
Anoma Research Topics | TECHNICAL REPORT

The Core language of Juvix
Lukasz Czajkaa

aHeliax AG

* E-Mail: lukasz@heliax.dev

Abstract

This report describes JuvixCore – a minimalistic intermediate functional language to which Juvix desugars. We provide a
precise and abstract specification of JuvixCore’s syntax, evaluation semantics, and optional type system. We comment on
the relationship between this specification and the actual implementation. We also explain the role JuvixCore plays in the
Juvix compilation pipeline. Finally, we compare the language features available in JuvixCore with those in Juvix and other
popular functional languages.

Keywords: Juvix; Language specification; Functional programming; Compilers; Lambda Calculus;

(Received July 31, 2023; Published: August 29, 2023; Version: August 29, 2023)

Contents

1 Introduction 1

2 JuvixCore specification 1
2.1 Syntax . 2
2.2 Evaluation semantics . 3
2.3 Type system . 4

3 JuvixCore implementation 5

4 Juvix compilation pipeline 6

5 Comparison with other languages 6

References 7

1. Introduction
Juvix is an open-source functional programming language designed to write privacy-preserving decentralised ap-
plications (Heliax AG, 2023a). Using Juvix, developers can write high-level programs which can be compiled to
WebAssembly (WASM) directly, or to circuits via VampIR (Heliax AG, 2023b; Czajka, 2023) or Geb (Heliax AG,
2023c; Gureev and Prieto-Cubides, 2023) for private execution within Taiga1 on Anoma2 or Ethereum3.

JuvixCore is a minimalistic intermediate functional language to which Juvix desugars. The relationship between
Juvix and JuvixCore is similar to that between Haskell and Haskell Core. After parsing, scoping, and type-checking,
the Juvix front-end program representation is translated to JuvixCore for further processing. Via different backends,
JuvixCore can be compiled to several targets including Geb , VampIR, WASM, and native executable.

The main part of this report is a precise and abstract specification of the JuvixCore language in Section 2, including
the evaluation semantics and the optional type system. Then in Section 3 we discuss the implementation of JuvixCore
and its relation to the formal specification. The Juvix compilation process and the role JuvixCore plays in it are
discussed in Section 4. Finally, Section 5 compares the features of the JuvixCore language with those of Juvix and
other popular functional languages.

2. JuvixCore specification
In this section, we provide a precise and abstract specification of JuvixCore. We specify the syntax, evaluation
semantics, and the current optional type system.

1https://github.com/anoma/taiga
2https://anoma.net
3https://ethereum.org

DOI: 10.5281/zenodo.8297159 Anoma Research Topics | August 29, 2023 | 1–7

https://github.com/anoma/taiga
https://anoma.net
https://ethereum.org
https://dx.doi.org/10.5281/zenodo.8297159

2.1. Syntax. A JuvixCore program 𝒫 is a tuple (𝑓𝑚, ℱ , 𝒯 , ℐ) where:

• 𝑓𝑚 is the main function symbol,

• ℱ is a mapping from function symbols to closed terms that associates function symbols with corresponding
function bodies,

• 𝒯 is a mapping from function symbols to types that associates function symbols with the types of the
corresponding functions,

• ℐ is a mapping from type symbols to inductive types.

An inductive type is pair (𝜏𝐼 , 𝒞) where:

• 𝜏𝐼 is a type - the arity of the inductive type,

• 𝒞 is a nonempty finite set of constructor declarations 𝑐𝑖 : 𝜏𝑖 where 𝑐𝑖 is a constructor and 𝜏𝑖 is its type.

The constructors are assumed to be unique and associated with exactly one inductive type. For brevity, we will often
confuse inductive types with their corresponding type symbols. We write 𝑐 ∈ 𝐼 or (𝑐 : 𝜏) ∈ 𝐼 to indicate that 𝑐 (of
type 𝜏) is a constructor in the inductive type 𝐼.

Terms 𝑡, 𝑠, 𝑟 are defined by the following grammar. The types 𝜏, 𝜎 are arbitrary terms.

𝑡, 𝑠, 𝑟, 𝜏, 𝜎 ::= 𝑥
| 𝑓
| 𝐶
| 𝑆
| op(𝑡1, . . . , 𝑡𝑛)
| 𝑐(𝑡1, . . . , 𝑡𝑛)
| 𝑡𝑡′

| 𝜆𝑥 : 𝜏.𝑡
| let 𝑥 : 𝜏 := 𝑡 in 𝑡′

| letrec {𝑥1 : 𝜏1 := 𝑡1; . . . ; 𝑥𝑘 : 𝜏𝑘 := 𝑡𝑘} in 𝑡′

| case 𝑡 of {𝑐1(𝑥1, . . . , 𝑥𝑛1) ⇒ 𝑡1; . . . ; 𝑐𝑘(𝑥1, . . . , 𝑥𝑛𝑘) ⇒ 𝑡𝑘; _ ⇒ 𝑡′}
| 𝜖[𝜏]
| Π𝑥 : 𝜏.𝜏 ′

| Type𝑛

| 𝐼(𝑡1, . . . , 𝑡𝑛)
| Int
| String
| ⋆

Fig. 1: JuvixCore syntax grammar.

We explain the above grammar point by point.

• 𝑥 is a variable.

• 𝑓 is a function symbol.

• 𝐶 is an integer constant, e.g., 1, 20, −5.

• 𝑆 is a string constant, e.g., "abc", "hello world".

• op(𝑡1, . . . , 𝑡𝑛) is a built-in operation application. Available built-in operations op:

– arithmetic operations on integers: +, −, ·, ÷, mod,

– integer comparisons: <, ≤,

– equality: =,

– string operations: show, concat, strToInt,

– lazy sequencing: seq,

– debugging operations: trace, fail.

• 𝑐(𝑡1, . . . , 𝑡𝑛) is a constructor application.

DOI: 10.5281/zenodo.8297159 Anoma Research Topics | August 29, 2023 | 2

https://dx.doi.org/10.5281/zenodo.8297159

• 𝑡𝑡′ is an application of 𝑡 to 𝑡′.

• 𝜆𝑥 : 𝜏.𝑡 is a lambda-abstraction (anonymous function).

• let 𝑥 : 𝜏 := 𝑡 in 𝑡′ is a non-recursive let-expression. The variable 𝑥 is bound in 𝑡′ but not in 𝑡 or 𝜏 .

• letrec {𝑥1 : 𝜏1 := 𝑡1; . . . ; 𝑥𝑘 : 𝜏𝑘 := 𝑡𝑘} in 𝑡′ is a letrec-expression, or a recursive let-expression. The variables
𝑥1, . . . , 𝑥𝑘 are bound in 𝑡1, . . . , 𝑡𝑘, 𝑡′, but not in 𝜏1, . . . , 𝜏𝑘.

• case 𝑡 of {𝑐1(𝑥1, . . . , 𝑥𝑛1) ⇒ 𝑡1; . . . ; 𝑐𝑘(𝑥1, . . . , 𝑥𝑛𝑘) ⇒ 𝑡𝑘; _ ⇒ 𝑡′} is a case-expression. The 𝑐1, . . . , 𝑐𝑘 are
constructors of the same inductive type 𝐼, and 𝑛𝑖 is the number of arguments of 𝑐𝑖. The last clause _ ⇒ 𝑡′ is
the an optional default clause.

• 𝜖[𝜏] is an error node of type 𝜏 . Evaluating 𝜖[𝜏] results in an error.

• Π𝑥 : 𝜏.𝜏 ′ is a dependent function type. We use the notation 𝜏 → 𝜏 ′ when 𝑥 /∈ FV(𝜏 ′).

• Type𝑛 is a universe for 𝑛 ∈ N. We often drop the subscript in Type0, denoting it by Type.

• 𝐼(𝑡1, . . . , 𝑡𝑛) is an inductive type application. The 𝑡1, . . . , 𝑡𝑛 are the parameters of the inductive type 𝐼. The
number and the types of parameters are determined by the arity of 𝐼.

• Int is the primitive type of integers.

• String is the primitive type of strings.

• ⋆ is the dynamic type which can be assigned to any term. This enables the implementation of gradual typing
in JuvixCore. See Siek (2014).

We omit the standard definition of the set FV(𝑡) of variables free in 𝑡. We treat terms up to 𝛼-conversion. For
brevity, we use vector and telescope notation, e.g., we write Π𝛼⃗ : 𝜏⃗ .𝜎 for Π𝛼1 : 𝜏1 . . . Π𝛼𝑛 : 𝜏𝑛.𝜎, and Π𝛼⃗ : Type.𝜏
for Π𝛼1 : Type . . . Π𝛼𝑛 : Type.𝜏 , and 𝜏⃗ → 𝜎 for 𝜏1 → . . . → 𝜏𝑛 → 𝜎, and 𝑡⃗ for 𝑡1, . . . , 𝑡𝑛 or 𝑡1 . . . 𝑡𝑛 depending on
the context. By |⃗𝑡| we denote the length of the vector 𝑡⃗.

2.2. Evaluation semantics. Values 𝑣 ∈ 𝒱 are defined by the following grammar, where 𝑡 is an arbitrary term.
Environments 𝐸 are finite partial mappings from variables to values.

𝑣 ∈ 𝒱 ::= 𝐶
| 𝑆
| 𝑐(𝑣1, . . . , 𝑣𝑛)
| ⟨𝐸; 𝑡⟩
| Type𝑛 | Int | String | ⋆
| 𝐼(𝑣1, . . . , 𝑣𝑛)

We explain the above grammar point by point.

• 𝐶 is an integer constant.

• 𝑆 is a string constant.

• 𝑐(𝑣1, . . . , 𝑣𝑛) is a constructor application with value arguments.

• ⟨𝐸; 𝑡⟩ is a closure. The environment 𝐸 is required to be compatible with 𝑡, meaning that FV(𝑡) ⊆ dom(𝐸).

• Type𝑛 is a universe and Int, String, ⋆ are types.

• 𝐼(𝑣1, . . . , 𝑣𝑛) is an inductive type application.

A value 𝑣 can be mapped injectively to a term 𝑣* as follows:

• 𝐶* = 𝐶,

• 𝑆* = 𝑆,

• 𝑐(𝑣1, . . . , 𝑣𝑛)* = 𝑐(𝑣*
1 , . . . , 𝑣*

𝑛),

• ⟨𝐸; 𝑡⟩* = 𝐸*(𝑡) where 𝐸* is the homomorphic extension of the mapping 𝑥 ↦→ 𝐸(𝑥)*, avoiding variable capture,

• Type*
𝑛 = Type𝑛, Int* = Int, String* = String, ⋆* = ⋆,

• 𝐼(𝑣1, . . . , 𝑣𝑛)* = 𝐼(𝑣*
1 , . . . , 𝑣*

𝑛).

DOI: 10.5281/zenodo.8297159 Anoma Research Topics | August 29, 2023 | 3

https://dx.doi.org/10.5281/zenodo.8297159

We define the evaluation relation 𝑡 ⇒𝐸 𝑟 in the style of big-step operational semantics (see Nipkow and Klein
(2014)), where 𝑡 is a term, 𝐸 is an environment compatible with 𝑡, and 𝑟 ∈ 𝒱 ⊎ {⊥} is either a value 𝑣 or an error ⊥.
The evaluation relation is implicitly parameterised by a fixed JuvixCore program 𝒫 = (𝑓𝑚, ℱ , 𝒯 , ℐ). The evaluation
strategy is eager (call-by-value).

𝑥 ⇒𝐸 𝐸(𝑥) 𝐶 ⇒𝐸 𝐶 𝑆 ⇒𝐸 𝑆

ℱ(𝑓) ⇒∅ 𝑟

𝑓 ⇒𝐸 𝑟

𝑡𝑖 ⇒𝐸 𝑣𝑖

op(𝑡1, . . . , 𝑡𝑛) ⇒𝐸 𝑣
OP

𝑡𝑖 ⇒𝐸 𝑣𝑖

𝑐(𝑡1, . . . , 𝑡𝑛) ⇒𝐸 𝑐(𝑣1, . . . , 𝑣𝑛)

𝑡1 ⇒𝐸 ⟨𝐸′; 𝜆𝑥.𝑡⟩ 𝑡2 ⇒𝐸 𝑣 𝑡 ⇒𝐸′[𝑥:=𝑣] 𝑣′

𝑡1𝑡2 ⇒𝐸 𝑣′ 𝜆𝑥.𝑡 ⇒𝐸 ⟨𝐸; 𝜆𝑥.𝑡⟩

𝑡 ⇒𝐸 𝑣 𝑡′ ⇒𝐸[𝑥:=𝑣] 𝑣′

let 𝑥 : 𝜏 := 𝑡 in 𝑡′ ⇒𝐸 𝑣′

𝑡′
𝑖 ⇒𝐸′ 𝑣𝑖 𝑡′ ⇒𝐸[𝑥⃗:=𝑣⃗] 𝑣′

letrec {𝑥1 : 𝜏1 := 𝑡1; . . . ; 𝑥𝑘 : 𝜏𝑘 := 𝑡𝑘} in 𝑡′ ⇒𝐸 𝑣′ LR

𝑡 ⇒𝐸 𝑐𝑖(𝑣1, . . . , 𝑣𝑛𝑖) 𝑡𝑖 ⇒𝐸[𝑥𝑗 :=𝑣𝑗]𝑗=1...𝑛𝑖
𝑣′

case 𝑡 of {𝑐1(𝑥1, . . . , 𝑥𝑛1) ⇒ 𝑡1; . . . ; 𝑐𝑘(𝑥1, . . . , 𝑥𝑛𝑘) ⇒ 𝑡𝑘; _ ⇒ 𝑡′} ⇒𝐸 𝑣′

𝑡 ⇒𝐸 𝑐(𝑣1, . . . , 𝑣𝑛) 𝑡′ ⇒𝐸 𝑣′ 𝑐 /∈ {𝑐1, . . . , 𝑐𝑘}
case 𝑡 of {𝑐1(𝑥1, . . . , 𝑥𝑛1) ⇒ 𝑡1; . . . ; 𝑐𝑘(𝑥1, . . . , 𝑥𝑛𝑘) ⇒ 𝑡𝑘; _ ⇒ 𝑡′} ⇒𝐸 𝑣′

Type𝑛 ⇒𝐸 Type𝑛 Int ⇒𝐸 Int String ⇒𝐸 String ⋆ ⇒𝐸 ⋆

Π𝑥 : 𝜏.𝜏 ′ ⇒𝐸 ⟨𝐸; Π𝑥 : 𝜏.𝜏 ′⟩
𝑡𝑖 ⇒𝐸 𝑣𝑖

𝐼(𝑡1, . . . , 𝑡𝑛) ⇒𝐸 𝐼(𝑣1, . . . , 𝑣𝑛)

𝜖[𝜏] ⇒𝐸 ⊥
no other rule applies

𝑡 ⇒𝐸 ⊥

Fig. 2: JuvixCore evaluation rules.

Additional requirements:
• Rule OP: 𝑛 is the arity of the operation op, the types of the values 𝑣1, . . . , 𝑣𝑛 match the particular operation,

and 𝑣 is the expected result. For example, the instantiation of this rule with op = + is:
𝑡1 ⇒𝐸 𝐶1 𝑡2 ⇒𝐸 𝐶2

+(𝑡1, 𝑡2) ⇒𝐸 𝐶1 + 𝐶2
OP+

• Rule LR:

– 𝑡′
𝑖 = 𝑡𝑖[𝑥𝑗⋆/𝑥𝑗]𝑗=1,...,𝑘,

– 𝐸′(𝑥𝑖) = ⟨𝐸′; 𝜆_.𝑡′
𝑖⟩,

– 𝐸′(𝑦) = 𝐸(𝑦) for 𝑦 /∈ {𝑥1, . . . , 𝑥𝑘}.

Remark 1. Note that 𝐸′ in the second point above is not a finite object – its definition is not well-founded. Formally,
one would define 𝐸′ using coinduction. To avoid excessive technicalities, we refrain from elaborating on this point any
further. The above specification of 𝐸′ is clear enough for our purposes.
Remark 2. In the second point above, the purpose of changing 𝑥𝑖 to 𝑥𝑖⋆ and 𝑡𝑖 in 𝐸′(𝑥𝑖) to 𝜆_.𝑡′

𝑖, is to delay the
evaluation of 𝑡𝑖 in a closure, so that it can be used with other rules. For example, consider 𝑡 = letrec 𝑥 := +(3, 4); 𝑦 :=
𝑥 in 𝑦. If we defined 𝐸′(𝑥) = ⟨𝐸′; +(3, 4)⟩, we would get 𝑥 ⇒𝐸′ ⟨𝐸′; +(3, 4)⟩ and since 𝑣𝑦 = ⟨𝐸′; +(3, 4)⟩ is already
a value, that would become the result of evaluating 𝑡 (which is the result of evaluating 𝑦 in 𝐸[𝑦 := 𝑣𝑦, 𝑥 := . . .]. With
our approach we take 𝐸′(𝑥) = ⟨𝐸′; 𝜆_.+(3, 4)⟩, and we have 𝑥⋆ ⇒𝐸′ 7 according to the rules.

2.3. Type system. JuvixCore does not specify a single type system by itself. Instead, different type systems can be
implemented on top of JuvixCore. Evaluation does not depend on type information. All type annotations can be set
to ⋆ to represent an untyped program.

Currently, programs translated from Juvix to JuvixCore are all well-typed in a polymorphic type system specified
by the rules below. This type system is based on Church-style System F (the polymorphic lambda calculus 𝜆2).
See (Barendregt, 1992, Section 5).

DOI: 10.5281/zenodo.8297159 Anoma Research Topics | August 29, 2023 | 4

https://dx.doi.org/10.5281/zenodo.8297159

The typing rules are with respect to a fixed JuvixCore program 𝒫 = (𝑓𝑚, ℱ , 𝒯 , ℐ). The judgements have the form
Γ ⊢ 𝑡 : 𝜏 where Γ is a set of declarations 𝑥 : 𝜏 assigning types to free variables. By Γ, 𝑥 : 𝜏 we denote Γ ⊎ {𝑥 : 𝜏} (⊎
is disjoint set sum).

Inductive types can only have type parameters, i.e., the arity of any inductive type 𝐼 has the form 𝜏𝐼 = Type →
. . . → Type → Type with 𝑛𝐼 arguments of type Type. Recall that Type = Type0. By 𝑛𝐼 we denote the number of
parameters of 𝐼. We assume that there exists a fixed inductive type Bool with two constructors true and false.

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏 Γ ⊢ 𝑓 : 𝒯 (𝑓) Γ ⊢ 𝐶 : Int Γ ⊢ 𝑆 : String

Γ ⊢ 𝑡𝑖 : 𝜏𝑖

Γ ⊢ op(𝑡1, . . . , 𝑡𝑛) : 𝜏
OP

Γ ⊢ 𝜎𝑖 : Type Γ ⊢ 𝑡𝑖 : 𝜏𝑖[𝜎⃗/𝛼⃗] (𝑐 : Π𝛼⃗ : Type.𝜏⃗ → 𝐼𝛼⃗) ∈ 𝐼 |𝜎⃗| = |𝛼⃗| = 𝑛𝐼

Γ ⊢ 𝑐(𝜎⃗, 𝑡⃗) : 𝐼𝜎⃗

Γ ⊢ 𝑡1 : Π𝑥 : 𝜏1.𝜏2 Γ ⊢ 𝑡2 : 𝜏1

Γ ⊢ 𝑡1𝑡2 : 𝜏2[𝑡2/𝑥]
Γ ⊢ 𝜏1 : Type𝑛 Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2

Γ ⊢ (𝜆𝑥 : 𝜏1.𝑡) : Π𝑥 : 𝜏1.𝜏2

Γ ⊢ 𝑡 : 𝜏 Γ, 𝑥 : 𝜏 ⊢ 𝑡′ : 𝜏 ′ 𝑥 /∈ FV(𝜏 ′)
Γ ⊢ (let 𝑥 : 𝜏 := 𝑡 in 𝑡′) : 𝜏 ′

Γ ⊢ 𝜏𝑖 : Type𝑛 Γ, 𝑥𝑖 : 𝜏𝑖 ⊢ 𝑡𝑖 : 𝜏𝑖 Γ, 𝑥⃗ : 𝜏⃗ ⊢ 𝑡′ : 𝜏 ′ 𝑥𝑖 /∈ FV(𝜏 ′)
Γ ⊢ (letrec 𝑥⃗ : 𝜏⃗ := 𝑡⃗ in 𝑡′) : 𝜏 ′

(𝑐𝑖 : Π𝛼⃗ : Type.𝜏⃗ 𝑖 → 𝐼𝛼⃗) ∈ 𝐼
Γ ⊢ 𝑡 : 𝐼𝜎⃗ Γ, 𝑥1 : 𝜏 𝑖

1[𝜎⃗/𝛼⃗], . . . , 𝑥𝑛𝑖 : 𝜏 𝑖
𝑛𝑖

𝜎⃗/𝛼⃗ ⊢ 𝑡𝑖 : 𝜏 Γ ⊢ 𝑡′ : 𝜏

Γ ⊢ (case 𝑡 of {𝑐1(𝑥1, . . . , 𝑥𝑛1) ⇒ 𝑡1; . . . ; 𝑐𝑘(𝑥1, . . . , 𝑥𝑛𝑘) ⇒ 𝑡𝑘; _ ⇒ 𝑡′}) : 𝜏

Γ ⊢ 𝜏 : Type𝑛

Γ ⊢ 𝜖[𝜏] : 𝜏

Γ ⊢ Type : Type1

Γ ⊢ 𝜏1 : Type𝑛 Γ, 𝑥 : 𝜏1 ⊢ 𝜏2 : Type𝑚 (𝑛, 𝑚) ∈ {(0, 0), (1, 0)}
Γ ⊢ (Π𝑥 : 𝜏1.𝜏2) : Type

Γ ⊢ 𝜎𝑖 : Type
Γ ⊢ 𝐼(𝜎⃗) : Type Γ ⊢ Int : Type Γ ⊢ String : Type Γ ⊢ ⋆ : Type

Fig. 3: JuvixCore optional typing rules.

Additional requirements:
• Rule OP: 𝑛 is the arity of the operation op and the types match the particular operation, e.g., if op is (<), we

have that 𝑛 is 2, both 𝜏1 and 𝜏2 are Int, and 𝜏 is Bool.

3. JuvixCore implementation
The JuvixCore data structure is defined in the Juvix compiler sources in the Juvix.Compiler.Core.Language and
Juvix.Compiler.Core.Language.Nodes modules. The implementation follows closely the abstract definition of
terms in Section 2.1. JuvixCore programs 𝒫 = (𝑓𝑚, ℱ , 𝒯 , ℐ), which specify function bodies and inductive type
constructors, are represented by the InfoTable data structure from the Juvix.Compiler.Core.Data.InfoTable
module. The JuvixCore evaluator is implemented in the Juvix.Compiler.Core.Evaluator module. The evaluator
directly implements the rules from Section 2.2 using lists to represent environments.

In our treatment of binders we have elided the issues with renaming and variable capture, working implicitly up to
𝛼-conversion as is standard in textual presentations of lambda-calculi. In the implementation, we use de Bruijn indices
to represent binders. The use of de Bruijn indices is common in implementations of dependently typed programming
languages and proof assistants. The main advantage is that a de Bruijn representation enables direct manipulation of
terms under binders, with overall linear time complexity for most term transformations. Alternative approaches require
either repeated renaming of bound variables, substitution or abstraction of free symbols – all of these are linear time
operations which when performed repeatedly while processing a single term may result in quadratic runtime. A major
disadvantage is that manipulating de Bruijn indices is error-prone. We try to mitigate this by implementing high-level
recursors which fold or transform JuvixCore terms while taking care of de Bruijn index adjustments under the hood.

No type checker is implemented for JuvixCore. Those JuvixCore programs which are translations of Juvix front-end
programs are assumed to be well-typed in the type system described in Section 2.3. This is guaranteed by the

DOI: 10.5281/zenodo.8297159 Anoma Research Topics | August 29, 2023 | 5

https://dx.doi.org/10.5281/zenodo.8297159

desugaring process but not checked separately. We implement type inference for already well-typed terms in the
module Juvix.Compiler.Core.Transformation.ComputeTypeInfo.

JuvixCore programs can be parsed and evaluated by the Juvix compiler directly, either from *.jvc files (juvix
dev core eval) or via the JuvixCore REPL (juvix dev core repl). See the tests/Core/positive directory in
the Juvix compiler sources for examples of *.jvc files and the concrete JuvixCore syntax.

4. Juvix compilation pipeline
The JuvixCore language is an intermediate language to which the Juvix front-end language desugars. There
are, in fact, several different variants of JuvixCore in the actual implementation. The variant we present in Sec-
tion 2 is suitable for evaluation, with pattern matching already compiled to case-expressions. This form of the
JuvixCore language corresponds to the Core data structures after performing the toEval transformations (see module
Juvix.Compiler.Core.Data.TransformationId), which is the point at which the pipelines for different backends
diverge. An overview of the Juvix compiler pipeline is depicted in Figure 4.

WASM

JuvixAsm

88

// native

Parsing // Scoping // Type checking // Desugaring // toEval // JuvixCore

OO

//

&&

Geb

VampIR

Fig. 4: Juvix compiler pipeline.

5. Comparison with other languages
We provide a short comparison of language features supported by Juvix, JuvixCore, Haskell, and OCaml in Table 1. In
the case of JuvixCore, which does not specify a single type system, the “Yes” entries in the rows for polymorphism and
data types mean that programs using these features can be directly represented in JuvixCore, not that type checking
of such programs is performed by the current JuvixCore implementation.

Table 1: Comparison between language features supported by Juvix, JuvixCore, Haskell and OCaml.

Feature Juvix JuvixCore Haskell OCaml
Turing-complete Yes4 Yes Yes Yes
Algebraic data types Yes Yes Yes Yes
GADTs No Yes Yes Yes
Prenex polymorphism Yes Yes Yes Yes
Higher-rank polymorphism Some Yes Yes5 No
Hindley-Milner type inference No No Yes Yes
Type classes No No Yes No
Modules Yes No Yes Yes
Parameterised modules No No No Yes
Eager evaluation Yes Yes Yes6 Yes
Lazy evaluation No No Yes Yes7

Metaprogramming No No Yes8 Yes9

Acknowledgements
The author thanks the entire Juvix team, including Jonathan Prieto-Cubides, Jan Mas Rovira and Paul Cadman. The
initial design and preliminary implementation of JuvixCore were done by the author, but subsequent discussions with
the rest of the Juvix team had a decisive impact on the final form of JuvixCore presented in this report. The author
thanks Jonathan Prieto-Cubides for reviewing this report.

4via terminating and positive annotations
5with the RankNTypes extension.
6via strictness annotations.
7via the Lazy.t type.
8via Template Haskell
9via PPXs.

DOI: 10.5281/zenodo.8297159 Anoma Research Topics | August 29, 2023 | 6

https://dx.doi.org/10.5281/zenodo.8297159

References
Heliax AG. Juvix Compiler, 2023a. URL https://github.com/anoma/juvix/. (cit. on p. 1.)
Heliax AG. VampIR Rust Implementation, 2023b. URL https://github.com/anoma/vamp-ir/. (cit. on p. 1.)
Lukasz Czajka. Juvix to vampir pipeline, August 2023. URL https://doi.org/10.5281/zenodo.8246535. This document is based on Juvix v0.4.1, Geb v0.4.0, and VampIR

v0.1.3. (cit. on p. 1.)
Heliax AG. Geb Lisp Implementation, 2023c. URL https://github.com/anoma/geb/. (cit. on p. 1.)
Artem Gureev and Jonathan Prieto-Cubides. Geb Pipeline. Anoma Research Topics, August 2023. doi:10.5281/zenodo.8262815. URL https://doi.org/10.5281/zenodo.

8262815. This document is based on Geb v0.4.1. (cit. on p. 1.)
J. Siek. What is Gradual Typing?, 2014. URL https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/. (cit. on p. 3.)
T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL. Springer, 2014. (cit. on p. 4.)
H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science, volume 2, pages 118–310. Oxford University Press, 1992. (cit. on p. 4.)
Heliax AG. Taiga Implementation, 2023d. URL https://github.com/anoma/taiga/.

DOI: 10.5281/zenodo.8297159 Anoma Research Topics | August 29, 2023 | 7

https://github.com/anoma/juvix/
https://github.com/anoma/vamp-ir/
https://doi.org/10.5281/zenodo.8246535
https://github.com/anoma/geb/
https://doi.org/10.5281/zenodo.8262815
https://doi.org/10.5281/zenodo.8262815
https://doi.org/10.5281/zenodo.8262815
https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/
https://github.com/anoma/taiga/
https://dx.doi.org/10.5281/zenodo.8297159

	Introduction
	JuvixCore specification
	Syntax
	Evaluation semantics
	Type system

	JuvixCore implementation
	Juvix compilation pipeline
	Comparison with other languages
	References

