

BIOBASED PLASTICS FOR A CIRCULAR ECONOMY

GHENT UNIVERSITY

NTE 7

Priyanka Main

3rd July, 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 859885.

Overview

Motivation

Biodegradable bioplastics 2022 vs. 2027

Biobased feedstock Material 4,000 are biodegradable are 3,556 coordinate biobased & biobased PBAT system for 3,000 **Bioplastics Bioplastics** PBS **bioplastics** e.g. Biobased PE, e.g. PLA, PHA, n 1,000 tonnes PLA PBS, Starch PEF, PET, PTT blends **Bioplastics** 2.000 Not are biobased. PHA biodegradable Biodegradable biodegradable, 1,142 Conventional **Bioplastics** or both. Starch blends 1,000 plastics are e.g. PBAT, PCL biodegradable nearly all Cellulose films conventional plastics e.g. PE, PP, 0 PET, PMMA, PVC 2022 2027 Source: Institute for Bioplastics and Biocomposites Fossil-based feedstock (ifBB) and European Bioplastics (EUBP) © European Bioplastics 'Regenerated cellulose films

Source: European Bioplastics, nova-Institute (2022).

More information: www.european-bioplastics.org/market and www.bio-based.eu/markets

Biopolymer Recycling Overview

- > To be expected: Similar behavior (and problems) to conventional thermoplastics.
- > Biopolymer drop-ins are being recycled together with fossil-based counterparts.
- Cross-contamination of petrochemical polymers with biopolymers (e.g. PET with PLA) is problematic, but is only a problem of sorting technology.
- > Current status: No industrial recycling streams for biodegradable biopolymers.

Polyhydroxybutyrate

- Polyhydroxyalkanoate (PHA)
- Accumulated within bacterial bodies
- > Properties:
 - Biobased and biodegradable
 - Melting point-177°C
 - High crystallinity

Challenges

Objectives

Similar to PP – certain properties

Narrow processability window

Barrier properties- good

Ageing on storage

Common PHA monomers

Table 1. Summary of mechanical properties of P3(HB) and petrochemical based (PP, PET, PE) and bio-based polymers (PLA).

Mechanical Property	РЗНВ	PP	PET	LDPE	HDPE	PLLA	PDLLA
Tensile modulus (GPa)	3-3.5	1.95	9.35	0.26-0.5	0.5-1.1	2.7-4.14	1-3.45
Tensile Strength (MPa)	20-40	31-45	62	30	30-40	15.5-150	27.6-50
Elongation at break (%)	5-10	50-145	230	200-600	500-700	20-30	1.5 - 20
Degree of Crystallinity (%)	50-60	42.6-58.1	7.97	25-50	60-80	13.94	3.5
Melting Temperature (°C)	165-175	160-169.1	260	115	135	170-200	amorphous
Glass Transition Temperature (°C)	5-9	-205	67–81	-130-100	-130-100	50-60	50-60

Source: McAdam et al.2020

- Further development of mechanical recycling of bioplastics (PHB).
- Improve the current bioplastic packaging products (with focus on PHAs).

Experiments and Results

BIOBASED PLASTICS FOR A CIRCULAR ECONOMY

Mechanical Recycling Pathway I - PHB and PP

Main et al. Reprocessing of PHB and PP: Material characterization- In preparation BIOBASED PLASTICS FOR A CIRCULAR ECONOMY
PRIYANKA MAIN

Results-PHB and PP

Addition of melt strength enhancer and CE- IV

Results

a- without chain extender (solid colour)b- with chain extender (dotted)Fig. 6 a) Tensile strengthFig. 6 b) Strain at break

Fig. 7 TGA scan of the modified PHB

MSE retains the mechanical properties in the E2. With CE- Properties retained as well but no significant improvement due to the higher temp. nullifying the effects

O 11

Food packaging

Picture 1. PHB cup

Picture 2. PP cup

Picture 3. Cup mould on injection moulding machine

Migration and oxygen ingress

Picture 6 a)

Picture 6 b)

Picture 7 MAP Packaged PHB Bag

Picture 6 a) PHB films- Virgin, E1, E2+Jon, E5 before oil migration test Picture 6 b) After oil migration test (10 days)

III BIOBASED PLASTICS FOR A CIRCULAR ECONOMY

Effect of PHB on rPP

Picture 8 PHB in different concentrations from 1, 2, 3, 4, 5 and 10%

Picture 9 Added to rPP

Picture 10 Mixture of PHB and rPP

Picture 11 Injection moulded test pieces

Conclusions and Future Work

Conclusions

- Mechanical recycling
 - > Tensile strength remains even after 5 cycles
 - Good thermal stability
 - Similar to conventional polymers
 - > CE which can work at the processing temp. of PHB needs to be developed
 - MSEs have a strong potential in recycling of PHB
 - PHB/rPP blends- < 5% of PHB does not affect the system (in fact PHB acts as a process aid)

Food packaging applications

- > OTR and WVTR- improved for recycled PHB and no significant change in PP.
- Migration from films- Simulant A and B- passed but Simulant D2- E5 showed best performance.
- Oxygen ingress- possibility of leaks from wrinkles in the film- sealability is critical (temp. and duration of sealing).

Future Work

- Paper publication is ongoing
- Dissemination to the general public
- PPI Portugal 2023 poster contribution

Thesis

Collaborators: Assoz. Prof. Thomas Lucyshyn (MUL) Prof. Peter Ragaert (UGent) Prof. Ludwig Cardon (UGent) Teams at all respective institutes Pack4Food, Belgium PreZero Polymers Austria GmbH C-PlaNeT team!

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Contact

Priyanka Main priyanka.main@unileoben.ac.at www.kunststofftechnik.at

Montanuniversitaet Leoben, Department Polymer Engineering and Science Otto Gloeckel-Straße 2, 8700 Leoben, Austria

priyanka.main@ugent.be Ghent University