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Abstract—We present a deep-learning (DL) anomaly-based
Intrusion Detection System (IDS) for networked systems, which
is able to detect in real-time anomalous network traffic corre-
sponding to security attacks while they are ongoing. Compared
to similar approaches, our IDS does not require a fixed number
of network packets to analyze in order to make a decision
on the type of traffic and it utilizes a more compact neural
network which improves its real-time performance. As shown
in the experiments using the CICIDS2017 and USTC-TFC-2016
datasets, the approach is able to detect anomalous traffic with
high precision and recall. In addition, the approach is able to
classify the network traffic by using only a very small portion of
the network flows.

I. INTRODUCTION

With the increasing number of attacks against network
systems such as web applications, network intrusion detection
systems (IDSs) have become an important tool for identifying
unauthorized and malicious network traffic and for triggering
countermeasures [1]. IDSs can be seen as largely falling
under two categories: signature-based and anomaly-based
detection systems [2]. The former is able to detect attacks
by comparing the network traffic against the signatures of
known attacks. Although they are widely used [3] and proven
to be efficient [2], [4] in detecting known attack types, they
are not able to detect new types of attacks or attacks that
they were not trained for. Instead, anomaly-based IDSs are
used to distinguish abnormal network traffic from normal one,
which allows them to detect both known and new types of
attacks. Typically the classification of the traffic is based on
a predefined anomaly threshold which dictates if the given
network traffic data is anomalous (intrusive). However, one
challenge stands in defining the anomaly threshold such that
it provides an acceptable level of accuracy without excessive
false alerts.

Furthermore, the usefulness of an IDS increases if it is
able to detect the intrusion as soon as possible before it
is complete and before it creates irreversible damage. Early
detection would also allow system administrators or automated
tools to deploy mitigation actions and countermeasures in a
timely manner. However, only very few works consider early
real-time detection of intrusions.

In this paper, we present Early-A, a deep-learning (DL)
anomaly-based IDS for networked systems, which is able to
detect in real-time anomalous network traffic corresponding to
security attacks while they are ongoing. Compared to similar
approaches, our IDS does not require a fixed number of

network packets to analyze in order to make a decision on the
type of traffic and it requires a more compact neural network.
In addition, the approach is able to classify the network traffic
by using only a very small portion of the network flows.

In the remainder of the paper, we will introduce the
approach in Section II, then we evaluate it via a set of
experiments on a case study in Section III. We discuss related
work in Section IV and we conclude in Section V.

II. APPROACH

In this section, we present our early anomaly-based IDS,
called Early-A, for identifying network attacks. Unlike our
previous approach, Early-A classifies network flows as either
normal or anomalous. It learns the properties of normal (or
benign) network traffic and considers the given network traffic
anomalous (or malicious) whenever the traffic deviates beyond
a certain threshold from the known normality distribution. In
principle, Early-A does not require any prior knowledge about
the anomalies, and it is capable of discovering new anomalies.

The Early-A approach (Figure 1) is composed of four main
modules:

Fig. 1. Overview of Early-A approach

• a flow processing module is used to extract flows from
network traffic based on given flow parameters, and



provides the flows to other modules, either for training
or for monitoring;

• a training module is used to train neural network models
using various datasets for different application domains
(e.g, web, IoT, etc.);

• a library of attack models contains trained models for
different attack types and application domains;

• a monitoring module which is used to monitor network
traffic using the corresponding trained model from the
library. Whenever attacks are detected, this module will
trigger alerts based on predefined triggers in order to
deploy automatic countermeasures.

The approach works at the network packet level. It analyzes
the network traffic and extracts and extracts network flows for
analysis. A network flow is a bidirectional sequence of packets
exchanged between two endpoints (e.g., a web server and a
client) during a certain time interval with some common flow
properties [5] such as source and destination IP addresses,
source and destination port numbers, and the protocol type.
In our work, we define a network flow as a sequence of T
ordered packets, where T represents the length of a complete
flow. A flow is denoted as:

f = {p1, p2, ..., pT }, ∀ pi ∈ RD ∧ 1 ≤ i ≤ T (1)

where D is the dimension (or length) of a packet.

A. Flow processing

In order to extract the flows from raw network traffic, a
flow processing pipeline performs the following operations
(see Figure 2):

• packet filtering - selects the network packets used for
analysis based on a set of criteria such as protocol, port,
etc;

• flow identification - create and maintain network flows
for packets based on their source and destination IP
addresses. There are two types of flows: active and
passive. A flow is considered active if a packet was added
to it in a predefined period of time (ie., flow expiration
timeout), otherwise, it becomes inactive. If an active flow
already exists the packet is added to it otherwise a new
active flow is created;

• packet pre-processing
– truncation - Media Access Control (MAC) address

(i.e., used for transferring the frames between differ-
ent nodes in the network) and the Internet Protocol
(IP) header (containing information such as the total
length of the packet, protocol version, source, and
destination IP addresses) are removed from the pack-
ets. The truncated information is necessary for rout-
ing packets in the network. However, we consider
this information irrelevant and counter-productive for
our classifier since there is a chance that the classifier
will start relying on the IP information (e.g., IP
addresses) for detecting attack flows. Therefore, we
remove it from the packets.

Fig. 2. Flow processing module

– transformation - pad with zeros or crop the packet to
a fixed length. We would like to highlight that, even
though we fix the length of the packets; we do not
restrict the length of a flow (i.e., number of packets)
unlike many other state-of-the-art approaches though
it is implicitly bounded by time out.

This flow processing pipeline is used in the approach both
for training and for monitoring intrusion detection as follows.

B. Training

For training, we require a labeled flow dataset for supervised
training that mainly contains normal flows and few attack ones.
The dataset should also have raw network data corresponding
to the flows. This phase is composed of two steps.

1) Data set augmentation: In order to train the classifier
capable of reliably detecting the attack flow after observing
the first few packets out of a given flow, we extend the dataset
by cumulatively creating short segments (prefixes) of a flow at
different lengths. This approach will ensure that the classifier
will be able to recognize also prefixes of anomalous flows,
and consequently increase its early detection capability. The
details of our data augmentation process can be found in our
previous work [6].

We denote a flow dataset as

S = {(f1, y1), (f2, y2), ..., (fN , yN )} (2)

where N represents the total number of flows f and their
corresponding labels y ∈ {0, 1}. The label y is 0 for normal
and 1 for attack flows.

Fig. 3. Generic deep one class classification example adapted from [7]. Full
circles represent nominal flows, whereas empty diamonds represent anomalous
flows.



Fig. 4. Early-A approach for classification of network flows

2) Network training: We train a neural network model
ωθ with parameters θ following the Deep One-Class Clas-
sification [8] method. The model learns a transformation
ωθ : RD×T → Rk where Z ⊆ Rk and k specifies the
dimensions of the output space Z .

The goal of the transformation is to bring the normal flows
from an input space F close to a center c in the output space
Z and anomalous flows away from the center, as shown in
Figure 3. In our case, we set the center c to the origin (i.e.,
c = 0) of the hyper-sphere enclosing the training samples
in the output space. We can formulate the objective as the
following loss function ℓ(ωθ,y) [8]:

1

N

N∑
i=1

(1− yi)h(ωθ(fi))− yi log(1− exp(−h(ωθ(fi)))) (3)

where h(z) =
√
||z||2 + 1− 1 (4)

C. Intrusion Detection

After training the network, we calculate the anomaly score
for a given flow f using the score(f) ∈ [0, 1] function:

score(f) = 1− exp(−h(ωθ(f))) (5)

The anomaly score of a given flow represents its distance from
the center. We expect the anomaly score of normal flows to
be lower than the scores of anomalous flows. In this sense, a
flow is considered to be anomalous or malicious if the anomaly
score exceeds a certain threshold.

A threshold value, corresponding to the radius R of the
hyper-sphere in Figure 3, can be determined using different
methods. In an ideal scenario where the training dataset does
not contain outliers, the anomaly scores of the normal and
anomalous flows will not overlap. Thus, we can set the highest
anomaly score obtained by a normal flow as a threshold
in order to achieve 1 recall (i.e., the percentage of actual
anomalous flows that were correctly classified) at 0 false
positive rate (i.e., the proportion of normal flows wrongly
predicted as anomalous over the total number of normal flows).
However, in practice, some outliers are expected to be present
in the training dataset. Therefore, we use the 99th percentile

of the anomaly score distribution of the normal flows in
the training dataset. The threshold value can be provided or
fine-tuned by system administrators who observe the network
traffic to get desired results. We would like to point out that
as we increase the threshold value, the false positive rate
decreases, but the precision of the classifier degrades as well.

We keep track of active flows and their corresponding
predictions made by our early flow classifier (as depicted in
Figure 4). Whenever a new packet is added to a network flow,
the early flow classifier employs the model to determine the
anomaly score. The final class of the flow is selected based
on the score and the predetermined threshold.

III. EVALUATION

The following section outlines the evaluation of our ap-
proach by addressing two research questions:

• RQ1: How well does our method detect complete flows
(i.e., flows that contain all packets)?

• RQ2: What is the efficiency of our approach in recog-
nizing abnormal flows in real-time by analyzing only the
first few packets of the flow?

RQ1 evaluates the effectiveness of our approach in identi-
fying anomalous flows, while RQ2 focuses on assessing its
performance in a real-time environment. The datasets and
model architecture employed in the evaluation are further
explained in this section. The results are discussed in the
context of each research question.

A. Datasets

To assess the effectiveness of our approach, we utilize
two datasets: CICIDS2017 [9] and USTC-TFC-2016 [10].
In CICIDS2017, we focus on a specific segment obtained
on Thursday, July 6, 2017. This segment of the dataset
comprises network flows related to normal traffic and web
attacks such as SQL Injection, Cross-Site Scripting (XSS), and
Brute Force. All attack flows are considered anomalous. We
should note that this data set is considered highly unbalanced
among different attack types. However, this does not affect
our approach since we do not make a distinction between
different types of attack classes, but we consider all of them
as anomalies.



TABLE I
FLOW DATASETS

Class Number of Flows Average Flow length
CICIDS2017
Normal 27 129 124.39
Anomalous 2 180 16.23
USTC-TFC-2016
Normal 323 556 8.91
Anomalous 300 632 8.11

The USTC-TFC-2016 dataset has ten classes of normal
flows: Bittorrent, Facetime, FTP, Gmail, MySQL, Outlook,
Skype, SMB, Weibo, and World of Warcraft; and ten classes
of malicious flows: Cridex, Geodo, Htbot, Miuref, Neris, Nsis-
ay, Shifu, Tinba, Virut, and Zeus. The dataset was collected
from a real network environment. All types of malicious flows
are considered anomalous and the rest are considered normal.

Table I presents the number of flows and the average
flow length (i.e., number of packets) in the datasets. The
total number of flows and packets related to those flows
in the USTC-TFC-2016 dataset are 624 188 and around 5
million, respectively. Due to the limited amount of computing
resources and time, it was not feasible for us to use the entire
dataset for training and evaluation. Therefore, to speed up the
training and evaluation process, we uniformly sample 10 000
flows from each class.

To address packets with varying header and payload lengths,
we either crop or pad them with zeros at the end, resulting
in headers and payloads extended to 48 and 400 bytes for
the CICIDS2017 dataset and to 36 and 500 bytes for the
USTC-TFC-2016 dataset, respectively. Lastly, we normalize
all packet bytes between 0 and 1 by dividing them by 255. This
practice is commonly used to aid machine learning algorithms
in converging faster [11].

B. Network architecture

In our approach, we use a one-dimensional Convolutional
Neural Network (1D-CNN) [12] to extract relevant features
from the network traffic (see Figure 5). The first layer of the
model is the 1D-CNN layer using 32 kernels with size 1, valid
padding, LeakyReLU activation, and bias. We perform global
average pooling to flatten the output of the 1D-CNN layer to a
fixed-length vector, which is then provided as input to a fully
connected layer with 64 units to get the feature vector. We
use the same neural network architecture for both datasets.
The total number of trainable parameters of the model for
CICIDS2017 and USTC-TFC-2016 are 16 480 and 19 296,
respectively.

C. RQ1: Intrusion Detection performance

The objective of this research question is to investigate the
classification performance of our approach. To answer this
question, our classifier is trained and evaluated against the
independent test set that is extracted from the datasets. We split
each dataset into two subsets using the ratio 0.7:0.3: training
and test set.

We used 10-fold cross-validation on the training dataset
to fine-tune the hyper-parameter values and model selection.
For statistical reasons, the evaluation procedure is repeated
30 times, and every time, we randomly shuffle the dataset to
remove any ordering bias before splitting it into training and
test set using stratified sampling [13]. We have augmented the
training dataset using the segmentation rate sr = 0.1.

Table II shows the achieved performance of our early
flow classifier on the test set. Our approach achieves 0.908
detection rate or recall at 0.032 FPR for the anomalous flows
in the CICIDS2017 dataset. In other words, our approach
correctly identifies 90.8% of the anomalous flows in the
test dataset and wrongly identifies around 3% of normal
flows as anomalous flows. Similarly, for the USTC-TFC-
2016 dataset, our approach obtains 0.954 detection rate or
recall at 0.068 FPR for the anomalous flows. Figure 6 shows
the anomaly score distribution with respect to the normal
and anomalous flows in each test dataset using the kernel
density estimation plot. The vertical black line represents the
threshold we calculated to identify anomalous flows. One can
notice the overlap between the anomaly scores of the normal
and anomalous flows. Therefore, it is often difficult (if not
infeasible) to choose the best threshold value which maximizes
the detection rate without sacrificing the precision. Overall,
our approach performed well and attained 0.92 and 0.943
balanced accuracies for the CICIDS2017 and the USTC-TFC-
2016 datasets, respectively.

TABLE II
INTRUSION DETECTION PERFORMANCE

Class Precision Recall FPR BM
CICIDS2017
Normal 0.992 0.968 0.092 0.877
Anomalous 0.703 0.908 0.032 0.877
USTC-TFC-2016
Normal 0.960 0.932 0.046 0.886
Anomalous 0.931 0.954 0.068 0.886

D. RQ2: Earliness Performance

The purpose of this research question is to investigate the
effectiveness of our approach in detecting attacks at an early
stage. To answer our research question, we conducted a replay
session where we replicated the network traffic captured in the
dataset and tested it against our approach to simulate a real-
time environment. Our approach and the traffic replay software
were run on separate machines, both featuring an Intel Core
i9-10900X CPU, 64 GB of memory, RTX 3090 graphics
card, and Ubuntu 20.04 Operating System. The machines
were connected via a 1Gb Ethernet connection in an isolated
environment to reduce network latency.

Table III shows the earliness, the minimum number of
packets required (MNP) to predict a flow class accurately, and
the average flow length per class per model. The results show
that our approach can detect anomalous flows by inspecting
roughly the first packet.
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Fig. 6. Kernel density estimation plots of the anomaly scores for the CICIDS2017 dataset at the top and the USTC-TFC-2016 dataset at the bottom. The
vertical black lines represent the thresholds.

TABLE III
EARLINESS METRIC AND THE AVERAGE MINIMUM NUMBER OF PACKETS

REQUIRED (MNP) TO PREDICT THE FLOW CLASS

Class Earliness MNP Average Flow length
CICIDS2017
Normal 0.946 7.66 124.39
Anomalous 0.993 1.11 16.23
USTC-TFC-2016
Normal 0.928 1.57 8.91
Anomalous 0.997 1.02 8.11

IV. RELATED WORK

Several researchers have investigated the use of neural
networks for anomaly-based intrusion detection. Out of these,
only a few suggested solutions for early detection of attacks.
In the following, we briefly enumerate some of the works more
relevant to our approach.

In [14], the authors combine an attention mechanism with an
autoencoder for detecting intrusions in the in-vehicle network.
Similarly to our approach, they perform the detection at the
packet level. Differently from us, they do not group the traffic
into flows, instead, they convert hexadecimal traffic to binary
one.

Hwang et al. [15] propose a method for detecting anomalous
traffic called D-PACK. It utilizes a CNN and an unsupervised
deep learning model Autoencoder to learn normal traffic
patterns and filter out abnormal traffic. D-PACK examines
only the initial 80 bytes of the first two packets in each flow
to achieve early detection. In contrast, we do not restrict the
length of flows to a fixed value; moreover, we define a metric
to properly evaluate the earliness of our approach.

Lunardi et al. [16] propose an unsupervised anomaly-based
IDS called ARCADE (Adversarially Regularized Convolu-
tional Autoencoder for unsupervised network anomaly DE-
tection). It uses 1D-CNN based Autoencoder and Generative
Adversarial Networks (GAN) to identify anomalous flows by
analyzing a few initial packets of network flows. They evaluate
the earliness performance of their by fixing the maximum
length of flows to different values. They do not investigate
how different types of flows with different lengths affect the
performance of their approach. In contrast, we do not restrict
the length of flows to a fixed value; moreover, we define a
metric to properly evaluate the earliness of our approach. Even
though our approach had around 15 times fewer parameters
than ARCADE, we were able to achieve the same results.

The approach in [17] presents a combination of deep
and shallow learning, targeted at efficient training and real-
time detection of network attacks. The authors suggest the
combination of the improved classification performance of a
non-symmetric deep autoencoder with the accuracy and speed
of random forests. The resulting model, evaluated on the
KDD Cup ’99 and NSL-KDD datasets, exhibits an average
precision of 92.97% and an average reduction in training time
of 97.72%. However, they do not consider early detection of
attacks.

The authors of [18] propose an approach for intrusion
detection that is intended to be able to generalize between re-
lated data distributions and to provide explainable results. The
approach uses energy-based flow classification inferred from
a statistical model. The approach was evaluated on three web-
based datasets (CIDDS-001, CICIDS17, and CICDDoS19)
performed network flow binary classification with an F1 score



of around 97% and an AUC of 99%. Despite the benefits of
the approach, early real-time classification is not considered.

The work in [19] proposes an unsupervised hierarchical
detection model in which the first level is used for feature
extraction and the second one for flow classification. Similar to
our approach, they target web network traffic and they also pre-
process the dataset to extract relevant features from packets.
The approach achieves a recognition accuracy of 99.4988%.
However, the approach does not detect flows and does not
attempt to detect the attacks early.

The approach described in [20] uses a Long Short Term
Memory (LSTM) model combined with the attention mech-
anism for flow classification. They evaluate the approach
using CSE-CIC-IDS2018 dataset and obtained a classification
accuracy of 0.96. However, the approach does not consider the
early classification of the network flows.

V. CONCLUSIONS

In this paper, we proposed an anomaly-based intrusion
detection approach which is able to detect attacks in real-
time while they are happening. The CNN model (with a
comparatively small number of parameters) used for training
and monitoring is chosen so that the approach to be fast and
usable in real-time settings. The evaluation showed that it can
detect reliably attacks with high accuracy, however, additional
adjustments can be delegated to the network administrator if
needed. Future work will evaluate the approach on additional
datasets and from different application domains and will
consider improving the explainability of the classifications by
employing attention mechanisms.
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