

Deliverable D5.3

IaC Execution Manager Prototype – v3

Editor(s): Josu Díaz de Arcaya

Responsible Partner: Tecnalia Research & Innovation

Status-Version: Final-V1.0

Date: 31.05.2023

Distribution level (CO, PU): PU

DRAFT

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 45

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: IaC Execution Manager Prototype

Due Date of Delivery to the EC 31.05.2023

Workpackage responsible for the
Deliverable:

WP5 – Package, release and configure IaC

Editor(s): Josu Díaz de Arcaya (Tecnalia Research & Innovation)

Contributor(s): Josu Díaz de Arcaya (Tecnalia Research & Innovation)

Reviewer(s): Giuseppe Celozzi (Ericsson)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5, WP6, WP7

Abstract: The main outcomes of the PIACERE IaC Execution
Manager Prototype are presented in this deliverable.
This deliverable corresponds to Key Result 10.

Keyword List: Infrastructure as Code, IaC Execution Manager

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

 DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 45

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 17.05.2023 First draft version Tecnalia

v0.2 24.05.2023 Review Ericsson

v1.0 29.05.2023 Ready for submission Tecnalia

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 45

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction .. 9

1.1 About this deliverable ... 9

1.2 Document structure .. 9

2 KR 10- IEM overview ... 10

2.1 Changes in v3 .. 10

2.1.1 Run time features .. 10

2.1.2 ORM for database management ... 12

2.1.3 Containerization support .. 14

2.1.4 Support for base64 encoded bundle ... 15

2.1.5 Increased feedback and logging capabilities ... 17

2.1.6 Testing and coverage .. 18

2.1.7 Support for further Orchestration engines ... 22

2.2 Functional description and requirements coverage ... 23

2.3 Main innovations ... 25

3 Overview of preliminary experiments... 26

3.1 Experiments on AWS ... 26

3.2 Experiments with Docker .. 26

3.3 Experiments on OpenStack ... 27

4 Lessons learnt and outlook to the future .. 29

5 Conclusions ... 30

6 References ... 31

APPENDIX: Implementation, delivery, and usage ... 32

1 Implementation ... 32

1.1 Fitting into overall PIACERE Architecture .. 32

1.2 Technical description .. 33

1.2.1 Prototype architecture .. 33

1.2.2 Components description ... 35

1.2.3 Technical specifications ... 35

2 Delivery and usage .. 37

2.1 Package information ... 37

2.2 Installation instructions ... 37

2.3 User Manual .. 41

2.4 Licensing information .. 45

2.5 Download .. 45

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 45

www.piacere-project.eu

 List of tables

TABLE 1: USER REQUIREMENTS ADDRESSED BY THE IEM .. 24

List of figures

FIGURE 1 - DEPLOY A PROJECT DEFINED WITH CUCUMBER... 11
FIGURE 2 - QUERY THE STATUS OF AN EXISTING PROJECT DEFINED IN CUCUMBER. 11
FIGURE 3 - UNDEPLOY A PROJECT DEFINED IN CUCUMBER. .. 11
FIGURE 4 - QUERY THE STATUS OF AN UNDEPLOYED PROJECT DEFINED IN CUCUMBER. 11
FIGURE 5 - REDEPLOY A PROJECT DEFINED IN CUCUMBER. ... 12
FIGURE 6 - TABLE DEFINITION UTILIZING SQLALCHEMY .. 13
FIGURE 7 - PERSISTENCE ORM-POWERED CLASS UTILIZED BY THE IEM ... 14
FIGURE 8 - PIACERE PROJECT INCLUDING A DOCKER STAGE. ... 15
FIGURE 9 - DOCKER COMPOSE FILE UTILIZED IN THE DEPLOYMENT. ... 15
FIGURE 10 - DEPLOYMENT ENDPOINT ADAPTED TO A BASE64 ENCODING. ... 16
FIGURE 11 - SNIPPET FOR DECODING THE BASE64 AND EXTRACTING THE DEPLOYMENT PROJECT. 17
FIGURE 12 - PRINT THE STANDARD OUTPUT OF A COMMAND AND RETURN IT TO THE USER. 17
FIGURE 13 – THE VARIOUS LOGGERS UTILIZED BY THE IEM. .. 18
FIGURE 14 - THE DEFAULT FORMATTER TO BE UTILIZED BY THE IEM LOGGERS. ... 18
FIGURE 15 - THE WHOLE LIST OF UNIT TESTS IMPLEMENTED IN THE IEM. .. 19
FIGURE 16 - AN EXCERPT OF A UNIT TEST UTILIZING FASTAPI TEST CLIENT. ... 19
FIGURE 17 - AN EXCERPT OF A UNIT TEST MOCKING THE INTERACTION WITH THE CLOUD PROVIDER. 20
FIGURE 18 - THE VARIOUS INTEGRATION TESTS DEVELOPED TO VALIDATE THE FUNCTIONALITY OF THE IEM. 21
FIGURE 19 - AN EXCERPT SHOWING AN INTEGRATION TEST WITH AWS. ... 21
FIGURE 20 - THE COVERAGE SUMMARY OF THE IEM.. 22
FIGURE 21 - AWS CREDENTIAL HANDLING ... 22
FIGURE 22 - AZURE CREDENTIAL HANDLING. .. 23
FIGURE 23 - OPENSTACK CREDENTIAL HANDLING. ... 23
FIGURE 24 - VMWARE VSPHERE CREDENTIAL HANDLING. .. 23
FIGURE 25 - RUNNING THE EXPERIMENT ON AWS. ... 26
FIGURE 26 - CONFIGURATION FILE FOR AWS. .. 26
FIGURE 27 - VIRTUAL MACHINE DEPLOYMENT ON AWS. ... 26
FIGURE 28 - DOCKER COMPOSE FILE FOR A SINGLE WEB SERVER. .. 27
FIGURE 29 - FRONTPAGE FOR THE NGINX WEB SERVER PROVISIONED. ... 27
FIGURE 30 - CONFIGURATION FILE FOR OPENSTACK. ... 28
FIGURE 31 - VALIDATE THAT THE VIRTUAL MACHINES HAVE BEEN PROVISIONED ON OPENSTACK. 28
FIGURE 32 - PIACERE RUNTIME WORKFLOW .. 32
FIGURE 34 - IEM PROTOTYPE ARCHITECTURE. .. 33
FIGURE 35 - IEM INITIATE DEPLOYMENT SEQUENCE DIAGRAM ... 34
FIGURE 36 - IEM REQUEST THE CURRENT STATUS OF A DEPLOYMENT .. 34
FIGURE 37 - IEM INITIATE UNDEPLOYMENT SEQUENCE DIAGRAM ... 35
FIGURE 38 - ROOT FOLDER FOR THE PIACERE IEM COMPONENT. ... 37
FIGURE 39 - CREATE THE VIRTUAL ENVIRONMENT. .. 38
FIGURE 40 - ACTIVATE THE VIRTUAL ENVIRONMENT. ... 38
FIGURE 41 - EXCERPT SHOWING THE CONTENT OF THE REQUIREMENTS.TXT FILE FOR DEPENDENCY MANAGEMENT.

 ... 39
FIGURE 42 - EXECUTE ALL THE TESTS OF THE IEM WITH THE NOSE TOOL. .. 40
FIGURE 43 - EXCERPT SHOWING THE DOCKERFILE UTILIZED FOR GENERTING THE CONTAINERIZED IMAGE OF THE

IEM. ... 41
FIGURE 44 - EXCERPT SHOWING THE BUILDING PROCESS FOR THE IEM COMPONENT. 41

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 45

www.piacere-project.eu

FIGURE 45 - OPENAPI SPECIFICATION FOR THE INTERACTION WITH THE IEM COMPONENT. 42
FIGURE 46 - CREDENTIALS TO BE USED BY THE IEM. .. 43
FIGURE 47 - RUN THE IEM IMAGE. ... 43
FIGURE 48 - EXECUTE THE IEM WITH THE UVICORN SERVER. ... 44
FIGURE 49 – EXECUTE THE IEM DIRECTLY. ... 44
FIGURE 50 - VARIOUS DOCUMENTATION ENDPOINTS AVAILABLE IN THE IEM. .. 44

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 45

www.piacere-project.eu

Terms and abbreviations

CSP Cloud Service Provider

DevOps Development and Operation

DoA Description of Action

EC European Commission

GA Grant Agreement to the project

IaC Infrastructure as Code

IEP IaC execution platform

IEM IaC Execution Manager

IOP IaC Optimization Platform

KPI Key Performance Indicator

SW Software

KR Key Result

REST Representational State Transfer

API Application Programming Interface

DevSecOps Development, Security and Operations

IDE Integrated Development Environment

ORM Object Relational Mapper

TDD Test Driven Development

RDS Relational Database System

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 45

www.piacere-project.eu

Executive Summary

This manuscript documents the final iteration of the IEM (IaC Execution Manager). We start by
providing an overview of the associated Key Result (KR10) and outline the various changes that
have taken place during the third year of the project explained in detail, and we move on to
correlate each of the changes with the associated requirements. We finalize Section 2 stating
the main innovations of the IEM tool. Section 3 provides an overview of the various experiments
utilized to validate the appropriateness of the IEM tool within the PIACERE ecosystem. Section
4 provides an in-depth description of the lesson learnt during the project and we finalize the
document with the Conclusions in Section 5. The appendix revolves around the implementation
and usage of the IEM.

At its current stage, the IEM can fulfil the requirements imposed by the rest of the PIACERE
ecosystem. This has been achieved partly due to the successful analysis performed during the
first year of the project in terms of analysing the state of the art of the various IaC technologies.
At the time of writing this document, three different IaC technologies are supported, and four
public and private cloud providers have been tested during the project.

The main innovations of this component are the seamless integration of the various IaC
technologies by gluing them together into a continuous execution, the automated solving of
common pitfalls, alleviating the burden on the various professionals that take part on the
deployment orchestration, extensible architecture, and security. These are explained in further
detail in Section 2.

As for the future steps, IaC technologies keep evolving and so does the IEM. In the near future,
more efforts need to happen in the field of supporting the self-healing of the whole PIACERE
ecosystem.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 45

www.piacere-project.eu

1 Introduction

This deliverable is the latest iteration of the IaC Execution Manager which previous versions
were described in D5.1 [1], and D5.2 [2]. It provides a detailed description of the tool which
fulfils an essential role in the overall PIACERE architecture. In this section the content and
structure of this deliverable are explained in detail.

1.1 About this deliverable

This document is focused on the IEM prototype, in the iteration corresponding to M30 of the
PIACERE project. The design and development of this deliverable has been fully undergone and
funded in the scope of the PIACERE project (Horizon 2020 research and innovation Program,
under grant agreement no 101000162). The overarching goal of the IEM is to provide a unified
approach for the orchestration of the deployment of multilingual IaC technologies for the
various scenarios that are held by the PIACERE use cases. In this document, we elaborate on the
functionalities developed during the latest iteration of the IEM, which has taken place from
month 24 to the current month 30. During this period, the functionalities already developed in
previous iterations have been established and further functionalities have been enabled to
support the various needs of the PIACERE ecosystem. This document serves as complementary
material to the previous deliverables of the IEM component.

1.2 Document structure

The rest of this document is structured as follows. Section 2 provides an in-depth description of
the key result (KR) associated with the IEM, which is KR10. In addition, the changes undergone
for this third version to be released are explained in detail. Finally, the main innovations
proposed by the IEM are showcased. Section 3 covers the development and preliminary
experiments that have been performed during this semester. Next, Section 4 explores the
lessons learnt and future work for the IEM prototype. Finally, the conclusions of this effort are
explained in Section 5.

In addition, detailed information about the implementation, delivery and usage of the IEM
prototype are included at the end of this document as an appendix. This appendix represents a
complete rewriting of previous iterations of this deliverable, some parts might still be very
similar but have been included as part of this document for completeness.

 DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 45

www.piacere-project.eu

2 KR 10- IEM overview

A general overview of the PIACERE KR10 has been previously introduced in D2.1 [3]. The
following definition is extracted from that very same document as it served as the kick off for
the development of the IEM component. In this deliverable was stated the goal of the PIACERE’s
IEM component, which is to establish a unified approach for utilizing various Infrastructure as
Code (IaC) technologies from a common interface. The IaC Execution Manager (IEM) plays a
crucial role in achieving this overarching goal by overseeing the utilization of IaC code generated
in earlier stages of the PIACERE ecosystem. It iteratively executes different IaC technologies to
attain the desired project architecture. Moreover, the IEM leverages diverse IaC paradigms,
including provisioning heterogeneous infrastructural devices across public and private cloud
providers, configuring each infrastructural device to support the project, and operationalizing
use case applications within the PIACERE framework. Additionally, the IEM offers a consolidated
method for querying deployment information, encompassing which encompass the status of
past and present exaction and their detailed logs. Furthermore, it enables accessing information
about the supported IaC technologies and versions. The IEM exposes its services through a REST
API documented in the OpenAPI specification format, which requires implementing the
specification for components seeking to utilize the IEM. Secure access to IEM methods is
ensured through token-based authentication technologies.

2.1 Changes in v3

This latest iteration is the shortest one, as it only comprises the changes from M24 to M30.
Nevertheless, since it is relatively at the end of the PIACERE project, there are significant changes
that we detail in this section. First, the Run time features exemplify the various scenarios for
which the IEM has been designed, they serve both to document and to validate that the IEM
works as expected with the rest of the PIACERE ecosystem. Next, the ORM (Object Relational
Mapper) database management provides an abstraction from the underlying persistence,
making it possible to integrate with other RDS (Relational Database System) without having to
modify the implementation. This subsection is related with REQ82. Next, the Containerization
Support provides additional functionalities to the engines already supported by the IEM, making
it possible to deploy container-based applications in the provisioned infrastructure. This
subsection directly relates to REQ81 (all the requirements are explained in detail in Section 2.2).
Next, the support for base64 encoded bundles serves as a change of paradigm in the manner
that the PIACERE ecosystem interacts among its various components. This subsection relates to
REQ83. Next, the increased feedback and logging capabilities provides increased verbosity and
debugging functionalities for both developers and end users. This way, it is possible to better
understand what happens under the hood of a particular deployment, which directly relates to
REQ83. Next the testing and coverage has attracted attention during this latest iteration since
this year the component should be stable to be used by the various PIACERE use cases. In this
subsection, all the requirements have been addressed in one way or another (REQ12, REQ81,
REQ82, REQ83, REQ84, REQ85, REQ87). Finally, in the support for further orchestration engines
section we showcase the implementation of the various external orchestrators supported by the
IEM now. This directly addresses requirements REQ83, REQ84, REQ85 and REQ87.

2.1.1 Run time features

To support the required functionalities for the PIACERE run time environment various scenarios
have been defined utilizing the Gherkin language. In Figure 1, a fresh project utilizing various IaC
(Infrastructure as Code) technologies is defined. The user needs to trigger the deployment from
the IDE (Integrated Development Environment), which forwards the call to the IEM via the PRC
(PIACERE Runtime Controller). Then, the IEM executes the stages defined in the bundle
asynchronously and the user is notified of the outcome of the deployment. This scenario is

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 45

www.piacere-project.eu

related to REQ81, REQ83, REQ84 and REQ87, which are explained in the following section in
further detail.

Figure 1 - Deploy a project defined with cucumber.

In Figure 2 querying the status of an existing project running in the IEM is depicted. In this
scenario, the user utilizes the IDE to query the status of an existing deployment, the petition is
handed over to the IEM which returns the message to the IDE to be visualized by the user. This
scenario is related to REQ55 and REQ82, which are explained in the following section in further
detail.

Figure 2 - Query the status of an existing project defined in cucumber.

The scenario depicted in Figure 3 the undeployment of an existing project in the IEM. The user
triggers the undeployment in the IDE. This action is then passed across the architecture to the
IEM which kicks off the undeployment asynchronously. Then, the user is notified about the given
action being accepted. This scenario is related to REQ81, REQ83, REQ84 and REQ85, which are
explained in the following section in further detail.

Figure 3 - Undeploy a project defined in cucumber.

The user can query the status of an undeployed project utilizing the IDE, this query is then
forwarded to the IEM across the PIACERE architecture, and the response is handed over back to
the IDE for the user to check. This scenario, which is depicted in Figure 4, is related to REQ55
and REQ82, which are explained in the following section in further detail.

Figure 4 - Query the status of an undeployed project defined in cucumber.

The user modifies an existing project and kicks off a redeployment. This action is handed over
to the PRC which validates that the redeployment is allowed and passed all over to the IEM
which then executes the action. This scenario, which is depicted in Figure 5, is related to REQ12,
REQ81, REQ83, REQ84 and REQ87, which are explained in the following section in further detail.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 45

www.piacere-project.eu

Figure 5 - Redeploy a project defined in cucumber.

2.1.2 ORM for database management

The IEM utilizes SQLite1 as its persistence database. SQLite is a library implemented in C, and the
most utilized database in the world. In addition, it is bundled as part of the default Python
installation which is the programming language utilized for the implementation of the IEM. In
previous iterations of this component, the SQLite library was used. However, there are some
drawbacks in this approach. For instance, moving away from SQLite would mean a complete
reimplementation of the persistence module. Due to this, an ORM tool such as SQLAlchemy2 can
be beneficial and boost the development productivity.

SQLAlchemy is a Python toolkit that enables developers to utilize Object Relation Mapper
strategies. It has a wide support and its adoption in the community is exceptionally large. Some
the benefits of switching to an ORM are the following:

• The interaction with the database is simplified as there is no need to utilized SQL
statements directly, which relates with the maintenance of the code.

• The abstraction of ORM tools promote the cross-platform compatibility of the code, as
switching from one database to another would be transparent and would not require a
reimplementation.

• It reduces code duplication and developers have a central location for database schemas
and relationships and promotes code reusability.

With regards with the use of SQLAlchemy in the IEM. Figure 6 depicts the implementation of the
deployments table in the database. It allows the definition of the primary key, and the type of
each of the fields that comprise the table. In this example, the following fields are defined:

• Status_time: the datetime when the deployment was triggered, if no time has been
provided the current time is

• Deployment_id: a unique identifier for the deployment that has been triggered. It is a
mandatory field.

• Status: a concise field which summarizes the current status of the existing deployment.

• Stdout: the standard output provided after kicking off or tearing down the deployment.

• Stderr: the standard error provided after kicking off or tearing down the deployment.

1 https://sqlite.org
2 https://www.sqlalchemy.org

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 45

www.piacere-project.eu

Figure 6 - Table definition utilizing SQLAlchemy

In Figure 7, the persistence layer has been reimplemented in order to obtain the
aforementioned benefits. It is worth noting that various engines can be instantiated, this is
important for testing purposes as an in-memory database can be utilized during CI/CD. At the
moment, the following methods are available to be used by the IEM:

• Insert_deployment: this method serves the purpose of recording in the database a new
state for a deployment that has been passed to the IEM through its REST API.

• Get_deployment: this method yields back the last deployment identified by its unique
id, which represents the actual state of the given deployment.

• Get_all_deployments: this method yields back all the deployments that have taken
place in the current environment.

• Valid_api_key: this method validates that the key that has been passed to the IEM
through its REST API is valid. In addition, it has built-in security so no more than ten
validations per second can be done.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 45

www.piacere-project.eu

Figure 7 - Persistence ORM-powered class utilized by the IEM

In summary, switching to an ORM tool for database management makes sense in this context,
as it provides additional flexibility to the IEM. For instance, if a centralized database would be
beneficial for a particular use case, the current approach would provide an easy adjustment to
such scenario. In addition, development productivity is also promoted as SQL statements do not
need to be specifically tailored for each of the use cases.

2.1.3 Containerization support

One of the requirements of this third development iteration of the PIACERE project was to be
able to deploy containers in the provisioned and configured infrastructure. For this reason, we
have envisioned a manner to support the docker engine within the PIACERE ecosystem, by
supporting it in each of the relevant components, including the IEM. Figure 8 clearly depicts that
a project including the docker engine is no different than a regular project. The stages are again
deployed one by one.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 45

www.piacere-project.eu

Figure 8 - PIACERE project including a docker stage.

However, deep diving into the project raises a docker compose file as it can be seen in Figure 9.
The IEM is able to install all the required dependencies for docker based projects in the freshly
provisioned infrastructural devices and kicks off the relevant commands for bringing up the
applications. It does so by overloading the already existing ansible engine and triggering the
relevant docker commands remotely. The requirement for this to be triggered are the same
what the ansible engine would expect, connectivity with the remote infrastructural devices and
access privileges over it.

Figure 9 - docker compose file utilized in the deployment.

The result is a seamless integration of container-based applications within the PIACERE
ecosystem. This is particularly relevant for the various use cases that participate in the project.

2.1.4 Support for base64 encoded bundle

At the beginning of the project, the handles of the deployment project were passed around the
relevant component. However, during this last iteration the approach was simplified and the
entire ecosystem. It was agreed among the consortium that the entire folder should be bundled
in zip format and encoded utilizing base64. Then each component decodes the relevant
information and passed it around the next component in line. Figure 10 depicts the full body of
the deployment requests, in which a bundle subsection is displayed at the end of it.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 45

www.piacere-project.eu

Figure 10 - Deployment endpoint adapted to a base64 encoding.

In the case of the IEM, the following Figure 11 showcases how the bundle is decoded, and the
resulting zip file extracted to the relevant folder.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 45

www.piacere-project.eu

Figure 11 - Snippet for decoding the base64 and extracting the deployment project.

2.1.5 Increased feedback and logging capabilities

One of the requirements for the IEM is to provide appropriate feedback for the relevant actors,
in this case users and developers alike. On one hand, end users utilizing the IEM as part of the
entire PIACERE ecosystem are expected to have feedback on the existing deployments via the
IDE. On the other hand, developers utilizing the IEM expect constant feedback from the IEM and
the status of current deployments. This poses a threat since printing out the logs during the
execution and returning them as part of the REST API calls is not straightforward in Python. In
the following figure, it can be seen the strategy utilized by the IEM to handle this issue. First, the
standard output of the given command is logged to the console. Then, the very same variables
are returned to the final user to provide more information about the status of a deployment.
The snippet in charge of this functionality is depicted in Figure 12.

Figure 12 - Print the standard output of a command and return it to the user.

The above approach guarantees that the users of the whole PIACERE architecture are able to
get the appropriate feedback. Similarly, the logging capabilities, which are depicted in Figure 13,
for the IEM are defined in the following configuration file. The three different loggers utilized in
this environment are the following:

• Root: the root logger is the default logger created when a python module is created. If
no explicit logger is created this one is utilized.

• Src: the src logger is the customized logger defined for the IEM.

• Uvicorn: this logger controls the way the uvicorn environment manages the various logs.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 45

www.piacere-project.eu

Figure 13 – The various loggers utilized by the IEM.

Figure 14 showcases the formatter that is utilized for all the loggers explained above is displayed.
It provides the following fields:

• Asctime: the time in which the action takes place.

• Name: the module in which the IEM logs the information.

• Levelname: the level of the action.

• Message: the user friendly message to understand the incidence.

Figure 14 - the default formatter to be utilized by the IEM loggers.

This mixed approach fulfils the requirements of users and developers to have the relevant
information to debug and understand what happens under the hod of the IEM.

2.1.6 Testing and coverage

To guarantee that the integration with the rest of the components of the PIACERE ecosystem is
seamless, we have followed a TDD [4] (Test Driven Development) approach for the development
of the IEM. TDD is the practice in which a programmer writes a failing test prior to the
implementation of the code. Due to this, the entire functionality of the IEM correlates with a
test so that everything works smoothly. In this project, we have implemented two different test
types: unit and integration tests. The former is a way of testing the smallest piece of code that
can be logically isolated in a system such as function [5], whereas the latter refers to the practice
in which various modules or components of a software application are tested as a combined [6].
In Figure 15, the full lists of unit tests utilized for the development and assurance of the quality
of the IEM are depicted.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 45

www.piacere-project.eu

Figure 15 - The whole list of unit tests implemented in the IEM.

There are three main modules that encapsulate the various unit test cases available:

• Test_iem.py: this class is devoted to test the basic functionalities offered by the IEM
core, without dwelling on the particularities of the REST API.

• Test_main.py: this class tests the system from a higher level than the one above. On top
of testing the entire functionality, this class also interacts with the REST API with the
appropriate credentials.

• Test_persistence.py: this class is exclusively in charge of testing the functionality of the
persistence layer within the IEM. It guarantees that the interaction with the database is
working at every time.

For the implementation of the testing capabilities, we have resorted to the well-known
unittests3 python framework. An example of a simple test case that validates the use of the API
KEY in every single call to the IEM is depicted in Figure 16.

Figure 16 - An excerpt of a unit test utilizing FastAPI test client.

3 https://docs.python.org/3/library/unittest.html

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 45

www.piacere-project.eu

In this scenario, the FastAPI testclient4 is being used to trigger a call to the REST API without the
appropriate credentials, which yields a “403 Forbidden” scenario. However, properly testing the
IEM becomes hard since its overarching goal is to orchestrate deployment with external
providers, hence bare unit testing is not ideal. However, we have devoted to the mock and patch
functionalities of this very same framework. This way, we can validate the entire source code
without having to handle the particularities of external cloud providers.

Figure 17 - An excerpt of a unit test mocking the interaction with the cloud provider.

Figure 17 patches the functionality provided by subprocess, which is the one that interacts with
the external cloud providers. Next, we mock the return of that call so that the whole flow of the
IEM for a given deployment is executed. Finally, we validate the appropriate response.

Next, the integration tests are of paramount importance since they essentially validate with real
tests that the IEM will work under realistic conditions. Figure 18 shows the integration tests that
have been utilized for the IEM are depicted.

4 https://fastapi.tiangolo.com/tutorial/testing/

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 45

www.piacere-project.eu

Figure 18 - The various integration tests developed to validate the functionality of the IEM.

These tests deploy realistic projects and test them utilizing various private and public cloud
providers. In this case, we have implemented that the IEM works using AWS, OpenStack, and
Docker providers. This does not mean that it does not work with other providers, rather it serves
as a baseline to exemplify that everything we have been developed with the aforementioned
tests is indeed working under these realistic conditions. However, we do not want these
integration tests to be executed during the CI/CD pipeline, since they require valid credentials
not available in this stage. Due to this, each and every one of these executions requires an
explicit definition of an environment variable as depicted in Figure 19 below.

Figure 19 - An excerpt showing an integration test with AWS.

Finally, the various testing strategies explained in this section yield an excellent 87% coverage
of the project, as it is generally accepted that 80% coverage is a good goal [7]. The coverage
report is depicted in Figure 20.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 45

www.piacere-project.eu

Figure 20 - The coverage summary of the IEM.

The testing and coverage have been implemented utilizing the well-respected coverage5
framework for python.

2.1.7 Support for further Orchestration engines

The orchestration engines supported by the IEM rely on the providers supported by Terraform6.
During this project, AWS, OpenStack, Azure, and VMWare vSphere have been tested and utilized
for various reasons.

In Figure 21, the AWS provider implemented by Terraform7 is showcased. This provider
leverages two main variables, the access_key_id and the secret_access_key which can be
generated in the AWS account. This provider has been mainly used for testing purposes
throughout the project.

Figure 21 - AWS Credential handling

Next, the Azure provider implemented by Terraform8 is displayed. The following variables:
arm_client_id, arm_client_secret, arm_subscription_id, and arm_tenant_id is necessary for
utilizing the Azure provider. This provider has been mainly used for testing purposes throughout
the project. This is depicted in Figure 22.

5 https://coverage.readthedocs.io
6 https://registry.terraform.io/browse/providers
7 https://registry.terraform.io/providers/hashicorp/aws/latest/docs
8 https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 45

www.piacere-project.eu

Figure 22 - Azure credential handling.

The OpenStack provider, displayed in Figure 23, has been of paramount importance in the
PIACERE project, as it is utilized by the CSE (Canary Sandbox Environment) [8]. It is a more
complex provider than the ones mentioned above as there are more variables involved
(user_name, password, auth_url, project_name, region_name, domain_name,
project_domain_name, user_domain_name). This provider has been extensively utilized in this
project.

Figure 23 - Openstack credential handling.

Finally, the VMware provider, displayed in Figure 24, has been defined in this latest iteration to
support one of the PIACERE se cases. It provides access to the VMWare vSphere. At the time of
writing this deliverable, it has been successfully tested

Figure 24 - VMWare vSphere credential handling.

In summary, the IEM has been designed to address various private and public cloud providers.
In addition, it has been designed to evolve and be extensible to support current and future
providers.

2.2 Functional description and requirements coverage

In the following table, Table 1, a list of the requirements directly addressed by the IEM are
showcased. This list has been extracted from WP2 deliverable D2.1 [3]. All the requirements
have been satisfied but REQ55, which has been discarded as no other component in the PIACERE
ecosystem requires it. However, the IEM can satisfy this requirement seamlessly with its current
architecture.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 45

www.piacere-project.eu

Table 1: User requirements addressed by the IEM

Req ID Description Status Requirement Coverage at M30
REQ12 The IEM shall allow redeployment

and reconfiguration, both full and
partial, as allowed by the used IaC
technology.

Satisfied The project structure utilized within
the PIACERE consortium enables the
IEM to automatically detect failing
stages of the deployment and trigger
an automated redeployment of these
stages. In addition, dedicated
endpoints are being developed for
further granularity in the
redeployment.

REQ55 The IEM will log the whole IaC
execution run, making metadata
and metrics (time it took to run)
about the creation of resources
available to the rest of the
PIACERE components.

Discarded The IEM includes a built-in database
in which it can keep track of the
required metrics. Currently, only the
information specified in REQ82 is
included.

REQ81 IEM should be able to execute IaC
generated by ICG for selected IaC
languages (e.g., TOSCA / Ansible /
Terraform)

Satisfied ICG generates the code in a manner
the IEM can understand its content.
This is possible due to the use of
configuration files which both the
IEM and the ICG can communicate
with.

REQ82 IEM shall register the status of
past and present executions and
enable an appropriate way to
query it.

Satisfied

The IEM includes a built-in database
in which it records the appropriate
metadata that is required by other
components.

REQ83 IEM should be able to
communicate with the relevant
actors (orchestrators,
infrastructural elements) in a
secure way.

Satisfied It currently communicates
successfully with the required
components of the PIACERE
ecosystem (e.g., PRC), and with
external orchestrators (OpenStack,
VMware vSphere).

REQ84 IEM should be able to utilize the
required credentials in a secure
way.

Satisfied Credentials are never stored in the
IEM, rather they are treated as
environment variables and discarded
with every new execution.

REQ85 IEM should be able to clean up
the resources being allocated.

Satisfied The clean up method has been
already implemented and validated
by the PRC, it completely tears down
existing deployments freeing up the
resources being used.

REQ87 IEM shall work against the
production environment and the
canary environment.

Satisfied The IEM can communicate and
orchestrate with various public and
private cloud providers. The canary
environment is implemented
leveraging the OpenStack technology
which has been fully tested in
previous iterations of this
component.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 45

www.piacere-project.eu

2.3 Main innovations

In this section the main innovations regarding the implementation and testing of the IEM are
outlined, each represent one relevant contribution towards the goal of the IEM and KR10:

• It integrates various IaC technologies and glue them together seamlessly, this severely
reduces the time required for orchestrating the various stages of the projects.

• It automatically handles some connectivity related issues, this way the final user utilizing
the PIACERE ecosystem alongside the IEM does not need to be bothered about some
common pitfalls of the utilized IaC technologies.

• It lightens the burden on DevOps professionals providing a streamline approach for the
deployment orchestration of the utilized technologies.

• It provides and extensible interface so that even IaC technologies not yet considered in
the deployment orchestration workflow can be easily integrated into the IEM and
PIACERE ecosystem. This is possible due to the use of interfaces that permit future
implementations without having to modify the current architecture significantly.

• It offers a secure way of interacting with various public and private cloud providers.
Given that it does not store the credentials in the component itself, it would be hard for
introducers to grasp any of the secrets of the providers in use.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 45

www.piacere-project.eu

3 Overview of preliminary experiments

In this section we explain the experiments that have been performed to validate the
functionality and suitability of the IEM as part of the PIACERE ecosystem. Firstly, we validate the
suitability of the IEM for deploying projects on AWS. Secondly, we validate the IEM and
expanded its functionality with the Docker technology, Thirdly, we validate the suitability of the
IEM in conjunction with the OpenStack private cloud provider. Finally, we validate the IEM with
a common provider in various companies, which is VMWare vSphere.

3.1 Experiments on AWS

To kick off the first experiment and environment variable needs to be defined during its
execution. This is preventing the experiment during the CI/CD pipeline where the required
credentials are not yet available. To execute the experiment on AWS the command depicted in
Figure 25 needs to be triggered, making use the AWS environment variable has been defined.

Figure 25 - Running the experiment on AWS.

To orchestrate a deployment on AWS the credentials depicted in Figure 26 must be fed into the
IEM through the REST API. These are the secrets that are to be utilized by AWS to provision the
various infrastructural devices.

Figure 26 - Configuration file for AWS.

Once the deployment has finished, we can validate on the AWS web console that the
appropriate infrastructural devices have been provisioned according to the design. This scenario
is depicted in Figure 27.

Figure 27 - Virtual Machine deployment on AWS.

This scenario briefly showcases the experiment on AWS, and it is publicly available on GitHub
[9].

3.2 Experiments with Docker

To kick off an experiment with docker the appropriate environment variable needs to be already
defined during the execution of the experiment. In this particular experiment, the docker
compose file displayed in Figure 28 is to be deployed and triggered on the provisioned
infrastructural device.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 45

www.piacere-project.eu

Figure 28 - docker compose file for a single web server.

This experiment kicks off a virtual machine on the cloud provider and install all the requirements
for the execution of docker and docker compose. If the experiment has succeeded, the entry
page depicted in Figure 29 should be available in the freshly provisioned infrastructural device.

Figure 29 - Frontpage for the nginx web server provisioned.

This simple experiment successfully validates that the IEM can provide container functionalities
on top of the projects to be deployed by the use cases. This experiment is publicly available on
GitHub [10].

3.3 Experiments on OpenStack

For this cloud provider, there are various environment variables that need to be fed into the
IEM. The functionality provided is like other providers but the syntax in Terraform differs.
Fortunately, a previous component of PIACERE (i.e., PRC) provides a unified syntax for the
definition of the various infrastructural devices. Figure 30 depicts the necessary inputs that are
to be used by the OpenStack provider.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 45

www.piacere-project.eu

Figure 30 - Configuration file for OpenStack.

After executing the project, the OpenStack provider should look as follows, which clearly depicts

that that the required virtual machines have been provisioned as per shown in Figure 31.

Figure 31 - Validate that the virtual machines have been provisioned on OpenStack.

This Experiment is publicly available on GitHub [11].

 DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 45

www.piacere-project.eu

4 Lessons learnt and outlook to the future

In this section we provide an overview of the various lesson learnt over these 30 months of work.
However, we particularly focus on the last six months of developments as these are the ones
that have validated the suitability of the IEM to provide functionality to the various PIACERE use
cases.

At the beginning of the project, we were obliged to make an educated guess on which would be
the underlying technologies that would best fit the IEM.

• Lesson learnt #1: the technologies selected for the implementation were Terraform and
Ansible. An extensive state of the art was performed during the first [1] of the project
but where we resorted to these two as they are well supported by the community and
we as the consortium had previous experience with both. They have proven to be a good
choice as they are extensible enough for fulfilling the requirements from the first year
without extensive changes in the architecture.

Then, these technologies provide common user clients and libraries, both would have been
suitable options for the implementation of the IEM. However, choosing the approach wisely
would have an important impact on the extensibility of the IEM.

• Lesson learnt #2: having spent significant time during the first year of the project on the
existing technologies for the IEM has proven to be time well spent. The IaC ecosystem
is continuously changing, hence it is risky to adopt a technology due to the evolving
nature of cloud providers. However, both Terraform and Ansible are still well respected,
continuously evolving technologies, and have fulfilled the aspiration of the PIACERE
project and the IEM.

During the first year of the project, we chose to utilize repository handles that point to the
projects to be deployed. This proved to be efficient, but it has some undesired issues.

• Lesson learnt #3: during the first year it was decided that repository handles were going
to be used for the implementation of the various PIACERE components. This provided
an easy manner of communication, and the possibility of rolling back and forth between
repository commits if necessary. However, it came with some drawbacks such as that
each component was in charge of downloading the full repository every single time it,
they needed to interact with it. Due to this, during this las six months it has been decided
that the whole folder was going to passed along the workflow. This has reduced the
implementation time and still provides the desired functionality.

In terms of security, the IEM oversees the interaction with the various public and private cloud
providers, hence it manages important security information that need to be handled
appropriately.

• Lesson learnt #4: we chose to never store credentials on the IEM itself as that would be
a severe security risk. This has proven to be an excellent decision as there is virtually no
risk of security breaches.

In summary, the design of the IEM undergone during the first year of the project has proven to
be very resourceful as no major architecture changes had to be done during the subsequent
iterations. As for the future work, more efforts need to take place to support an expanded self-
healing strategy for the PIACERE project.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 45

www.piacere-project.eu

5 Conclusions

This document serves as the third and last iteration of the IEM documentation and provides a
full overview of this component very focussed on the last six months of development. The IEM
aspires to provide a unified interface for the deployment orchestration of the multilingual IaC
projects necessary for the PIACERE ecosystem.

There has been major changes over the last six months among which we would like to highlight
that: the IEM has become database agnostic by implement a well respect ORM tool, during this
year support for projects utilizing containers have been adopted, the requirements of the tools
in PIACERE are less as they do not need to download the whole project very time using git,
logging capabilities and feedback to both developers and end users has been increased, a rich
ecosystem of public and private cloud providers have been implemented and the whole
component has been extensively tested to be used as part of PIACERE.

In terms of the major innovations obtained during this last iteration, it is worth highlighting that
the IEM is able to glue together popular IaC technologies that would require extensive tweaking
otherwise. In addition, some common pitfalls that tend to be manually solved are now
automatically addressed by the IEM. In addition, it provides an extensible secure manner of
utilizing IaC technologies by providing an interface for future providers, even those not even
implemented at the time of writing this document can be integrated in future iterations. Finally,
it aspires to lower the burden on the professionals as they do not be continuously learning
various technologies to deploy the projects.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 45

www.piacere-project.eu

6 References

[1] PIACERE Consortium, «D5.1 - IaC Execution platform prototype- v1.1,» 2021.

[2] PIACERE Consortium, «D5.2 - IaC Execution platform prototype- v2,» 2022.

[3] PIACERE Consortium, “D2.1 PIACERE DevSecOps Framework Requirements specification,
architecture and integration strategy - v1,” 2023.

[4] S. Hammond and D. Umphress, “Test driven development: the state of the practice,” in
ACM-SE '12: Proceedings of the 50th Annual Southeast Regional Conference, 2012.

[5] Smartbear, “What Is Unit Testing?,” [Online]. Available:
https://smartbear.com/learn/automated-testing/what-is-unit-testing/. [Accessed 17 5
2023].

[6] R. Awati, “Integration testing or integration and testing (I&T),” [Online]. Available:
https://www.techtarget.com/searchsoftwarequality/definition/integration-testing.
[Accessed 17 5 2023].

[7] S. Pittet, “What is code coverage?,” [Online]. Available:
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage.
[Accessed 17 5 2023].

[8] PIACERE Consortium, «D5.4 - Canary environment prototype - v1_V1.0».

[9] PIACERE Consortium, “AWS Experiment,” Tecnalia Research & Innovation, [Online].
Available: https://git.code.tecnalia.com/piacere/public/the-platform/iem/-/blob/y3/iem-
api/tests/resources/aws.zip. [Accessed 19 5 2023].

[10] PIACERE Consortium, “Docker Experiment,” Tecnalia Research & Innovation, [Online].
Available: https://git.code.tecnalia.com/piacere/public/the-platform/iem/-/blob/y3/iem-
api/tests/resources/docker.zip. [Accessed 19 5 2023].

[11] PIACERE Consortium, “OpenStack Experiment,” Tecnalia Research & Innovation, [Online].
Available: https://git.code.tecnalia.com/piacere/public/the-platform/iem/-/blob/y3/iem-
api/tests/resources/openstack.zip. [Accessed 19 5 2023].

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 45

www.piacere-project.eu

APPENDIX: Implementation, delivery, and usage

1 Implementation

This section refers to the implementation details of the IEM. First, we provide a description of
the IEM fitting into the overall PIACERE Architecture. Then, we provide a technical description,
including the prototype architecture, the components description and we finalize with the
technical specifications.

1.1 Fitting into overall PIACERE Architecture

The IEM is the component of the PIACERE architecture that receives the IaC code being created
on previous stages of the PIACERE workflow by the PRC. The component which interacts the
most with the IEM is the Runtime Controller (PRC), as can be seen in the following figure 32. The
main interactions are as follows:

• The PRC communicates with the IEM to trigger a deployment. In order to do so, it
hands over the following information:

o The base64 encoded zip bundle that is going to be executed by the IEM.
o The secrets that are necessary for the execution of the given deployment.

These secrets are never persisted by the IEM to guarantee their safety.

• The IEM orchestrates the deployment on the desired public or private cloud provider
and saves the necessary information for further queries.

Figure 32 - PIACERE Runtime Workflow

The IEM is yet again pivotal in this endeavour. This is because it provides means to other
components in the architecture for triggering specific actions on already running components.
This way, the monitoring and self-healing of the architecture can be accomplished.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 45

www.piacere-project.eu

1.2 Technical description

This section describes the technical details of the IEM component. First, and overview of the
prototype architecture es depicted and explained. Then, each of the components are explained
in further detail. Finally, a description of the technical specifications is provided.

1.2.1 Prototype architecture

The architecture components that comprise the entirety of the IEM component are depicted in
the following figure. These is a REST API that oversees and manages the interaction with the
inner functionalities of the IEM. The Core of the system where the business logic resided and
can forward the different actions appropriately. The Persistence component which oversees
storing the metrics and metadata related with past and present deployments. Finally, the
executors understand the IaC code being forwarded to the IEM and orchestrate it against the
different public and private cloud providers. All the components described in the following figure
34are explained in the following section in further detail.

Figure 33 - IEM prototype architecture.

The following image 35 depicts the inner functioning of a deployment within the IEM. The main
difference from previous iterations of this diagram is that the IaC Repository has been removed
from the main PIACERE workflow. The runtime Controller triggers a deployment and
immediately receives a response stating whether the deployment has been accepted. Then, the
IEM validates the triggers the fresh deployment using the implemented executors, while storing
at every stage the status of that deployment.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 45

www.piacere-project.eu

Figure 34 - IEM Initiate Deployment Sequence Diagram

In the following image, the flow in which the PRC queries the status of a given deployment is
depicted. The PRC hands over to the request through the IEM’s API specifying the unique
identifier of the given deployment. Then, the IEM is able to retrieve this information from the
Persistence component.

Figure 35 - IEM Request the Current Status of a Deployment

The following figure showcases the sequence diagram that represents the undeployment
workflow for the IEM. This scenario mimics the deployment workflow, with the particularity that
in this case there is no need to receive the entire infrastructure. Instead, only the unique
identifier of the deployment and the required credentials are necessary.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 45

www.piacere-project.eu

Figure 36 - IEM Initiate Undeployment Sequence Diagram

1.2.2 Components description

The first prototype of the IEM component is comprised of the subcomponents described above.
In this section, we take a closer look at each and explain their functionality in further detail.

• REST API: this subcomponent is the entry point of all the requests that the IEM need to
process. An OpenAPI specification file is provided so the interaction with it becomes as
seamless as possible.

• Core: this subcomponent contains the business logic of the IEM component. It oversees
the flow of the different calls of other PIACERE components appropriately.

• Persistence: this subcomponent contains the persistence logic that the IEM component
is going to utilize. It is a relational database that will provide the data required for the
requests for information by other components. This is information and metadata for
past and present executions of the different components. Most of the development for
this subcomponent has been undergone during the second year of the project. During
this last development iteration, and ORM tool has been utilized to abstract the database
technology from the development, which provides the IEM with more flexibility.

• Executors: the executors are the subcomponents in charge of the execution of the
different technologies that the IEM supports. Two different IaC technologies are
supported: i) Ansible for the configuration of the different dependencies that the
deployment requires, ii) Terraform for the provisioning of the infrastructural elements
required for the deployments to be successfully executed, iii) docker for the application
lifecycle management

1.2.3 Technical specifications

The prototype has been developed in the Python programming language, specifically version
3.9.5. It has been selected because python is very proficient at interacting with the currently
used IaC technologies (Terraform, Ansible, Docker), and provides an easy manner to add
additional technologies in the future.

The input and output interactions of this component are supported by FastAPI, specifically
version 0.73.0, which provides a myriad of functionalities for the implementation of REST
interfaces, which is the primary way of interacting with the IEM component. In addition, it
provides functionalities for providing an OpenAPI implementation that can be used by other

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 45

www.piacere-project.eu

components in the PIACERE infrastructure, as it not only provides an easy way to understand
the inputs and outputs required by this component, but also an automatic way to generate the
server and client sides if desired. The IEM is served using the uvicorn9 ASGI web server, which
provides the system with a minimal low-level interface for async development.

The persistence layer is in essence a relation database. This piece of the component has been
completed during the second year of the project. The persistence layer has been implemented
using SQLite, and it contains a set of relational tables that will information related to past and
presents deployments. SQLAlchemy has been introduced to manage the database and to
abstract the development from the technological implementation of it.

The IaC code that have been selected to use within the PIACERE framework have been Terraform
and Ansible. The former is a well-known technology utilized in the field of infrastructural device
provisioning and can interact with a large variety of public and private cloud providers (e.g.,
AWS, Azure, OpenStack, VMWare vSphere). The latter, on the other hand, is an established tool
in industry that is commonly used for the configuration of the infrastructural devices required
for the deployment. It has a myriad of modules that can be used for the different nuances that
comprise a software project deployment such as dependency management, services
configuration, and configuration management. Access to the IEM is hardened with an API key
that needs to be fed into the system every single time that an action is required to be taken.
Finally, the actual delivery of the component in a containerized manner, with the docker
technology.

9 https://www.uvicorn.org/

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 45

www.piacere-project.eu

2 Delivery and usage

This section offers information on the package itself. First, information about the structure of
the repository is provided. Then, instructions on how to install the package are offered. Thirdly,
a manual on how to utilize the IEM component is explained in detail. Finally, licensing
information and downloading instructions are provided.

2.1 Package information

This section gives an overview on the structure of the IEM component. The root structure for
the component is showcased in the following image 38, information about the most relevant
files and folders are then explained.

Figure 37 - Root folder for the PIACERE IEM component.

The main files and folders that can be found in this picture are the following:

• The docs folder contains information such as a gherkin formatted feature files to be able
to understand the behaviour of the IEM, and the detailed information about its use.

• The iem-api folder contains the actual source code of this component including files
related with the build process such as the Dockerfile.

• The “.gitlab-ci.yml” file oversees the CI/CD pipeline that is triggered every time a
modification to the IEM takes place.

• The docker compose file oversees the deployment of this component on the production
environment.

• Detailed information on how to interact with the IEM is specified in the openapi.json
file.

• The sonar-project.properties file oversees the affairs related with code quality in the
given project.

2.2 Installation instructions

The IEM prototype can be found in Tecnalia’s GitLab repository (download instructions at the
end). There are a few files that are of paramount importance for getting the IEM prototype up
and running. The first one is the “requirements.txt” file, which offers an up-to-date list of the
IEM dependencies alongside their specific version. It would be better to install these

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 45

www.piacere-project.eu

requirements in a virtual environment in order not to mess with the local installation of similar
packages. There are many ways to start a virtual environment, and specific instructions are out
of the scope of this deliverable. Hence, in this document brief instructions towards the
installation and use of a tool for creating virtual environments are provided. The following image
showcases how to instantiate a virtual environment.

Figure 38 - Create the virtual environment.

Next, this virtual environment needs to be activated, which can be accomplished with the
following command.

Figure 39 - Activate the virtual environment.

Now that a virtual environment has been created and it is ready to be used, the
“requirements.txt” becomes handy. In the following image it can be seen the content of it, which
the precise libraries alongside their version that need to be installed to run the IEM prototype.
It also showcases how to install these requirements with the python package manager.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 45

www.piacere-project.eu

Figure 40 - Excerpt showing the content of the requirements.txt file for dependency management.

Unfortunately, not all the requirements can be centralized in this manner since the Terraform
client needs to be installed separately. Please refer to the official documentation1 to get this
done. At this stage, all the IEM dependencies should be installed and ready to be used. To make
sure that this is in fact the case, the following image shows how to run the different tests that
make sure the prototype is properly working.
 DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 45

www.piacere-project.eu

Figure 41 - Execute all the tests of the IEM with the nose tool.

In the image 42 above, we have utilized the nose210 tool, but other tools such as coverage11 can
be utilized in a similar manner. The IEM component will be deployed containerized with the
docker framework. There is a Dockerfile that helps in making this happen. The following excerpt
(Figure 43) shows the content of this file. This Dockerfile is based on the official image provided
by the terraform team. Given the installation of this tool can be the most time consuming and
error prone, we resort to this image in order to achieve better quality and efficiency.

10 https://docs.nose2.io/en/latest/
11 https://coverage.readthedocs.io/

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 45

www.piacere-project.eu

Figure 42 - Excerpt showing the Dockerfile utilized for generting the containerized image of the IEM.

At this moment, the IEM component can be generated as shown in the following image 44.

Figure 43 - Excerpt showing the building process for the IEM component.

2.3 User Manual

This subsection gives an overview on how the communication with the IEM should take place.
In particular, this is detailed in an OpenAPI specification file which different components can
adhere to, in order to utilize the different functionalities provided by the IEM.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 45

www.piacere-project.eu

Figure 44 - OpenAPI specification for the interaction with the IEM component.

The Figure 45 above showcases a screenshot of the OpenAPI specification file that resides in the
IEM’s GitLab repository. For the first prototype, five different endpoints have been defined for
the interaction of PIACERE components with the IEM. The details on how these endpoints
provide to the components is detailed below:

• GET /deployments/: it provides information about all the deployments that are
currently taking place within the PIACERE framework.

• POST /deployments/: it kicks off a deployment, if the deployment has already been
started in a previous iteration, it updates the given deployment with the new
configuration.

• GET /deployments/{deployment_id}/: it yields detailed information about the status of
a given deployment. The deployment to be retrieved should be passed as a path
parameter.

• POST /undeploy/: it tears down the deployment specified in the body by the unique
identifier.

• POST /self-healing/{strategy}: this endpoint is under heavy development; it provides
means for the other PIACERE components in the architecture to execute various self-
healing strategy. At the time of writing this document, this endpoint requires further
work and is not yet functional.

The following image 46 provides an overview of the various credentials that can be utilized by
the IEM. DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 45

www.piacere-project.eu

Figure 45 - Credentials to be used by the IEM.

To run an instance of the IEM generated image, the following snippet showcased in the image
47 can be triggered.

Figure 46 - Run the IEM image.

There are other ways of executing the IEM. For instance, the following image depicts how to run
the IEM with the uvicorn server, which is the one that serves its functionality in the container
image.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 45

www.piacere-project.eu

Figure 47 - Execute the IEM with the uvicorn server.

In addition, the main file can also be executed to obtain a similar functionality. This is useful
mainly for development and debugging purposes.

Figure 48 – Execute the IEM directly.

The following image depicts the various endpoints that can be used to check the OpenAPI
documentation.

Figure 49 - Various documentation endpoints available in the IEM.

DRAFT

http://www.medina-project.eu/

D5.3 – IaC Execution Manager – v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 45

www.piacere-project.eu

2.4 Licensing information

This component is offered under Apache 2.0 license. Detailed information can be found in the
GitLab repository.

https://git.code.tecnalia.com/piacere/public/the-platform/iem/-/blob/y1/LICENSE

2.5 Download

The source code for the IEM prototype is available Tecnalia’s GitLab repository. To get all the
necessary files to utilize it, use the following link:

https://git.code.tecnalia.com/piacere/public/the-platform/iem

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/iem/-/blob/y1/LICENSE
https://git.code.tecnalia.com/piacere/public/the-platform/iem

