

Deliverable D4.6

IaC Code Security and components
security Inspection - v3

Editor(s): Matija Cankar (XLAB)

Responsible Partner: XLAB d.o.o.

Status-Version: Final v1.0

Date: 31.05.2023

Distribution level (CO, PU): PU

DRAFT

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 27

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable:
IaC Code Security and components
security Inspection - v3

Due Date of Delivery to the EC 31.05.2023

Workpackage responsible for the
Deliverable:

WP4 - Verify the trustworthiness of Infrastructure as a
code

Editor(s): Matija Cankar (XLAB)

Contributor(s):
Grega Redek (XLAB), Anže Luzar (XLAB), Matija Cankar
(XLAB)

Reviewer(s): Juncal Alonso (Tecnalia)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP5, WP8

Abstract: This deliverable will present the outcome of Task T4.2
and Task T4.3. The deliverable comprises both a
software prototype [KR6-KR7] and a Technical
Specification Report. The document will include the
Security Inspector technical design and implementation
aspects. The document will also include the Security
Inspector technical design and implementation aspects

Keyword List: IaC, SAST, IaC Security, DevOps, DevSecOps

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 27

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 31.03.2023 The ToC organisation XLAB

v0.2 30.04.2023 First draft version XLAB

v0.3 16.05.2023 Improved sections, ready for internal
review

XLAB

v0.4 18.05.2023 Internal peer review TECNALIA

v0.6 29.05.2023 Fixed all review requests XLAB

v1.0 30.05.2023 Final quality check. Ready for
submission

TECNALIA

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 27

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction .. 8

1.1 About this deliverable ... 8

1.2 Document structure .. 8

2 KR 6 and KR 7-ISR overview ... 9

2.1 Changes in v3 .. 9

2.2 Functional description and requirements coverage ... 9

2.3 Main innovations ... 12

3 Overview of preliminary experiments... 14

4 Lessons learnt and outlook to the future .. 15

5 Conclusions ... 16

6 References ... 17

APPENDIX: Implementation, delivery and usage .. 18

1 Implementation ... 18

1.1 Fitting into overall PIACERE Architecture .. 18

1.2 Technical description .. 18

1.2.1 Prototype architecture .. 20

1.2.2 Components description ... 21

1.2.3 Technical specifications ... 22

2 Delivery and usage .. 23

2.1 Package information ... 23

2.2 Installation instructions ... 24

2.2.1 Running with Docker ... 24

2.2.2 Run from CLI .. 25

2.2.3 Run from source .. 25

2.3 User Manual .. 25

2.4 Licensing information .. 27

2.5 Download .. 27

 List of tables

TABLE 1: REQUIREMENTS FOR KR6 AND KR7 ... 10
TABLE 2: KRS COVERAGE BY IAC SCAN RUNNER CHECKS. .. 11
TABLE 3: BACK-COMPATIBILITY API CALLS.. 26
TABLE 4: IAC SCAN PROJECT MANAGEMENT API CALLS. ... 26

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 27

www.piacere-project.eu

List of figures

FIGURE 1: A SCREENSHOT OF IAC SCAN RESULTS FORMATTED IN HTML .. 11
FIGURE 2: SIMPLIFIED SEQUENCE DIAGRAM OF IAC SECURITY AND IAC COMPONENT INSPECTIRS. 19
FIGURE 3: IAC SCAN RUNNER ARCHIVE SCAN WORKFLOW WITH PERSISTENCE AND CONFIGURATIONS 20
FIGURE 4: COMPONENT DIAGRAM .. 21
FIGURE 5: DOCKER IMAGE .. 23
FIGURE 6: DOCUMENTATION PAGE ... 24

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 27

www.piacere-project.eu

Terms and abbreviations

CSP Cloud Service Provider

DevOps Development and Operation

DoA Description of Action

EC European Commission

GA Grant Agreement to the project

IaC Infrastructure as Code

IEP IaC execution platform

IOP IaC Optimization

KPI Key Performance Indicator

PR or MR Pull request or merge request

QA Quality Assurance

SW Software

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 27

www.piacere-project.eu

Executive Summary

This is a third technical deliverable from a series of three, describing the progress and plans of
the IaC Security Inspector and Component security inspector (KR6 and KR7). The mentioned
results are output of tasks T4.2 and T4.3 from the WP4. The document is the last from series and
provides a bit different table of content. First part is more oriented towards the presentation of
the key results and the details including the integration with PIACERE DevSecOps framework are
moved to appendix, which remains in the same structure as first two deliverables.

This document (as their predecessors) presents the advancements made in the IaC Security
Inspector and Component Security Inspector (KR6 and KR7) over the course of the third year of
the PIACERE project. The components are referred to as a unified entity, referred to as the IaC
Scan Runner. The report provides an overview of the results from T4.2 and T4.3 in the main
part, while the Appendix of this document includes user manual and developers notes. The main
part consists of mainly new content in comparison to previous deliverables, while the Appendix
is substantially revised and updated version of previous deliverables.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 27

www.piacere-project.eu

1 Introduction

This is the final technical deliverable from a series of three, describing the progress and plans of
the IaC Security Inspector and Component security inspector (KR6 and KR7). The mentioned
results are output of tasks T4.2 and T4.3 from the WP4. The deliverable integrates and updates
content from the predecessors, therefore some content is duplicated. The differences are
described in Section 1.2 Document structure.

The task T4.2 focuses on statical code analysis (SAST) of the IaC which will be generated from
the PIACERE DOML (DevOps Modelling Language). The focus of this task is to find and create a
set of useful code checks for different IaC options (e.g., Terraform HCL, TOSCA Simple Profile in
YAML, Ansible…) and issues such as typos, syntactical problems, and secret management. An
example for this is a check if the IaC include hard coded passwords.

The task T4.3 focuses on detecting the components used by the IaC. This means that IaC is
inspected for the dependencies and their versions, which might have vulnerabilities like zero-
day exploits. An example of this check would be if the OpenSSL library referred in IaC code is
mature enough to not have a heart-bleed1 vulnerability.

The approach of both tasks is different, but if we consider them as a black box, both have a
similar behaviour – accepting IaC as an input and providing the list of vulnerabilities in the form
of configuration errors, warnings, and suggestions in the output. Based on this observation we
will develop and describe them jointly to ease the integration instructions and provide detailed
instructions of how the checks can define the functionality of one or another.

1.1 About this deliverable

The deliverable presents the relevant aspects of the IaC Scan Runner component, which serves
as a service to cover defined KR6 and KR7 in PIACERE project. The deliverable explains the
overview of the final key results, the early experiments and lessons learned during the fulfilment
of our goal of finding the vulnerabilities in the deployable applications and therefore providing
the better IaC without any security issues. The document presents the final architecture plan
and requirements fulfilment status, according to the requirement list defined in Deliverable D2.2
[1]

1.2 Document structure

The introduction Sections were updated and present the document content and structure. The
following sections from 2 to 5 are new, while the appendix is comprised of the updated version
of the previous two deliverables. In the rest of the document we cover:

• Section 2: presents the KR6 and KR7 overview, namely the IaC Scan runner, functional
requirements, recent changes and updates, where we can find the most recent online
information.

• Section 3: Focuses on preliminary results.

• Section 4 points out the lessons learned and

• Section 5 concludes the document.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 27

www.piacere-project.eu

2 KR 6 and KR 7-ISR overview

The KR 6 and KR 7 are two different IaC inspection tools, that are combined and sometimes
overlapped in the result called IaC Scan Runner (ISR). According to the configuration, IaC Scan
Runner can serve as IaC security inspector (KR 6) or component security inspector (KR7) or both
at the same time.

The IaC scan runner is used as a SAST tool after the IaC design step, when we would like to
inspect the designed IaC template for security issues. The tools give to the DevSecOps developer
an opportunity to initiate multiple security SAST checks simultaneously.

More details about the IaC Scan Runner can be found in the appendix of this document (covering
the architecture and integration to the PIACERE DevSecOps framework), while most up-to-date
content is available on the:

• Documentation page: https://xlab-si.github.io/iac-scanner-docs/

• Documentation repository: https://github.com/xlab-si/iac-scanner-docs

• Project repository: https://github.com/xlab-si/iac-scan-runner

Beside the information provided in the open-source repositories, the tool has been mentioned
and described in scientific articles [2] [3] [5].

2.1 Changes in v3

In the last development cycle, we focused on improving the tools according to the use-case
requests and feedback from early adopters and testers. The changes are mainly focused on
improved usability and the clearness of the tool usage. The changes in the last year are threefold,
namely:

Multi-project approach: we have implemented a new feature that allows users to configure
settings for each of their projects individually. This enables them to set specific parameters and
preferences for each project, giving them complete control over their workflow and allowing
them to customize the system to suit their needs.

Performance and security improvements: we have improved the performance and security of
the system by updating the API endpoints, which makes it faster and more efficient for users to
access and use the API.

Improved user experience: we have given the system's user interface a more modern design,
which includes new design elements and features that make it more visually appealing and user-
friendly. This makes it easier for users to navigate through the system with ease.

The changes resulted in 13 new pull requests (PRs), 2 new versions of the software component
and a reconfigured API for a more convenient IDE user interface where the IaC Security
Inspector and Component security inspector are integrated. Details can be found in the GitHub1
page or in the Appendix of this document.

2.2 Functional description and requirements coverage

Through the PIACERE consortium collaboration, we defined a set of necessary requirements for
static code inspection, that are available in the PIACERE architectural specification [1] and
includes integrational requirements and use-case requirements. These requirements drove our
development and research through the whole project.

1 https://github.com/xlab-si/iac-scan-runner

DRAFT

http://www.medina-project.eu/
https://xlab-si.github.io/iac-scanner-docs/
https://github.com/xlab-si/iac-scanner-docs
https://github.com/xlab-si/iac-scan-runner
https://github.com/xlab-si/iac-scan-runner

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 27

www.piacere-project.eu

Table 1: Requirements for KR6 and KR7

REQ ID Description Complexity
/Task

Acceptance Priority Status

REQ23 IaC Code Security Inspector
must analyse IaC code w.r.t.
security issues of the modules
used in the IaC.

Medium

T4.2

ACCEPTED MUST HAVE Done

 REQ24 Security Components
Inspector must analyse and
rank components and their
dependencies used in the IaC.

Medium

T4.3

ACCEPTED MUST HAVE Done

 REQ65 IaC Security Inspector and
Component Security
Inspector should hide
specificities and technicalities
of the current solutions in an
integrated IDE.

Low

T4.2, T4.3,

WP3f

ACCEPTED MUST HAVE Done

 REQ66 IaC Code security inspector
must provide an interface (CLI
or REST API) to integrate with
other tools or CI/CD
workflows.

Medium

T4.2, T2.2

ACCEPTED MUST HAVE Done

 REQ67 IaC Component security
inspector must provide an
interface (CLI or REST API) to
integrate with other tools or
CI/CD workflows.

Medium

T4.2, T2.2

ACCEPTED MUST HAVE Done

 REQ80 SAST tools to check Docker
configurations shall be
included in the Canary
environment.

Medium

WP4

ACCEPTED
(Re-worded)

MUST HAVE Done

As can be seen in Table 1 all requirements were satisfied inside the Y3 version of the tool. Each
individual requirement has been fulfilled by the following actions:

• REQ23: IaC Scan Runner takes care of analysing IaC code w.r.t security issues of the
modules used in the IaC with help of the following integrated checks (see Table 2).

• REQ24: The fulfilment of this requirement is twofold. First, we included a set of scans
that investigate the components and dependencies used in the IaC code (see KR7
column in Table 2). Secondly, for ranking, we have upgraded our system by
implementing a code scanner that checks multiple files and categorizes the scan results
based on their status. The status categories include Issue (requires user intervention),
Info (includes notifications for the user), Passed (nothing to do), and no files (for the
specific check no files were find). This allows you to quickly determine the status of each
scanned file and prioritize your actions accordingly. Additionally, we have introduced a
new output (JSON and HTML – see Figure 1) that presents the scan results grouped by
status in a descending order of severity. This page provides an overview of the scan
outcomes and helps in prioritizing efforts based on the gravity of the identified issues.
The page is divided into four sections that correspond to the status of the files: ISSUE,
INFO, PASSED, and NO FILES. For each status category, the page displays a list of relevant
files with a brief summary of the issue (if any), which makes it easy to identify critical
files and take prompt action.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 27

www.piacere-project.eu

Figure 1: A screenshot of IaC Scan results formatted in HTML

• REQ65: This requirement is achieved through the IaC Security Inspector and Component
Security Inspector modules of the API. These modules work seamlessly with integrated
development environments (IDEs), allowing developers to leverage the benefits of a
user-friendly and intuitive interface without being bogged down by the technical
complexities of the security solution. This not only increases efficiency but also ensures
a consistent and streamlined approach to security across the development lifecycle.

• REQ66, REQ67: Both requirements are addressed through the API's interface options.
The IaC Code Security Inspector module provides an interface in the form of a Command
Line Interface (CLI) or REST API that developers can easily integrate with other tools or
CI/CD workflows. This flexibility allows for the seamless integration of security checks
into the development pipeline, ensuring that vulnerabilities and issues are identified
and resolved early in the process. The IaC Component Security Inspector module also
provides an interface in the form of a CLI or REST API. This interface allows organizations
to easily integrate component security checks into their existing tools and workflows,
further enhancing their security posture.

• REQ80: During the project it has been realised that SAST inspections can be already done
in IaC Scan Runner. To fulfil this requirement we integrated Hadolint IaC Check into the
list of scans, which means that IaC is already checked before the Canary Environment is
created.

Table 2: KRs coverage by IaC Scan Runner checks.

IaC Check Target IaC entity Security
(KR6)

Component
(KR7)

Other

xOpera TOSCA
parser

TOSCA ✅

Ansible Lint Ansible ✅

Steampunk Spotter
Ansible ✅ ✅

TFLint Terraform ✅

DRAFT

http://www.medina-project.eu/
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#xopera-tosca-parser
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#xopera-tosca-parser
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#ansible-lint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#steampunk-scanner
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#tflint

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 27

www.piacere-project.eu

tfsec
Terraform ✅

Terrascan
Terraform ✅

yamllint
YAML ✅

Pylint
Python ✅

Bandit
Python

Safety Python packages ✅ ✅

Gitleaks
Git repositories ✅

git-secrets
Git repositories ✅

Markdown lint
Markdown files ✅

hadolint
Docker ✅

Gixy
Nginx

configuration
✅

ShellCheck
Shell scripts ✅ ✅

ESLint
JavaScript ✅

TypeScript ESLint TypeScript ✅

HTMLHint
HTML ✅

stylelint
CSS and other

styles
 ✅

Checkstyle
Java ✅

cloc
Multiple

components
 ✅

Snyk
Multiple

components
✅ ✅ ✅

SonarScanner
Multiple

components
✅ ✅ ✅

2.3 Main innovations

In today's fast-paced software development landscape, Infrastructure as Code (IaC) has
emerged as a critical technology for creating, deploying, and managing cloud infrastructure. IaC
enables developers to define infrastructure components such as servers, networks, and storage
in code, making it easier to provision, configure, and manage infrastructure at scale. However,
like any code, IaC can have issues, vulnerabilities, and best practice violations that can
compromise the security, compliance, and efficiency of the infrastructure.

The main innovation opportunities of the IaC development is controlling the code itself and
keeping it safe and secure. DevOps approach gives as the agility of evolving and fixing the
infrastructure code, however, when the project is large, complexity raises and teams need to

DRAFT

http://www.medina-project.eu/
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#tfsec
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#terrascan
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#yamllint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#pylint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#bandit
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#safety
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#gitleaks
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#git-secrets
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#markdown-lint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#hadolint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#gixy
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#shellcheck
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#eslint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#typescript-eslint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#htmlhint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#stylelint
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#checkstyle
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#cloc
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#snyk
https://xlab-si.github.io/iac-scanner-docs/02-runner.html#sonarscanner

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 27

www.piacere-project.eu

rely on tools. The main challenge is correctness of the code, meaning, we deploy and set only
the things that we want and need. The second one is continuous (daily) inspection, which means
that code inspection actions are not limited only to the application design time, but to the
runtime as well, because some used components will become vulnerable in the future. Another
important challenge will become a reality with new AI and ChatGPT era. The idea of generating
code with AI tools is very attractive, but also very dangerous as it can leave in the code
unexplained facts.

To address these challenges we empower developers and DevOps teams with a tool that can
scan IaC code and identify potential issues before they become major problems. That's where
the IaC Scan Runner comes in.

One step for multiple tools: IaC Scan Runner is a powerful tool that enables developers and
DevOps teams to scan IaC code with multiple tools and identify issues, vulnerabilities, and best
practices violations. IaC Scan Runner supports various scanning tools such as Hadolint,
Steampunk Spotter, Sonar, and more, providing a comprehensive view of the IaC code's quality
and security. With IaC Scan Runner, you can quickly identify issues, prioritize them based on
severity, and take necessary actions to fix them, ensuring that your infrastructure is secure,
compliant, and efficient.

Customise your scan per project and generate report: IaC scan runner works by scanning IaC
code with multiple tools and beside individual scan report, it generates a comprehensive
combined report of the scanning results. The scanning process is highly customizable, with per-
project configuration options that allow you to customize the scanning parameters to suit your
specific needs and requirements. For example, you can choose the tools used for scanning, the
ruleset, the severity levels, and more, ensuring that IaC Scan Runner scans your IaC code based
on your organization's policies and standards.

Easy to integrate with your setup: Once the scanning process is complete, IaC Scan Runner
generates reports in either JSON or HTML format, depending on your preference. The JSON
report provides a detailed view of the scanning results, including the issues found, the severity
level, and the location of the issue in the code. The HTML report has a modern design that is
easy to read and navigate, with clear visualizations and actionable insights. You can quickly
identify the issues that require attention, prioritize them based on severity, and take necessary
actions to fix them. Also note that beside REST approach, IaC Scan Runner comes also with a
command-line interface (CLI) that makes it easy to integrate with your existing workflows and
toolchains defined in scripts. You can use the CLI to automate the scanning process, schedule
scans, and incorporate IaC Scan Runner into your DevOps pipeline, ensuring that your IaC code
is continuously scanned for issues and vulnerabilities.

Open-source tool with premium features: The IaC Scan Runner an open-source tool that has
integrations with other open-source tools and also proprietary and paid services. This allows to
be used as a tool with basic and premium features, that provides an easier adoption to the
existing environments that grow with the size and maturity of the target project.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 27

www.piacere-project.eu

3 Overview of preliminary experiments

The IaC Scan Runner has been tested and demonstrated to the PIACERE use cases, a commercial
DevOps tools developers of XLAB Steampunk2 team, some other security projects (as ICOS
H2020 [6]) and PIACERE community over the YouTube.

From the use-cases we have received quite a few recommendations during the development,
mostly focusing on the application coverage (new scans) and readability of results. The UX of
results have been lately substantially improved, and use-cases had expressed the clearness of
the report and appropriate ranking.

The checks are sufficient and for each use case we improved some particularities, e.g. for Public
Administration use-case the Ansible checks were tailored, for Maritime solutions the Terraform
checks and for Ericsson the coverage of docker security checks was in focus.

An important result for DevSecOps practitioners is to encapsulate more checks into a single
service, saving time for using the individual tools. The benefits of the IaC Scan Runner have been
observed also by other projects, e.g. ICOS, that might include the IaC Scan Runner service in their
security SAST workflow.

Overall, the IaC Scan Runner has proven to be a comprehensive approach to scanning
Infrastructure as Code (IaC). The tool's ability to scan IaC using multiple tools has been
particularly appreciated, as ensures that the results are accurate, and service has multiple
options for integration (REST or CLI). Users also appreciate IaC Scan Runners user-friendly
interface and the range of output formats available for presenting the scan results, including
HTML and JSON. The API that supports per project configuration has been particularly helpful
for teams that work on multiple projects with different requirements.

2 https://steampunk.si/

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 27

www.piacere-project.eu

4 Lessons learnt and outlook to the future

The development of IaC Scan Runner has been a fruitful endeavour with a constant collaboration
with users and improvement of things for the better. We learned that it was very successful to
start first with the inquiry of users, what they do need and to make a review of the market with
the available open-source and on the shelf solutions.

Combining the power of the existing solutions have provided us the crucial insight. What can be
already covered and what we are still missing. This part led us to change the component scanner
in a way to focus more on IaC components and dependencies, where we found most of the
interest of users. This initial solution and user base provided us an understanding of the field
and a market gap on the component check tools for Ansible.

We see that IaC Scan Runner has gained some interest in other projects and can be used as a
companion to all other scanning tools. As the field of deployment and automation is expanding
from cloud to computing continuum integrating more and more heterogeneous components
and services, the need for scanning the correctness and safety will become even more desired.

The future research of the IaC security is still very challenging, interesting, and agile. Automation
through IaC is popular, but it has not gained enough trust that enterprises would jump into
changing all their solutions, especially critical ones, to follow the full DevSecOps approach. To
fulfil the market needs in the future, we will continue with the integration of new checks in the
IaC Scan runner and development of the integrated tools. The emphasis will be in component
checks that are very desired nowadays – one specific component check is Steampunk Spotter,
which just recently entered the market and attract new users that will provide market related
requirements for future development.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 27

www.piacere-project.eu

5 Conclusions

The deliverable – v3 – has accomplished to conclude the story initiated and continued from the
deliverable v1 and v2 with the same name. The first two deliverables presented the initial PoC
development and the improvements in the year 1 and 2 respectively. The current one presents
more general aspects of the tool in the sense of early experiments and main innovations,
followed by the lessons learned and future work.

The appendix of this documents includes the technical details, developer notes and user manual
of the components. The future work of this component can be followed on the corresponding
Git repositories expressed in the introduction Section. The last details covering PIACERE and IaC
Scan Runner, focusing on integration in the PIACERE IDE and PIACERE framework will be
presented in the last technical deliverable “PIACERE DevSecOps framework v3” and updated
also on the online documentation pages.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 27

www.piacere-project.eu

6 References

[1] E. Morganti, “D2.2 PIACERE DevSecOps Framework Requirements specification,
architecture and integration strategy – v2,” Zenodo, 2023.

[2] N. Petrović, M. Cankar and A. Luzar, “Automated Approach to IaC Code Inspection Using
Python-Based DevSecOps Tool,” in 2022 30th Telecommunications Forum (TELFOR),
Belgrade, 2022.

[3] M. C. A. Luzar and G. Celozzi, “D4.4-IaC Code security and components security inspection-
v1.0,” 2021. [Online]. Available: https://www.piacere-
project.eu/sites/d8piacere/files/Deliverables/D4.4-
IaC%20Code%20security%20and%20components%20security%20inspection-
v1_V1.0_20211130.pdf. [Accessed 21 November 2022].

[4] N. Petrovic, “ChatGPT-Based Design-Time DevSecOps,” 2023.

[5] J. Alonso, P. Radoslaw and C. Matija, “Embracing IaC through the DevSecOps philosophy:
Concepts, challenges, and a reference framework,” IEEE Software, 2022.

[6] I. Consortium, “ICOS H2020 Web page,” 2023. [Online]. Available: https://www.icos-
project.eu/.

[7] “Swagger UI,” [Online]. Available: https://swagger.io/tools/swagger-ui/. [Accessed 20
November 2022].

[8] “Python Package Index (PyPI),” [Online]. Available: https://pypi.org/project/iac-scan-
runner/.

[9] “IaC Scan Runner Docker image,” [Online]. Available:
https://hub.docker.com/r/xscanner/runner.

[10] “Common Weaknes Enumeration,” [Online]. Available: https://owasp.org/www-project-
dependency-check/. [Accessed 10 2021].

[11] E. Morganti, A. Motta, L. Blasi, C. Nava and C. Bonferini, “D2.1 PIACERE DevSecOps
Framework Requirements specification, architecture and integration strategy - v1,” 2021.

[12] “PyMongo 4.3.3 Documentation,” [Online]. Available:
https://pymongo.readthedocs.io/en/stable/. [Accessed 21 November 2022].

[13] “MongoDB,” [Online]. Available: https://www.mongodb.com/. [Accessed 21 November
2022].

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 27

www.piacere-project.eu

APPENDIX: Implementation, delivery and usage

1 Implementation

1.1 Fitting into overall PIACERE Architecture

The IaC Security Inspector and IaC Component Security Inspector are a part of the PIACERE
Vulnerability tools. The Vulnerability tools are used to check DOML, which is achieved with
Model checker and check the IaC generated from the DOML, which is done by IaC Security
Inspector and IaC Component Security Inspector.

In the overall architecture, the IaC Security Inspector and IaC Component Security Inspector fit
into a set of design tools. The services are initiated by IDE after IaC will be generated from the
DOML language. The inputs of the IaC Security Inspector and Component inspector are
simplified to allow scanning IaC packages (such as zip or tar files). The outputs are be formatted
as JSON and will be sorted by tools.

The main integration point is a RESTful API that will allow scanning IaC for issues and
vulnerabilities. Another possible integration that can be established through the CLI, which
offers the integration in console environments. This facilitates running the API within shell or
interacting with it using different CLI commands. The API is encapsulated in a public Docker
image, which makes it possible to run across all platforms. The different tools and services for
IaC scanning have documentation of how each of these tools can be used and configured to fit
the user’s expectations. Future implementations may also introduce Software as a Service
component that will allow users to organize their scans in a multi-workspace environment. Here
we could provide the SaaS API, CLI, GUI and a possible standalone Eclipse plugin for a smoother
integration.

1.2 Technical description

In this section we will present the IaC security inspector and Component security inspector in
detail. The sequence diagram in Figure 2 presents activities of both tools. The standard IaC
Security Inspector workflow starts with the user that desires to inspect his IaC with triggering
the service directly from the PIACERE IDE. Within the IaC code inspection process, the IaC
inspector initiates and runs the necessary checks (linters, configuration checks) using its internal
worker. After that the inspector obtains the check results and returns them back to the user.

The Component Security Inspector has different task, which focuses on finding vulnerabilities in
IaC dependencies (e.g., Python packages). As shown on the second block in Figure 2 the
Component Security Inspector initiate component checks and seeks for component issues and
misconfigurations. After getting the job done, the component creates an output and sends it
back to IDE.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 27

www.piacere-project.eu

Figure 2: Simplified sequence diagram of IaC Security and IaC component inspectirs.

As it is evident from the sequence diagram in Figure 2, both tools have the similar interface and
similar basic calls are required for managing the checks, starting checks, and stopping the checks.
From the integrational perspective, the tools can be developed within one universal interface
that can cover requirements of both tools. During the security check and security scan service
review, we realised that some checks can also perform both types of checking - the IaC and
component one. That means that a particular check could act as an IaC Security inspector or IaC
component inspector or in case of more comprehensive checks – it can belong to both
component types. This led us to the unification of the development of core element for both
components, which we called as IaC Scan Runner.

IaC Scan Runner is an individual component that can run IaC Security Inspector or IaC
Component Inspector checks included in scans. In other words, users interacting with the
component can use it as any combination of both tools – only IaC scans, only component scans,
and combined. The choice of how this component acts is defined by the list of enabled checks
performed over the IaC.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 27

www.piacere-project.eu

Figure 3: IaC Scan Runner archive scan workflow with persistence and configurations

1.2.1 Prototype architecture

The previously introduced IaC Scan Runner is a technical component that can run security scans,
while the type of the scan defines which the component type (IaC Security Inspector or IaC
Component inspector). The IaC Scan Runner component diagram in Figure 4 presents the idea
in the current prototype development, and Figure 3 presents the sequence diagram, showing
the main user scenarios. The IaC Scan Runner is developed as a service inside the docker
container. Basically, the service provides an API for configuring scans, managing scans, and
retrieving outputs. The configuration manager keeps the configuration of each check, the Scan
worker sets up the scan workflows according to the documentation and executes the scans. The
processes inside a container are performing scans one by one. When the scans are finished, the
service combines the output and sends it back to the IDE.

The idea of hiding complexity of the IaC Security Inspector and Component Security Inspector
inside the IaC Scan Runner is done intentionally to ease the tool integration inside the PIACERE

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 27

www.piacere-project.eu

solution. Beside relying on the integrated checks, we envision also to run third-party remote
scan services that are available to the user through free or paid remote services,e.g., like Snyk
and Spotter which are already intergrated). These comprehensive services can include any
possible checks from linters, QA, security or component check provided by a third party.

Figure 4: Component diagram

1.2.2 Components description

The IaC Scan Runner (Figure 4) is comprised of the following components:

• REST API is the main interface that will be called by the PIACERE IDE. In particular cases,
if needed it would be also possible to create a corresponding CLI application that could
make the call to the API, which would enable integration of the tool in the continuous
integration (CI) scripts.

• The configuration manager takes care of the IaC Scan Runner project configurations.
Each project includes the set of available checks, list of enabled/disabled checks for
scan, configuration of each integrated or remote check. For example, remote scan
services will need the URL and credentials to perform the scans.

• Configuration database stores all project settings of the installed checks and provide
them when some scans are performed.

• The Scan Worker takes care of scan execution. This means that it takes all checks and
configurations of the same type (IaC, Component or Remote) and prepares workflows
to be executed. The output of the scans is collected by the output generator.

• Scan workflows presents a set of processes that perform scans.

• The output generator gathers the outputs of scans and forms the output for IDE. This
includes filtering outputs, creating the summary, and ordering and ranking the outputs.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 27

www.piacere-project.eu

All components are designed to run together inside a docker container, which can be set up
locally on a developer’s machine or be available as a service.

1.2.3 Technical specifications

The IaC Scan Runner that is developed within PIACERE is written in Python programming
language. The REST API uses OpenAPI Specification, whereas Swagger UI [7] and ReDoc are used
to document it. The general documentation (in Figure 6) for IaC Scan Runner uses Sphinx
documentation tool (with Read the Docs theme), where the docs can be easily rendered from
RST files. The IaC Scan Runner CLI, which is used to run the REST API from the console is also
written in Python and is regularly published on Python Package Index (PyPI [8]) as the iac-scan-
runner pip package (the development version of the package is available on Test PyPI). The API
is designed using FastAPI - a modern and high-performance web framework and the CLI is build
using Click-based Typer Python library. Apart from a local installation, both REST API and docs
can be also distributed as a Docker image, where the images are stored within the xscanner
Docker Hub community organization. The Docker image for the IaC Scan Runner tries to be as
general as possible (currently it is based on Python slim-buster Debian release). This allows
installing almost all possible checks, because the check linters and tools are usually written in all
different languages and therefore require different installation procedures. The download and
installation of checks is initiated by a simple bash script, which ensures that the checks are
available to be used by the REST API.

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 27

www.piacere-project.eu

2 Delivery and usage

This section will first describe the package info and the installation of IaC Scan Runner and then
its usage through the REST API and CLI.

2.1 Package information

The IaC Scan Runner module is delivered as a Docker application including a service accessible
through an API. The xscanner/runner [9] Docker image (Figure 5) is updated and published
regularly on Docker Hub. The CLI that is currently able to run the API is available as iac-scan-
runner Python package and is published on PyPI [8] . Both, API and CLI use semantic versioning
for new releases and the latest available version is 0.3.0.

Figure 5: Docker Image

Some of the IaC Scan Runner services are already available to the PIACERE consortium partners
on public links:

• REST API: https://scanner.xopera.piacere.esilab.org/iac-scan-runner/

• Swagger UI: https://scanner.xopera.piacere.esilab.org/iac-scan-runner/swagger/

• ReDoc: https://scanner.xopera.piacere.esilab.org/iac-scan-runner/redoc/

• Documentation: https://scanner.xopera.piacere.esilab.org/docs/

 DRAFT

http://www.medina-project.eu/
https://scanner.xopera.piacere.esilab.org/iac-scan-runner/
https://scanner.xopera.piacere.esilab.org/iac-scan-runner/swagger/
https://scanner.xopera.piacere.esilab.org/iac-scan-runner/redoc/
https://scanner.xopera.piacere.esilab.org/docs/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 27

www.piacere-project.eu

Figure 6: Documentation page

2.2 Installation instructions

This section will cover the various installation options available for the IaC Scan runner. The
installation process will differ depending on how the user intends to run the IaC REST API.
MongoDB is essential as it stores the project configurations used by the IaC scan runner. If user
did not use Docker Compose for setup, please execute following commands:

Export env variables
export MONGODB_CONNECTION_STRING=mongodb://localhost:27017
export SCAN_PERSISTENCE=enabled
export USER_MANAGEMENT=enabled

Setup MongoDB
$ docker run --name mongodb -p 27017:27017 mongo

2.2.1 Running with Docker

The REST API can be run using a public xscanner/runner Docker image as follows:

run IaC Scan Runner REST API in a Docker container and navigate to
localhost:8080/swagger or localhost:8080/redoc
$ docker run --name iac-scan-runner -p 8080:80 xscanner/runner

It is also possible to build the image locally. To do so follow these steps:

Clone the repository
$ git clone https://github.com/xlab-si/iac-scan-runner.git

DRAFT

http://www.medina-project.eu/
https://github.com/xlab-si/iac-scan-runner.git
https://github.com/xlab-si/iac-scan-runner.git

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 27

www.piacere-project.eu

Move to the repository and run following command
$ docker build -t iac-scan-runner .

Now image can me run by following command
$ docker run --name iac-scan-runner -p 8080:80 iac-scan-runner

2.2.2 Run from CLI

To run using IaC Scan Runner CLI execute following commands:

Install the CLI
$ python3 -m venv .venv && . .venv/bin/activate
(.venv) $ pip install iac-scan-runner

print OpenAPI specification
(.venv) $ iac-scan-runner openapi

Install prerequisites
(.venv) $ iac-scan-runner install

Run IaC Scan Runner REST API
(.venv) $ iac-scan-runner run

2.2.3 Run from source

To run locally from source with uvicorn:

Clone the repository
$ git clone https://github.com/xlab-si/iac-scan-runner.git

Move to cloned repository and install prerequisites
$ python3 -m venv .venv && . .venv/bin/activate
(.venv) $ pip install -r requirements.txt
(.venv) $./install-checks.sh

run IaC Scan Runner REST API (add --reload flag to apply code changes on the way)
(.venv) $ cd src
(.venv) $ uvicorn iac_scan_runner.api:app

To run locally from source with docker compose:

Clone the repository
$ git clone https://github.com/xlab-si/iac-scan-runner.git

Move to cloned repository and run following command
docker compose up

2.3 User Manual

The IaC Scan Runner API enables users to interact with the primary IaC inspection component
and start IaC scans. It offers a range of IaC checks that can be filtered and customized to suit
specific requirements. Users can select either all or a subset of checks to be executed during an
IaC scan. Upon completion of the scan, the API will provide a comprehensive report of all the
check results.

DRAFT

http://www.medina-project.eu/
https://github.com/xlab-si/iac-scan-runner.git
https://github.com/xlab-si/iac-scan-runner.git
https://github.com/xlab-si/iac-scan-runner.git
https://github.com/xlab-si/iac-scan-runner.git

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 27

www.piacere-project.eu

The default endpoints in the API are feature that has been deprecated, meaning they are no
longer recommended for use because they may be removed in the future. However, some back
compatibility endpoints still exist and are listed in Table 3.

Table 3: Back-compatibility API calls

REST API Endpoint Description

GET /default/checks Retrieve and filter supported checks

PUT /default/checks/{check_name}/enable Enable check for running

PUT /default/checks/{check_name}/disable Disable check for running

PUT /default/checks/{check_name}/configure Configure check

POST /default/scan Initiate IaC scan

Project endpoints allow user to set up and configure check on a per-project basis. These
endpoints, presented in Table 4, provide functionality for creating, editing projects as well as
configuring checks.

Table 4: IaC Scan Project management API calls.

REST API Endpoint Description

GET /project/results Get scan results per project

GET /project/checks Retrieve and filter supported checks per
project

PUT /project/checks/{check_name}/enable Enable check for running per project

PUT /project/checks/{check_name}/disable Disable check for running per project

PUT /project/checks/{check_name}/configure Configure check per project

POST /project Generate new scan project

POST /project/scan Initiate IaC scan

DELETE /project/results/{uuid} Delete scan result per result uuid

If your IaC Scan Runner is already set up you can navigate to /swagger or /redoc where you can
user the interface to test the API. In this example, we will use curl for calling the API endpoints.

1. Lets create a project named test.

curl -X 'POST' \
 'http://0.0.0.0/project?creator_id=test' \
 -H 'accept: application/json' \

 -d ''

2. For example, lets say that we want to initaite all check expect ansible-lint. Lets disable
it.

curl -X 'GET' \

'http://0.0.0.0/project/checks?project_id=1e7b2a91-2896-40fd-8d53-
83db56088026' \
 -H 'accept: application/json'

DRAFT

http://www.medina-project.eu/

D4.6 – IaC Sec. and components sec. Insp. - v3 Version 1.0 – Final. Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 27

www.piacere-project.eu

3. For IaC-Scan-Runner to work files are expected to be a compressed archives (usually
zip files). In this case response type will be json, but it is possible to change it to html.
Please change YOUR.zip to path of your file.

curl -X 'POST' \
'http://0.0.0.0/project/scan?project_id=1e7b2a91-2896-40fd-8d53-
83db56088026&scan_response_type=json' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'checks=' \
-F 'iac=@YOUR.zip;type=application/zip'

2.4 Licensing information

IaC Scan Runner is licensed under open-source Apache License 2.0.

2.5 Download

The source code for IaC Scan Runner is available within xlab-si/iac-scan-runner GitHub
repository and the documentation is visible in xlab-si/iac-scanner-docs or can be explored
publicly on GitHub Pages. GitHub Actions are being used for the CI/CD tests and for building
Docker images and packages.

DRAFT

http://www.medina-project.eu/
https://github.com/xlab-si/iac-scan-runner
https://github.com/xlab-si/iac-scanner-docs
https://xlab-si.github.io/iac-scanner-docs/

