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ABSTRACT We highlight the challenges posed by the experimental and theoretical assessment of the 
magnetic losses in magnetic materials for high-frequency applications, with specific reference to amorphous 
and nano-crystalline magnetic materials. After pointing out the role of magnetic materials in high-frequency 
applications and problems raised by broadband magnetic characterization, we discuss the physical modeling 
of magnetic permeability and losses over the whole extended range of frequencies where the magnetic 
response of the material can be appreciated. The experiments have been performed on field annealed Co-
based and nanocrystalline Finemet type ribbons, having thickness ranging between ~13 µm and ~25 µm. The 
samples under test are endowed with defined transverse magnetic anisotropy. Magnetic losses and complex 
permeability have been measured from DC to 1 GHz by combined application of fluxmetric and transmission 
line methods. The remarkable wideband soft magnetic properties of these materials are theoretically assessed 
by combined solution of Maxwell’s and Landau-Lifshitz-Gilbert equations and its consistent incorporation 
with the concept of loss decomposition. 

INDEX TERMS Amorphous magnetic materials, Inductors, Magnetic cores, Magnetic devices, Magnetic 
losses, Magnetic measurements, Magnetics 

I. INTRODUCTION 
The soft magnetic materials available to the industry are 
required to cover a large array of applications, from the 
classical use as cores of transformers, generators, and 
motors to a great variety of parts and components 
displaying magnetic properties and intended for 
electronics in a wide range of application areas. Such 
applications nowadays call for soft magnetic materials 
with high permeability and low losses over a broad range 
of frequencies, from DC to several MHz [1-4]. The most 
interesting materials for high-frequency applications are 
soft ferrites, amorphous, and nano-crystalline alloys, 
which can display useful soft magnetic behavior upon an 
extremely wide range of frequencies, up to hundreds of 
megahertz [5-7]. The sintered ferrite cores are the 
standard industrial products, with the Ni-Zn types 
covering a broader frequency range, typically up to 10 
MHz versus a typical 1 MHz limit of Mn-Zn ferrites, at 
the cost of reduced permeability. Amorphous soft 
magnetic materials are non-crystalline materials that have 
no magneto-crystalline anisotropy. Interesting soft 

magnetic properties are found in Iron-based alloys with 
relatively high saturation magnetic polarization and in 
Co-based alloys with near-zero magnetostriction.  Fig. 1 
provides an overview of the magnetic behaviour of 
nanocrystalline Finemet and Co-based amorphous 
ribbons, and Mz-Zn sintered ferrites. The latter have 
relatively low saturation magnetization (Js = 0.4 – 0.5 T), 
a limitation that is largely overcome in the 
nanocrystalline cores (Js ~ 1.25 T), which additionally 
display higher permeability and lower losses at all 
frequencies. These properties weakly depend on 
temperature, in sharp contrast with the response of the 
Mn-Zn ferrites, but they come at a higher commercial 
price.  
    The investigation of soft magnetic materials for high-
frequency applications is generally directed at elucidating 
and predicting two basic technical parameters: magnetic 
permeability and energy losses. Under weak fields, the 
material often displays a quasi-linear magnetic behavior, 
which can be lumped in a complex permeability. A 
sinusoidal field elicit a phase-shifted sinusoidal 
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induction. The complex permeability contains then the 
information regarding the energy loss. Under high 
excitation levels, the primary technical parameters are the 
amplitude permeability µ = 𝐵! $𝜇"𝐻!'⁄ , where Bp is the 
peak induction and Hp is the peak magnetic field, and the 
specific power loss W. General characterization under 
controlled sinusoidal and non-sinusoidal induction can be 
achieved with a fluxmetric setup, an example of which is 
shown in Fig. 2. It is a standard configuration by which 
the magnetic properties, the specific power loss and the 
amplitude permeability are obtained. At high frequencies, 
spurious phase shifts between the measured primary 
current and the secondary voltage are minimized by 
suitable arrangement of the windings and the choice of an 
anti-inductive shunt resistor Rh [8]. The induction 
waveform and the field strength in the core are 
determined by measuring the voltage across the 
secondary winding and the peak value of the voltage 
across the resistor Rh.  The measurements are carried out 
at specified values of peak induction, frequency and 
temperature. The power loss is obtained through the 
multiplication of the same voltages and their integration 
over one period. The typical upper-frequency limit of a 
few MHz, intrinsic to the fluxmetric method, does not 
permit one to perform, in general, a full permeability and 
loss analysis up to the frequencies where the magnetic 
response of the materials becomes negligible. Under 
these circumstances, a natural solution for high-
frequency characterization is provided by a measurement 
of the sample impedance using a Transmission Line 
Method (TLM). A setup realizing such an approach is 
shown in Fig. 3. The complex permeability of a ring 
sample is obtained here up to a few GHz, using a Vector 
Network Analyzer (VNA), which feeds a shorted 50-ohm 
coaxial cable, holding the sample at its bottom. The VNA 
generates a frequency-swept signal and provides the 
frequency dependence of the impedance at the sample 
plane. This can be related, at each frequency, to the 
geometry of the sample, permitting one to retrieve the 
complex permeability versus frequency behavior.  
    In this paper we present experimental results regarding 
the measurements of magnetic loss and complex 
permeability on tapewound toroidal samples of 
amorphous and nanocrystalline ribbons. The 
characterization has been performed for sinusoidal flux 
from DC to 1 GHz, using both the fluxmetric and the 
transmission line methods. The ribbons have been subjected 
to annealing under transverse saturating magnetic field and 
exhibit, besides a transverse domain structure, excellent 
combination of low broadband losses and high permeability. 
The results are theoretically assessed, across the whole 
many-decade frequency span, by modeling the frequency 
dependence of the magnetic loss associated with the 
rotation of the magnetization, the chief magnetization 
reversal mechanism in the so-treated materials, by 

coupling the Maxwell’s equations and the Landau-
Lifshitz-Gilbert equation. The loss decomposition 
principle is then applied, permitting one to separately 
predict the loss contribution by the moving domain walls. 
 

II. EXPERIMENTAL 
We measured the magnetic losses and the complex 
permeability of amorphous and nanocrystalline ribbons 
from DC to 1 GHz by combined application of fluxmetric 
and transmission line methods. We analysed two Co-based 
amorphous ribbons, ~13 µm and ~25 µm tick, and two 
nanocrystalline Finemet ribbons, ~13 µm and ~20 µm tick, 
all endowed with defined transverse anisotropy. Tapewound 
18 mm diameter ring samples were prepared with 10 mm 
wide Fe73Nb3Cu1Si16B7 precursor amorphous ribbons, 
obtained by planar flow casting and encased in boron nitride 
toroidal holders. No tensile stress was applied to the ribbon 
during winding, the number of layers varying between 3 and 
10 from sample to sample. Nanocrystallization annealing, 
performed at 550 °C, was followed by very slow cooling to 
room temperature, under a saturating DC field, by which a 
transverse anisotropy could be induced. The tapewound ring 
samples of amorphous Co67Fe4B14.5Si14.5 (~13 µm and ~25 
µm tick) were subjected to stress-relaxation annealing of 
two hours at 360°C, followed by two-hour annealing at 
280°C and slow cooling under saturating transverse field. In 
all cases, the transverse applied field strength was 𝐻#= ~15 
kA/m. The complete datasets are available in [9]. 

Figure 4. shows an example of wideband 
characterization of the 13 µm tick Co-based amorphous 
ribbon. The flux-metric method and the TLM are applied 
over different overlapping regions of the frequency 
spectrum. First, the flux metric method is used between 
DC and a few MHz at given values of the sinusoidal peak 
induction. Next, the TLM is applied from some 100 kHz 
up to 1 GHz. In the latter case, the measure is performed 
under defined exciting power, typically 1 mW or 10 mW. 
It is observed how the results provided by the two 
different methods superpose in the shared frequency 
region. The same conclusion is drawn from Fig. 5, 
concerning the 20 µm tick Finemet ribbon. This implies, 
in particular, that the quasi-linear behavior of the material 
is preserved for Jp = 50 mT, with the measured real μ′ and 
imaginary μ′′ permeability components near-independent 
of the peak polarization value. Consequently, we can 
write for the energy loss at a given Jp  

 𝑊rot =
'
(!
⋅
)(""*vna

+,(,-
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& ⋅ 𝐵p2 								 ,
0
1'-																																					(1) 

On the other hand, at low frequencies, the rotational loss 
is computed through the classical formula, neglecting 
skin effect,  
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2𝑓𝐵p2.																															[

J
m3]																				(2) 

 
An overall view of the loss behavior vs frequency in the 
same transverse anisotropy Finemet is given in Fig. 6, 
where Jp is made to range between 0.5 mT to 200 mT. 
Here, the fluxmetric measurements are shown to 
smoothly superpose, for all Jp values, to the TLM results 
in the overlapping medium frequency range.  
 

III. THEORETICAL ANALYSIS 
We treat the case of transversally field-annealed ribbons, 
where a sharp transverse domain structure is induced by 
annealing under saturating transverse field (Fig. 7a). 
Under an oscillating longitudinal applied field, the 
magnetization process will follow almost completely the 
mechanism of spin rotation (Fig. 7b). The domain walls 
that are set in motion by the applied field, through an 
indirect magnetostatic field, negligibly contribute to the 
magnetization reversal, but are the source of hysteresis 
and excess dynamic loss. A theoretical approach to the 
rotational loss is here applicable because the spin rotation 
is a homogeneous process that can be naturally associated 
with a classical loss model with the Maxwell’s equations 
coupled to the constitutive equation of the material. 
According to the theory, the local behaviour of the 
material can be represented through a complex 
susceptibility 𝜒(𝑗𝜔) = 𝑚4 ℎ54⁄ , where 𝑚4 is the 
magnetization and ℎ54 is the effective field. The starting 
point of this representation is the description of the 
rotational magnetization process with the Landau-
Lifshitz-Gilbert (LLG) equation for the spin dynamics. In 
the linear approximation, an expression for the complex 
susceptibility is obtained, under harmonic regime, in the 
form 

1
𝜒(𝑗𝜔) = ℎ" + 𝑗

𝜔
𝛾𝐽6

𝛼

−
𝜔2

𝛾2𝐽62
1

(ℎ" +𝑁7 + 𝑗𝜔 (𝛾𝐽6)⁄ 𝛼)						(3) 

where 𝜔 is the angular frequency, Js is the saturation 
polarization,  g = 1.76 ´ 1011 (T-1 s-1) is the electron 
gyromagnetic ratio,	 𝛼 is the damping factor, Nz is the 
demagnetizing factor along the normal to the ribbon 
surface,  ℎo = 2𝐾𝜇8 𝐽s2⁄  is the reduced anisotropy field 
Hk/Ms, with K (J/m3) the anisotropy constant. The 
expression (3) can be written as 

χ(𝑗ω) =
χDC

1 − 𝜔
2

𝜔"2
+ 𝑗 𝜔𝜔<

																																																						(4) 

where the DC susceptivity is 

χDC = 1 ℎ=⁄ ,																																																																											(5)  

the resonance angular frequency 𝜔" is 

𝜔" = 𝛾𝐼> ∙ Pℎ=(ℎ= +𝑁?) √1 + 𝛼2⁄ ,                (6) 

and the relaxation angular frequency 𝜔< is 

𝜔< = 𝛾𝐼> 𝛼⁄ ∙ ℎ=(ℎ= +𝑁?) (2ℎ= +𝑁?).⁄                              (7) 

The electromagnetic analysis is performed by coupling 
the constitutive equation (4) to the Maxwell’s diffusion 
equation governing the magnetization profile along the 
thickness in the plate of conductivity 𝜎 

𝜕2ℎ4
𝜕𝑧2 = 𝑗𝜔𝜎𝑏4 = 𝑗𝜔𝜎𝜇"$𝑚4 + ℎ4'	.																															(8) 

Here, 𝑏4 	= 	 𝜇"$𝑚4 + ℎ4' is the flux density, and  
−𝑑 2⁄ ≤ 𝑧 ≤ 𝑑 2⁄ . Introducing the constitutive equation, 
we obtain 

𝑚4 = 𝜒(𝑗𝜔) ∙ ℎ54 = 𝜒(𝑗𝜔) ∙ Wℎ4 + 𝑙2
𝜕2𝑚4

𝜕𝑧2 Y														(9) 

where the term  𝑙2 ∙ 𝜕2𝑚4 𝜕𝑧2⁄ is the exchange field, 𝑙 =
P2𝐴𝜇8 𝐽s2⁄  is the exchange length, with A (J/m) the 
stiffness constant. Given the symmetry of the problem, z 
can be restricted to 0 ≤ 𝑧 ≤ 𝑑 2⁄ . The following boundary 
conditions apply: 

𝜕ℎ4
𝜕𝑧 \7@"

= 0,																																																																								(10) 

and 

𝜕3ℎ4
𝜕𝑧3 ^7@"

= 0,																																																																						(11) 

because the even symmetry of ℎ4; 

𝜕ℎ4
𝜕𝑧 \7@A 2⁄

= 𝑗𝜔𝜎𝐵C 𝑑 2⁄ ,																																																	(12) 

with Bp the average value of the peak induction across the 
sample thickness. 
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𝜕𝑚4

𝜕𝑧 \7@A 2⁄
= 0,																																																																			(13) 

 
because a natural Neumann boundary condition holds. 
From (8) (12) and (13) we obtain 

𝜕3ℎ4
𝜕𝑧3 ^7@A 2⁄

= 𝑗𝜔𝜎𝜇" W
𝜕ℎ4
𝜕𝑧 \7@A 2⁄

+	
𝜕𝑚4

𝜕𝑧 \7@A 2⁄
Y

= −𝜔2𝜎2𝜇"𝐵C 𝑑 2⁄ .																										(14) 

Eliminating 𝑚4, by replacing (8) in (9), and using (3) we 
obtain 

𝑙2
𝜕Dℎ4
𝜕𝑧D − Wℎ" + 𝑗

𝜔
𝛾𝐽6

𝛼 −
𝜔2

𝛾2𝐽62(ℎ" +𝑁7 + 𝑗𝜔 (𝛾𝐽6)⁄ 𝛼)

+ 𝑗𝜔𝜎𝜇"𝑙2Y
𝜕2ℎ4
𝜕𝑧2

+ 𝑗𝜔𝜎𝜇" W1 + ℎ" + 𝑗
𝜔
𝛾𝐽6

𝛼 −
𝜔2

𝛾2𝐽62
Yℎ4

= 0.																																																								(15) 

Equation (15) can be solved analytically together with the 
boundary conditions (10), (11), (12), (14), providing the 
magnetic field and the magnetization profile along the 
thickness. The solution of (15) is 

ℎ4(𝑧) = 𝐶<
cosh(𝜆<𝑧)
sinh(𝜆< 𝑑 2⁄ ) + 𝐶2

cosh(𝜆2𝑧)
sinh(𝜆2 𝑑 2⁄ )														(16) 

where 𝜆< and  𝜆2 are the solution of the secular equation  

𝑙2𝜆D − Wℎ" + 𝑗
𝜔
𝛾𝐽6

𝛼 −
𝜔2

𝛾2𝐽62(ℎ" +𝑁7 + 𝑗𝜔 (𝛾𝐽6)⁄ 𝛼)

+ 𝑗𝜔𝜎𝜇"𝑙2Y𝜆2

+ 𝑗𝜔𝜎𝜇" W1 + ℎ" + 𝑗
𝜔
𝛾𝐽6

𝛼 −
𝜔2

𝛾2𝐽62
Y

= 0,																																																								(17) 

being (17) a biquadratic algebraic equation. 

Equation (16) naturally satisfies the boundary condition 
(10) and (11), but Eqs.  (12) and (14) are satisfied only 
through suitable values of C1 and C2 that are obtained by 
solving the algebraic system 

h
𝜆<coth j𝜆<

𝑑
2k 𝜆2coth j𝜆2

𝑑
2k

𝜆<3coth j𝜆<
𝑑
2k 𝜆23coth j𝜆2

𝑑
2k
l ∙ j𝐶<𝐶2

k

= h
𝜔𝜎𝐵C

𝑑
2

−𝜔2𝜎2𝜇"𝐵C
𝑑
2

l																									(18) 

The applied field is eventually obtained as 

ℎE = ℎ4(𝑑 2⁄ ) = 𝐶<coth(𝜆< 𝑑 2⁄ )
+ 𝐶2coth(𝜆2 𝑑 2⁄ ).																													(19) 

The whole permeability is then computed as 

𝜇(𝑗𝜔) =
𝐵C

𝜇" ⋅ ℎE
	.																																																																(20) 

Finally, the specific rotational loss is computed as 

𝑊rot =
𝜋
𝜇"
⋅
𝜇FF

|𝜇|2 ⋅ 𝐵p
2.																																																										(21) 

The reader will find the related software algorithms in 
[10]. 

We have applied this theory to the case of the 20.3 µm 
tick Finemet, endowed with given transverse anisotropy,  
Ku = ~24 J/m3, saturation polarization Js = 1.25 T, 
conductivity 𝜌 = 118 ´ 10–8 Ω·m. The following 
parameters have been identified: the static susceptivity 
χDC = 25000, the perpendicular demagnetizing factor Nz 
= 0.64, the damping factor 𝛼 = 0.054, the exchange length 
l = 10.9 nm. The ensuing value of the relaxation 
frequency is f1 = 26 MHz, and the resonance frequency is 
f0 = 180 MHz. Figure 8 shows the behaviour of the real 
and imaginary parts of the complex susceptivity vs. 
frequency. 
    The theoretical and experimental results are 
summarized in Fig. 9. Here, the blue-dashed line 
represents the theoretical (computed) rotational loss. 
Beyond a few MHz, the experimental and the theoretical 
curve superpose. The difference between the 
experimental and the theoretical curves provides the 
hysteretic and the excess loss. The excess and hysteretic 
loss reduce to zero beyond a few MHz. In addition, the 
dashed red curve provides the spin damping loss 
component. By this theoretical approach, we can compute 
the rotational loss contribution, and we can separate 
different loss components upon the whole frequency 
spectrum. Figures 10 and 11 compare the measured 
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permeability (symbols) to the theoretical permeability 
(continuous lines) at two peak inductions. 

IV. CONCLUSIONS 

The DC – 1 GHz magnetic loss and permeability of 
nanocrystalline and amorphous ribbons can be 
theoretically assessed by separating the contributions to the 
magnetization reversal provided by the domain walls and 
the rotational process. In the specific case where minimum 
losses at all frequencies are aimed at, a treatment at 
moderate temperature (around 300 °C) under transverse 
saturating magnetic field leads to transverse anisotropy and 
ensuing transverse domain structure, engendering 
dominant magnetization process by rotations. This case is 
especially favorable to excellent response of the material 
extending deep in the MHz range and to accurate 
theoretical treatment. This has been demonstrated in this 
work regarding field-treated Co-based amorphous ribbons 
and nanocrystalline alloys, where the theoretical approach 
to the dynamics of the magnetization process by rotation is 
carried out applying the Maxwell’s equation on materials 
whose magnetic constitutive equation can be identified as 
a complex permeability, obtained as solution of the 
appropriate Landau-Lifshitz equation. While 
demonstrating that in these systems the relaxation 
phenomena anticipate and overcome the resonance effects, 
the separate contributions to the energy dissipation by eddy 
currents and spin damping are worked out. These 
eventually appear as high-frequency phenomena and, by 
comparison with the measured losses, we obtain the further 
dissipation contribution provided by the moving domain 
walls. Their motion is largely restrained beyond the kHz 
range, but it provides the whole quasi-static (hysteresis) 
and low frequency (excess) losses.    
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Figures 

 
FIGURE 1. Overview of the magnetic behaviour of Finemet and Co-based amorphous ribbons, and Mn-Zn sintered ferrites. 



  

6 

 

FIGURE 2. An example of a flux-metric setup by which the 
magnetic properties, the specific power loss, and the amplitude 
permeability are obtained under different peak inductions and 
frequencies up to 10 MHz. 

 

 
FIGURE 3. The complex permeability of a ring sample is obtained 
up to a few GHz, using a Vector Network Analyzer (VNA) feeding 
a shorted 50-ohm coaxial cable, which holds the sample at its 
bottom. The VNA generates a frequency swept signal and 
provides the frequency dependence of impedance at the sample 
plane. The impedance can be related to the geometry of the 
sample, frequency, and complex permeability of the core that is 
eventually retrieved. 

 

 

FIGURE 4. Real µ’ and imaginary µ’’ permeability components 
versus frequency measured in a ~13 µm tick Co-based amorphous 
ribbon endowed with transverse anisotropy, Ku = ~7 J/m3. The 
fluxmetric measurements (symbols) are performed at peak 
inductions 2 mT and 50 mT up to a few MHz. The transmission line 
results (continuous line), obtained in the upper frequency range, 
coincide with the fluxmetric measurements beyond a few hundred 
kHz. The overlapping region shrinks on increasing peak induction 
because of a correspondingly increasing proportion of the 
domain wall processes with respect to the rotations. 
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FIGURE 5. Real µ’ and imaginary µ’’ permeability components 
versus frequency measured in in a ~20 µm tick Finemet ribbon 
endowed with transverse anisotropy, Ku = ~24 J/m3. The 
fluxmetric measurements (symbols) are performed at peak 
inductions 0.5 mT and 50 mT up to a few MHz. The transmission 
line results (continuous line), obtained in the upper frequency 
range, coincide with the fluxmetric measurements beyond a few 
hundred kHz. The overlapping region shrinks on increasing peak 
induction because of a correspondingly increasing proportion of 
the domain wall processes with respect to the rotations.  

 

 

 
FIGURE 6. Energy loss W(f) versus frequency up to 1 GHz in in a 
20 µm tick Finemet ribbons endowed with transverse anisotropy. 
The loss is directly measured at given peak induction by the 
fluxmetric method up to 10 MHz (symbols). By the transmission 
line (TL) method one gets, starting from a few hundred kHz, the 
real μ′( f ) and imaginary μ′′( f ) permeability components. W(f) is 
then calculated for any peak induction by Eq. (1) (continuous 
lines). The two methods provide matching W(f) values in the 
overlapping frequency interval.  
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a)  

b)  
FIGURE 7. The case of transversally field-annealed ribbons, 
where a sharp transverse domain structure is induced by 
annealing under saturating transverse field (a) is considered. 
Under an oscillating longitudinal applied field, the magnetization 
process will follow almost completely the mechanism of spin 
rotation (b). 

 

 

 
FIGURE 8. Calculated behavior of the complex susceptivity vs. 
frequency in the case of the 20.3 µm tick Finemet, endowed with 
given transverse anisotropy, Ku = ~24 J/m3. The polarization at 
saturation is Js = 1.25 T, and the conductivity is 𝝆 = 118 ́  10–8 Ω·m. 
The following parameters have been identified: the static 
susceptivity 𝛘DC = 25 000, the perpendicular demagnetizing factor 
Nz = 0.64, the damping factor 𝜶 = 0.054, and the exchange length 
l = 10.9 nm. The ensuing value of the relaxation frequency is f1 = 
26 MHz, and the resonance frequency is f0 = 180 MHz. 
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FIGURE 10. Real µ’ (blue dots) and imaginary µ’’ (red square) 
permeability vs.  frequency measured at peak induction 20 mT in 
the ~20 µm tick Finemet ribbon endowed with transverse 
anisotropy, Ku = ~24 J/m3. The theoretical rotational permeability 
components are represented by continuous lines.  

FIGURE 9. Example of energy loss measured up to 1 GHz at Jp = 
20 mT in the 20 µm tick, Finemet ribbon endowed with a defined 
transversal anisotropy (Ku ~ 24 J/m3), and theoretical prediction 
of the rotational contribution through coupled Landau-Lifshitz-
Gilbert and Maxwell’s diffusion equations. The blue-dashed line 
represents the theoretical rotational loss. The difference between 
the measured and the theoretical loss provides the hysteresis and 
the excess losses. Beyond a few MHz, the experimental and the 
theoretical curve superpose and the excess and hysteretic loss 
reduce to zero. The dashed red curve provides the (theoretical) 
spin damping loss component Wsd. The difference Wrot –Wsd 
provides the eddy current loss Weddy. 

 

 
FIGURE 11. Real µ’ (blue dots) and imaginary µ’’ (red square) 
permeability vs.  frequency measured at peak induction 2 mT in 
the ~20 µm tick Finemet ribbon endowed with transverse 
anisotropy, Ku = ~24 J/m3. The theoretical rotational permeability 
components are represented by continuous lines. 

 
  	


