
D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final. Date: 31.05.2023

Deliverable D3.3

PIACERE Abstractions, DOML and DOML-E – v3

Editor(s): Sergio Canzoneri, Elisabetta Di Nitto

Responsible Partner: Politecnico di Milano/ PoliMi

Status-Version: Final - v1.0

Date: 31.05.2023

Distribution level (CO, PU): Public

DRAFT

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 51

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: PIACERE Abstractions, DOML and DOML-E – v3

Due Date of Delivery to the EC 31.05.2023

Workpackage responsible for the
Deliverable:

WP3 - Plan and create Infrastructure as Code

Editor(s): Politecnico di Milano/PoliMi

Contributor(s): Go4it, HPE, Prodevelop, Tecnalia

Reviewer(s): Ismael Torres (Prodevelop)

Approved by: All Partners

Recommended/mandatory
readers:

WP4, WP5, WP6, WP7

Abstract: This deliverable is the output of tasks 3.1, 3.2 and 3.3. It
presents the final version of the DOML (v3.0). DOML is a
domain-specific language designed for modelling the
cloud applications and the infrastructural resources,
hiding the specificities and technicalities of the current
IaC solutions and increases the productivity of these
teams. DOML is complemented by DOML-E (KR4), which
is the set of extension mechanisms defined for the
language. They allow new infrastructural components,
e.g., for software execution, network communication,
cloud services, or data storage, to be incorporated in the
DOML language. This deliverable presents the DOML
metamodel and syntax and its extension mechanisms,
DOML-E. Moreover, it includes an overview of the
changes in the language since the previous deliverable
D3.2 and discusses about the level of accomplishment of
the requirements formulated within the PIACERE project.
A preliminary evaluation of DOML is presented together
with some examples of DOML usage. Finally, the
deliverable includes an overview about the lessons learnt
and future directions for the extension of the language
beyond the scope of the PIACERE project.

Keyword List: Model-driven engineering, metamodels, modelling
abstractions, Infrastructure as Code

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 51

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 16.03.2023 Table of contents defined PoliMi

v0.2 06.04.2023 Material collected ALL partners

v0.3 15.05.2023
Complete draft version ready for
review

PoliMi

v.0.4 19.05.2023 Reviewed version Prodevelop

v0.5 29.05.2023 Final version after review. PoliMi

v1.0 30.05.2023
Final quality check. Ready for
submission

TECNALIA

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 51

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction .. 8

1.1 About this Deliverable ... 8

1.2 Document Structure .. 9

2 DOML (KR1) and DOML-E (KR4) .. 10

2.1 Overview ... 10

2.1.1 DOML main characteristics ... 11

2.1.2 DOML metamodel ... 12

2.1.3 DOML syntax ... 14

2.1.4 DOML-E ... 15

2.1.5 DOML supporting components ... 17

2.2 Changes in the latest version .. 18

2.3 Functional description and requirements coverage ... 19

2.3.1 Requirements coverage .. 19

2.3.2 Scenarios ... 22

2.4 Main innovations ... 25

3 Overview of preliminary experiments... 27

3.1 Empirical evaluation .. 27

3.2 Reference test cases example ... 28

3.2.1 Introduction and comparative table ... 28

3.2.2 WordPress Website ... 29

3.2.3 NginX ... 34

4 Lessons Learnt and Plan for Future Development .. 38

5 Conclusions ... 40

6 References ... 41

APPENDIX: Further details about the DOML ... 42

1 Simplified version of the Ericsson case ... 42

1.1 Case short description ... 42

1.2 DOML model ... 42

2 User manual to extend DOML ... 50

2.1 Required tools ... 50

2.2 Metamodel update ... 50

2.3 Syntax update .. 50

2.4 Testing applied changes and updating the ICG ... 51

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 51

www.piacere-project.eu

 List of tables

TABLE 1. REQUIREMENTS ON THE GENERAL CHARACTERISTICS OF DOML. ... 19
TABLE 2. REQUIREMENTS ON THE SPECIFIC ELEMENTS TO BE MODELLED IN DOML. 20
TABLE 3. COMPARISON BETWEEN DOML AND OTHER IAC APPROACHES. .. 27
TABLE 4. COMPARATIVE TABLE FOR TEST CASES EXAMPLES .. 29

List of figures

FIGURE 1. DOML POSITIONING IN THE PIACERE APPROACH. ... 10
FIGURE 2. COMMONS LAYER DIAGRAM ... 12
FIGURE 3. APPLICATION LAYER DIAGRAM ... 13
FIGURE 4. INFRASTRUCTURE LAYER DIAGRAM ... 13
FIGURE 5. CONCRETE LAYER DIAGRAM .. 14
FIGURE 6. OPTIMIZATION LAYER DIAGRAM .. 14

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 51

www.piacere-project.eu

Terms and abbreviations

CMS Content Management System

CSP Cloud Service Provider

DevOps Development and Operation

DoA Description of Action

EC European Commission

EDMM Essential Deployment Metamodel

FaaS Function as a Service

GA Grant Agreement of the project

IaC Infrastructure as Code

ICG IaC Code Generation

ICMP Internet Control Message Protocol

IEP IaC Execution Platform

IOP IaC Optimization

KPI Key Performance Indicator

MC Model Checker

NFR Non-Functional Requirement

SW Software

TBCG Template-Based Code Generation

VM Virtual Machine

AWS Amazon Web Services

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 51

www.piacere-project.eu

Executive Summary

This document extends deliverable D3.2 [1], including the progress of the DOML development
to fulfil the requirements during the evolution of the project.

DOML (PIACERE KR1) is a domain-specific language designed for modelling cloud applications
and infrastructural resources, hiding the specificities and technicalities of current IaC solutions
and increasing productivity of these teams. DOML models are created using the PIACERE IDE
(PIACERE KR2), which provides users with guidance and it also integrates all other design-time
PIACERE tools. Then, the DOML models are translated through the Infrastructural Code
Generator (ICG, PIACERE KR3), into the target IaC languages for complex applications.

The DOML is complemented by DOML-E (KR4), which is a set of extension mechanisms defined
for the language. They allow new infrastructural components, e.g., for software execution,
network communication, cloud services, or data storage, to be incorporated in the DOML
language.

This deliverable provides an overview of DOML and DOML-e. Furthermore, it highlights the
changes that have been introduced in DOML compared to what was reported in the previous
deliverables and presents the status of requirements fulfilment. Additionally, the document
highlights the main innovations introduced by DOML and DOML-e and provides an overview of
the experiments developed so far by using the DOML. Finally, it presents the main lessons learnt,
an outlook to the future beyond the scope of the PIACERE project, and the conclusions of this
deliverable. It includes in the Appendix the DOML details for one of the PIACERE Use Cases and
a guide on how to extend DOML.

The deliverable is also accompanied by two external annexes, the first one [2] provides a
detailed definition of all concepts of the DOML, the second one (Canzoneri, 2023) is a tutorial
that allows end users to become proficient with the language. Both are released as separated
documents to facilitate their usage and evolution independently of this deliverable.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 51

www.piacere-project.eu

1 Introduction

This deliverable presents the DOML language and the mechanisms that have been developed to
support its extension. It is an update of the previous deliverable D3.2 [1] but it is written to be
self-contained.

Through the PIACERE project development, multiple versions of the DOML language have been
released, starting from DOML 1.0 presented in deliverable D3.1 [4], to DOML 3.0 which is the
focus of the current deliverable.

DOML is characterised by a metamodel, encoded in ECore [5]-- a metamodeling approach
offered by Eclipse -- and by a syntax. Thanks to the usage of Xtext [6], the DOML editor guides
the user through the DOML syntax and allows him/her to define syntactically correct models.
The DOML-DOMLX conversion is a supporting service that, given a DOML model can generate a
serialized representation of its data structures, the DOMLX, which is the DOML PIACERE internal
representation. By the end of the project, the DOML-DOMLX conversion service will support also
the backward translation from DOMLX into the DOML syntax. Thanks to DOMLX, the PIACERE
tools can maintain their independency from the specific syntax adopted for the DOML.
Moreover, the backward translation that will be offered by the DOML-DOMLX conversion
service will allow even the transformation of DOML models written according to a previous
version of the language into the latest version, thus greatly contributing to the backward
compatibility of the language.

1.1 About this Deliverable

The purpose of this deliverable is to provide a general presentation of the DOML and its
extension mechanisms, DOML-E.

As mentioned above, the main objective of the DOML has been to reduce the effort needed to
automate the deployment and operation of an application in combination with its underlying
infrastructure. This has resulted in the development of a high-level modeling language that is
then translated, through the ICG, into de-facto IaC standard languages supporting the Ops
phases of the software lifecycle.

The DOML has been developed taking as a reference the resources and configurability options
made available by the main cloud providers, considering the main characteristics of the IaC
languages used as a reference, and taking into account the needs of the PIACERE case studies.

The purpose of this deliverable is to report on the work done, to show in practice how DOML
works and how it can be used in concrete examples, and to provide a summary of lessons learnt
and the plan for future development beyond the end of the PIACERE project.

Being this the final version of a series of three deliverables, it has been chosen to make it self-
contained. As such, part of its content is a repetition and revision of what has been presented
in previous deliverables.

The main innovations introduced since the previous version of this deliverable D3.2 [1], consist
in the following aspects:

• Consolidation and clean-up of the DOML modelling language which has now reached
version 3.0. Through the PIACERE project the following main versions of the language
have been released: 1.0 at the end of the first project year, 2.0 and 2.1 during the second
project year, 2.2.1 and 2.2.2 in the third year.

• Consolidation of the extension mechanisms (DOML-E).

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 51

www.piacere-project.eu

• Elaboration of the examples of use of the DOML language using the PIACERE IDE, their
validation through the Model Checker, their optimization through the IOP tool, and the
generation of the corresponding IaC code through the ICG.

As discussed in further details in this deliverable, of the 18 requirements defined in PIACERE and
associated to the DOML, 16 have been achieved completely and 2 partially.

1.2 Document Structure

The document is organized as follows:

• Section 2 provides a general overview of the DOML and DOML-e, of their changes
compared to the version reported in D3.2, and of their main innovations.

• Section 3 provides an overview of the examples of usage of the DOML and DOML-e.

• Section 4 summarizes the lessons learnt and the plan for future development.

• Section 5 concludes the deliverable.

The deliverable is accompanied by an Appendix providing further details on a DOML model
example that has been used as a reference to extend the language and on how to extend the
DOML language by introducing new concepts in the DOML metamodel. Finally, the deliverable
includes also Annex 1 [2] which presents the detailed specification of the DOML concepts and
Annex 2 (Canzoneri, 2023) which provides a tutorial of the language usage.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 51

www.piacere-project.eu

2 DOML (KR1) and DOML-E (KR4)

2.1 Overview

The DevOps Modelling Language (DOML) aims at offering a high-level declarative approach to
the definition of an application and its infrastructure. DOML models are mainly structured in
three layers. Specifically, software components (e.g., web servers, databases, etc.) are described
in the application layer, abstracting away from the infrastructure on which they are supposed
to run. Infrastructure components are specified in the abstract infrastructure layer, and then
linked to the applications they are supposed to host. This layer models infrastructural facilities,
such as virtual machines, networks, containers, etc., without referring to their actual
concretization in specific technologies (e.g., AWS or OpenStack VMs, Docker containers). This
last aspect is tackled by the concrete infrastructure layer, where the user specifies the
infrastructure components offered by the Cloud Service Provider (CSP).

The adoption of this three layers approach allows us to overcome a limitation of the currently
available Infrastructure as Code (IaC) languages that tend to focus on specific aspects, either the
configuration of the specific infrastructural elements or the installation and configuration of
software elements, thus making difficult for DevOps teams to have a complete overview of their
whole system [7].

As it happens for typical programming languages, DOML offers some extension mechanisms,
DOML-E, that keep the language open to the addition of new resources, both at the abstract
and concrete layers.

Figure 1. DOML positioning in the PIACERE approach.

Figure 1 shows the positioning of the DOML in the PIACERE ecosystem. The numbers associated
to the arrows are described in detail in [8] and represent the steps of the workflow activated
when a user wants to create a DOML model. More specifically, the user exploits the IDE to design
the model. The DOML ecore [5] and Xtext [6] representations allow the IDE to support the user
by providing suggestions about the syntax to use. Through the IDE, the user can exploit all other
tools in the figure. More specifically, through the Infrastructural Elements Catalogues he/she
can obtain information about the resources that are known to PIACERE. Through the Model
Checker it is possible to verify the correctness of the model in terms of internal consistency and
fulfilment of explicitly defined requirements. Through the IOP it is possible to obtain a mapping
of the abstract infrastructure layer into a concrete infrastructure, through the IGC the

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 51

www.piacere-project.eu

generation of IaC and, finally, through the IaC Scan Runner the verification, from the security
perspective, of the final code.

The DOML ecore and Xtext implementations are available in the PIACERE public repository
together with a tutorial presenting the usage of the DOML1. In the following of this section, the
main characteristics of the DOML are presented together with the metamodel that regulates its
usage and the language syntax to be used by external users. Furthermore, DOML extension
mechanisms are explained, and finally, the DOML supporting components are presented. These
include: i) a web service that translates DOML specifications in an internal format used by some
of the other PIACERE tools, the DOMLX, and vice versa; ii) a component called DOMLIZER that is
in charge of receiving resource descriptions available in the catalogue and transforming them
into DOML fragments.

2.1.1 DOML main characteristics

The DOML provides the following main characteristics.

• Reduce the need for polyglotism in DevOps teams: as it has been mentioned in the
previous section, typical IaC approaches are focused on specific aspects of the system
life cycle. For instance, Terraform is focused on resource provisioning, Ansible on the
configuration and execution of software layers on top of existing resources, container
technologies such as Docker on the creation of proper execution environments for
software components, orchestrators such as Kubernetes on the management of
containers and their possibility to scale in/out. This implies the need to have a polyglot
DevOps team able to show a reasonable level of proficiency on multiple IaC languages
and approaches. DOML, in combination with the translation features offered by ICG [9],
allows its users to define a single DOML model that, at the time of writing, can be used
for resource provisioning and software configuration and execution. While the other
aspects that have been enumerated are not covered yet, they can be potentially
addressed through the development of ICG templates developed to translate the DOML
model into proper target IaC languages. This will be the subject of future work beyond
the scope of the PIACERE project.

• Facilitate the instantiation of an abstract infrastructure on top of different resource
providers: one of the issues that is often faced by DevOps teams is the need to deploy a
specific application on different cloud providers. This is due to multiple reasons, ranging
from the opportunities deriving from special deals offered by different providers in
different cases to the need to avoid so-called vendor locking, that is, the case when it
becomes very expensive and difficult for the team to move to a different provider.
The multi-layered approach offered by the DOML has the potential to reduce the effort
of the team in exploiting resources from different providers. In fact, the application and
the abstract infrastructure layers of a DOML model can be reused when moving from
one provider to the other, while associations to multiple providers’ resources can
coexist in the same model.

• Keep the external representation of a DOML model separate from the internal one. As it
has been mentioned before, the DOML internal representation is separated from the
external one. Thanks to this design choice, different external representations can be
associated to the same DOML model. This can be useful to accommodate preferences
of different users. While the first external representation developed is a textual one, as
part of the IDE development, the usage of Eclipse-based frameworks that support the

1 https://git.code.tecnalia.com/piacere/public/the-platform/doml

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/doml

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 51

www.piacere-project.eu

creation of a graphical representation has been experimented. A proof of concept of
this is under development and will be made available by the end of PIACERE project.

2.1.2 DOML metamodel

The DOML metamodel consists of several “layers”, which incrementally enrich the description

of the cloud-based applications that will be managed inside PIACERE. Each layer provides a

unique point of view of the applications; yet all the layers are built up for a comprehensive

application description. This approach allows developers to describe how cloud applications are

structured in an abstract manner, mapping the different software components to the concrete

infrastructure elements, enabling the usage of different concretizations to match one particular

deployment.

2.1.2.1 Commons Layer

The Commons Layer contains the main abstract application agnostic concepts that are shared

among different layers (see Figure 2). The DOML extension mechanisms (DOML-E) are also

addressed in this layer by setting up the basic elements that will allow creating new concepts

and properties in the top layers.

Figure 2. Commons Layer diagram

2.1.2.2 Application Layer

The Application Layer (see Figure 3) contains the information to describe the components and

building blocks that compose the applications, as well as the functional requirements of each of

them in terms of software interfaces and APIs. Finally, this layer describes how the application

is deployed into the different infrastructure components.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 51

www.piacere-project.eu

Figure 3. Application Layer diagram

2.1.2.3 Infrastructure Layer

The Infrastructure Layer (see Figure 4 for an overview) defines the abstract infrastructure

elements that will be used to deploy the application components. The readability of the figure

could not be improved for lack of space. A detailed description of all its elements is available in

the Annex [2]. Concepts in this layer will include information that is relevant to meet the

requirements of the applications. However, most of the concepts in this layer will require a

concretization, or in other words, a more concrete instance they will be mapped on. For

example, a virtual machine (VM) in this layer must be mapped to a concrete virtual machine

instance, either a VM from AWS or a specific VM deployed by the user.

Figure 4. Infrastructure Layer diagram

2.1.2.4 Concrete Layer

The Concrete Layer (see Figure 5) provides the tools to concretize the infrastructure elements

in the Infrastructure Layer and map them onto specific infrastructure instances either provided

by cloud runtime providers, such as AWS or Google Cloud, or provided by the users.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 51

www.piacere-project.eu

Figure 5. Concrete Layer diagram

2.1.2.5 Optimization Layer

The Optimization Layer (see Figure 6) defines all the information required for the optimizers to

locate the best configurations for cloud applications described with the DOML, such as

optimization objectives and non-functional requirements, as well as means to capture the

optimization solutions.

Figure 6. Optimization Layer diagram

2.1.3 DOML syntax

In order to offer to end users a tool to define a DOML model, a syntax has been developed by

means of the Eclipse Xtext™ [6] framework. Most approaches make the text syntax directly

derive from the metamodel (e.g., using tools such as the wizard provided by Xtext); however,

this kind of approaches leads to a one-to-one mapping of each element in the metamodel. To

achieve a high degree of flexibility for the language and improve its readability and ease-of-use,

it has been decided to use a different approach, developing an ad hoc syntax, yet carefully

aligned with the metamodel.

Diagrams showing the fully detailed syntax are available in [2] and a tutorial for beginners to get

familiar with the syntax can be found in [3].

The syntax structure follows the layered, incremental approach used for the metamodel.

 In a DOML model, an application can be described in four layers: application layer, abstract /

concrete infrastructure layer and optimization layer. In a declarative manner, layers are

described in sequence, allowing the user to completely describe an application from all the

different viewpoints.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 51

www.piacere-project.eu

Most of the elements can be introduced by means of a keyword and a unique identifier: all the

aspects related to such elements can be described through the usage of key-value pairs defined

within curly braces. A set of attributes is defined for each kind of element, covering all the main

features. Some code examples can be found in Section 4.

2.1.4 DOML-E

In order to meet the needs of the continuously evolving cloud markets, DOML includes extension
mechanisms that allow the users to create new concepts from the existing ones. These
extensions mechanisms are referred to as DOML-E. The DOML is currently extended in the
following ways:

• Creation of new concepts. The new concepts will require the definition of a
metaclassName. Extension elements exist in all the DOML layers, e.g., the Application
Layer includes the class ExtApplicationComponent that incorporates into the
Application Layer a new type of ApplicationComponent. Further details on the definition
of these extension classes are provided in the Annex.

• Definition of new properties. The set of properties and attributes associated to one
particular DOML concept can be extended to further increase its expressiveness.

• Usage of the GenericResource concept.

In the following subsections, the detailed steps for extending DOML are illustrated. More details
on the implementation-level steps for extending metamodel are presented in Section 2 of the
Appendix “Further details”.

2.1.4.1 Creation of New Concepts

Suppose that a new service concept and a new docker service concept would need to be
introduced in the infrastructure layer.

To this end, the metamodel will be firstly modified by creating in the Commons package a
metaclass named Service which extends the abstract class DOMLElement and includes the
necessary attributes and references. For the sake of simplicity and clarity, the following example
Service has been created:

class Service extends DOMLElement {

attr Integer port;

attr String [*] constraints;

}

In the above example, a Service is a DOMLElement which has a port attribute and several
possible constraints expressed with String (for simplicity).

Now considering that the container service is simultaneously a computing node and a service,
multiple inheritance is used to model this concept:

class Container extends ComputingNode, commons.Service {

ref ContainerImage #generatedContainers generatedFrom;

 val ContainerConfig [*] configs;

}

In above example, the existing container has been extended by another superclass. Note that
the references inside the class are associated to its ComputingNode characteristic.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 51

www.piacere-project.eu

Now the corresponding concrete syntax is ready to be created for them. For the service, it could
be used a grammar fragment, which could be used for any other service-related concept, shown
as follows:

fragment Service returns commons::Service:

(

 ('port' port=INT)? &

 ('constraints' '[' constraints+=STRING (',' constraints+=STRING)* ']'

)?

)

;

Since the Container concept can be reused, it has been updated by adding the characteristics as
a service:

Container returns infra::Container:

 'container' name=ID (('service' '{' DOMLElement Service) | '{' DOMLElement)

 configs+=ContainerConfig*

('disabled_monitorings' disabledMonitorings+=STRING

(','disabledMonitorings+=STRING)*)?

 '}'

;

Having introduced the above modifications in the metamodel and in the syntax, the new
container service construct can be used. The fragment below is a very simple example of DOML
script defined by the above model for a container service:

container service dns_server {

 port 53

 constraints [‘C1’, ‘C2’]

 host vm1 { … }

}

2.1.4.2 Definition of New Properties

In current DOML, most concepts contain properties that can be expressed by key-value pairs.
This is implemented by adding the property attribute in the superclass DOMLElement, since
almost all DOML concepts extend it. The detailed implementation is as follows:

abstract class DOMLElement {

 ...

 val Property [*] annotations;

}

abstract class Property {

 attr String key;

 ref DOMLElement reference;

 op Object getValue();

}

class IProperty extends Property {

 attr Integer value;

}

The above fragment of DOML metamodel shows an example of integer property definition.
Other properties like string, float, etc. are defined analogously.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 51

www.piacere-project.eu

A doml script example is as follows:

faas concrete_f {

 properties {

 lambda_role_name = "DemoLambdaRole"

 lambda_runtime = "python3.8"

 lambda_handler = "image_resize.lambda_handler"

 lambda_timeout = 5

 lambda_memory = 128

 }

 maps f

}

In the above example, different types of properties are defined for a concrete FaaS component
of an application.

When defining new properties, the Infrastructural Code Generator should be updated
accordingly. In the User Manual in Deliverable D3.6 [9] an explanation on how to do it can be
found.

2.1.4.3 Usage of the GenericResource concept

The GenericResource class has been introduced in DOML 2.2 to support some concrete generic
resources that are specialized in different IaC languages.

For any generic resource, the current version of DOML allows to specify its type and name.

The DOML definition of a generic resource is as follows:

generic_resource vsphere_dc {

 type “datacenter”

 gname “dc1”

}

This class is a specialization of the ConcreteElement class and, as such, it inherits the
“preexisting” attribute and the “refs_to” association to another ConcreteElement object: this is
particularly relevant, since this feature could be used to model already existing infrastructural
resources.

generic_resource vsphere_cl {

 preexisting true

 refs_to vsphere_dc

 type “compute_cluster”

 gname “cl1”

}

Examples of what generic resources could model are the following: data centers, clusters, pools,
etc.

2.1.5 DOML supporting components

2.1.5.1 DOMLIZER

The objective of the DOMLIZER is to simplify the access of new DOML users to existing resources,
like, for example, existing virtual machine descriptions, resources made available by runtime

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 51

www.piacere-project.eu

providers, etc. The PIACERE framework includes an element called the Infrastructure Elements
Catalogue-IEC (hereinafter the Catalogue), which stores definitions of such existing resources.
The information stored in the Catalogue, however, is not in DOML format, as it includes specific
data that is relevant for some of the tools in the PIACERE framework, but not to the user (e.g.,
monitoring and IOP).

The DOMLIZER tool provides the required API to link the elements in the Catalogue to DOML
models, performing a translation and including only the information relevant to the user in the
model. During the last year DOMLIZER has been improved to provide conversion support for the
new types of resources that have been introduced into the Catalogue:

• Existing resource element. This element describes existing virtual machines, databases
and storages.

• Image element. This element describes existing virtual machine images.

The DOMLIZER API allows the tools to request a Catalogue element that is returned according
to the DOML syntax. Among the other tools, the IDE has been equipped with a shortcut to the
DOMLIZER API to easily include Catalogue elements into the current DOML model with just one
click.

2.1.5.2 DOML-DOMLX conversion service

The IDE has integrated in the last year a REST service to convert DOML models from the textual
DOML files to the XML-based DOMLX format. This tool supports the rest of the IDE tools to easily
access the DOML format that best suits them to implement the functionality they are providing.

The implementation of the tool has been done using Xtext and Eclipse Modelling Framework. At
the moment, the development of the backward conversion from DOMLX to DOML is under
development. To ensure that files converted back from DOMLX are maintainable and readable
by users, the service is being implemented using a DOML specific formatter that keeps the DOML
files tidy and clean.

The service has been deployed in: https://d2x.ci.piacere.digital.tecnalia.dev/ and it uses the text
of the DOML/DOMLX file as input for the conversion.

2.2 Changes in the latest version

Compared to DOML v2.1, some modifications have been applied to both the metamodel and
the syntax in DOML v3.0.

Major changes consist in the introduction of some new concepts in DOML.
A few concepts (e.g., “DeployableElement”, “Node”) have been introduced to improve the
formal representation of some components, while some other concepts have been added to
express new concepts needed for the use case scenarios (e.g., “Source”) and to extend the
variety of aspects covered in DOML in a proper manner (e.g., “MonitoringRule”,
“GenericResource”).
This has led to achieve a higher degree of completeness and expressiveness of the language.
Furthermore, some minor changes have been applied to fix inconsistencies between the
metamodel and the syntax and to solve some technical issues arisen during the development of
use cases.

Finally, a feasibility study has been conducted to improve the uniformity and conciseness of the
syntax, which was consequently slightly modified to be easier to use.

Further details on such changes can be found in the Annex [2].

DRAFT

http://www.medina-project.eu/
https://d2x.ci.piacere.digital.tecnalia.dev/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 51

www.piacere-project.eu

2.3 Functional description and requirements coverage

The development of the DOML has been guided by the requirements that have been defined
with the collaboration of all PIACERE partners as part of Deliverables D2.1 [10] and D2.2_v1.1
[8] (this last one provides the latest version of such requirements and of the PIACERE
architecture). Additionally, the work done has been based on the definition of specific scenarios
that have guided the development of the new version of DOML from the beginning of the second
year of the project. In this section, it has been provided a summary of the current
accomplishment of the requirements relevant to the DOML and a final version of the specific
scenarios fulfilled by the language.

2.3.1 Requirements coverage

For the sake of clarity, the requirements are split in two tables, one focusing on the general
characteristics of the DOML (Table 2) and another concerning the elements of applications and
infrastructures the DOML should represent (Table 3). For each requirement, an explanation of
the level of achievement is provided together with an explanation. Requirements have been also
reordered to have the most general ones at the beginning of the Tables 2-3 followed by more
specific ones. For the sake of traceability, the requirement identifiers defined as part of WP2
have been kept.

Table 1. Requirements on the general characteristics of DOML.

Req ID Description Level of achievement and justification

REQ63 DOML must be
unambiguous.

Achieved: DOML is formally defined in terms of its translation into
the corresponding IaC code fragments. As such, it is not ambiguous
by definition.

REQ62 DOML must
support different
views.

Achieved: DOML allows models to be defined on a per-layer basis.
Layers represent different viewpoints on the system:

1) in the application layer, the definition of the application
components and the dependencies between them.

2) in the abstract infrastructure layer, an abstract definition of
the needed infrastructure, represented in terms of
categories of elements and their mapping with the
application-level components they are in charge of
executing.

3) in the concrete infrastructure layer, a definition of the
proper configuration information for the concrete
infrastructure elements to be used and their association to
the corresponding abstract elements.

4) In the optimization layer, a definition of multi-objective
optimization problem of infrastructure resource
provisioning.

REQ70 The DOML should
allow users to state
correctness
properties in a
suitable sub-
language (possibly
Formal Logic).

Achieved: This requirement is addressed in the DOML in two
different ways:

1) The main correctness relationships among elements in the
specification are directly defined as part of the language
semantics and are verified by the Model Checker [11].

2) It is also possible to express in the DOML some generic
constraints that, once again, are verified by the Model
Checker.

REQ76 DOML should allow
the user to model

Achieved: DOML models include the information relevant to the
listed phases.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 51

www.piacere-project.eu

information
needed for each of
the four
considered DevOps
activities
(Provisioning,
Configuration,
Deployment,
Orchestration)

REQ57 It is desirable to
enable both
forward and
backward
translations from
DOML to IaC and
vice versa

Partially achieved: DOML currently supports to the forward
translation to different IaC, e.g., Terraform and Ansible.
Enabling backward translations could open up the possibility to
incorporate existing IaC definitions into the DOML, thus increasing
reuse and the potential impact of the DOML itself. For the above
reason, we considered this as an interesting requirement. However,
it could not be addressed in the timeframe of the project, given the
complexity of the forward translation that had to be studied and
considered in several different cases.

Table 2. Requirements on the specific elements to be modelled in DOML.

Req
ID

Description Level of achievement and justification

REQ01 The DOML must be able
to model infrastructural
elements.

Achieved: This requirement is addressed by the DOML by
offering primitives to represent the most relevant
infrastructural elements: containers, virtual machines,
network elements, security groups, etc. Clearly, the
exhaustive definition of infrastructural elements as base
types in the DOML is not possible. For this, the DOML will
offer the possibility to define new elements through the
extension mechanisms (DOML-E).

REQ25 DOML should support the
modelling of security
rules (e.g., by type
tcp/udp..., and
ingress/egress port
definition)

Achieved: This requirement is fulfilled by the new concept of
security group, which contains both ingress and egress
security rules. It is also possible to specify the communication
protocol.

REQ26 DOML should support the
modelling of security
groups (containers for
security rules)

Achieved: This requirement is addressed by a specific
construct in the language.

REQ27 DOML should support the
modelling, provisioning,
configuration, and usage
of container engine
execution technologies
(e.g., docker-host)

Achieved: The DOML addresses this requirement by offering
constructs to define a container, a container image, and a
container file. A container can then be mapped on multiple
hosts and ports.

REQ28 DOML should support the
modelling of
containerized application
deployment (e.g.,
pull/run/restart/stop
docker containers)

Achieved: As stated for REQ27, the DOML offers the
possibility to model containers and its constituents. As stated
for REQ76, the DOML does not support the explicit modelling
of workflows to which the pull/run/restart/stop activities
belong to. DOML, however, supports the possibility to link
elements to script files of various kinds. This opens up the
possibility to define specific low-level operations on
containers as part of these script files.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 51

www.piacere-project.eu

REQ29 DOML should support the
modelling of VM
provisioning for different
platforms such as
(OpenStack, AWS) for
canary and production
environments

Achieved: This requirement is fulfilled with the possibility to
support different platforms for VM provisioning.

REQ30 DOML should enable
support for policy
definition constraints for
QoS/NFR requirements

Achieved: DOML supports the definition on QoS/NFR
requirements (see REQ61) as well as the definition of
monitoring rules. Further needs for the definition of
additional policies did not emerge so far.

REQ58 DOML should offer the
modelling abstractions to
define the outcomes of
the IoP

Achieved: This requirement has been fulfilled by introducing
the optimization solution concept which is composed of the
results of the optimization together with the decision
variables.

REQ59 The DOML should allow
users to define rules and
constraints for
redeployment,
reconfiguration, and
other mitigation actions

Achieved: The DOML addresses it by supporting the
definition of the requirements and constraints that should be
considered while performing mitigation actions. These
concern, for instance:

• the structural characteristics of the infrastructural
elements to be used (if the user states that a VM with 16
GB of RAM should be used for executing a certain
application component, any change of VM should ensure
that this requirement is still fulfilled) or

• the definition of non-functional requirements
predicating on response time, availability, or other
characteristics of application components.

Moreover, the DOML language supports the definition of
monitoring rules, in terms of monitoring conditions that can
trigger the execution of other monitoring and
reconfiguration strategies and the configuration of such
strategies.

REQ60 DOML should support the
modelling of security
metrics both at the level
of infrastructure and
application

Achieved: DOML now includes a specific syntax to describe
security metrics and monitoring rules associated to them.
Now the DOML supports the definition of strategies based on
Ansible playbook to enforce some security strategies.

REQ61 DOML must support the
modelling of NFRs and of
SLOs

Achieved: NFRs and SLOs definition is supported in DOML
and used to describe the constraints for the IOP
(infrastructure optimization).

REQ36 DOML to enable writing
infrastructure tests.

Partially achieved: Infrastructure testing typically focus on
injecting faults in specific points of the infrastructure and
then observing the reaction of the system. Chaos engineering
is the discipline that focuses on this aspect. A study on the
tools adopted in chaos engineering has been conducted as
part of a thesis work [12]. Some of the available tools can be
configured with the definition of the infrastructure and
application to be tested. In this respect, a DOML model
describing an application and the underlying infrastructure
can potentially be used as an input for such tools. This aspect
will be explored as future work beyond the end of the project.

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 51

www.piacere-project.eu

REQ111 The user could have the
possibility to add external
custom own IaC

Achieved: This requirement has been introduced in the last
project year to enable reuse of pre-existing IaC artifacts. The
DOML has been modified to allow the user to specify that a
software component can be managed through a pre-existing
source file interpreted by an engine that can be specified as
part of a DOML model. More details on this point are
described in Section 2.3.2.4.

2.3.2 Scenarios

This section presents the scenarios of DOML usage that have been specifically analysed and
addressed starting from the second project year. The structure of these scenarios is aligned with
the guidelines associated to agile development using Gherkin syntax
(https://cucumber.io/docs/gherkin/). They concern the following aspects:

• Create an empty DOML model and insert elements in a guided way in the model.

• Define a container and associate a software component to it.

• Associate a software component to specific IaC code.

• Create an autoscaling group.

• Define functional and non-functional requirements.

• Extend the DOML with new resources/providers.

The main feature to focus on is the following.

Feature: Creation of a new DOML for a specific software application

 As a PIACERE user I want to create a new DOML model to automate the

 provisioning of the corresponding resources and the deployment of the

 whole software stack and its configuration

The following scenarios defined have been all realized. While the purpose and the main
characteristic of each scenario remained the same through the development of the DOML, the
adopted DOML syntax has been improved. The one shown in the following subsections is the
last one aligned with DOML 3.0.

2.3.2.1 Scenario 1: create an empty DOML model

Scenario: Create a new empty DOML model

Given An installed PIACERE IDE

When user starts a new PIACERE DevOps project

Then a new DOML file is created

This scenario has been implemented as-is.

2.3.2.2 Scenario 2: insert a new DOML element in a model with the guidance of the IDE
helpers

Scenario: Insert a new DOML element in a DOML model

Given An empty DOML model

When user starts typing the keyword software_component or infrastructure or

...

And continues with an identifier for the element to be added

And adds needed details (properties or attributes defined for the specific

element type)

Then the new element is created

DRAFT

http://www.medina-project.eu/
https://cucumber.io/docs/gherkin/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 51

www.piacere-project.eu

This scenario has been implemented as-is.

2.3.2.3 Scenario 3 and 4: define a container and associate a component to it

Scenario: Define the container as part of the infrastructure and associate a

component to it

Given a DOML model

When user digits something like:

software_component c1 {

 source s1 {

 // e.g., ansible_code.yml

 entry "..."

 // e.g., ansible

 backend "..."

 }

}

...

container co1 {

 host vm1 {

 ...

 }

}

cont_image co1_img {

 generates co1

 image "docker.hub.io/myhub/co1:1.0"

}

vm vm1 {

 os "CentOS-7-2111"

 cpu_count 2

 mem_mb 8192.0

 iface i1 {

 //belongs_to net1

 }

}

...

deployment infra_config {

 c1 -> co1

}

Then software_component c1 is meant to be deployed within the container co1,

which is created from the specified image and is mapped into vm vm1.

In D3.2 [1] this scenario was divided in two different ones. Here they have been grouped
together as the container details are not anymore defined within the definition of a component
as it was in the initial idea. In DOML 3.0 the container instantiation is handled through the usage
of a specific syntax to describe from which image has been generated. The association between
a container and a VM is managed as a host configuration within the container definition, instead
of being specified in the deployment section. The credentials-related part is not necessary
anymore, since the access to the docker repository, where the container image resides, is
managed by the PIACERE IEM component [13].

2.3.2.4 Scenario 5: associate a software component to a specific IaC code

Scenario: Associate a software component to specific IaC code

Given a DOML model

When a user digits something like the following

software_component nio3_git {

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 51

www.piacere-project.eu

 source s1 {

 entry "ansible/provision.yml"

 backend "ansible"

 }

 properties {

 nexus_docker_registry_user = "***";

 nexus_docker_registry_password = "***";

 }

}

The software_component nio3_git relevant code is found in a folder in the

local workspace. The code is meant to be executed starting from the specified

entry, with the specified backend (Ansible in the example).

Compared to its previous version in D3.2 [1], this scenario has been slightly changed, since it has
been decided to have the relevant code for the necessary software components located in a
folder in the project workspace instead of supporting the usage of external URIs in DOML v3.0.

2.3.2.5 Scenario 6: create an autoscaling group

Scenario: Create an autoscaling group

Given a DOML model

When a user digits:

autoscale_group ag {

 vm vm_template {

 cpu_count 2

 mem_mb 1024.0

 iface i1 {

 belongs_to net1

 }

 credentials ssh_pass

 }

 min 1 max 2

}

Then autoscaling group is created,

And it contains a template for creating a VM instance with the specific

requirements on CPU, memory, etc.

And the scale is specified by the minimum and maximum number of VMs

This scenario hasn’t changed with regards to the previous version presented in D3.2 [1], since
there were not modifications related to autoscaling groups in the DOML syntax from v2.1 to
v3.0.

2.3.2.6 Scenario 7: define functional and non-functional requirements

Scenario: Define functional and non-functional requirements

Given a DOML model

When a user digits:

functional_requirements {

 req_ext ```

 > "example requirement to test"

 # Expr to parse

 not (

 vm is class infrastructure.VirtualMachine

 and

 vm is not class infrastructure.Storage

 or

 vm is not class infrastructure.Storage

 implies

 vm is class infrastructure.Storage

)

 iff

 not exists iface, apple (

 forall orange (

 vm has association infrastructure.ComputingNode->ifaces iface

 or

 vm has association infrastructure.ComputingNode->ifaces iface

DRAFT

http://www.medina-project.eu/

D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final Date: 31.05.2023

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 51

www.piacere-project.eu

)

 and

 vm has attribute infrastructure.ComputingNode->os Os1

)

 "Virtual Machine {vm} has no iface"

  ```; 

} 

Then functional requirements are created (which can be some external 

requirements in external DSL like the example) 

And they are dedicated to the verification tools 

When a user digits: 

nonfunctional_requirements { 

  req1 "Cost <= 70.0" max 70.0 => "cost"; 

  req2 "Availability >= 66.5%" min 66.5 => "availability"; 

} 

Then the nonfunctional requirements are created (which can be some numerical 

constraints like the example) 

And they are dedicated to the Optimization tools 

 

This scenario has been implemented as-is. 

2.3.2.7 Scenario 8: extend the DOML with new resources 

Scenario: Extending the DOML with new resources 

Given the existing DOML metamodel 

When a user creates a new class extending a specific DOML metaclass for a new 

resource 

And adding the needed attributes and references to other elements in the class 

And creating the desired concrete syntax in the grammar definition 

Then a new DOML supporting a specific new resource is created 

 

This scenario has been implemented as-is, as discussed in Section 2.1.4. 

2.4 Main innovations 

As discussed in Section 2.1.1, one of the main innovations introduced by the DOML concerns the 
possibility to define an infrastructure at an abstract level, using provider and technology-
independent concepts (e.g., virtual machine, container, network, …), and to instantiate it in 
multiple concrete infrastructures. Such concrete infrastructure definitions can coexist in the 
same DOML model. Moreover, the selection of the concrete infrastructures to adopt can be 
delegated to the IOP component that will select the optimal one or more based on criteria that 
are defined as part of the DOML model itself, thus reducing the effort required to DevOps teams.  

To evaluate the effectiveness of the DOML from the simplicity-to-use perspective, in [7], DOML 
models have been compared with Terraform and TOSCA/Cloudify-based specifications. The 
analysis highlights that Terraform and TOSCA/Cloudify IaC is heavily dependent on the selected 
provider, where each provider brings in a custom set of resources showing different parameters 
and configuration possibilities that must be mastered by the user willing to create an 
infrastructure. Another issue is the difficulty of acquiring from a Terraform code fragment an 
overview of the entire system to be run as the attention is exclusively focused on the 
infrastructural aspects.  

The possibility offered by DOML to define in a single model both the application and the 
underlying abstract and concrete infrastructure opens up to the possibility to verify the 
correctness of the model and, therefore, the instantiation of the application on top of the 
infrastructure and, in turn, the mapping of the abstract infrastructure on a concrete one. This 
verification is achieved through the model checker that is integrated within the PIACERE IDE and 
fully compatible with the DOML. 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3       Version 1.0 – Final Date: 31.05.2023 

© PIACERE Consortium  Contract No. GA 101000162                                  Page 26 of 51 

www.piacere-project.eu   

Another important innovation concerns the clear distinction that has been introduced between 
the external DOML representation and the corresponding internal one (also called DOMLX). The 
DOML-DOMLX conversion service (see Section 2.1.5) is the new component in charge of 
managing the DOMLX and any needed translation. Thanks to its availability, the compatibility 
between different DOML versions can be managed by translating an external DOML 
representation written in one version of the language into DOMLX and then, from this, back into 
a different version of the external language representation. 

Finally, other innovations critical to the consolidation of the whole PIACERE project consist in 
the following aspects: 

• Consolidation and clean-up of the DOML modelling language which has now reached 
version 3.0. Through the PIACERE project, the following main versions of the language 
have been released: 1.0 at the end of the first project year, 2.0 and 2.1 during the second 
project year, 2.2.1 and 2.2.2 in the third year. 

• Consolidation of the extension mechanisms (DOML-E). 

• Transformation of the resource descriptions in the PIACERE catalogue into DOML 
fragments to support users in selecting resources and incorporating them in a DOML 
model. This is done through the supporting component called DOMLIZER. 

• Elaboration of the examples of use of the DOML language using the PIACERE IDE, their 
validation through the Model Checker, their optimization through the IOP tool, and the 
generation of the corresponding IaC code through the ICG. 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 27 of 51 

www.piacere-project.eu    

3 Overview of preliminary experiments 

The DOML is currently being used and experimented in the PIACERE case studies and it is 
expected to have a complete evaluation, which will include also DOML-E, at the end of the 
project.  

Until now, the following actions have been performed:  

• defined multiple examples that can be called reference test cases and that can be used 
to check whether the DOML fulfils the expectation and whether the other tools of the 
PIACERE toolchain work as expected; 

• conducted a first rigorous empirical evaluation by comparing the performance of the 
DOML with the one of two well-known existing IaC languages, that is, Terraform and 
Cloudify. 

In Section 3.1 , a short summary of the empirical evaluation is presented while in Section 3.2 the 
reference test case examples are discussed. 

3.1 Empirical evaluation 

In [7] it has been conducted a first evaluation of the DOML by addressing two specific research 
questions: 

• RQ1: Can a DOML model represent the information required to generate executable IaC 
tackling both provisioning and configuration? Is a DOML model more readable and 
easier to use than the state-of-the-art approaches? 

• RQ2: Is a DOML model able to target multiple execution platforms? 

The first research question has been addressed by comparing the IaC code defined by 
independent researchers in [14] using two different languages, Terraform and Cloudify with an 
equivalent DOML model. The objective results obtained in this experiment are summarized in 
Table 3 where, for each of the three considered approaches, the number of lines of code (#LOC), 
the number of files (#File) composing the specifications, and the number of used languages 
(#Languages) are listed.  

Table 3. Comparison between DOML and other IaC approaches. 

Approach #LOC #Files #Languages 

DOML 103 1 1 

Terraform 305 3 2 

Cloudify 506 9 2 

 

Essentially, the table shows that the DOML model taken as example is more concise compared 
to its counterparts as it requires less lines of code and does not require the usage of additional 
external languages that are instead required by Terraform and Cloudify2.  

 
2 The reader should note that, as described in Section 2.3.2.4, a DOML model can be linked to external 
scripts. Such possibility allows users to integrate legacy IaC into a DOML model, but this is not mandatory 
for supporting the provisioning and configuration operations.  

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 28 of 51 

www.piacere-project.eu    

As for the second research question, it has been shown that a DOML model can target multiple 
providers by specifying their resources within different concretizations but keeping the abstract 
infrastructure layer untouched.  

3.2 Reference test cases example 

3.2.1 Introduction and comparative table 

During the development of the DOML, four “test case examples” have been developed aiming 
at exercising the specific elements of the language in different contexts.  These examples are 
the following:  

• a web application using NginX as web server and a DBMS; 

• a WordPress application; 

• an application exploiting the FaaS (Function as a Service) paradigm; 

• a simplified version of the case study developed by Ericsson for PIACERE and focusing 
on the configuration of a relatively complex network infrastructure. 

The NginX and the Wordpress applications are presented in this section while, for the sake of 
brevity, the Ericsson case is available in the Appendix (Section 7) and the FaaS example, which 
resulted not to be of interest of the PIACERE partners, is available on the DOML public 
repository3. The selection of these specific examples aims at ensuring a significant coverage of 
the language elements, as summarized in Table 4, where, for each DOML layer, the concepts 
used by each example are listed.  

Example 
Application 

Layer 
Infrastructure 

Layer 
Concrete Layer 

Optimization 
Layer 

NginX 
• DBMS 

• Software 
component 

• VM 

• Network with 
Internet 
gateway 

• Interconnected 
subnets 

• Key pair 
credentials 

• Security group 

• Concrete VM 

• Concrete 
Network 

• 2 
Optimization 
Objectives 

• NFR: Region 
requirement 

• NFR: 
Provider 
requirement 

• NFR: 
Elements to  

• be deployed 
requirement 

WordPress 

• DBMS 

• Software 
component 

• Alternative 
example 
with SaaS 
DBMS 

• VM 

• Network with 
subnet 

• Autoscaling 
group 

• Key pair 
credentials 

• Security group 

• VM image 

• Container 

• Concrete VM 

• Concrete 
Network 

• Concrete 
Autoscaling 
group 

• Concrete pre-
existing VM 
image with a 
given image 
name 

/ 

 
3 https://git.code.tecnalia.com/piacere/public/the-platform/doml  

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/doml


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 29 of 51 

www.piacere-project.eu    

• Container 
image 

• Concrete pre-
existing 
container 
image 

• Example of two 
different 
concrete 
infrastructures 
using different 
providers 

FaaS 

• Software 
component 

• Source 
code for a 
given 
software 
component 

• SaaS 

• Network 

• Container 

• Container 
image 

• Key pair 
credentials 

• FaaS 

• Storage 

• Autoscaling 
group 

• Security group 

• Concrete 
Network 

• Concrete 
Autoscaling 
group 

• Concrete FaaS 

• Concrete 
Storage 

• Concrete pre-
existing VM 
image 

• Concrete pre-
existing 
container 
image 

/ 

Simplified 
Ericsson 

• Software 
component 

• SaaS 

• Example of 
provided 
software 
interface at 
a given 
URL 

• VM with more 
than one 
network 
interface 

• Several 
networks with 
different 
interconnected 
subnets 

• Networks with 
Internet 
gateways 

• Key pair 
credentials 

• Security group 

• Concrete VM 

• Concrete 
Network 

• 3 
Optimization 
Objectives 
(all the 
available 
ones) 

• NFR: Cost 
requirement 

• NFR: 
Performance 
requirement 

• NFR: 
Provider 
requirement 

• NFR: 
Elements to 
be deployed 
requirement 

Table 4. Comparative table for test cases examples 

3.2.2 WordPress Website 

WordPress is a popular open-source Content Management System (CMS) that can be used to 
easily develop blogs and other kinds of websites. WordPress is written in PHP programming 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 30 of 51 

www.piacere-project.eu    

language, so it needs to be run on a server with the appropriate runtime environment properly 
configured. It also needs a SQL database as a backend for storing website data.  
 

The structure of the WordPress application is that: a WordPress is running in a container which 
is hosted in a VM provisioned by a provider, e.g., AWS. VM is defined in an autoscaling group 
where the size is defined as two. WordPress is connecting to a database through network. 
 
The code of the example is reported below, divided into several code snippets, which are 
explained separately. In practice, all such code snippets are merged in a single DOML file. 

doml wordpress 

 

In the first line of the file, the name of the DOML model is declared. 

3.2.2.1 Application Layer 

Next, the application layer is defined. 

application app { 

    dbms postgres { 

  properties { 

            identifier = "education" 

            name = "wp_db" 

        } 

        provides { 

     SQL_interface 

        } 

    } 

 

    software_component wordPressServer { 

        consumes { 

            SQL_interface 

        } 

    } 

} 

 

The application layer consists of two components: the postgres database and the WordPress 
server. Here the relationships between these components are declared: the database provides 
a SQL interface, which is consumed by the WordPress server. Additionally, here the properties 
of the DBMS are defined. They are agnostic with respect to the DBMS implementation in the 
infrastructure layer, examples are its name and identifier. The database credentials are not 
handled directly in the DOML code, since having them unencrypted would result in a bad 
practice, leading to potential security issues. Instead, they are managed by other components 
in the PIACERE framework. 

3.2.2.2 Abstract Infrastructure Layer 

The abstract infrastructure layer is shown below: 

infrastructure infra { 

    net net1 { 

     cidr "10.0.1.0/24" 

     protocol "TCP/IP" 

     subnet subnet1 { 

       cidr "10.0.1.0/24" 

     } 

    } 

     

 

 

 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 31 of 51 

www.piacere-project.eu    

  

    vm dbms_vm { 

 os "ubuntu" 

 size "micro" 

 iface dbms_iface { 

   belongs_to subnet1 

   address "10.0.1.2" 

 } 

 credentials ssh_key 

    } 

 

    autoscale_group ag { 

 vm wp_vm { 

os "ubuntu" 

size "micro" 

cpu_count 2 

mem_mb 1024.0 

iface i1 { 

belongs_to subnet1 

address "10.0.1.1" 

} 

credentials ssh_key 

 } 

 // count = 2 

 min 2 max 2 

    } 

 

    vm_image vm_img { 

      generates wp_vm 

    } 

 

    key_pair ssh_key { 

   user "user" 

   keyfile "ssh key" 

    } 

 

    container container1 { 

      properties { 

      WP_DB_HOST = "dbms_vm" 

      WP_DB_USER = "username" 

      WP_DB_PASSWORD = "password" 

       WP_DB_NAME = "database.name" 

} 

host wp_vm { 

container_port 80 

vm_port 8080 

iface i1 

} 

    } 

     

    cont_image container_image { 

   generates container1 

   image "docker.hub.io/wordpress/wordpress:5.8.0" 

    } 

 

    security_group sg { 

   egress icmp { 

      from_port -1 

to_port -1 

protocol "ICMP" 

cidr ["0.0.0.0/0"] 

   } 

   ingress http { 

from_port 80 

to_port 80 

protocol "TCP" 

cidr ["0.0.0.0/0"] 

} 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 32 of 51 

www.piacere-project.eu    

ingress https { 

from_port 443 

to_port 443 

protocol "TCP" 

cidr ["0.0.0.0/0"] 

} 

ingress ssh { 

from_port 22 

to_port 22 

protocol "TCP" 

cidr ["0.0.0.0/0"] 

} 

ifaces i1, dbms_iface 

    } 

} 

 

First, the network is defined, with the specification of the CIDR and protocol and the definition 
of a subnet. The database VM is defined by specifying a set of attributes, which will determine 
the VM characteristics. The autoscaling group is defined by providing the template of virtual 
machine “wp_vm” and the minimum and maximum number of VMs supported. A VM image is 
used to generate such virtual machine. The key-pair credentials for the virtual machines are then 
defined. In the next fragment, “container1” is to be hosted on the virtual machine “wp_vm” with 
the port mapping “8080:80” binding with network interface “i1”. The container is generated 
from a Docker container image, as specified in the following code fragment. Finally, the security 
group defines several egress rules (w.r.t. ICMP) and ingress rules (w.r.t. HTTP, HTTPS and SSH) 
for the network. 

Note that no VM image for generating the database VM is provided explicitly. Thus, the ICG will 
provide one automatically during deployment, by inferring its requirements from the properties 
of the database component at the application layer, and its being linked with “dbms_vm” and 
the concrete VM mapping it in the concrete layer. 

Each component from the application layer is linked to the abstract-infrastructure component 
that implements it in the following deployment configuration: 

deployment config1 { 

    wordPressServer => container1, 

    postgres => dbms_vm 

} 

active deployment config1 

 

 

The last line states that the deployment configuration above is currently active. In principle, 
multiple deployment configurations could be defined and switched. 

3.2.2.3 Concrete Infrastructure Layer 

The abstract infrastructure can be concretized in two ways: con_infra1 uses AWS as a cloud 
provider, while con_infra2 uses OpenStack. The model fragment is shown below: 

concretizations { 

    concrete_infrastructure con_infra1 { 

        provider aws { 

            vm_image concrete_vm_img { 

   preexisting true 

image_name "ami-012e16cfb2f9e8b0a" 

maps vm_img 

            } 

 

            autoscale_group concrete_ag { 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 33 of 51 

www.piacere-project.eu    

                maps ag 

            } 

 

            vm concrete_dbms_vm { 

                maps dbms_vm 

            } 

 

            net concrete_net { 

                maps net1 

            } 

            cont_image concrete_wp_image { 

        preexisting true 

maps container_image 

            } 

        } 

   } 

 

 concrete_infrastructure con_infra2 { 

        provider openstack { 

            vm_image concrete_vm_img { 

   preexisting true 

image_name "mantic-20230508" 

maps vm_img 

            } 

 

            autoscale_group concrete_ag { 

                maps ag 

            } 

 

            vm concrete_dbms_vm { 

                maps dbms_vm 

            } 

 

            net concrete_net { 

                maps net1 

            } 

             

            cont_image concrete_wp_image { 

        preexisting true 

maps container_image 

            } 

        } 

    } 

 

    active con_infra1 

} 

 

 

 

In both concretizations, a concrete VM for the “dbms_vm” abstract VM and a concrete 
autoscaling group for the “ag” abstract autoscaling group are defined and linked through the 
“maps” statement. Images and network need to be concretized, too. Please note that the 
“wp_vm” VM must not be concretized, since it is defined as a template for the autoscaling group. 
The VM image name, which is provider specific, is specified in the concrete layer. Any other 
relevant provider specific property could also be specified here through the usage of properties. 
Since the VM image is selected from the provider catalogue and the container image is an 
existing Docker image, they are both set as preexisting. 
 
Finally, the “active” statement sets con_infra1 as the concrete infrastructure to be used for 
deployment. 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 34 of 51 

www.piacere-project.eu    

3.2.2.4 Alternative version with SaaS Database 

An alternative second version of the WordPress example uses a SaaS database instead of a 
custom VM deployment. We describe it by reporting only differences compared to the version 
presented in this section. 

The application layer changes by replacing the “dbms” component with the following: 

saas_dbms postgres { 

    properties { 

        identifier = "education" 

    } 

    provides { 

        SQL_interface 

    } 

} 

 

Thus, the only difference is that its component type is now “saas_dbms”. 

With respect to other layers, the only difference in the Infrastructure Layer is the absence of the 
“dbms_vm” virtual machine and of its binding with the “database” application in the 
“deployment” section, and, consequently, the removal of its corresponding 
“concrete_dbms_vm” concrete instance from both the two concrete infrastructures described 
in the Concrete Layer. 

3.2.3 NginX 

This example was developed ad hoc to provide non-expert users with a simple, readable 
example, showing the syntax and the basic elements to build a DOML model.  

Here a web application, which accesses a database is described. Such an application consists of 
an NginX web server and a MySQL DBMS, which both run on virtual machines provided by the 
OpenStack cloud provider. Such virtual machines, which should be both located in Europe, are 
connected to a common network, which also guarantees access to Internet, and each of them 
has an associated subnet. Finally, these two subnets are connected to each other. 
Moreover, the availability and performance of the infrastructure must be maximized, and 
OpenStack must be used as a cloud provider for the infrastructure. 

3.2.3.1 Application Layer 

The Application Layer is shown below: 

doml doml_example1 

 

application app_example1 { 

 dbms mysql { 

  provides { 

   sql_interface 

  } 

 }  

 software_component nginx { 

  consumes { 

   sql_interface 

  } 

 }  

} 

 
The Application Layer consists of two components: the NginX web server and the MySQL 
DBMS. The latter one provides a SQL interface to handle data, which is consumed by the web 
server.  

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 35 of 51 

www.piacere-project.eu    

3.2.3.2 Abstract Infrastructure Layer 

The Infrastructure Layer is shown below: 

infrastructure infra_example1 { 

 vm nginx_vm { 

  arch "x86-64" 

  os "Ubuntu-22.04.2-LTS"  

  mem_mb 1024.0 

  sto "16" 

  cpu_count 1 

  size "small" 

  loc { 

   region "00EU" 

  } 

  iface nginx_iface { 

   belongs_to nginx_subnet 

  } 

  credentials nginx_vm_credentials 

 } 

 vm mysql_vm { 

  arch "x86-64" 

  os "Ubuntu-22.04.2-LTS" 

  mem_mb 1024.0 

  sto "16"  

  cpu_count 1 

  size "small" 

  loc { 

   region "00EU" 

  } 

  iface mysql_iface { 

   belongs_to mysql_subnet 

  } 

  credentials mysql_vm_credentials  

 } 

 net common_network { 

  subnet nginx_subnet { 

   connections { 

    mysql_subnet 

   } 

   cidr "10.0.144.0/25" 

  } 

  subnet mysql_subnet { 

   connections { 

    nginx_subnet 

   } 

   cidr "10.0.144.128/25" 

  } 

  protocol "TCP/IP" 

  cidr "10.0.144.0/24" 

  gateway igw1 { 

   address "10.0.144.22" 

  } 

 } 

 key_pair nginx_vm_credentials { 

  user "nginx_user" 

  keyfile "ssh key" 

  algorithm "RSA" 

  bits 4096 

 } 

 key_pair mysql_vm_credentials { 

  user "mysql_user" 

  keyfile "ssh key" 

  algorithm "RSA" 

  bits 4096 

 } 

 security_group sec_group { 

  egress icmp { 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 36 of 51 

www.piacere-project.eu    

   protocol "ICMP" 

   from_port -1 

   to_port -1 

   cidr ["0.0.0.0/0"] 

  } 

  ingress ssh { 

   protocol "TCP" 

   from_port 22 

   to_port 22 

   cidr ["0.0.0.0/0"] 

  } 

  ingress http { 

   protocol "TCP" 

   from_port 80 

   to_port 80 

   cidr ["0.0.0.0/0"] 

  } 

  ingress https { 

   protocol "TCP" 

   from_port 443 

   to_port 443 

   cidr ["0.0.0.0/0"] 

  } 

  ifaces nginx_iface, mysql_iface 

 }  

} 

 

In this layer, the two VMs hosting the web server and the DBMS are described together with the 
common network to which they need to be connected to. 

The VMs configuration is set through attributes. For each VM, a network interface belonging to 
the corresponding subnet is defined together with the credentials to be used to access the VMs. 
The network is configured to have two different subnets connected to each other and a gateway 
to guarantee Internet access. Finally, a security group is defined to secure access to the network. 

Next, the deployment configuration for our application is defined and set as active. 

deployment config_example1 { 

  mysql => mysql_vm, 

  nginx => nginx_vm 

} 

active deployment config_example1 

 

3.2.3.3 Concrete Infrastructure Layer 

The Concrete Layer is shown below: 

concretizations { 

  concrete_infrastructure concrete_example1 { 

   provider openstack { 

   vm concrete_nginx_vm { 

     maps nginx_vm 

    } 

    vm concrete_mysql_vm { 

     maps mysql_vm 

    } 

    net concrete_common_network { 

     maps common_network 

    } 

  } 

 } 

 active concrete_example1 

 } 

 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 37 of 51 

www.piacere-project.eu    

In this layer, the concrete instances of the corresponding abstract infrastructural elements 
described in the Infrastructure Layer can be found. The chosen provider is OpenStack, as 
required for this application. Lastly, the concrete infrastructure is set as active. 

3.2.3.4 Optimization Layer 

The Optimization Layer is shown below: 

optimization opt { 

   objectives {     

    "availability" => max 

  "performance" => max 

   } 

   nonfunctional_requirements {  

    Req1 "Region" values "00EU" => "region" 

    Req2 "Provider" values "openstack" => "provider" 

  Req3 "elements" => "VM, VM" 

   } 

} 

 

 

In the Optimization Layer, it is possible to specify some optimization objectives and non-
functional requirements. As required for our application, the maximization of both performance 
and availability are set as optimization objectives.  

Furthermore, as stated in the description of the example, both VMs should be located in the 
"00EU" region. In order to specify this constraint, a non-functional requirement is defined. 
Finally, the required provider and the elements we want to deploy as non-functional 
requirements for the PIACERE Optimizer are defined. 

  

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 38 of 51 

www.piacere-project.eu    

4 Lessons Learnt and Plan for Future Development 

The DOML language represents an attempt to develop a high-level modelling approach for 
Infrastructure as Code that maps on multiple concrete IaC languages.  

The experiments carried out so far appear to confirm that the multi-layered approach adopted 
in DOML is useful as it enables separation of concerns between applications and the underlying 
infrastructure, but, at the same time, enables an explicit and clear definition of the way 
applications are mapped on their infrastructures. The possibility to keep the abstract 
infrastructure definition separated from the concrete one allows users to reuse DOML 
fragments and map them into different concrete infrastructures. 

Keeping the DOML internal representation separated from the external one enables the 
possibility to conceive different external languages both textual and graphical. While the 
consolidated version of the DOML is a textual notation, experiments on a graphical Domain 
Specific Language are being conducted. The objective is to derive the graphical representation 
from the internal DOML representation by exploiting the libraries and tools made available by 
the Eclipse platform. Some of these experiments have been reported in Deliverable D3.9 [15, 1, 
1] and some others are ongoing work that will be reported before the end of the PIACERE 
project. 

Another important lesson learnt as a result of the latest experiments is that confining 
crosscutting aspects in a specific layer of the DOML specification is counterproductive. More 
specifically, at the beginning of the project, for the purpose of parallelizing the research and 
development work, a simple optimization language has been developed and included in the 
DOML optimization layer. This particular layer was the only part of the DOML meant to be used 
by the IOP component to return concrete infrastructural resources fulfilling the optimization 
objectives and constraints.  

In the development of the latest more sophisticated DOML model examples, it has been realized 
that this approach becomes cumbersome when there are multiple abstract resources, and the 
user wants to express specific optimization objectives or constraints for each individual 
resource. In this case, it would have been better to incorporate the optimization aspects within 
the definition of the resources in the abstract infrastructure layer and to have the IOP to 
interpret this whole layer to take its decisions. Due to time constraints, at the moment this 
problem is being addressed in a simplified way by slightly extending the optimization layer 
language. Improving this part is certainly an important future work.  

The extensibility of the DOML is depending on the DOML-E mechanisms defined (see Section 
2.1.4). The effectiveness of these messages has to be studied in close connection with the 
possibility to define in the ICG new templates and modify the existing ones as otherwise any 
addition into the DOML would not have an impact on the generated IaC code. Given the fact 
that through the PIACERE project so far, the main focus was the development of the DOML and 
of ICG, it has not been possible to run extensive experiments in this context. This will be the 
subject of future work from now till the end of the project and beyond.   

As it has been discussed in Section 2.3, all requirements defined for the DOML have been 
addressed except two that have been partially addressed:  

• REQ36 – “DOML to enable writing infrastructure tests” is aiming at using the DOML to 
instrument with proper test cases the canary environment or any other testing 
environment. An analysis of existing tools in the context has suggested us the possibility 
to adopt the DOML as input language for the setup of chaos engineering tools, that is, 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 39 of 51 

www.piacere-project.eu    

those tools that introduce failures in a distributed system to test its resilience. Further 
investigation on this aspect is required and will be the subject for future work. 

• REQ57 – “It is desirable to enable both forward and backward translations from DOML 
to IaC and vice versa”, was considered, since the beginning of the project, as a very 
challenging, nice to have, and low priority requirement for the part concerning the 
backward translation due to two main reasons: the need to have a fully stable DOML 
language before addressing it and the intrinsic difficulty of deriving a DOML model from 
a lower level specification. Another critical point is that a DOML specification typically 
corresponds to IaC code fragments written in different languages. This implies that a 
single fragment would result in an incomplete DOML model. For the above reasons, it 
has been decided to limit the backward transformation on moving from the internal 
DOML representation, serialized in the so called DOMLX, into the DOML external one. 
Such internal transformation is at the moment under development and will be released 
at the end of the project with the objective to used it to support transformations 
between different versions of the DOML.  

In addition to the future developments that have been identified above, an important future 
development will concern the analysis of the role of DOML models with respect to the usage of 
AI to automatically derive IaC. Recently, projects aiming at generating infrastructural code from 
natural language are under development [16]. Clearly, such approaches have a significant 
potential in terms of reducing the time and effort needed to develop IaC. The problem though 
is the fact that such systems, at least at the moment, are able to deal with specific tasks, such 
as, “create a Terraform code for provisioning a VM on AWS”, but not with the more general task 
to create all it is needed to support the operation of a complex application.  
In this context, the availability of DOML models providing a precise description of the application 
and infrastructural elements, together with their expected mapping, could potentially help in 
ensuring that the low level code generated by the AI is correct and complete. 
  

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 40 of 51 

www.piacere-project.eu    

5 Conclusions 

This deliverable presents the latest version of DOML (DOML 3.0). Compared to the previous 
version, it consolidates and cleans up the language and adds specific constructs that were 
considered critical to address the needs of PIACERE case studies. The deliverable includes a 
discussion on the fulfilment of requirements, examples of DOML models that demonstrate the 
modelling details under the new version of DOML, a preliminary analysis of the DOML 
effectiveness in terms of a comparison with well-known infrastructure languages, and some 
reflections on the DOML status and on possible future work.  

  

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 41 of 51 

www.piacere-project.eu    

6 References 

[1]  B. Xiang, E. Di Nitto and G. Novakova Nedeltcheva, “Deliverable 3.2: PIACERE Abstractions, 
DOML and DOML-E - v2,” PIACERE Consortium, 2022. 

[2]  PIACERE team, "PIACERE DOML Specification v 3.0.," https://www.piacere-
doml.deib.polimi.it/, October 2022. 

[3]  S. Canzoneri, “DOML v3.0 tutorial,” 2023. 
https://git.code.tecnalia.com/piacere/public/the-platform/doml/-/tree/main/tutorial  

[4]  E. Di Nitto ed., “Deliverable D3.1: PIACERE Abstractions, DOML and DOML-E - v1,” PIACERE 
Consortium, Dec. 2021. 

[5]  Eclipse Foundation, “Eclipse Modeling Framework,” [Online]. Available: 
https://www.eclipse.org/modeling/emf/. 

[6]  Eclipse Foundation, Inc., “Eclipse Xtext™,” [Online]. Available: 
https://www.eclipse.org/Xtext/. 

[7]  M. Chiari, B. Xiang, G. Novakova Nedeltcheva, E. Di Nitto, L. Blasi, D. Benedetto and L. 
Niculut, “DOML: A New Modelling Approach To Infrastructure-as-Code,” in CAISE 2023, 
Zaragoza, 2023.  

[8]  E. Morganti, “Deliverable 2.2 v 1.1 PIACERE DevSecOps Framework Requirements 
specification, architecture and integration strategy - v2,” PIACERE Consortium, 2023. 

[9]  D. Benedetto and L. Nicolut, “Deliverable D3.6: Infrastructural code generation - v3,” 
PIACERE Consortium, 2023. 

[10]  Morganti, Emanuele, “Deliverable 2.1: PIACERE DevSecOps Framework Requirements 
specification, architecture and integration strategy - v1,” PIACERE Consortium, Dec. 2021. 

[11]  A. Franchini and M. Pradella, “Deliverable D4.3: Verify the Trustworthiness of 
Infrastructure as Code Task 4.1 Infrastructural Model Verification – v3,” PIACERE 
Consortium, 2023. 

[12]  D. E. Iero, “Chaos Engineering: an analysis of processes and tools,” Master Thesis - 
Politecnico di Milano, 2021. 

[13]  J. Díaz de Arcaya, “Deliverable 5.3: IaC execution platform prototype - v3,” PIACERE 
Consortium, 2023. 

[14]  L. Reboucas de Carvalho y A. Favacho de Araujo, «Performance comparison of Terraform 
and Cloudify as multicloud orchestrators,» de CCGRID’20, 2020.  

[15]  E. Villanueva, “Deliverable 3.7: PIACERE IDE - v3,” PIACERE Consortium, 2023. 

[16]  Firefly, “Artificial Intelligence Infrastructure-as-Code Generator,” Firefly, 2023. [Online]. 
Available: https://aiac.dev/. 

 

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/public/the-platform/doml/-/tree/main/tutorial


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3 Version 1.0 – Final. Date: 31.05.2023 

 

© PIACERE Consortium   Contract No. GA 101000162 Page 42 of 51 

www.piacere-project.eu                                                                                                                

APPENDIX: Further details about the DOML 

1 Simplified version of the Ericsson case  

Being one of the PIACERE use case validation scenarios, the Ericsson case concerns IoT networks 
in the context of Public Safety applications. The DOML model presented in this section was built 
as a simplified version of the required infrastructure for the Ericsson case, to be used for 
validation purposes. The example, per se, does not introduce new DOML concepts compared to 
the ones exemplified through the case studies in Section 3, but it is more complex than the 
others as it includes three different networks in the infrastructure layer. 

1.1 Case short description  

A Public Safety use case network is composed and organized so that dedicated networks can 
segregate the traffic that flows between the virtual machines to provide an environment that 
cannot be easily compromised. Therefore, the public safety network includes three different 
networks for the application components to communicate, and a separate network for 
operation and management. 

In this example, three different software components are deployed on three different virtual 
machines, provisioned by the OpenStack cloud provider. Besides such software components, 
the application needs to access two different Software-as-a-Service components providing APIs, 
accessible through specific URL. 

Finally, the infrastructure should be configured in such a way to guarantee maximum availability 
and performance while minimizing the cost. There are two non-functional requirements: the 
maximum cost should be 300.0, while the minimum performance measure should be 7.0%. 

1.2 DOML model 

doml uc3_openstack 

application app { 

 software_component iwg { 

  provides { net_info } 

 } 

 software_component osint { 

  provides { osint_info } 

  consumes { net_info, get_twitter, ewcf_rest_interface } 

 } 

 software_component ewcf { 

  provides { ewcf_rest_interface } 

  consumes { get_firebase } 

 } 

 saas external_twitter { 

  provides { get_twitter @ "https://twitter_api/get" } 

 } 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 43 of 51 

www.piacere-project.eu    

 saas external_firebase { 

  provides { get_firebase @ "https://firebase_api/get" } 

 } 

} 

infrastructure infra {  

 // VMs region 

// This VM as a network interface belonging to the OAM network,  

// one belonging to Net1 to communicate with the osint VM 

// and one belonging to Net2 to access the 5G network 

 vm igw_vm { 

  os "Ubuntu-Focal-20.04-Daily-2022-04-19" 

  size "small" 

  iface igw_vm_oam { 

   belongs_to subnet_oam_igw 

  } 

  iface igw_vm_net1 { 

   belongs_to subnet_net1_igw 

  } 

  iface igw_vm_net2 { 

   belongs_to subnet_net2_igw 

  } 

  credentials ssh_key 

 } 

// This VM has a network interface belonging to the OAM network, 

// one belonging to Net1 to communicate with the other VMs 

// and one belonging to Net3 to the access the Internet 

 vm osint_vm { 

  os "Ubuntu-Focal-20.04-Daily-2022-04-19" 

  size "small" 

  iface osint_vm_oam { 

   belongs_to subnet_oam_osint 

  } 

  iface osint_vm_net1 { 

   belongs_to subnet_net1_osint 

  } 

  iface osint_vm_net3 { 

   belongs_to subnet_net3_osint 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 44 of 51 

www.piacere-project.eu    

  } 

  credentials ssh_key 

 } 

// This VM has a network interface belonging to the OAM network, 

// one belonging to Net1 to communicate with the osint VM 

// and one belonging to Net3 to access the Internet 

 vm ewcf_vm { 

  os "Ubuntu-Focal-20.04-Daily-2022-04-19" 

  size "small" 

  iface ewcf_vm_oam { 

   belongs_to subnet_oam_ewcf 

  } 

  iface ewcf_vm_net1 { 

   belongs_to subnet_net1_ewcf 

  } 

  iface ewcf_vm_net3 { 

   belongs_to subnet_net3_ewcf 

  } 

  credentials ssh_key 

 } 

 // Operation and management network, to which all the VMs are connected 

 net oam { 

  protocol "TCP/IP" 

  cidr "16.0.0.0/24" 

  subnet subnet_oam_igw { 

   protocol "TCP/IP" 

   cidr "16.0.1.0/26" 

  } 

  subnet subnet_oam_osint { 

   protocol "TCP/IP" 

   cidr "16.0.1.64/26" 

  } 

  subnet subnet_oam_ewcf { 

   protocol "TCP/IP" 

   cidr "16.0.1.128/26" 

  } 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 45 of 51 

www.piacere-project.eu    

 } 

  

 // This is an internal network and therefore has no Internet gateway 

 net net1 { 

  protocol "TCP/IP" 

  cidr "16.0.1.0/24" 

  // Subnets definition 

  subnet subnet_net1_igw { 

   connections { 

    subnet_net1_osint 

   } 

   protocol "TCP/IP" 

   cidr "16.0.1.0/25" 

  } 

  subnet subnet_net1_osint { 

   connections { 

    subnet_net1_igw, 

    subnet_net1_ewcf 

   } 

   protocol "TCP/IP" 

   cidr "16.0.1.64/26" 

  } 

  subnet subnet_net1_ewcf { 

   connections { 

    subnet_net1_osint 

   } 

   protocol "TCP/IP" 

   cidr "16.0.1.128/26" 

  } 

 } 

 // Network connecting igw to 5G 

 net net2 { 

  protocol "TCP/IP" 

  cidr "16.0.2.0/24" 

  subnet subnet_net2_igw { 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 46 of 51 

www.piacere-project.eu    

   protocol "TCP/IP" 

   cidr "16.0.2.0/25" 

  } 

  gateway net2_igw { 

   address "16.0.2.22" 

  } 

 } 

 // Network connecting osint and ewcf to Internet 

 net net3 { 

  protocol "TCP/IP" 

  cidr "16.0.3.0/24" 

  subnet subnet_net3_osint { 

   protocol "TCP/IP" 

   cidr "16.0.3.0/25" 

  } 

  subnet subnet_net3_ewcf { 

   protocol "TCP/IP" 

   cidr "16.0.3.128/25" 

  } 

  gateway net3_igw { 

   address "16.0.3.22" 

  } 

 } 

 //Credentials region 

 // These credentials are used to access the VMs 

 key_pair ssh_key { 

  user "ubuntu" 

// key to be inserted here 

keyfile "…" 

  algorithm "RSA" 

  bits 4096 

 } 

 // Security region 

// This security group is composed of standard security rules 

// and is associated with all the interfaces 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 47 of 51 

www.piacere-project.eu    

 security_group sg { 

  egress icmp { 

   protocol "ICMP" 

   from_port -1 

   to_port -1 

   cidr ["0.0.0.0/0"] 

  } 

  ingress http { 

   protocol "TCP" 

   from_port 80 

   to_port 80 

   cidr ["0.0.0.0/0"] 

  } 

  ingress https { 

   protocol "TCP" 

   from_port 443 

   to_port 443 

   cidr ["0.0.0.0/0"] 

  } 

  ingress ssh { 

   protocol "TCP" 

   from_port 22 

   to_port 22 

   cidr ["0.0.0.0/0"] 

  } 

  ifaces igw_vm_oam, igw_vm_net1, igw_vm_net2, osint_vm_oam, osint_vm_net1, 

osint_vm_net3, ewcf_vm_oam, ewcf_vm_net1, ewcf_vm_net3 

 } 

} 

deployment config1 { 

 osint => osint_vm, 

 iwg => igw_vm, 

 ewcf => ewcf_vm 

} 

active deployment config1 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 48 of 51 

www.piacere-project.eu    

concretizations { 

 concrete_infrastructure con_infra { 

  provider openstack { 

   // Concrete computing nodes region 

   vm concrete_osint_vm { 

    maps osint_vm 

   } 

   vm concrete_igw_vm { 

    maps igw_vm 

   } 

   vm concrete_ewcf_vm { 

    maps ewcf_vm 

   } 

   // Concrete networks region 

   net concrete_oam { 

    maps oam 

   } 

   net concrete_net1 { 

    maps net1 

   } 

   net concrete_net2 { 

    maps net2 

   } 

   net concrete_net3 { 

    maps net3 

   } 

  } 

 } 

 active con_infra 

} 

optimization opt { 

 objectives { 

  "cost" => min 

  "performance" => max 

  "availability" => max 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 49 of 51 

www.piacere-project.eu    

 } 

 nonfunctional_requirements { 

  req1 "Cost <= 300" max 300.0 => "cost" 

  req2 "Performance >= 7%" min 7.0 => "performance" 

  req3 "Provider" values "openstack" => "provider" 

  req4 "elements" => "VM, VM, VM" 

 } 

} 

  

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 50 of 51 

www.piacere-project.eu    

2 User manual to extend DOML 

This brief manual has the purpose to help users in the process of applying modifications to the 
DOML language to extend it. 

2.1 Required tools 

First, it must be pointed out that the PIACERE framework and DOML rely on the open-source 
Eclipse IDE. 

The Eclipse IDE version used to build DOML v3.0 is “Eclipse 2023-03”: in particular, it is  used the 
Eclipse Modeling Tools package, which can be selected directly from the installer. 

Such a package already includes Eclipse Modeling Framework (EMF) installed with it. 
As reported in the official website [5], the EMF project is a modeling framework and code 
generation facility for building tools and other applications based on a structured data model. 
This framework has been used to build the DOML Ecore, the formalization of its metamodel. 

To make the metamodel more readable and easily accessible to programmers, we have made 
use of Eclipse Emfatic, a textual syntax for EMF Ecore metamodels. The syntax is very intuitive 
and easy-to-use. 

It is strongly recommend installing the Emfatic plugin to make changes to the DOML metamodel. 

In order to generate the Ecore from the Emfatic code and to being able to generate graphical 
models from it, the Eugenia tool, which is part of the Eclipse Epsilon plugin, is required. 
The metamodel diagrams shown in the D3.3 document have been generated using Eugenia. 

The DOML syntax has been generated by using Eclipse Xtext, which is a framework for 
development of programming languages and domain-specific languages, as reported in the 
official website [6]. 

Users will, therefore, need to install the Xtext plugin to apply changes to the syntax. 

2.2 Metamodel update 

Steps to update the metamodel: 

1. Open the implementation folder as workspace inside the Eclipse IDE. 

2. Open the “eu.piacere.doml” project. 

3. Inside the “model” folder, open the “doml.emf” file and apply the needed changes. 

4. After saving the file, right click on it in the Project Explorer and in the “Eugenia” sub-

menu, select “Generate EMF Editor”. 

2.3 Syntax update 

Steps to update the syntax: 

1. Open the implementation folder as workspace inside the Eclipse IDE. 

2. Open the “eu.piacere.doml.grammar” project. 

3. Inside the “src/eu.piacere.doml” folder, open the “Doml.xtext” file and apply the 

needed changes. 

4. After saving the file, right click on it in the Project Explorer and in the “Run as” sub-

menu, select “Generate Xtext Artifacts”. 

DRAFT

http://www.medina-project.eu/


D3.3 – PIACERE Abstractions, DOML and DOML-E – v3              Version 1.0 – Final. Date: 31.05.2023 

© PIACERE Consortium                           Contract No. GA 101000162                                   Page 51 of 51 

www.piacere-project.eu    

2.4 Testing applied changes and updating the ICG 

To test the DOML editor after the modifications have been applied, right click on the 
“eu.piacere.doml” project in the Project Explorer (Plug-in Development perspective) and in the 
“Run as” sub-menu, select “Eclipse Application”. At this point, after the application is launched, 
try creating a new project containing a new file with the “.doml” extension: here the user can 
test the editor, verifying that the changes to the syntax have been applied correctly. 

When extending DOML, it is fundamental to remember that not only the metamodel and the 
syntax must be updated, but also the Infrastructure Code Generator (ICG), which interprets the 
DOML language and generates the corresponding code in IaC standard languages. 
To see how to deal with the changes to be applied to the ICG, please refer to the User Manual 
in the Deliverable [9]. 

DRAFT

http://www.medina-project.eu/



