
 vm_flavor = "t2_nano";
 vm_name = "t2_nano";
 vm_Availability = 98;
 vm_Response_time_Virtual_Machine_Performance = 3;
 vm_Memory = 0.5;
 vm_Zone = "Ireland";
 vm_Frequency_per_Core = 1500;

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 86 of 94

www.piacere-project.eu

 vm_Virtual_CPU_Cores = 1;
 vm_provider_OU = "AWS";
 vm_public_IP_type = "IPv4";
 vm_Cost_Currency = 4.53;
 vm_Instance_Storage = 40;
 vm_Optimized_for = "General_purpose";
 vm_Region = "Europe";
 }
 maps igw_vm
 }
 net opt_network{
 maps oam
 }

 }
 }

 concrete_infrastructure opt_infra2{
 provider multi {
 storage Storage1_Spain {
 properties {
 st_flavor = "Storage1_Spain";
 st_name = "Storage1_Spain";
 st_Availability = 99.5;
 st_Zone = "Spain";
 st_Request_Response_time_Storage_Performance = 5;
 st_Cost_Currency = 6;
 st_Region = "Europe";
 st_Storage_Subtype = "Block";
 st_Storage_Capacity = 40;
 st_Storage_Type = "General";
 st_provider_OU = "Arsys";
 st_Storage_Data_Redundancy = "Zoneredundant_storage__ZRS";
 }
 }
 vm t2_nano{
 properties {
 vm_flavor = "t2_nano";
 vm_name = "t2_nano";
 vm_Availability = 98;
 vm_Response_time_Virtual_Machine_Performance = 3;
 vm_Memory = 0.5;
 vm_Zone = "Ireland";
 vm_Frequency_per_Core = 1500;
 vm_Virtual_CPU_Cores = 1;
 vm_provider_OU = "AWS";
 vm_public_IP_type = "IPv4";
 vm_Cost_Currency = 4.53;
 vm_Instance_Storage = 40;
 vm_Optimized_for = "General_purpose";
 vm_Region = "Europe";
 }
 maps igw_vm
 }
 net opt_network{
 maps oam
 }

 }

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 87 of 94

www.piacere-project.eu

 }

 concrete_infrastructure opt_infra3{
 provider multi {
 storage Storage1_USA {
 properties {
 st_flavor = "Storage1_USA";
 st_name = "Storage1_USA";
 st_Availability = 99.5;
 st_Zone = "United_States";
 st_Request_Response_time_Storage_Performance = 5;
 st_Cost_Currency = 6;
 st_Region = "North_America";
 st_Storage_Subtype = "Block";
 st_Storage_Capacity = 40;
 st_Storage_Type = "General";
 st_Storage_Data_Redundancy = "Locally_redundant_storage__LRS";
 st_provider_OU = "Arsys";
 }
 }
 vm m1_tiny{
 properties {
 vm_flavor = "m1_tiny";
 vm_name = "m1_tiny";
 vm_Availability = 98;
 vm_Response_time_Virtual_Machine_Performance = 10;
 vm_Zone = "Spain";
 vm_Memory = 512;
 vm_Frequency_per_Core = 1500;
 vm_Virtual_CPU_Cores = 1;
 vm_provider_OU = "OpenStack";
 vm_public_IP_type = "IPv4";
 vm_Cost_Currency = 10;
 vm_Region = "Europe";
 vm_Instance_Storage = 1;
 }
 maps igw_vm
 }
 net opt_network{
 maps oam
 }

 }
 }

 concrete_infrastructure opt_infra4{
 provider multi {
 storage Storage1_Spain {
 properties {
 st_flavor = "Storage1_Spain";
 st_name = "Storage1_Spain";
 st_Availability = 99.5;
 st_Zone = "Spain";
 st_Request_Response_time_Storage_Performance = 5;
 st_Cost_Currency = 6;
 st_Region = "Europe";
 st_Storage_Subtype = "Block";
 st_Storage_Capacity = 40;
 st_Storage_Type = "General";

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 88 of 94

www.piacere-project.eu

 st_provider_OU = "Arsys";
 st_Storage_Data_Redundancy = "Zoneredundant_storage__ZRS";
 }
 }
 vm m1_tiny{
 properties {
 vm_flavor = "m1_tiny";
 vm_name = "m1_tiny";
 vm_Availability = 98;
 vm_Response_time_Virtual_Machine_Performance = 10;
 vm_Zone = "Spain";
 vm_Memory = 512;
 vm_Frequency_per_Core = 1500;
 vm_Virtual_CPU_Cores = 1;
 vm_provider_OU = "OpenStack";
 vm_public_IP_type = "IPv4";
 vm_Cost_Currency = 10;
 vm_Region = "Europe";
 vm_Instance_Storage = 1;
 }
 maps igw_vm
 }
 net opt_network{
 maps oam
 }

 }
 }

 concrete_infrastructure opt_infra5{
 provider multi {
 storage Storage1_Spain {
 properties {
 st_flavor = "Storage1_Spain";
 st_name = "Storage1_Spain";
 st_Availability = 99.5;
 st_Zone = "Spain";
 st_Request_Response_time_Storage_Performance = 5;
 st_Cost_Currency = 6;
 st_Region = "Europe";
 st_Storage_Subtype = "Block";
 st_Storage_Capacity = 40;
 st_Storage_Type = "General";
 st_provider_OU = "Arsys";
 st_Storage_Data_Redundancy = "Zoneredundant_storage__ZRS";
 }
 }
 vm C1_USA{
 properties {
 vm_flavor = "C1_USA";
 vm_name = "C1_USA";
 vm_Availability = 99.5;
 vm_Response_time_Virtual_Machine_Performance = 5;
 vm_Zone = "United_States";
 vm_Memory = 1;
 vm_Frequency_per_Core = 1500;
 vm_Virtual_CPU_Cores = 1;
 vm_provider_OU = "Arsys";
 vm_Underpinning_Technology = "VmWare";

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 89 of 94

www.piacere-project.eu

 vm_Cost_Currency = 15;
 vm_Region = "North_America";
 vm_Instance_Storage = 40;
 }
 maps igw_vm
 }
 net opt_network{
 maps oam
 }

 }
 }
 active opt_infra1
}
optimization opt {
 objectives {
 "cost" => min
 "performance" => max
 "availability" => max
 }
 nonfunctional_requirements {
 req1 "cost <= 300" max 300.0 => "cost";
 req2 "performance >= 7%" min 7.0 => "performance";
 req3 "elements" => "VM, Storage";
 }
 solution sol1 {
 objectives {
 cost 10.530000000000001 euro
 performance 8.0 metric
 availability 98.75 %
 }
 decisions ["[Storage1_USA, t2.nano]"]
 }
 solution sol2 {
 objectives {
 cost 10.530000000000001 euro
 performance 8.0 metric
 availability 98.75 %
 }
 decisions ["[Storage1_Spain, t2.nano]"]
 }
 solution sol3 {
 objectives {
 cost 16.0 euro
 performance 15.0 metric
 availability 98.75 %
 }
 decisions ["[Storage1_USA, m1.tiny]"]
 }
 solution sol4 {
 objectives {
 cost 16.0 euro
 performance 15.0 metric
 availability 98.75 %
 }
 decisions ["[Storage1_Spain, m1.tiny]"]
 }
 solution sol5 {
 objectives {

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 90 of 94

www.piacere-project.eu

 cost 21.0 euro
 performance 10.0 metric
 availability 99.5 %
 }
 decisions ["[Storage1_Spain, C1_USA]"]
 }

}

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 91 of 94

www.piacere-project.eu

APPENDIX C. About Gaia-X

In its 2022 architecture document [3], the concepts in the scope of Gaia-X and their relations
are described, that is, the Gaia-X conceptual model, shown in section 2.1.1.2. The Gaia-X core
concepts are represented in classes. The upper part of the model shows different actors of
Gaia-X (highlighted in blue), while the lower part shows elements of commercial trade and the
relationship to actors outside Gaia-X.

Figure 63: Gaia-X Conceptual model [3]

A Participant can take on one or more of the following roles: Provider, Consumer, Federator.
Provider and Consumer present the core roles that are in a business-to-business relationship
while the Federator enables their interaction.

• A Provider is a Participant who provides Resources in the Gaia-X Ecosystem. The
Provider defines the Service Offering including terms and conditions as well as
technical Policies. Furthermore, it provides the Service Instance that includes a Self-
Description and associated Policies.

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 92 of 94

www.piacere-project.eu

• A Consumer is a Participant who searches Service Offerings and consumes Service
Instances in the Gaia-X Ecosystem to enable digital offerings for End-Users.

• Federators are in charge of the Federation Services and the Federation which are
independent of each other. Federators are Gaia-X Participants. There can be one or
more Federators per type of Federation Service.

• A Federation refers to a loose set of interacting actors that directly or indirectly
consume, produce, or provide related Resources.

Resources and Assets describe the goods and objects of a Gaia-X Ecosystem. Resources and
Assets compose the Service Offerings.

An Asset can be a Data Asset, a Software Asset, a Node or an Interconnection Asset. A set of
Policies described in a Self-Description is bound to each Asset. The different categories of
Assets are shown in the following figure:

Figure 64: Assets categories [3]

• A Data Asset is an Asset that consists of data in any form and necessary information
for data sharing.

• A Node is an Asset and represents a computational or physical entity that hosts,
manipulates, or interacts with other computational or physical entities.

• A Software Asset is a form of Assets that consist of non-physical functions.

• An Interconnection as an Asset presents the connection between two or more Nodes.
These Nodes are usually deployed in different infrastructure domains and owned by
different stakeholders, such as Consumers and/or Providers. The Interconnection
between the Nodes can be seen as a path which exhibits special characteristics, such
as latency, bandwidth and security guarantees, that go beyond the characteristics of a
path over the public Internet.

The difference between Resources and Assets lies in that Resources represent those elements
necessary to supply Assets. In other words, they are internal Service Instances not available for
order. For example, the running instance that provides a data set is a Resource.

Federation Services are services required for the operational implementation of a Gaia-X Data
Ecosystem. They comprise four groups of services that are necessary to enable Federation of
Resources, Participants and interactions between Ecosystems. The four service groups are
Identity and Trust, Federated Catalogue, Sovereign Data Exchange and Compliance. The
Federation Services provide the foundation for Service Offerings.

A Service Offering is defined as a set of Resources that a Provider aggregates and publishes as a
single entry in a Catalogue. Service Offerings may themselves be aggregated realizing service

DRAFT

http://www.medina-project.eu/
https://gitlab.com/gaia-x/gaia-x-technical-committee/gaia-x-architecture-document/-/merge_requests/300

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 93 of 94

www.piacere-project.eu

composition. The instantiation of a Service Offering is the deliverable of a Provider to a
Consumer.

Federated Catalogue

The Federated Catalogue [3] constitutes an indexed repository of Gaia-X Self-Descriptions to
enable the discovery and selection of Providers and their Service Offerings. The Self-
Descriptions are the properties and Claims of Participants and Resources, representing key
elements of transparency and trust in Gaia-X.

Self-Descriptions intended for public usage can be published in a Catalogue where they can be
found by potential Consumers. The goal of Catalogues in Gaia-X is to enable Consumers to find
best-matching offerings and to monitor for relevant changes of the offerings. The Providers
decide in a self-sovereign manner which information they want to make public in a Catalogue
and which information they only want to share privately.

A Catalogue stores Self-Descriptions both as standalone and as aggregated in a graph data
structure. The Self-Description Storage contains the raw published Self-Description files (in the
JSON-LD format). The individual Self-Descriptions can reference each other. The Self-
Description Graph is the basis for advanced query mechanisms that consider the references
between and among Self-Descriptions [3].

Ecosystem-specific Catalogues (e.g., for the automotive domain) and even company-internal
Catalogues (with private Self-Descriptions to be used only internally) can be linked to the
system of federated Catalogues. The Catalogue federation is used to exchange relevant Self-
Descriptions and updates thereof. It is not used to execute queries in a distributed fashion [3].

The system of Federated Catalogues consists of a top-level Catalogue operated by Gaia-X and
provides the means to link to Ecosystem-specific Catalogues (e.g., for the automotive domain)
and even company-internal Catalogues with private Self-Descriptions to be used only
internally. Self-Descriptions in a Catalogue are either loaded directly into a Catalogue or
exchanged from another Catalogue through inter-Catalogue synchronization functions [3].

Since Self-Descriptions are protected by cryptographic signatures, they are immutable and
cannot be changed once published. This implies that after any changes to a Self-Description,
the Participant as the Self-Description issuer has to sign the Self-Description again and release
it as a new version.

The possible states for the Self-Description lifecycle are four. All states except “Active” are
terminal, which means that no further state transitions are allowed. The states are [3] [21]:

• Active: is the default state.

• End-of-Life: after a timeout date, e.g., the expiry of a cryptographic signature.

• Deprecated: by a newer Self-Description.

• Revoked: by the original issuer or a trusted party (e.g., because it contained wrong or
fraudulent information).

The Self-Description Graph contains the information imported from the Self-Descriptions that
are known to a Catalogue and in an "Active" state [21]. The Self-Description Graph allows for
complex queries across Self-Descriptions. To present search results objectively and without
discrimination, compliant Catalogues use a query engine with no internal ranking of results.
Users can define filters and sort-criteria in their queries. But if some results have no unique
ordering according to the defined sort-criteria, they are randomized. Self-Descriptions can be

DRAFT

http://www.medina-project.eu/

D5.9 – IOP prototype – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 94 of 94

www.piacere-project.eu

communicated to the Catalogue by third parties, as the trust verification is independent of the
distribution mechanism.

Self-Descriptions can be marked by the issuer as "private" to prevent them from being copied
to a public Catalogue by a third party that received the Self-Description over a private channel
[3]. The Catalogues have no built-in user interface, instead provide an API that can be used by
an external user interface or technical clients [21]. The interfaces of the Gaia-X Federation
Services use REST and the OpenAPI specification [22] to describe them.

A Visitor is an anonymous user accessing a Catalogue without a known account. Every Non-
Visitor user interacts with a Catalogue REST API in the context of a session. Another option to
interact with a Catalogue is to use a GUI frontend (e.g., a Gaia-X Portal or a custom GUI
implementation) that uses a Catalogue REST API in the background. The interaction between a
Catalogue and its GUI frontend is based on an authenticated session for the individual user of
the GUI frontend.

Gaia-X Self-Descriptions express characteristics of Resources, Service Offerings and
Participants that are linked to their respective Identifiers. Providers are responsible for the
creation of Self-Descriptions of their Resources. In addition to self-declared Claims made by
Participants, a Self-Description may comprise Credentials issued and signed by trusted parties.
Self-Descriptions can be used for [3]:

• Discovery and composition of Service Offerings in a Catalogue

• Tool-assisted evaluation, integration and orchestration of Service Instances/Resources

• Enforcement, continuous validation and trust monitoring

• Negotiation of contractual terms concerning Resources of a Service Offering and
Participants

Gaia-X Self-Descriptions are characterized by the following properties [3]:

• Machine-readable and machine-interpretable

• Technology-agnostic

• Adhering to a generalized schema with expressive semantics and validation rules

• Interoperable, following standards in terms of format, structure, and included
expressions (semantics)

• Flexible, extensible and future-proof in that new properties can be easily added

• Navigable and referenceable from anywhere in a decentralized fashion

• Accompanied by statements of proof (e.g., certificates or signatures), making them
cryptographically trustworthy

The exchange format for Self-Descriptions is JSON-LD. JSON-LD uses JSON encoding to
represent subject-predicate-object triples according to the W3C Resource Description
Framework (RDF). The relations between Self-Descriptions form a graph with typed edges,
which is called the Self-Description Graph. The Catalogues implement a query algorithm on top
of the Self-Description Graph [3].

To foster interoperability, Self-Description schemas with optional and mandatory properties
and relations are defined. A Self-Description has to state which schemas are used in its
metadata. A Self-Description schema corresponds to a class in RDF. The Self-Description
schemas form an extensible class hierarchy with inheritance [3].

DRAFT

http://www.medina-project.eu/

