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Executive Summary 

Providing assistance and rehabilitation strategies tailored to each patient is one of the key goals of the 
EU project Rehabilitation based on Hybrid Neuroprothesis (ReHyb). In order to achieve this, highly 
precise models of both the human as well as the robotic system are needed, which can also be adapted 
safely. While modeling strategies based on first principles are detailed in the other tasks of work 
package five, this deliverable specifically focuses on data-driven system identification techniques to 
augment or generate models. 

First, the requirements for system identification techniques are listed from the project’s perspective and 
its desired use cases. Subsequently, the findings are used to derive fundamental technical requirements 
for the potentially deployed machine learning methods. These requirements include among others safety, 
real-time capabilities, precision, and physical consistency. 

Having identified these requirements, a brief literature review is presented to determine possible 
learning techniques for system identification. Based on these results, non-parametric models are used 
as a starting point for the development of data-driven system identification methods with a specific 
focus on Gaussian processes.  

In four case studies the state of the art in Gaussian process-based system identification is furthered. In 
each study, new methodologies are developed to extend the capabilities of Gaussian processes with a 
specific focus on the previously identified technical requirements for the ReHyb project. Thereby, we 
contribute to the state of the art on data-driven system identification techniques for the use in 
rehabilitation robotics and develop new modeling techniques for the use in ReHyb in this deliverable.  
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1 Introduction 

Robotic systems are becoming more prominent in different areas of life and are being deployed more 
often in close proximity to humans. In the ReHyb project, the considered use case deals with health care 
robotics. In particular, we want to provide a high degree of personalization and adaptation to the specific 
needs of each individual patient to improve the utility of robot-driven neurorehabilitation. In order to 
achieve this, computational approaches that provide precise estimates of the patient’s neuromechanical 
state are required to inform the rehabilitation process and control strategy. Therefore, the need arises to 
model the dynamics and inherent uncertainties underlying the human-robot interaction. Since the 
interaction dynamics in the case of wearable robotics (exoskeletons) are quite complex, novel data-
driven system identification methods are needed to provide reliable estimates in a timely and flexible 
manner. 

1.1 Scope of the deliverable 

The goal of the EU project ReHyb is to develop rehabilitation concepts and assistance for activities-of-
daily-living (ADL) based on exoskeletons and functional electrical stimulation (FES). To this end, work 
package 5 (WP5) deals with the development of models for the human-exoskeleton system involving 
both the physical human-exoskeleton-interaction dynamics and the neuromechanics of the human. The 
resulting insights can then be used to inform both rehabilitation strategies and the control of the ReHyb 
system. 

When developing such models, specifically in safety-critical health-care scenarios, it is prudent to base 
them on first principles, i.e., using physical and biological concepts that are well understood and allow 
the generation of analytical models. These types of models account for most of the descriptions of the 
ReHyb system and are the subject matter of the other tasks of WP5. However, because of the complexity 
of the hybrid exoskeleton system, which is further exacerbated due to the involvement of the human, it 
is not always possible, nor computationally feasible, to model all effects using first principles.  

Therefore, the focus of this deliverable is the development of machine learning techniques, which can 
be used to augment and/or substitute the analytical models where necessary. Here, the proposed learning 
methods are conceived with the application scenario of the ReHyb project and the consequent 
requirements in mind. Thus, while the precision, flexibility, and overall performance of the system are 
important, special focus is given to properties which are paramount for the deployment in health care, 
such as safety, interpretability, and robustness. 

We will start by analyzing the use case and functional requirement of the project in order to derive the 
technical requirements posed to learning methods. Building on these results, we explore the state of the 
art of data-driven modeling techniques and analyze their advantages and disadvantages to find the most 
applicable machine learning techniques. Finally, missing properties in the current state of the art are 
identified and novel data-driven system identification methods are proposed. 

1.2 Relation to other project tasks 

To identify the requirements for data-driven system identification methods for the ReHyb project, we 
confer to the results obtained in WP2. Specifically, deliverable 2.1 (D2.1) was concerned with the 
analysis of the use cases and the definition of clinical demand, and provides us with the overall 
rehabilitation needs and interaction scenarios. Additionally, D2.2 identified the functional and system 
requirements of the ReHyb system, which defines the system capabilities we intend to provide and, thus, 
the desired performance we have to develop the models for. 
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Alongside the use case definition given in WP2, WP4 is responsible for the design of the hybrid 
exoskeletons. The hardware design in WP4 determines the available sensory devices, which also 
connects to the kind of machine learning methods considered in this deliverable.  

Further relations to WP5 can be found in WP3 and WP6. In WP3 tasks T3.4 and T3.5 are concerned 
with the development of an accurate digital twin of the user (the patient), including user-specific 
properties. Here, individualized models are required to generate an accurate digital twin, thus requiring 
the results of WP5 as an input. Similarly, the T3.3 within WP3 is concerned with the estimation of 
human intention, which can also benefit from precise models of the human dynamics.  

In a similar fashion, WP6 requires user-specific models as an input. Here, the control of the hybrid 
exoskeleton is developed, which in many instances is designed as model-based controllers. Therefore, 
in order to provide tailored assistance for each individual patient, it is necessary to adapt the models on 
which the controls are based. This can be done using the data-driven system identification methods 
described in this deliverable. 

1.3 Structure of the deliverable 

The deliverable is structured as follows. In Section 2, we will analyze the relevance of data-driven 
system identification methods from the perspective of the use case requirements defined for the ReHyb 
project. Given this analysis, Section 3 will derive fundamental technical requirements for the potentially 
deployed machine learning techniques. In Section 4, we provide a general overview of machine learning 
methods. The reviewed approaches are analyzed with respect to the previously provided technical 
requirements. Lastly, the novel, data-driven system identification methods developed during the task 
are presented in Section 5, and conclusions are drawn in Section 6.  

2 Requirements for system identification in ReHyb 

The ReHyb project aims to develop a novel rehabilitation system for stroke patients based on an 
individualized digital user model obtained through multi-modal sensing, and actuation techniques from 
exoskeleton and FES. From an algorithmic perspective the main advances of this system are the 
intrinsically safe low-level control scheme and advanced cognitive abilities that autonomously analyze 
the user in a goal-oriented robot-assisted task. Additionally, adaptive control algorithms are deployed 
in order to achieve a patient-specific, assist-as-needed device, which maximizes orthotic and training 
efficiency during clinical and home-based rehabilitation and offers a pleasant user experience during 
ADLs. A detailed description of the objectives and respective KPIs in the ReHyb project are listed in 
Table 1. which also shows the objectives in direct relation to the deliverable. 

In order to achieve an individualized, patient-adaptive, and safe physical interaction, the ReHyb system 
needs to be able to store and analyze the user data, facilitate an application of tailor-made treatment 
plans, and support the clinical management of the patient by communicating knowledge with the 
caregivers. All of this is implemented via the general control architecture shown in Figure 2.1, which 
provides a unifying framework for rehabilitation and ADL scenarios with the hybrid exoskeleton. 

Here, the high-level architecture extracts end-user characteristics and constructs a digital twin via 
physical interaction with the patient. This model is then used for monitoring rehabilitation progress as 
well as managing the interaction strategies executed by the system by generating desired task goals. To 
this end, the high-level system components require quantitative feedback on the mental and physical 
state of the patient, i.e., fatigue or spasticity, which requires the use of computational models describing 
complex neuromechanical properties of the human. 
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Table 1 - List of objectives and KPIs of the project relevant to deliverable 
 

Objectives Goals KPIs Relevance to D5.4 

1) Interfacing 
digital user 
twin with 
robotics 
technology 

• To develop a generic user reference model, 
and personalize it to generate a digital user 
twin through sensing and actuation 
technologies. 

• To develop estimation techniques for internal 
states such as neuromechanics and spasticity 
of the muscles. 

• To effectively handle the dynamics and 
uncertainty arising from the time-varying, 
nonlinear mapping of the FES and user 
performance. 

o Neuromechanical state and 
muscle spasticity estimated 
during pHRI with accuracy 
higher than 70%. 

o The relative modelling error 
for the combined FES multi-
joint hand muscle system is 
less than 35%. 

› By developing novel learning-based 
system identification methods, the 
description of the neuormechanical model 
and state estimation becomes more 
precise. Therefore, this can be used as an 
input to precise, analytical spasticity 
estimation methods developed in T5.2. 

2) Cognitive 
system for 
sympathetic 
HR 
interaction 

• Online planning and decision-making of the 
hybrid control system to be intuitive and 
sympathetic to the user. 

• Supporting HRI with patients by integrating 
multiple interaction modalities in a high-level 
control system. 

o Non-verbally interaction with 
a user in more than 70% of 
the pre-defined use cases. 

o Positive evaluation on the 
sympathetic interaction by 
more than 90% of the users. 

› Ensuring a seamless and pleasant 
interaction between human and robot 
necessitates precise models. 

› High-level interaction modalities such as 
game theoretic approaches require the 
agents to be described as dynamics 
systems. 

3) Cooperative 
control 
strategies 
under 
uncertain 
system 
dynamics 

• To develop a shared control strategy capable 
of handling unknown influences due to highly 
nonlinear, time-varying, and uncertain 
physical interactions. 

• To research novel modular control scheme for 
self-regulation of the hybrid exoskeleton, 
which allows safe execution of the assistive 
force. 

o Controller adapting online to 
time-varying changes for 80% 
of use cases. 

o Theoretical control guarantees 
adherence to safety 
constraints in the pre-defined 
use cases. 

› Online adaptation of controllers can be 
achieved by updating models from data. 

› Deployment of appropriate machine 
learning techniques allows the derivation 
of theoretical model error guarantees, 
which can be used for control. 
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Figure 2.1: General control architecture for the ReHyb system with conceptual division in high-, mid-, and low-level 
components. 
 
Once the interaction strategies are defined, the middle-level architecture deals with allocating the 
control between the user and the hybrid exoskeleton, as well as the distribution of load for FES and the 
robotic system. For the shared control block, there are two conceptual approaches. First, an adaptive 
impedance control that generated behavior by modulating the interaction with the environment. Second, 
a game-theoretical framework, which achieves optimal interaction between the human and hybrid 
exoskeleton by a cost-function representation of both agents. While the game-theoretic approach 
potentially leads to an improved interaction and provides more flexibility in generating interaction 
paradigms, such as assist-as-needed, it also assumes an existing model of the human-exoskeleton 
dynamics, which is generally difficult to obtain due to complex interaction dynamics. On the other hand, 
the load-distribution, represented by the cooperative control block in Figure 2.1, assigns the desired 
force from the shared controller to both the FES and exoskeleton. In order to do this effectively, again 
a dynamics model is required as represented by the ‘inverse dynamics’ component in Figure 2.1. 

Lastly, the low-level modules of the general control architecture facilitates the execution of the 
computed assistance on an actuator level, i.e., the torques generated by the FES and exoskeleton device. 
Here, particular challenges arise since not all of the required information to do so is observable and 
instead need to be estimated. For an appropriate generation of the exoskeleton torques during the 
physical human-robot-interaction (pHRI) it is necessary to know the volitional torques that the human 
provides. As there are no expensive force-torque sensors present to measure the interaction forces, the 
use of model-based torque observers becomes necessary. This torque observer requires the exoskeleton 
dynamic model, motor dynamics, and human arm dynamics. Precise models are highly important for a 
successful torque estimation, which are challenging to obtain because of complex behaviors, e.g., due 
to friction. On the other hand, a patient-specific map is needed to convert desired torques to a tangible 
FES stimulation pattern. This mapping has to be learned, as there are no viable analytical models to 
describe the input-output relation. Additionally, the learning process should ideally be done online due 
to time-varying behaviors such as muscle-fatigue. 

Given the above described embedding of personalized models in different facets of the general 
architecture and the underlying functional requirements for the overall ReHyb system, it is possible to 
derive technical requirements for the deployed data-driven system identification methods. These 
fundamental requirements are detailed in the following section.
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3 Technical requirements 

In order to achieve the above-described objectives and goals in the ReHyb project, it is necessary to 
utilize personalized models of the patient. Given the particular use case and the functional requirements, 
certain technical requirements emerge for the deployed data-driven system identification methods in 
order to ensure that the resulting models are suitable for the envisioned application.  

Furthermore, the encountered identification challenges, and consequently the prioritization of 
requirements, change depending on the variables of interest. In the following, a table of properties that 
need to be estimated in a model-based fashion is provided. For each of the variables of interest the key 
challenges are listed and technical requirements for the potential learning method are derived. For 
example, both spasticity and fatigue are time-varying phenomena, since the state of the patient changes 
during the course of a training session. Therefore, real-time capable learning techniques are needed in 
order to cope with this challenge. Differently, the modelling of human neuromechanics for example is 
more useful, if the results are interpretable for the clinicians, hence, requiring the learning methods to 
be physically consistent. A more detailed overview is given in Table 2. The derived technical 
requirements are expanded on in Subsections 3.1 to 3.5. Furthermore, the technical requirements 
identified in this section are conferred to in case studies, which will be presented in Section 5. 

 

Table 2 - Variables of interest, their respective key challenges from a learning perspective and the derived technical 
requirements 

 
Variable of interest Key challenges Technical requirements 

• Spasticity  o Time-varying › Real-time capabilities (cf. 3.2) 

• Fatigue  o Time-varying › Real-time capabilities (cf. 3.2) 

• Human-exoskeleton dynamics o Highly nonlinear 
o Uncertainties 

› Safety and robustness (cf. 3.1) 
› Expressiveness (cf. 3.3) 

• Human neuromechanics o Interpretability for 
clinicians › Physical consistency (cf. 3.5) 

• Learning for ADL scenarios o Portable system › Resource constraints (cf. 3.4) 

• Human volitional torque o Short calibration › Data-efficiency (cf. 3.2) 

• FES stimulation mapping 
o Low amplitudes 
o Time-varying 
o Short calibration 

› Safety and robustness (cf. 3.1) 
› Real-time capabilities (cf. 3.2) 
› Data-efficiency (cf. 3.2) 

 

3.1 Safety and robustness of learned models 

The most important requirement to consider for the used models is that the safety of the overall system 
is not compromised. Therefore, machine learning methods are preferred that, besides the mean 
prediction, also provide upper bounds on the model error. These confidence bounds allow to interpret 
the learned dynamics in a robust form, which facilitates the development of algorithms with safety 
guarantees. Since the models are used, among others, as an input to the control of the hybrid exoskeleton, 
facilitating safety is paramount.  
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3.2 Real-time capable and data-efficient learning 

In order to facilitate an intuitive interaction of the ReHyb system with the human it is crucial to estimate 
the current state and intention of the user. However, since the system in question is time-varying due to 
the involvement of the human, it is necessary to continuously update the deployed models with new 
measurements to ensure that the produced estimates properly reflect reality. Here, time-varying 
behaviors are introduced for example due to fatigue of the patient or commencing spasticity. Therefore, 
one of the key requirements set to the considered data-driven system identification methods is that they 
allow for close to real-time updates and prediction rates of the learned model. As a consequence, the 
deployed machine learning techniques also have to be able to produce viable estimates even with very 
little training data. 

3.3 Flexibility and expressiveness of data-driven modelling 

For most of the required input-outputs relations in the system it is desired to model them using first 
principles. This is reasonable as analytical models generalize well to previously unobserved situations 
and inherently contain desirable properties, such as, conservation of energy. The use and development 
of these models based on first principles is attempted in T5.1 and T5.2 of WP5. However, as there are 
dynamics present in the system that, due to their complexity and limited understanding, cannot be 
described with analytical models, data-driven system identification methods are to be used. 
Consequently, the machine learning techniques deployed in this deliverable have to be very flexible 
and expressive by design, as they would not be able to explain the aforementioned complex behaviors 
otherwise.  

3.4 Learning with computational and memory constraints 

Besides the application for clinical rehabilitation of stroke patients, which may take place in a stationary 
setting, the envisioned ReHyb system should also be deployed for assistance during ADL at home. 
These ADL scenarios ideally take place in a non-stationary manner to maximize the utility of the system 
and the benefit for the user. However, making the system portable produces several issues from a 
modelling perspective. On the one hand, it increases the complexity, since the environment becomes 
less structured and therefore more uncertain. This issue is exacerbated by the fact that a portable system 
needs to be lightweight and therefore the resulting hardware limitations automatically lead to 
restrictions regarding computational and memory resources of the system. Learning models, which can 
be used for control in safety-critical systems under these resource constraints is a challenging problem. 

3.5 Interpretability and physical consistency 

As stated above, models based on first principles are inherently beneficial and contain desirable 
properties. Besides the fact that they generalize well, they also have the added benefit that they are 
easily interpretable and guarantee physical consistency. This is particularly important in the use case of 
health care, as the utility of deployed models is directly linked to their reliability and intelligibility of 
the models. Additionally, interpretability increases the acceptance of model-based computational 
rehabilitation methods, since the clinicians using the models can easily integrate the model estimates 
into their decision-making process. Therefore, deploying system identification techniques that can 
provide interpretable and physically consistent estimates is very beneficial for the ReHyb system. 

3.6 Conclusions from requirement evaluation 

Data-driven system identification methods enable us to deal with a system that entail a lot of complexity 
and are operated under uncertain conditions, which is exactly the case in the ReHyb project. Due to the 
physical human-exoskeleton-interaction, the use of FES, and the uncertain behavior of the human, the 
dynamics governing the system become highly nonlinear, time-varying and uncertain. While this level 
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of complexity is challenging from a modelling perspective, it also allows the ReHyb project to tackle 
use cases that would otherwise not be achievable.  

However, in order for the machine learning techniques to be suitable for the particular use cases 
considered in the ReHyb project, certain technical requirements have to be considered, which have been 
described in detail above. Some of these requirements may be understood as conditions that have be 
fulfilled at all times and for all models, while others rather depend on the specific functional use of the 
model. Safety and robustness, for instance, is a hard constraint that each model should fulfil independent 
of the use case in the overall architecture. Differently, interpretability is more important when it comes 
to the modeling of human neuromechanics and may be less important in other aspects.  

4 Machine learning methods 

Given the technical requirements identified in the previous section, we survey the literature for different 
machine learning techniques and their use for rehabilitation robotics in this section. A particular focus 
of this brief overview is, how well the methods apply for the use in the ReHyb project and how to 
advance existing methods to maximize their utility for our use case. 

4.1 Learning-based modelling techniques 

Generally, we differentiate between three principal learning-based modelling techniques to perform 
system identification [1]:  

• Parametric models: Here, a predefined structure is employed for the system and the learning 
process is limited to learning the parameters of the model. The functions giving structure to the 
model can either be defined by first principles, such as an Euler-Lagrange system for a robot 
arm, or differently by generic feature functions like radial basis functions. 

• Neural networks (NNs): Differently to standard parametric models, NNs do not impose a 
specific structure in modelling the system at hand. However, in principle NNs can be 
understood as a kind of parametric model, since the system is completely described by learning 
appropriate parameters/weights. Typically, NNs have a lot of parameters, which is especially 
the case in deep NNs (DNNs), where the models are very large.  

• Nonparametric models: Lastly, we consider nonparametric models, sometimes also referred 
to by the term data-driven models. Data-driven models also avoid assumptions regarding the 
structure of the system but instead build structure from data. Here, particular focus will be given 
to Gaussian processes (GPs) as an instance of data-driven models.  

In principle, each of the presented machine learning model classes have their distinct advantages and 
disadvantages. For example, the imposed structure in parametric models greatly simplifies the learning 
process, thereby, allowing a straight-forward way of incrementally updating the learned model with 
new data. A common approach to do so is recursive least-squares regression [2], which can be used to 
update the parametric model in real-time. However, while this strict structure of parametric models 
enables online learning and fast adaptations to a time-varying system, it comes at the cost that the 
models are usually inaccurate, since they cannot capture the complexity of the real system. Since the 
ReHyb system is a particularly complex one, more sophisticated estimation methods need to be 
considered here.  

One approach to obtain precise models from data, even if prior knowledge of the system is not available, 
are neural networks. Recently, NN-based modelling has gained popularity due to their impressive 
performance in describing highly nonlinear systems. Besides the use in previously impossible thought 
tasks, such as playing GO [3], NN are also deployed in rehabilitation robotics. In [4] for example, the 
authors used an adaptive impedance controller with individualized, NN-based adjustment of the control 
parameters to improve tracking performance. The advantage of this kind of adaptive control scheme is 
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that the NN can learn from patient data while also being able to handle complex dynamics of the human-
robot interaction. Differently, deep learning has also been used in [5] for automatic assessment of 
rehabilitation progress by training the DNN on movement indicators. While, NNs are versatile and 
expressive enough to handle these different use cases, there are some limitations that hinder the 
deployment in the ReHyb project: First, to achieve a good performance a large amount of data is 
required, which is typically difficult to obtain if a human is in the loop, since it cannot be simulated 
properly, and data acquisition is time-consuming and cumbersome. Second, while NNs are 
computational efficient when it comes to predictions, the training process is inefficient, therefore, 
limiting the possibility of providing online adaptations. Lastly, NNs tend to have overconfident 
estimation results and inherently do not provide measures of uncertainty for their predictions. Hence, 
without probabilistic confidence bounds it is difficult to develop robust algorithms with safety 
guarantees using NN-based models, which is particularly important in the ReHyb context.  

While NNs are a powerful modeling technique due to their expressiveness, they are not the only viable 
learning method to model complex systems. Data-driven modelling techniques, GPs in particular, have 
been shown to perform similarly well to NNs w.r.t. modeling nonlinear dynamical systems [6]. Besides 
this high level of flexibility, GPs have the added advantage that the learning process is data-efficient, 
with high performances being achieved even with small training data sets [7]. This is particularly useful 
when working with humans, since an extensive data acquisition scheme reduces the utility of the robotic 
device greatly. Additionally, GPs allow to address the key technical requirement derived in the last 
section regarding the safety and robustness of learned models. Here, one can make use of the fact that 
confidence bounds for the GP predictions can be derived, which guarantee that the model error does 
not exceed a certain range with high probability [8] [9]. This allows the interpretation of learned models 
in a robust manner and facilitates the development of control algorithms with safety guarantees [10]. 
Furthermore, the risk of overconfident predictions is reduced, as the estimate does not only include a 
mean value but also the accompanying variance. In clinical use cases this is especially advantageous, 
because a clinician can make a well-informed decision based on a complete picture of the learning-
based estimates. However, certain drawbacks still prevent the direct use of GPs in the ReHyb context. 
One issue is the high computational complexity of GPs, which grows quadratically in the amount of 
data points. This limits the utility of GPs, if continuous learning is desirable or if the target system has 
computational constraints. Also, it prevents online learning completely. One additional downside of 
data-driven modeling techniques, such as GPs, is that the structure of the model is purely built from 
data. While this allows for a lot of flexibility and expressiveness, it also leads to models that are not 
guaranteed to be physically consistent. Therefore, even though GP-based models may be viable in 
principle, there are relevant shortcomings that still need to be addressed. 

4.2 Current limitations 

All of the learning-based system identification techniques presented in the previous subsection have 
their unique advantages and disadvantages. While parametric methods do allow for the most straight-
forward implementation from a computational and analytical perspective, their limited expressiveness 
does prevent them from further considerations in this task. Both NNs and GPs can potentially deal with 
the complexity of the ReHyb system, however, only GPs allow for a robust and safe integration of the 
learned model into the overall control architecture. Therefore, GPs will be considered for further 
developments in this deliverable. 

5 Development of novel data-driven system identification methods 

As described above, GPs have many beneficial properties, which make them suitable for the data-driven 
system identification in the ReHyb project. However, in order to increase their utility, certain challenges 
still need to be overcome. In the following we will address some of the problems with research 
developments performed within T5.4.  
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5.1 Case study 1 - Real-time capable and data-efficient learning [11] 

Many neuromechanical parameters that describe the state of the patient, such as spasticity or fatigue, 
are time-varying and therefore require continuous, online estimations and model updates. However, one 
of the key challenges with GPs is the increasing computational complexity in the amount of data points, 
which limits their application in online learning contexts. Previously, modifications have been proposed, 
such as event-triggered online learning where data points are only added whenever the uncertainty in 
the system becomes too large [12] or sparse GPs [13], which sort out non-informative training points. 
Nonetheless, these approaches only aim at reducing the amount of data points in the training process 
and do not address the computational complexity problem at its root. However, recently a novel method 
has been introduced [14], which enables learning and predicting online. 

In this work, for the first time, we deploy the novel method experimentally in a user study in which 
participants perform a rehabilitation exercise. Generally, in these kinds of settings, the required 
personalization is achieved through manual tuning by clinicians, which is cumbersome and error-prone. 
In this work we propose a novel online learning architecture, which is able to personalize the provided 
assistance at run time to each individual user. To this end, we deploy Gaussian process-based online 
learning with previously unseen prediction and update rates. Finally, we evaluate our method in an 
experimental user study, where the learning model-based controller is shown to provide personalized 
control, while also obtaining safe interaction forces. 

5.2 Case study 2 - Flexibility and precision of data-driven modelling methods [15] 

Learning in a fast and data-efficient manner has been the focus of the previous case study. However, 
when trying to model highly complex behaviors, i.e., the volitional torque provided by a patient during 
a rehabilitation exercise, a high level of flexibility and precision is expected. Particularly in the ReHyb 
use case, this is a challenging problem because labeled training data is sparse and expensive, while high 
prediction accuracy is required from models of these dynamical systems. In order to increase the 
prediction performance of these models, abstract prior knowledge such as stability, should be included 
in the learning approach. This stability property can be verified by the use of Lyapunov functions, which 
represent a kind of energy measure within the dynamical system.  

One of the key challenges is to ensure sufficient flexibility of the models, which is typically limited by 
the usage of parametric Lyapunov functions to guarantee stability. Therefore, we derive an approach to 
learn a nonparametric Lyapunov function based on GP regression from data in this work. Furthermore, 
we learn a nonparametric Gaussian process state-space model from the data and show that it is capable 
of reproducing observed data exactly. Finally, the flexibility and efficiency of our approach is 
demonstrated on the benchmark problem of learning handwriting motions from a real-world dataset, 
where our approach achieves almost exact reproduction of the training data. 

5.3 Case study 3 - Learning with computational and memory constraints [16] 

During ADL scenarios, one of the most difficult challenges is in guaranteeing safety while dealing with 
the highly uncertain environment and the tight resource constraints imposed by the system. For a safety-
critical system, such as the ReHyb system, to operate properly in unknown environments it needs to be 
able to adapt quickly. This can be achieved by inferring a model online from the data stream generated 
during operation. Here, GP-based learning is particularly well suited for safety-critical applications as 
it ensures bounded prediction errors.  

However, while there exist computationally efficient approximations for online inference, these 
approaches lack guarantees for the prediction error and have high memory requirements. Hence, these 
methods are not applicable to safety-critical systems with tight memory constraints. These constraints 
are present however in a lightweight, fully portable assistive devices. 
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Therefore, in this work, we propose a novel networked online learning approach based on Gaussian 
process regression, which addresses the issue of limited local resources by employing remote data 
management in the cloud. Our approach formally guarantees a bounded tracking error with high 
probability, which is exploited to identify the most relevant data to achieve a pre-defined performance. 
We further propose an effective data transmission scheme between the local system and the cloud, 
which takes bandwidth limitations and time delay of the transmission channel into account. The 
effectiveness of the proposed method is successfully demonstrated in a human-exoskeleton simulation. 

5.4 Case study 4 - Learning with GPs with physical consistency [17] 

In the particular use case of learning human neuromechanics, ensuring the physical consistency of 
learned models is equally as important as achieving high prediction accuracies. Besides guiding the 
learning process and generating reasonable results at all times, physical consistency also facilitates the 
interpretability of learned models. In sensitive use cases such as clinical settings this is a necessary 
requirement to obtain acceptance for new methods and facilitate their deployment in conjunction with 
current therapy practices. 

Therefore, we propose a novel, physically consistent GP enabling the identification of uncertain 
Lagrangian systems, which can be used to model human and robots alike. The solution space is tailored 
according to the energy components of the Lagrangian, thereby, analytically guaranteeing physical and 
mathematical properties such as energy conservation. For the approach only differential input-to-output 
measurements of the function map are required while Gaussian noise is permitted in torques, velocities, 
and accelerations. We demonstrate the effectiveness of the approach in numerical simulation. 

 

6 Conclusions 

In this deliverable, we have presented data-driven system identification methods to estimate variables 
of interest for the ReHyb exoskeleton including FES and human neuromechanics. Since the other tasks 
in the WP are focused on generating models based on first principles, here, particular focus was given 
to improving and augmenting these models using machine learning. To this end, first the technical 
requirements for the deployment of machine learning techniques are derived and mapped to the 
respective variables of interest.  Subsequently, the literature is surveyed for suitable methods with the 
result that GPs are identified as a favorable technique due to their model error bounds, which facilitate 
the development of safe and robust model-based algorithms.  

However, since the state of the art in Gaussian process literature does not provide methods that are able 
to meet all the technical requirements identified for the ReHyb use case, multiple extensions are 
proposed in this deliverable. These contributions to the current state of the art are detailed and evaluated 
in four scientific case studies, which are shown in the appendix of this deliverable. With these novel 
GP-algorithms we are able to develop data-driven system identification methods, which are suitable for 
the deployment in the ReHyb project and facilitate a higher degree of personalization for all model-
based components of the system. 
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7 Definitions, Acronyms and Abbreviations 

Acronyms abbreviations Description 
ReHyb Rehabilitation based on Hybrid neuroprosthesis 
T Task 
D Deliverable 
FES Functional Electrical Stimulation 
ADL Activities of Daily Living 
WP Work Package 
KPI Key Performance Indicator 
pHRI Physical human-robot interaction 
NN Neural Network 
DNN Deep Neural Network 
GP Gaussian Process 
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Personalized Rehabilitation Robotics based on Online Learning Control

Samuel Tesfazgi1∗, Armin Lederer1∗, Johannes F. Kunz, Alejandro J. Ordóñez Conejo, Sandra Hirche1

Abstract— The use of rehabilitation robotics in clinical appli-
cations gains increasing importance, due to therapeutic benefits
and the ability to alleviate labor-intensive works. However, their
practical utility is dependent on the deployment of appropriate
control algorithms, which adapt the level of task-assistance
according to each individual patient’s need. Generally, the
required personalization is achieved through manual tuning by
clinicians, which is cumbersome and error-prone. In this work
we propose a novel online learning control architecture, which
is able to personalize the control force at run time to each
individual user. To this end, we deploy Gaussian process-based
online learning with previously unseen prediction and update
rates. Finally, we evaluate our method in an experimental user
study, where the learning controller is shown to provide per-
sonalized control, while also obtaining safe interaction forces.

I. INTRODUCTION
In recent years neurological disorders have become

more dominant with an estimate of over 16 million people
suffering a first stroke each year [1]. Therefore, an urgent
need for rehabilitation treatments arises to ensure the quality
of living for such patients. In particular high-intensity and
repetition training has been shown to produce the most
promising recovery results [2]. Due to these requirements,
effective rehabilitation is labor intensive and both patients
and healthcare professionals can benefit greatly from robotic-
assisted rehabilitation strategies [3]. However, the control of
these devices presents certain challenges, which can limit
their applicability in practice. Different factors, such as level
of assistance, patient engagement and task success, have to
be considered when designing the controller. These require-
ments are particularly difficult to fulfill, due to the uncertain
interaction dynamics between human and robot. This
problem is exacerbated by the variety of patient behaviors
and needs, which require a high degree of personalization.

A control approach that is widely used in the literature is
impedance control, which has previously been shown to be
applicable for robot-based arm rehabilitation [4]. Impedance
control is particular popular for human-robot interaction,
since it provides compliant behavior for appropriately chosen
parameters, therefore, ensuring limited and safe interaction
forces. In [5], a position-dependent stiffness is used to assist
rehabilitation tasks, where the stability of the human-robot
interaction is guaranteed using system passivity. Differently,
in [6], a desired impedance model is defined, which is subse-
quently achieved through an iterative learning scheme. How-
ever, despite these application examples of impedance con-
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trol for robot-based neurorehabilitation, they generally hinge
on properly chosen impedance parameters, which first have
to be tuned by the manufacturer a-priori and are then read-
justed by clinicians [5]. This procedure is time-consuming
and error prone, due to the variety of target personas. Addi-
tionally, the tuning needs to be performed cautiously in order
to retain the compliant behavior needed for safe interaction.
To address these issues other works have developed control
architectures that specifically take the complete dynamics
into consideration, e.g., via feed-forward control and distur-
bance observers [7]. While this approach decreases interac-
tion forces, it requires measurements of the patient-robot in-
teraction wrench at each interaction point, such that undesir-
able force-torque sensors become necessary, which increase
system costs and may even lead to stability concerns [8].

Alternatively, learning-based controllers can be deployed
to fulfill the personalization requirements. To deal with the
unknown interaction model and to adapt the patient-robot
interaction, He et al. [9] propose a neural network control
approach for rehabilitation robotics. Differently, the authors
in [10] focus on obtaining human motor control models
during physical interaction by deploying Gaussian processes
(GPs) to learn the human arm impedance. Despite these
approaches showing promising results, they cannot account
for behavior changes of the patient, i.e., due to fatigue, since
the learning is performed offline. However, facilitating this
adaptation can be highly beneficial for the personalization of
control strategies in rehabilitation robotics [11].

In this work we present a novel learning-based control
architecture that facilitates highly personalized assistance in a
human-robot collaboration task, while requiring no parameter
tuning. To the best of our knowledge, this is the first time that
a GP is used directly in the control loop to generate assistive
forces during physical human-robot interaction. Additionally,
we evaluate our learning-based control architecture exper-
imentally, where update and prediction rates with online-
generated data are achieved that are orders of magnitude
higher than previous GP approaches. The remainder of the
paper is structured as follows: First the problem statement is
introduced in Section II, while the online learning approach
is presented in Section III. Subsequently, in Section IV, the
online learning control architecture is proposed. Finally, the
evaluation of our method follows in Section V.

II. PROBLEM FORMULATION

We model the physical-human robot interaction in reha-
bilitation robotics using Euler-Lagrange systems of the form

H(q)q̈ +C(q, q̇)q̇ + g(q) + fi(x) = u, (1)



where x=
[
qT q̇T q̈T t

]T
is the concatenation of joint

angles q ∈ Rd, angular velocities q̇ ∈ Rd, angular accelera-
tions q̈ ∈ Rd, and the time t ∈ R0,+. The matrix H : Rd →
Rd×d denotes the symmetric and positive definite generalized
inertia of the robotic system, C : Rd × Rd → Rd×d is the
generalized Coriolis matrix, g : Rd → Rd are the torques
resulting from gravitation, fi : R3d+1 → Rd describes the
interaction torques generated by the i-th patient, and u ∈ Rd

are torques applied to the system as control input.
Remark 1: We account for the intra-patient variation of

interaction dynamics, e.g., caused by unobserved internal
dynamics in the patient such as fatigue, by considering time-
dependent functions fi(·). Hence, all behavioral changes of
the human are modeled through time-dependency.

In order to reflect the practical availability of models, we
make the following assumption.

Assumption 1: All parameters of the robotic system are
known, hence, H(·), C(·, ·) and g(·) are available. In con-
trast, the individual dynamics of patients fi(·) are unknown.

This assumption reflects the fact that accurate models of
robotic systems can typically be obtained using classical
identification procedures [12], which can be directly applied
in control design. In contrast, the identification of models
of human motor dynamics in physical interaction is a chal-
lenging problem and often limited to simple scenarios [10],
making them generally inapplicable in rehabilitation robotics.

In order to overcome these limitations of conventional
modeling techniques, we employ a non-parametric, data-
driven approach for learning the human induced dynam-
ics fi(·). For the inference of an individual model for each
patient, we consider access to the following measurements.

Assumption 2: The control input u, the joint angles q,
and the angular velocities q̇ and accelerations q̈ of each
patient can be observed for learning a personalized model.

As the control input u is determined by the employed
control law, it can be directly observed. The joint angles q
are usually measured, such that the angular velocities q̇ and
accelerations q̈ can be obtained through numerical differen-
tiation. It is important to note that we do not require force
torque sensors to determine interaction forces, which often
suffer from high measurement noise and are expensive.

The task of each patient is the execution of a rehabili-
tation exercise described by a reference trajectory qref for
system (1), for which we require the following property.

Assumption 3: The bounded reference trajectory qref is
twice continuously differentiable with bounded derivatives.

Since abrupt movements must be avoided in physical
human-robot interaction, in particular when dealing with
impaired patients, the required smoothness of the reference is
a natural assumption. Moreover, the assumed boundedness of
reference trajectories directly follows from the compact work
spaces robots and humans operate in, such that Assumption 3
is not restrictive in practice.

In order to execute the task by tracking the reference
trajectory with the human-robot system (1), a control law
needs to be defined to determine the control inputs u. On the
one hand, the applicability in real-world rehabilitation robotic

scenarios requires this control law to ensure safe interaction
forces by avoiding excessively high control inputs u. On
the other hand, the successful execution of the rehabilitation
exercise requires a satisfactory tracking accuracy. These
requirements generally pose conflicting goals, which must
be traded-off in a control gain tuning phase. However, this
tuning process cannot be performed for each patient individ-
ually, such that control gains must be employed, which are
expected to perform well on a wide range of patients, but can
yield rather poor performance for some of them. In order to
overcome this issue, we consider the problem of designing a
control law which adapts online to the observed behavior of
individual patients using non-parameteric machine learning,
such that a highly personalized treatment can be realized.

III. GAUSSIAN PROCESS-BASED ONLINE
LEARNING

In order to develop control laws achieving the posed
design goals, we employ Gaussian process-based machine
learning to infer a model of the human motor behavior. The
foundations of Gaussian process regression are introduced in
Section III-A, before a Gaussian process based online learn-
ing algorithm relying on the aggregation of local Gaussian
process models is presented in Section III-B.

A. Gaussian Process Regression

Gaussian process (GP) regression bases on the assumption
that any finite number of evaluations {f(x(n))}Nn=1 of a
scalar function f : Rρ → R, ρ ∈ N, at inputs x(n) ∈ Rρ

follows a joint Gaussian distribution [13]. This distribution,
denoted as GP(m(x), k(x,x′)), is defined in terms of a
prior mean function m : Rρ → R, which can be used to
incorporate prior knowledge such as parametric models, and
a covariance function k : Rρ × Rρ → R, capturing more
abstract information such as differentiability or periodicity of
f(·). If no specific knowledge about the unknown function
f(·) is available, m(·) is commonly set to 0, which we also
assume in the remainder of the work. The most frequently
used covariance function is the squared exponential kernel

k(x,x′) = σ2
fexp

(
−

ρ∑
i=1

(xi − x′
i)

2

2l2i

)
, (2)

whose shape depends on the signal standard deviation σf ∈
R+ and the length scales li ∈ R+. The signal standard
deviation σf and the kernel length scales li, i = 1, . . . , ρ,
form the hyperparameters θ =

[
σf l1 . . . lρ σon

]T
together with an assumed target noise standard deviation
σon ∈ R+. The hyperparameters θ are commonly obtained
by maximizing the log-likelihood

log p(y|X,θ)=− 1

2
yT (K+σ2

onIN )−1y

− 1

2
log(det(K+σ2

onIN ))−n

2
log(2π), (3)

where we define the elements of the kernel matrix K ∈
RN×N as Ki,j =k(x(i),x(j)), and concatenate the training
inputs and targets into X =

[
x(1) . . . x(N)

]
and y =



[
y(1) . . . y(N)

]T
, respectively. Although this maximiza-

tion involves a non-convex optimization problem, it is typi-
cally solved using gradient based optimization methods [13].

After the hyperparameters have been optimized, the poste-
rior distribution can be exactly calculated under the assump-
tion of training targets perturbed by zero mean Gaussian
noise with variance σ2

on. This posterior is again Gaussian
with mean and variance

µ(x) = yT
(
K + σ2

onIN
)−1

k(x) (4)

σ2(x) = k(x,x)− kT (x)
(
K + σ2

onIN
)−1

k(x), (5)

where we define the elements of the kernel vector k(x) ∈
RN as ki(x) = k(x(i),x).

B. Locally Growing Random Trees of Gaussian Processes

When applying Gaussian process regression in a control
application, data becomes available sequentially as time pro-
ceeds. While Gaussian process regression can be straightfor-
wardly applied to such data streams using rank one updates in
principle [14], the computational complexity of this approach
scales quadratically with the number of training samples,
such that exact inference typically becomes too slow for
online learning in control loops.

A common approach in robotics applications to overcome
this issue of GPs bases on the divide and conquer principle
of splitting up the data set and training multiple local GP
models [15]. Locally growing random trees of Gaussian
processes (Log-GPs) are a recently proposed method
following this idea, which have been demonstrated to achieve
update and prediction rates necessary for online learning
within control loops, while preserving many beneficial
properties of exact GP inference [16]. This method constructs
a tree, whose leaf nodes contain locally active Gaussian
process models with a maximum number N̄ ∈ N of training
samples. Given a tree consisting only of the root node and no
training samples, a binary tree is iteratively constructed with
incoming training data (x, y) using the following procedure:

1) Given a new training pair (x, y), the tree is traversed
until a leaf is reached by going to the child of node
n, which is sampled from a Bernoulli distribution with
probability pn(x).

2) If the leaf contains fewer than N̄ training pairs con-
tinue with 5), else go to 3)

3) add two child nodes to the current leaf node n and
distribute its training data by sampling from pn(x

(i))
for all i = 1, . . . , N̄ .

4) Go to the child node sampled from pn(x).
5) Add the training pair (x, y) to the local GP model in

the current leaf node and update its hyperparameters.

In this procedure, the Bernoulli distributions with probability
functions pn(·) define the regions where local models are
active. In order to quickly determine the probabilities pn(x),
saturating linear functions of the form

pn(x)=


0 if xjn < sn − on

2
xjn−sn

on
+ 1

2 if sn− on
2 ≤xjn ≤sn+

on
2

1 if sn + on
2 < xjn

(6)

have been proposed [16], where jn denotes the dimension
in which the state space is split, sn denotes the value of the
splitting plane, and on corresponds to the size of the region
where both local GPs are active to ensure a smooth global
model. The splitting dimension jn can be chosen, e.g., as
the dimension with the maximum spread in the training
data, while a simple choice for the position of the splitting
plane sn is the mean of the data in dimension jn. Finally,
the size of the overlapping region on is typically chosen to
be fixed ratio of the extension the local models.

In order to retain a low computational complexity in the
hyperparameter optimization in step 5), we merely perform a
single gradient-based optimization step of the log-likelihood,
whose partial derivatives are given by

∂

∂θi
log p(y|X,θ)=

1

2

(
yT K̃

∂K

∂θi
K̃y−tr

(
K̃

∂K

∂θi

))
. (7)

Hence, hyperparameters are adapted online in step 5) using
update rules of the form

θ̃n+1 = θ̃n +ψ
(
∇θ̃ log p(y|X,ϕ(θ̃))

)
∆t (8)

where the step width ∆t ∈ R+ and the direction function
ψ : Rρ → Rρ can be defined to realize commonly used
optimization schemes, e.g., steepest ascent or conjugate gra-
dient [17]. Since the computational complexity of the update
step (8) only depends on the number of training samples in a
local model but is independent of the overall amount of data,
the update complexity of LoG-GPs remains logarithmic with
this online hyperparameter adaptation scheme.

Based on the constructed binary tree, the predictions of
local GP models can be efficiently aggregated. For this
purpose, given a test point x, the probabilities pn(x) along a
branch of the tree are multiplied to obtain the weight wm(x)
of leaf node m. Then, standard aggregation schemes such as
mixtures of experts [18]

µ̃(x) =

M∑
m=1

wm(x)µm(x) (9)

where M denotes the number of leaf nodes, can be employed
to calculate the aggregated mean µ̃(x). Since the proba-
bilities pn(·) are usually chosen such that only few local
models are active at the same test point, the tree structure
can be again exploited for computing the weights wm(x),
yielding a O(log2(N)) complexity for the computation of
predictions under weak assumptions [16]. Thereby, LoG-GPs
can achieve the high prediction and update rates as required
for learning in many control loops.

IV. INDIVIDUALIZED CONTROL USING
GAUSSIAN PROCESS BASED ONLINE LEARNING

In order to allow for an individualized treatment of pa-
tients, it is necessary to infer personalized models. Even
though these models could be learned offline using data
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û

xk

yk

control

learn

Fig. 1. Online learning control architecture with control components high-
lighted in blue and learning blocks illustrated in red. Noisy measurements
of the system outputs and torque errors û − u are taken at times tk and
used to infer a model online using LoG-GPs. Predictions of the LoG-GPs
are employed as feedforward term in a CTC control law.

obtained during calibration phases conducted before the
actual rehabilitation exercises, this is often perceived as
cumbersome by patients. Therefore, we propose an online
learning control law based on LoG-GPs which achieves an
adaptation to individual patients in virtually real-time.

The proposed control architecture consisting of the on-
line data generation and model inference as well as the
feedforward and feedback control components is outlined in
Fig. 1. Detailed information about the learning procedure can
be found in Section IV-A, while explanations regarding the
individualized control law are provided in Section IV-B.

A. Online Data Generation and Model Inference

In order to account for the individual human-induced
dynamics in the controller, it is necessary to infer a model on-
line from data. In an idealized scenario, direct measurements
of the torques generated by humans would be measured, i.e.,
y = fi(x), such that a model of the patient’s dynamics
can be learned from the training samples x, y. However,
due to the considered lack of force torque sensors for
measuring the interaction forces as stated in Assumption 2,
we cannot directly employ measurements of fi(·) for training
GP models. This problem can straightforwardly be overcome
by rearranging (1), such that

fi(x) = u− û(x), (10)

where

û(x) =H(q)q̈ +C(q, q̇)q̇ + g(q) (11)

denotes the inverse dynamics model. Since the applied
torque u is determined by the employed control law and
the parameters of the Euler-Lagrange system describing the
robot dynamics are known as stated in Assumption 1, û(x)
can directly be computed. Therefore, it remains to define a
sampling rate 1/τ , τ ∈ R+ at which measurements of x and
u are taken, such that a training data set

{(x(k) = x(kτ),y(k) = u(kτ)− û(x(kτ)))}Kk=0 (12)

for K = ⌊t/τ⌋ is aggregated based on the online measure-
ments. Using these online data, we can update an indepen-
dent GP for each target dimension of y(k), i.e., for each

i = 1, . . . , d a LoG-GP is updated using a training pair
(x(k), y

(k)
i ) as explained in Section III-B. In order to employ

these LoG-GPs in the control loop, their predictions are
concatenated into the vector µ̃(x) = [µ1(x) · · · µd(x)]

T .
Remark 2: The proposed approach for learning a model

of the individual patient dynamics in physical human-robot
interaction online is independent of a particular control law.
Therefore, the choice of a particular control law does not
affect the model inference approach.

B. Individualized Control Law

By exploiting the online learned model in the form of a
feedforward control, it is straightforward to achieve a flexible
adaptation to the individual dynamics of each patient without
the need for additional calibration phases. Therefore, we
propose the individualized control law

u = uCTC(p) + uPD(e, ė) + µ̃(x), (13)

where the computed torque control

uCTC(p,pref) =H(q)q̈ref +C(q, q̇)q̇ref + g(q) (14)

is used to compensate the nonlinear dynamics of the robotic
system, and the PD controller

uPD(e, ė) = −Kpe−Kdė (15)

with control gains Kp,Kd∈Rd×d ensures the convergence
of the tracking error e=q−qref to a neighborhood of 0.

The PD gains allow a flexible trade-off between compli-
ant behavior and high tracking accuracy, with low gains
Kp, Kd leading to small control inputs of the PD con-
troller (15) in practice. Since the computed torque control
(14) is practically bounded under Assumption 3 and the
magnitude of LoG-GP predictions is restricted through the
observed torques [19], which are applied by the patient, it is
straightforward to see that the individualized control law (13)
with a sufficiently compliant PD controller can ensure safe
interaction forces. This dependency of safety on the control
gains is demonstrated experimentally in Section V-B.

Remark 3: Since the individualized control law (13) is
based on a classical computed torque approach and uniform
error bounds for predictions with LoG-GPs can be shown
under weak assumptions [16], it is straightforward to analyze
the stability of the closed-loop human-robot system using
Lyapunov theory analogously to, e.g., [20], [21]. For reasons
of brevity, a formal stability analysis is omitted here.

V. EXPERIMENTAL EVALUATION

For the evaluation of the proposed learning-based
controller, we perform experiments with a two DoF human-
robot interaction setup, which is explained in Section V-A.
First, the capacity of the method to successfully assist
during a rehabilitation exercise whilst applying safe control
outputs is shown in Section V-B. After this initial validation,
the method is contrasted with a controller tuned for one
individual, in Section V-C. Thereby, we demonstrate the
learners ability to adapt to different human operators and
provide personalized assistance.



Fig. 2. Reenactment of an individual performing the experiment task with
the manipulandum. Consent for the publication of the image was obtained.

reference
position

visual
feedback

actual
position

(not visible)

reference trajectory
(not visible)

Fig. 3. Exemplary depiction of the task design. The rounded rectangle
drawn with the gray, dashed line represents the reference trajectory of the
green circle, which the participant is instructed to track. Instead of the
actual current position, depicted by the gray circle, the subject can only

A. Experiment Setup and Task Design

The experiments are executed on a two DoF
manipulandum, which consists of two orthogonally mounted
single rail stages (Copley Controls Thrustube Module), each
driven by linear servo motors. Both rail stages are equipped
with optical encoders that measure the position of a cart on
the upper rail with 1 µm precision. Additionally, a six DoF
force-torque sensor (JR3-75M25) is mounted below the
handle, through which the human interacts with the system,
to measure forces in the horizontal plan. The force-torque
sensor is strictly required to operate the device and is not
used for the computation of control policies. Additionally,
an inherent output force limitation is integrated as a safety
measure, which guarantees that the interaction force applied
to the human remains in safe regions, therefore, enabling
experiments with aggressively tuned controllers. The device
runs at 4 kHz and the workspace of the complete apparatus
spans ±0.20m in both DoF. Visual feedback to perform the
task is provided to the user through a screen placed behind
the apparatus. The complete experiment setup and apparatus
is shown in Fig. 2. The task itself is designed as follows:

Standing in front of the apparatus and facing the screen,
the subjects are instructed to track a green dot by moving
the handle on top of the cart. In addition the participants
are informed that different controllers will support them
during task execution. Since the experiments are performed
by healthy subjects, the provided visual feedback is artifi-
cially modified, therefore, limiting the participants’ ability

TABLE I
PD CONTROL GAINS USED IN THE EXPERIMENTS.

LOW GAIN HIGH-GAIN GP TUNED GAINS

kp 1 600 1 35
kd 0.1 60 0.1 3.5

to successfully perform the task and thereby mimicking the
physical limitations of an impaired patient. Specifically, the
subjects do not see their current position in the task space en-
tirely, but instead only the angle from the origin is visualized
through a pointer. However, despite the limited feedback,
their tracking performance is still evaluated on the position
error in Cartesian coordinates. The task design and the visual
feedback is depicted in Fig. 3. Each run of the experiment
begins at the same starting position for the green circle and
consists of five repetitions of the reference trajectory. The
complete experimental procedure can be split into two parts;
first a training phase, followed by a test phase. During the ini-
tial training phase the participants get accustomed to the task
and the assistance by performing one experiment run with
each controller. Subsequently, the test phase begins, which
consists of four experiment runs per controller. At every run
a random controller variation is selected for assistance. If
during any trial the workspace limit is reached, the device
shuts down as a safety precaution and the run is evaluated
as a failure. The failed runs are not repeated subsequently.

B. Compliance and Accuracy with Learning Control

In order to demonstrate the applicability of our approach,
we conduct a user study with 9 healthy, right-handed
participants between the age of 22 and 35. Participants
signed a written informed consent, approved by the ethics
committee of the medical faculty of the Technical University
of Munich. During the experiment the operators perform a
task whilst being assisted by three different variations of the
proposed control architecture. A high-gain, low-gain and
GP variation with PD control-parametrization according to
Table I and diagonal gain matrices Kp = kpI , Kd = kdI ,
kp, kd ∈ R+. For the high-gain and low-gain controller
there is no learning GP and they only differ with regards
to the gains used for the PD controller (15). Differently,
the GP controller uses the individualized control law (13)
including the proposed learning-based controller with small
gains for the PD controller. The online hyperparameter
adaptation (8) is realized using RPROP [22] since it has been
demonstrated to exhibit lower computational complexity
and faster convergence compared to other gradient-based
optimization schemes [23]. All three controllers have the
same CTC policy (14) and the GP runs at a update and
prediction rate of 200Hz, resulting in approximately 10000
training samples at the end of one experimental run.

The analysis of the experimental results are shown in
Fig. 4. The top bar plots depict the tracking performance by
comparing the mean and standard deviation of the summed
absolute error for each controller. It is clearly visible that the
low-gain controller leads to the worst tracking accuracy and
exhibits a notable variation between subjects, which is appar-
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Fig. 4. Top: Mean and standard deviation of the summed absolute error
for all participants over low-gain, high-gain and GP controller configuration.
Bottom: Mean and standard deviation of the maximum applied control force
norm at each run. The GP controller trades-off applied maximum control
force and tracking performance, while the low-gain and high-gain controller
either exhibit low tracking performance or overly large control forces.
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Fig. 5. Mean and standard deviation of the summed absolute error for
one surrogate participant and the complete user study. While the tuned
PD controller and GP controller perform comparably for the surrogate
individual, only the GP controller adapts in the user study to personalize
the assistance required for acceptable tracking performance.

ent due to the large standard deviation. In fact, four subjects
reached the workspace limit at least once when they were as-
sisted by the low-gain controller, resulting in a total of eight
failed runs, which demonstrates the issues of highly compli-
ant controllers in ensuring a successful task execution. Since
the failed runs are particularly short they are not included in
the analysis depicted in Fig. 4. While the high gain controller
does not suffer from failed trials and exhibits the best con-
trol performance, it can result in uncomfortable interaction
forces, which may ultimately become unsafe. This can be ob-
served at the bottom of Fig. 4 depicting the applied maximum
forces, which are largest for the high gain configuration. In
contrast to these PD control laws, the proposed online learn-
ing controller adapts itself to each participant. Since the la-
bels used during training of the GP correspond to the human-
generated torques, it is highly unlikely that higher control
forces are generated than the human operator can manage.
This is also demonstrated by the experiments as shown in
Fig. 4. The applied maximum control forces of the GP con-
troller remain significantly smaller compared to the high-gain
configuration, while the tracking performance is strongly im-
proved over the low-gain controller. Therefore, it is demon-
strated that the proposed online learning control scheme is
capable of successful task execution while being safer than
high-gain controllers due to smaller interaction forces.

C. Personalized Assistance through Online Learning

In order to demonstrate the benefits of the proposed learn-
ing controller, we compare it to a PD controller with tuned
gains. Due to the lack of a better procedure for adaptation
in human-robot interaction, the gains of the PD controller
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Fig. 6. Left: Average of intra-subject standard deviation in tracking
error. Right: Inter-subject standard deviation of participant specific average
tracking error. The adaptability of the GP controller is reflected in the
smaller intra- and inter-subject variation.

are tuned heuristically to balance the applied forces and the
resulting tracking performance. As practical considerations
prevent a tuning with all participants, one individual is
chosen instead. However, since the PD controller needs to be
safe for all users, a cautious tuning is preferred, which tends
to result in lower control gains. The best trade-off is obtained
for the parametrization depicted on the right side of Table I.

The tuned PD controller and the proposed online learning
control law are evaluated as described in Section V-B, which
leads to the results depicted in Fig. 5. For the individual,
the two controllers perform comparably well with regards
to tracking performance, with the GP controller leading to
slightly better tracking. However, the observed difference in
tracking error is insignificant, since it lies within the statisti-
cal variation, and can be attributed to the cautious tuning of
the PD controller. When deploying the tuned PD controller
to previously unobserved individuals and comparing the
performance to the learning-based GP controller in a user
study, it can be seen that the tuned PD controller performs
significantly worse. Similarly, the GP controller on average
results in higher tracking errors in the user study than for the
surrogate individual. However, the increase in mean tracking
error is larger for the tuned PD controller with a substantial
growth in the standard deviation. Therefore, the tuned PD
controller leads to inconsistent tracking results, which can
be attributed to the different levels of task proficiency of the
participants. This becomes even clearer when looking at the
intra- and inter-subject variation of the tracking error as de-
picted in Fig. 6. While the participants exhibit a similar varia-
tion of the tracking error among the experiment runs for both
controllers, the variation of the tracking error between differ-
ent subjects is significantly larger for the tuned PD controller.
This is due to the inability of the PD control law to adapt
to unproficient participants, which require more guidance
to execute the task properly. In contrast, the GP controller
provides personalized support for each subject, such that the
variation between different participants can be reduced.

VI. CONCLUSION

This paper introduces a novel online learning control
method for personalized rehabilitation robotics. This is the
first time that GPs are used directly in the control loop during
physical human-robot collaboration. Furthermore, the pro-
posed method facilitates personalized assistance via online
learning with previously unseen update rates. The approach
is validated in an experimental user study, which confirms
the adaptation capabilities of the learning-based controller.
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Á. Cervera, A. Chamorro, C. Cordonnier, L. Csiba, A. Davalos, H. C.
Diener, J. Ferro, W. Hacke, M. Hennerici, M. Kaste, P. Langhorne,
K. Lees, D. Leys, J. Lodder, H. S. Markus, J. L. Mas, H. P. Mattle,
K. Muir, B. Norrving, V. Obach, S. Paolucci, E. B. Ringelstein,
P. D. Schellinger, J. Sivenius, V. Skvortsova, K. S. Sunnerhagen,
L. Thomassen, D. Toni, R. Von Kummer, N. G. Wahlgren, M. F.
Walker, and J. Wardlaw, “Guidelines for management of ischaemic
stroke and transient ischaemic attack 2008,” pp. 457–507, 2008.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/18477843/

[3] H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol,
K. Rannekleiv, B. T. Volpe, and N. Hogan, “Rehabilitation robotics:
Performance-based progressive robot-assisted therapy,” Autonomous
Robots, vol. 15, no. 1, pp. 7–20, 2003.

[4] Y. Yang, L. Wang, J. Tong, and L. Zhang, “Arm rehabilitation robot
impedance control and experimentation,” in 2006 IEEE International
Conference on Robotics and Biomimetics, ROBIO 2006, 2006, pp.
914–918.

[5] J. Zhang and C. C. Cheah, “Passivity and Stability of Human-Robot
Interaction Control for Upper-Limb Rehabilitation Robots,” IEEE
Transactions on Robotics, vol. 31, no. 2, pp. 233–245, 2015.

[6] X. Li, Y. H. Liu, and H. Yu, “Iterative learning impedance control for
rehabilitation robots driven by series elastic actuators,” Automatica,
vol. 90, no. April, pp. 1–7, 2018.
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Learning Stable Nonparametric Dynamical Systems with Gaussian
Process Regression

Wenxin Xiao∗, Armin Lederer1∗ and Sandra Hirche1

Abstract— Modelling real world systems involving humans
such as biological processes for disease treatment or human
behavior for robotic rehabilitation is a challenging problem
because labeled training data is sparse and expensive, while
high prediction accuracy is required from models of these
dynamical systems. Due to the high nonlinearity of problems in
this area, data-driven approaches gain increasing attention for
identifying nonparametric models. In order to increase the pre-
diction performance of these models, abstract prior knowledge
such as stability should be included in the learning approach.
One of the key challenges is to ensure sufficient flexibility of the
models, which is typically limited by the usage of parametric
Lyapunov functions to guarantee stability. Therefore, we derive
an approach to learn a nonparametric Lyapunov function based
on Gaussian process regression from data. Furthermore, we
learn a nonparametric Gaussian process state space model from
the data and show that it is capable of reproducing observed
data exactly. We prove that stabilization of the nominal model
based on the nonparametric control Lyapunov function does not
modify the behavior of the nominal model at training samples.
The flexibility and efficiency of our approach is demonstrated
on the benchmark problem of learning handwriting motions
from a real world dataset, where our approach achieves almost
exact reproduction of the training data.

I. INTRODUCTION

Identification of models for systems involving humans is
a highly relevant problem in many fields such as medicine,
where dynamical systems can be used to model the progres-
sion of a disease, and robotic rehabilitation, where models
of the human behavior can be used to maximize the training
efficiency. Major difficulties in these modelling problems
typically are a high nonlinearity of real world systems, the
absence of first principle models and sparsity of the expen-
sive data [1]. Therefore, parametric models are generally not
capable of representing these complex system appropriately.

As a more flexible solution, data-driven approaches, which
can extract necessary information automatically from train-
ing data, have gained increasing attention for modeling
nonlinear systems, since they exhibit sufficient flexibility
to adapt their complexity to the observed data and only
require marginal prior knowledge. Although classical sys-
tem identification literature has considered the problem of
determining stable models, see, e.g, [2], the combination of
machine learning techniques and control theory has led to a
variety of new approaches recently. A common method is to
adapt standard machine learning approaches using Lyapunov
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1Armin Lederer and Sandra Hirche are with the Chair of

Information-oriented Control (ITR), Department of Electrical and
Computer Engineering, Technical University of Munich, Germany
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stability constraints during model parameter optimization.
Using a quadratic Lyapuonv function, this method has been
applied to Gaussian mixture models in the stable estimator of
dynamical systems approach proposed by [3], and is further
improved in [4] by employing additional prior distributions,
which ensure physical consistency. The constrained opti-
mization method has also been used in combination with
neural networks [5], where the flexibility of the model can be
improved by learning the Lyapunov function with a separate
neural network [6]. Since this constrained training approach
can have negative effects on the learning performance, it
has been proposed to learn a possibly unstable nominal
model and a control Lyapunov function (CLF) separately,
such that a virtual control can be determined based on the
CLF to stabilize the nominal model [7]. This approach has
been pursued with different Lyapunov functions, such as
the weighted sum of asymmetric quadratic functions [7]
and sums of squares [8]. Furthermore it has been extended
to achieve risk-sensitive behavior by considering the model
uncertainty due to sparsity of data [9].

Although the existing methods ensure stable trajectories
and achieve low reproduction errors on many practical
examples, there are no guarantees on the achievable
expressiveness using a certain model. As this issue arises
mainly due to the use of parametric Lyapunov functions, we
develop a novel, nonparametric Lyapunov function which
can be learned from data using Gaussian process regression.
We employ a Gaussian process state space model (GP-SSM)
as nominal model, and show that it can learn dynamical
systems accurately on training data. By stabilizing the
GP-SSM based on the nonparametric control Lyapunov
function, we prove that the resulting model is capable of
reproducing observed data exactly, while being globally
asymptotically stable. The flexibility of the approach is
demonstrated in learning dynamical systems from a real
world dataset, and compared to existing methods.

The remainder of this paper is organized as follows. In
Section II, we describe the considered problem. Section III
explains our approach to learn a stable dynamical system
which reproduces observed data. The method is compared
to existing approaches on real world data in Section IV.

II. PROBLEM STATEMENT

Consider a nonlinear, discrete-time dynamical system1

xk+1 = f(xk) (1)

1Notation: Lower/upper case bold symbols denote vectors/matrices,
respectively, In the n × n identity matrix, R+ all positive real numbers,
∥ · ∥ the Euclidean norm and E[·] the expectation operator.



which is asymptotically stable on the continuous valued
state space X ⊂ Rd. Furthermore, assume that the function
f(·) is unknown and that consecutive measurements of the
states are taken such that we obtain a training data set
D = {(x(m)

k ,x
(m)
k+1)}Mm=1 with M ∈ N data pairs. We will

make use of the following assumption.
Assumption 1: The function f(·) defines an asymptoti-

cally stable system (1) on the compact set X ⊂ Rd.
We want to estimate a model based on the observed data,
which exhibits the posed assumptions on stability. There-
fore, the goal is to derive a stable model of the unknown
dynamical system, which maximizes the accuracy of the
reproduced training trajectories by reproducing the observed
data (x

(m)
k ,x

(m)
k+1) exactly.

III. STABILIZATION OF GAUSSIAN PROCESS STATE
SPACE MODELS

For learning stable dynamical systems capable of repro-
ducing observations, we follow the control Lyapunov func-
tion approach proposed in [8]. For this virtual stabilization
method, we separately learn a nominal system model µ :
X → Rd and a control Lyapunov function V : X → R+

from the training data. For a prediction, we determine the
optimal, stabilizing virtual control u∗(x) for the nominal
model µ(·) based on the control Lyapunov function V (·),
which minimally modifies the nominal model, and define
the stable model as

f̂(x) = µ(x) + u∗(x). (2)
Since we consider scenarios with sparse data, we employ
Gaussian process (GP) regression, whose implicit bias-
variance trade-off avoids overfitting and hence, provides high
prediction accuracy with few training samples. We consider
deterministic systems and therefore, we use noise-free
Gaussian process state space models as nominal model in
contrast to the approach proposed in [8]. We show that the
noise-free GP-SSMs are capable of reproducing the training
data exactly under weak assumptions in Section III-A.
In Section III-B we propose a novel method to learn a
nonparametric control Lyapunov function from training data
based on Gaussian process regression, which is guaranteed
to converge along the training data. Finally, we show that
a stabilizing control can be obtained via a constrained opti-
mization and equals zero for all training data in Section III-C.
Therefore, we obtain an asymptotically stable model (2),
which is capable of reproducing observed data exactly.

A. Gaussian Process State Space Models

Gaussian processes are a powerful machine learning tool
for approximating nonlinear functions [10]. A GP is a
stochastic process on the continuous input domain X such
that each finite subset {x1, . . . ,xN} ⊂ X is assigned a joint
Gaussian distribution. This view is equal to a consideration
as distribution over functions, which is typically expressed
through

f(x) ∼ GP(m(x), k(x,x′)) (3)

with prior mean and covariance function
m(x) = E[f(x)] (4)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (5)
A GP is completely specified by its mean function m(·) and
covariance kernel k(·, ·). The mean function allows to include
prior knowledge in the form of approximate or parametric
models. While such models exist for some applications, we
do not assume their availability in the following and set the
prior mean function to m(x) = 0 without loss of generality.
The covariance kernel k(·, ·) is used to encode more abstract
prior knowledge such as information about the smoothness
of the regressed function and determines which functions can
be approximated properly with a Gaussian process. Probably
the most commonly used kernel is the squared exponential
(SE) kernel with automatic relevance determination

k(x,x′) = σ2
fexp

(
− 1

2

d∑
i=1

(
xi − x′

i

li

)2)
, (6)

where σ2
f ∈ R+ is the signal variance and li ∈ R+,∀i =

1, . . . , d are the length-scale parameters. These variables are
concatenated in a hyperparameter vector ψ = [l1 . . . ld σf ]

T .
The squared exponential kernel is a universal kernel in the
sense of [11] which means that it allows to approximate
continuous functions arbitrarily well. Therefore, Gaussian
process regression with this kernel is capable of learning
many typical dynamics.

We employ d independent GPs to model a dynamical
system with d-dimensional state space, such that the i-th
component is denoted by

fi(x) ∼ GP(0, ki(x,x
′)). (7)

Predictions with this model can be calculated by condi-
tioning the prior GPs (7) on the given training set D =

{x(n)
k ,x

(n)
k+1}Ni=1. The conditional expectation µ(·) can be

calculated analytically using linear algebra. For this reason,
we define target vectors

yi = [x
(1)
k+1,i . . . x

(N)
k+1,i]. (8)

Then, the predictive mean is given by
µi(x) = ki(x)K

−1
i yi (9)

with Ki,n,m = ki(x
(n)
k ,x

(m)
k ) and ki,n = ki(x,x

(n)
k ).

Remark 1: The matrix inverse in (9) theoretically always
exists for the squared exponential kernel if there is no
repeated entry in the input data, i.e., x(n)

k ̸=x(m)
k , ∀n ̸=m,

due to the fact that this kernel is universal [11]. However, a
small regularizer, typically called observation noise variance
σ2
on, can be added on the diagonals of Ki in order to avoid

numerically ill-conditioned inversions. This regularizer has
typically a small effect on the prediction since the resulting
mean squared prediction error is smaller than the noise
variance [10].

The hyperparameters ψi of the Gaussian processes fi(·)
can be obtained by independently maximizing the log-
likelihood

log p(yi|Xi)=− 1

2
yT
iK

−1
i yi−

1

2
log det(Ki)−

N

2
log 2π,

(10)
where X = [x

(1)
k . . . x

(N)
k ] denotes the input training data

matrix. This optimization problem is typically solved using



gradient based approaches [10], even though it is generally
non-convex.

We use the posterior mean function µ(·) defined
through (9) to define a nominal dynamical model

xk+1 = µ(xk) (11)
which is generally not asymptotically stable. However, train-
ing samples are reproduced exactly such that we obtain the
following result.

Lemma 1: Consider a training data set D =

{(x(m)
k ,x

(m)
k+1)}Mm=1 generated by an unknown dynamical

system (1), which has a stable equilibrium at the origin.
Furthermore, assume that the training data set is augmented
by adding the pair (0,0). Then, a Gaussian process state
space model trained with this training data set reproduces
the training data exactly and has an equilibrium at the
origin.

Proof 1: Performing the prediction for all training in-
puts x(m)

k jointly yields
µi(Xk) =KiK

−1
i yi = yi,

where µi(Xk) = [µi(x
(1)
k ) . . . µi(x

(M)
k ) µi(0)] and the

inverse is well defined due to the fact that we consider a
deterministic function f(·) such that x(m)

k+1 ̸= x
(m′)
k+1 , ∀m ̸=

m′. Furthermore, we have the identity
[y1 . . . yd]

T = [x
(1)
k+1 . . . x

(M)
k+1 0]

due to the definition of the data set D. Therefore, the
training data is reproduced exactly by the nominal system
(11). Finally, the equilibrium at the origin follows from the
additional training pair (0,0) due to [12].
The exact reproduction of data regardless of their complexity
is a major advantage of the nonparametric GP modeling
approach. However, this reproduction is only possible,
if the training data can be considered noise-free, which
is exploited in the proof as the property x

(m)
k+1 ̸= x

(m′)
k+1 .

In applications with few training data such as medical
applications or human-robot interaction, this condition is
typically satisfied due to the sparsity of the data. Therefore,
it is not a severe restriction.

Remark 2: Since we only focus on deterministic systems
in our approach, the variance of the next state xk+1 is not
of primary interest in this paper. However, it could be used
to determine regions of the state space X, which require
more training data in order to provide a good model of the
dynamical system.

B. Learning Nonparametric Control Lyapunov Functions

Although exact reproduction of the data is possible using
GP-SSMs, this does not imply that the stabilized system
(2) also exhibits superior reproduction performance. This is
due to the fact that an insufficiently flexible parameterization
of the control Lyapunov function V (·) might not allow the
decrease of V (·) along all training samples. However, the
required flexibility is difficult to determine a priori with para-
metric functions such as sums of squares or weighted sum of
asymmetric quadratic functions [8]. Therefore, we propose to
learn a control Lyapunov function from data based on Gaus-
sian process regression to exploit the flexibility of a fully

nonparametric approach. Since we do not have any target
values for the supervised learning, we cannot directly apply
the GP regression approach. Therefore, we approximate the
infinite horizon cost Ṽ∞(x) =

∑∞
k=1 l(f

k(x)), where fk(·)
denotes the k-times application of the dynamics f(·) and
l : Rd → R+ is a chosen stage cost, by transforming the Bell-
man equation at training points into a regression problem as
proposed in [13]. This is formalized in the following lemma.

Lemma 2: Consider the approximate infinite horizon cost
V∞(x) = λT (k(Xk,x)− k(Xk+1,x)), (12)

with positive definite stage cost l : Rd → R+, training points
Xk = [x

(1)
k . . . x

(M)
k ], Xk+1 = [x

(1)
k+1 . . . x

(M)
k+1] and

k(X,x) =
[
k(x(1),x) . . . k(x(M),x)

]T
(13)

λ = κ−1[l(x
(1)
k+1) . . . l(x

(M)
k+1)]

T , (14)
where the elements of the invertible matrix κ ∈ RM×M are
defined using the squared exponential kernel k(·, ·) as

κmn = k
(
x
(m)
k ,x

(n)
k

)
− k

(
x
(m)
k+1,x

(n)
k

)
− k

(
x
(m)
k ,x

(n)
k+1

)
+ k

(
x
(m)
k+1,x

(n)
k+1

)
. (15)

Then, the control Lyapunov function
V (x) = l(x) + max{0, V∞(x) + V∞(0)} (16)

is positive definite and decreasing along the training data,
i.e., V (x

(m)
k )≥V (x

(m)
k+1), ∀m=1, . . . ,M .

Proof 2: Since l(·) is a positive definite function, V (·) is
positive due to its definition (16). Hence, it remains to show
the decrease along the training data. For this reason, we
first consider the exact infinite horizon cost function Ṽ∞(·),
which satisfies the Bellman equation

Ṽ∞(x)− Ṽ∞(f(x)) = l(f(x)).

Due to [13], a function satisfying this equation on a finite
set of pairs (x,f(x)) can be obtained through noiseless GP
regression with the kernel
k̃(x,x′)=k(x,x′)−k(f(x),x′)−k(x,f(x′))+k(f(x),f(x′))

and output training data y = [l(x
(1)
k+1) . . . l(x

(M)
k+1)]

T,
where invertibility of the matrix κ defined through
(15) is guaranteed due to the usage of the universal
squared exponential kernel. This follows directly from a
representation of Ṽ∞(·) in the feature space associated with
the kernel k(·, ·) and the linearity of this representation.
Substituting the obtained regression result into the original
feature space representation of Ṽ∞(·) directly yields (12).
Since the approximate infinite horizon cost (12) is guaranteed
to satisfy the Bellman equation on the training pairs, the
approximated cost l(x) + V∞(x) is decreasing along the
training data. Since this property is shift invariant, i.e., adding
a constant to (12) does not change the decrease along training
data, (12) is not guaranteed to be positive for all x ̸= 0.
Therefore, we enforce V (0) = 0 by adding the value of (12)
evaluated at the origin and exclude obvious regression errors
by setting negative values of the shifted approximate infinite
horizon V∞(x)+V∞(0) to 0. Since regression errors do not
occur on the training samples, the decrease along training
data is guaranteed for (16) and the theorem is proven.

The hyperparameters of the control Lyapunov function
V (·) can be obtained via the standard approach of



maximizing the log-likelihood (10). However, if we assume
a parameterized stage cost lθ(·), we can optimize jointly
with respect to hyperparameters ψ and cost parameters θ

min
ψ,θ

log p(lθ(Xk+1)|Xk+1,Xk), (17)

where the log-likelihood is given by
log p(lθ(Xk+1)|Xk+1,Xk) =

− 1

2
lTθ (Xk+1)κ

−1lθ(Xk+1)−
1

2
log(|κ|)−N

2
log(2π)

(18)
with the abbreviation lθ(Xk+1) =

[
lθ(x

(1)
k+1) . . . lθ(x

(M)
k+1)

]
.

This approach exhibits the advantage that the highly local
approximate infinite horizon cost V∞(·), which is typically
nonzero only in the proximity of training data, and the global
parametric stage cost l(·) are jointly adapted to the data.

Remark 3: While we assume GPs with squared exponen-
tial kernels in this article, all theoretical results are directly
applicable to arbitrary universal kernels [11].

Remark 4: Although the Lyapunov function V (·) depends
on the hyperparameters ψ and the stage cost parameters
θ, the fundamental properties such as the decreasing value
along the training data are not influenced by them. Therefore,
the Lyapunov function V (·) is considered nonparametric.
However, the behavior away from the training data crucially
depends on the hyperparameters such that the hyperparam-
eter optimization (18) is an important step in obtaining
suitable hyperparameters.

C. Reproductivity Preserving Stabilization
We pursue the optimization based approach proposed

in [8] to virtually stabilize the nominal system (11) with
minimal modification. Within this approach we obtain the
stabilizing control u(x) through

u∗(x) = argmin
u

1

2
uTu, (19a)

subject to:
V (µ(x) + u) < V (x) ∀x ̸= 0

V (µ(x) + u) = V (x) ∀x = 0,
(19b)

where V (·) is the nonparametric Lyapunov function (16).
Although these non-convex constraints generally prevent
guarantees for the global optimality of solutions, this is
not a problem since local minima can trivially be obtained
by setting u∗(x) = −µ(x). Therefore, asymptotic stability
is not affected by the non-convexity of the optimization
problem which is exploited in the following theorem.

Theorem 1: The model (2) with nominal model defined
through (9) and stabilizing control obtained in (19) based
on the nonparametric control Lyapunov function (16) with
radially unbounded stage cost l(·) is globally asymptotically
stable and reproduces training data exactly, i.e., f̂(x(m)

k ) =

x
(m)
k+1, for all m = 0, . . . ,M .
Proof 3: The function V (·) is positive definite and

radially unbounded since the stage cost l(·) also satisfies
these conditions. The optimization problem is always
feasible since u∗(x) = −µ(x) is a trivial solution and
∥u∥∗ is bounded since each mean function of the Gaussian
process state space model is bounded, i.e.,

|µi(x)| ≤ σ2
f

√
N ||K−1

i yi|| ∀i = 1, . . . , d,

with yi from (8). Because the training set is fixed and
generated by a deterministic function f(·) the norm of
K−1

i yi is a finite constant. Hence, V (·) is a Lyapunov
function and the system (2) is globally asymptotically stable.
Finally, reproduction of observed training data follows from
the fact that V (·) is decreasing along training data as shown
in Lemma 2 and the exact reproduction of training data
with the nominal model (11) as proven in Lemma 1.
Although we use the trivially feasible control
u∗(x) = −µ(x) to prove asymptotic stability, it might not
lead to good local optima as starting point of numerical
optimization. Therefore, we propose to choose as initial
point for the numerical optimization the closest training
point in the training data set (including the origin) which
satisfies the stability conditions. This approach results in
weak convergence to the training data as local optima in
the proximity of data are more likely to be found.

Remark 5: If the stability conditions are already satified
by the uncontrolled GP-SSM, the optimal control u∗ is 0.
Therefore, there is no need to solve the optimization (19)
numerically and computation time can be reduced by directly
using the nominal model (11).

IV. EXPERIMENTAL EVALUATION

In order to demonstrate the flexibility of the proposed
nonparametric (NP) Lyapunov function, we compare its
performance to the weighted sum of asymmetric quadratic
functions (WSAQF) VWSAQF [7] and the sum of squares
(SOS) Lyapunov function [8]. We evaluate the performance
in learning the motions of the LASA handwriting dataset2

because it is a well-established benchmark for stable
nonlinear dynamical systems, which fosters comparability
of the methods. The setting of our simulations is described in
Section IV-A, while the results are presented in Section IV-B
and discussed in Section IV-C.

A. Experimental Setting

The LASA data set consists of 24 handwriting shapes
recorded with a tablet computer. For each shape 3 to 15
recordings of the same motion are in the data set with
a single trajectory consisting of 150 or 250 data points.
Since some of the trajectories of a single shape intersect
and practically exhibit a stochastic behavior, our approach
is not directly applicable to the original data. In order to
ensure comparability of the control Lyapunov functions, we
downsample the training data by a factor 10 to resolve this
issue and obtain sparse data. For learning the GP-SSMs
we add a regularizer 10−14 to the diagonal of the kernel
matrices Ki and κ in order to improve numerical stability
of the matrix inversion in (9) and (14), respectively.

Control Lyapunov functions: We compare the flexibility
of three different Lyapunov functions:

2Data set is available at https://bitbucket.org/khansari/seds



• The WSAQF Lyapunov function proposed in [7] which
is given by

VWSAQF(x)=x
TP0x+

L∑
l=1

βl(x)(x
TPl(x−ϵl))2,

(20)
where

βl(x) =

{
0 if xTPl(x− ϵl)<0

1 otherwise,
(21)

with positive definite matrices Pl, l = 0, . . . , L. We set
L = 3 in our simulations resulting in 18 parameters.

• The SOS Lyapunov function proposed in [8] which is
defined as

VSOS(x) =m(x)TP0m(x), (22)
where m(·) is a vector of monomials and P0 is a pos-
itive definite matrix, see [14] for a detailed explanation
on the SOS technique. We use monomials up to degree
2 which results in 15 free parameters.

• The proposed nonparametric Lyapunov function defined
in (16) which is denoted as VNP(·) in the sequel. We
employ a quadratic stage cost l(x) = xTP0x with
positive definite matrix P0 such that the conditions of
Theorem 1 for global asymptotic stability are met.

The parameters Pl of the WSAQF and SOS control Lya-
punov function are optimized to fit the data through the
minimization problem

min
Pl

M∑
m=1

max
{
0, V (x

(m)
k+1)−V (x

(m)
k )

}
. (23)

The positive definiteness of the matrices Pl is enforced using
a Cholesky decomposition and constraining the eigenvalues
of it to be larger than 0.01 in all approaches.
Simulation of the stabilized models: In order to compare
the flexibility in reproducing the training data exactly we
simulate the dynamical systems stabilized with the different
control Lyapunov functions starting at the initial points of
each trajectory. The optimization (19) is solved using an
interior point algorithm where the strict inequality constraint
(19b) is enforced through

V (µ(x) + u)− V (x) ≤ −ρ log(1 + V (x)) (24)
with ρ = 0.01 in order to improve numerical robustness.
The simulation of trajectories is stopped, if they reach
a neighborhood ∥xk∥ ≤ 10 or exceed 1000 steps. We
measure the reproduction error ∆rep between the control
Lyapunov functions using the total area between the training
trajectory and the simulated trajectory. In addition to these
simulations, we compare the computational efficiency of
different approaches. For this reason we measure the average
time t̄train it takes to fit the control Lyapunov functions to
the data. Furthermore, we predict the stabilized models on
a uniformly spaced 100×100 grid and compare the average
computation time t̄test for a non-trivial control u∗(x) ̸=0.

B. Results

The training data D, the stabilized GP-SSMs f̂(x) and
the simulated trajectories x̂(m)

k for the S-shape of the LASA
dataset are shown in Fig. 1. The square root of the control

Fig. 1. GP-SSM stabilized by different control Lyapunov functions together
with the training data for the LASA S-shape movement.

V (xk) ∆rep S
shape

∆rep all
24

t̄train t̄test

WSAQF 14276 2377 0.7468s 0.0101s
SOS 6107 1819.8 0.4655s 0.0083s
Our method ”NP” 280.99 415.6 2.9536s 0.0056s

TABLE I
REPRODUCTION ERROR AND AVERAGE COMPUTATION TIMES FOR

LYAPUNOV FUNCTION TRAINING AND STABILIZING CONTROL

COMPUTATION.

Lyapunov functions V (x) are visualized by colormaps with
red denoting highest and dark blue lowest values. In addition
to the stabilized models, the GP-SSM without stabilization is
depicted which reproduces the training trajectories exactly.
The quantitative results regarding computation times and
reproduction errors for the S-shape as well as the whole
data set are shown in Table I. It can be clearly seen that
the nonparametric Lyapunov function provides a lower
reproduction error and allows even a faster optimization,
while it takes significantly more time to train.

C. Discussion

The simulations clearly show that the nonparametric
control Lyapunov function in combination with a noise-free
GP-SSM allows the precise reproduction of observed



training data. Since existing approaches such as SOS or
WSAQF are limited by the number of used parameters,
not all training samples satisfy the stability conditions.
Therefore, the stabilizing control u(x) computed based on
the SOS and WSAQF control Lyapunov functions can cause
a deviation from the observed trajectories. In contrast, our
nonparametric approach adapts its flexibility to the data.
Although the nonparametric Lyapunov function exhibits
local minima, this does not cause an increasing Lyapunov
function along trajectories. Instead, a local minimum leads
to discrete-time dynamics, which can have large differences
between consecutive states, since the system must move from
the local minimum to a state with smaller Lyapunov function
within a single time step. Moreover, the nonparametric
Lyapunov function approach relies on a precise nominal
model: when the nominal model is too imprecise such
that the nominal trajectories deviate significantly from the
training data, the approximate infinite horizon cost V∞(·) is
almost zero such that the quadratic stage cost l(·) dominates.
Therefore, trajectories do generally not converge to training
data which would be necessary for a risk-sensitive behavior
with awareness of the sparsity of data. However, this does
not affect stability of the obtained model and could be
overcome by employing the approach proposed in [9].
Furthermore, the dominance of the quadratic cost l(·)
exhibits also advantages regarding the computation time
of the optimal controls u∗(x) such that the nonparametric
Lyapunov function is the fastest on average (see Table I).

V. CONCLUSION

In this paper, we develop a novel approach for learning
a fully nonparametric, asymptotically stable model, which
is capable of precisely reproducing observed data. We show
that deterministic training data can be learned exactly with
GP-SSMs, and employ a nonparametric control Lyapunov
function learned from the data to stabilize the nominal
GP-SSM without modifying the nominal model at training
points. In a comparison to existing GP-SSM stabilization
approaches on a real world dataset the superior flexibility and
precision of the nonparametric control Lyapunov function
is demonstrated. In order to extend the applicability of
the approach to systems with noisy data, we will modify
the approach in future work, such that stochastic stability
conditions can be considered for learning the nonparametric
Lyapunov function.
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Networked Online Learning for Control of Safety-Critical
Resource-Constrained Systems based on Gaussian Processes

Armin Lederer, Mingmin Zhang, Samuel Tesfazgi and Sandra Hirche

Abstract— Safety-critical technical systems operating in un-
known environments require the ability to quickly adapt their
behavior, which can be achieved in control by inferring a
model online from the data stream generated during operation.
Gaussian process-based learning is particularly well suited for
safety-critical applications as it ensures bounded prediction
errors. While there exist computationally efficient approxima-
tions for online inference, these approaches lack guarantees
for the prediction error and have high memory requirements,
and are therefore not applicable to safety-critical systems with
tight memory constraints. In this work, we propose a novel
networked online learning approach based on Gaussian process
regression, which addresses the issue of limited local resources
by employing remote data management in the cloud. Our ap-
proach formally guarantees a bounded tracking error with high
probability, which is exploited to identify the most relevant data
to achieve a certain control performance. We further propose
an effective data transmission scheme between the local system
and the cloud taking bandwidth limitations and time delay of
the transmission channel into account. The effectiveness of the
proposed method is successfully demonstrated in a simulation.

I. INTRODUCTION

Technical systems are required to operate increasingly
autonomously in uncertain environments. For ensuring safety
and high performance, these systems need to be able to
infer models from observed data online, such that they can
quickly adapt to new situations. This is particularly important
in applications such as the safe control of autonomous
underwater vehicles [1], unmanned aerial vehicles [2] and
wearable robots [3], where uncertainty arising from humans
in the control loop and changing environments can prevent
the derivation of accurate models prior to system operation.

Gaussian process (GP) regression is a supervised machine
learning method, which is commonly employed in highly
nonlinear, safety-critical applications due to its high
expressiveness and probabilistically bounded prediction
errors [4]. Even though it admits closed-form updates
allowing online learning and thereby an iterative adaptation
of inferred models, it exhibits a quadratic update complexity
in the number of training samples. Therefore, it becomes too
slow for processing streaming data generated during system
operation in real-time, since controllers often run at sampling
rates in the magnitude of 102 Hz to 103 Hz and consequently

This work was supported by the European Research Council (ERC)
Consolidator Grant ”Safe data-driven control for human-centric systems
(CO-MAN)” under grant agreement number 864686 and by the Horizon
2020 research and innovation programme of the European Union under
grant agreement number 871767 of the project ReHyb.

The authors are with the Department of Electrical and
Computer Engineering, Technical University of Munich, 80333
Munich, Germany [armin.lederer, mingmin.zhang,
samuel.tesfazgi, hirche]@tum.de

Fig. 1. Overview of the proposed networked online learning architecture:
The LoG-GP predicts the unknown dynamics, e.g., of a wearable robot, for
a measured state. For computing these predictions, it can only access GP
model data in the local memory. Measurements of the system are contin-
uously stored in the local memory and regularly sent to the cloud, where
necessary models for a future reference trajectory are determined using a
sampling based approach and corresponding data is sent to the local memory.

measurements quickly accumulate to large data sets, which
render exact inference computationally intractable [5]. In
order to reduce the complexity of GPs, several approxi-
mations for online learning have been developed, which
include inducing point methods [6], variational inference
approaches [7] and finite feature approximations [8]. While
these approaches can yield computation times low enough
for online learning in control, beneficial safety-relevant
theoretical properties of exact GPs such as uniform error
bounds [9] do not directly extend to them, and thus, they
cannot be used in safety-critical applications. In addition,
those approaches exhibit a linear or even higher order
polynomial memory complexity, which prohibits their
application in resource-constrained technical systems such
as drones, autonomous underwater vehicles or wearable
robots with limited memory for storing data. In summary,
there is a significant gap between the principle potential of
GPs and their realistic application in safety-critical systems.

This paper addresses the problem of online learning con-
trol for safety-critical systems with limited computational
and memory resources. We exploit the fact that our envi-
sioned applications are able to communicate with external in-
frastructure including clouds with potentially unlimited data
storage. Since realistic communication network restrictions
such as time delays and limited bandwidth prevent the full
externalization of the online model inference, we propose
to exploit networked cloud computing only partially for
determining and storing GP models. Our approach, which



is illustrated in Fig. 1, transmits data to the remote compute
system, where a tree structure with localized GP models at its
leaf nodes is iteratively build up using a method developed by
the authors, which is called locally growing random tree of
GPs (LoG-GP)1 [10]. A sampling-based reachability analysis
is executed in the cloud to determine the localized GP
models which need to be communicated back to the resource-
constrained system. Thereby, predictions and model updates
can be computed locally without any delays. We ensure the
timely availability of required data on the local system using
an effective transmission scheme. This scheme provides
insight on fundamental trade-offs between the bandwidth,
time delays, local memory and achievable tracking error. By
employing a smart aggregation method for the predictions
of the local GP models, prediction error bounds of GPs are
inherited. Therefore, the safety guarantees derived for control
with exact GP models are maintained despite computational
and memory limitations. The effectiveness of the developed
networked online learning method is demonstrated in close-
to-real simulations of a robotic exoskeleton.

The remainder of this paper is structured as follows:
Section II formally describes the considered problem,
followed by the proposed networked online learning method
based on GPs in Section III. In Section IV, a tracking error
bound for an online learning feedback linearizing control
law is exemplarily derived, such that the effectiveness of the
networked online learning approach can be demonstrated in
Section V, before the paper is concluded in Section VI.

II. PROBLEM DESCRIPTION
Since accurate models for many systems such as

autonomous underwater vehicles and wearable robots are
often not available in practice, we consider the problem of
inferring a dynamics model online from measurements gen-
erated during operation, such that the tracking performance
of model-based control can be improved. Formally, we
model these systems with differential equations of the form2

ẋ = f(x,u), (1)

where x ∈ X ⊂ Rdx denotes the state, u ∈ U ⊂ Rdu
is the control input, and f : X × U → Rdx is the
unknown dynamics function. We consider the task of
tracking a bounded, continuously differentiable reference
trajectory xref : R0,+ → X with the system state x(t).
For this purpose, we employ a model-based control law
πf̂ : X → U, where f̂ : X × U → Rd is a model of the
unknown function f(·). The tracking performance of such a
control law typically depends strongly on the accuracy of the
model f̂(·), such that we employ the following assumption
on the model-based control law πf̂ (·), which is satisfied by
many control techniques such as feedback linearization [11],
backstepping [12] and adaptive control [13].

1Open-source software packages for several programming languages are
available at https://gitlab.lrz.de/online-GPs/LoG-GPs.

2Notation: Lower/upper case bold symbols denote vectors/matrices,
R+/R0,+ all real positive/non-negative numbers, In the n×n identity
matrix, ‖ · ‖ the Euclidean norm, |D| the cardinality of a set D, and d·e/b·c
the ceil/floor operator.

Assumption 1: The tracking error e(t) = x − xref(t) is
ultimately bounded with monotonously increasing ultimate
bound ϑ : R0,+ → R0,+, i.e., for every c ∈ R+, there exists
a time T = T (c, ϑ), such that it holds that

‖e(0)‖ ≤ c ⇒ ‖e(t)‖ ≤ ϑ(κt), ∀t ≥ T, (2)

where κt = maxt′∈[0,t] ‖f(x(t′))− f̂(x(t′))‖.
For notational simplicity, we assume no knowledge of f(·)

before system operation, but considering a prior model
f̂0(·) is straightforward [11]. In order to infer a model f̂(·)
online, we require periodical measurements of the system.

Assumption 2: Data pairs (xn,yn=f(xn,πf̂ (x)))+εn),
where εn∼N (0, σ2

yIdx) are i.i.d. Gaussian random variables
with variance σ2

y∈R+, are sampled at time instances t(n) =
nτ with sampling time τ ∈R+. The data is aggregated in a
time-varying training set Dt={(xn,yn)}N(t)=b tτ c

n=1 .
Assumption 2 admits training targets y perturbed by

Gaussian noise, which is a frequently found assumption in
literature, see, e.g., [11], [12], [13]. It also requires noise-
free state measurements for training, which however, is
commonly assumed in many employed control schemes such
as feedback linearization and sliding mode control [14].

Since Assumption 2 ensures a continuous data stream,
model updates of f̂(·) must be computed fast enough to
avoid that data is generated at higher rates than it can be
processed. Hence, the average update time Tup of f̂(·) must
satisfy the computational constraint

Tup ≤ τ. (3)

Additionally, the continuous stream of data leads to a
steadily growing size of the data set Dt. Therefore, the
amount of generated data will eventually reach the memory
limitations, which are unavoidable on all real-world systems.
Formally, this can be modelled via the memory constraint

|Dloc
t | ≤ M̄, (4)

where Dloc
t denotes the data set stored in the memory of

the technical system and M̄ ∈ N represents the memory
limitations. Since this restriction can crucially limit the
achievable control performance [15], we consider that data
can be transferred to a cloud via a network connection,
effectively extending the overall memory capacity. The
available memory in the cloud is usually significantly larger
than on the local system, such that we assume it to be
infinite for simplicity. However, the data transfer between
the cloud and the local system takes non-negligible time in
practice due to effects such as network delays Td∈R+ and
finite bandwidth B ∈R+. Therefore, data sent to the cloud
cannot be immediately accessed by the local system, but
the time Taccess between requesting data D and using it has
to satisfy the network constraint

Taccess ≥
|D|
B

+ Td. (5)

Despite these restrictions, the model-based control law πf̂ (·)
using the model f̂(·) learned from the streaming data Dt
should achieve a high tracking control performance.
Therefore, we consider the problem of developing a



networked online learning method for inferring a highly
accurate model f̂(·) of the unknown dynamics f(·) under
computational, memory and network constraints.

III. NETWORKED ONLINE LEARNING BASED ON
GAUSSIAN PROCESSES

Since the time delay Td prevents externalizing the online
learning, we propose the networked online learning approach
outlined in Fig. 1, which performs inference locally, but
transfers unnecessary data to the cloud. The approach is
based on GP regression [4] due to its strong theoretical foun-
dation as introduced in Section III-A. For enabling online
learning with GPs, we employ LoG-GPs firstly proposed
in our earlier work [10], which inherit the probabilistic
prediction error guarantees of exact GPs while having merely
logarithmically increasing update and prediction complexi-
ties as outlined in Section III-B. In order to transmit data to
the cloud without performance loss, we exploit the modular
structure of LoG-GPs and determine the region, in which
system states can potentially be in a given time interval, using
a sampling-based approach in Section III-C. By developing
a data transmission scheme in Section III-D, we ensure that
necessary data is always locally available despite transmis-
sion bandwidth limitations and network delays. For nota-
tional simplicity, the proposed method is presented for scalar
functions f(·), but can be employed for the vector-valued dy-
namics in (1) by applying it to each dimension individually.

A. Gaussian Process Regression

A Gaussian process is an infinite collection of ran-
dom variables, any finite subset of which follows a joint
Gaussian distribution [4]. The GP is usually denoted as
GP(m(·), k(·, ·)), where m : Rd → R is a prior mean
incorporating a priori knowledge such as approximate mod-
els, and k : Rd × Rd → R0,+ is a covariance function
reflecting information such as periodicity. Since we assume
no prior knowledge, the prior mean m(·) is set to 0 in the
sequel. Analogously, we employ the probably most common
choice for the covariance function: the squared exponential
kernel k(x,x′) = σ2

f exp(−∑d
i=1(xi − x′i)2/(2l2i )), where

σf ∈ R+ denotes the signal standard deviation, and li ∈ R+,
i = 1, . . . , d are length scales [4].

Given a prior GP GP(0, k(·, ·)), regression is performed
by conditioning on the training data Dt as introduced in
Assumption 2. The resulting posterior distribution is again
Gaussian with mean and variance given by

µ (x) = kT (x)
(
K + σ2

yI
)−1

y (6)

σ2 (x) = k (x,x)− kT (x)
(
K + σ2

yI
)−1

k (x) , (7)

where the elements ofK∈RN×N and k(x)∈RN are defined
through Ki,j =k(xi,xj) and ki(x) =k(x,xi), respectively,
and we concatenate training targets y=[y1 · · · yN ]T.

B. Locally Growing Random Tree of Gaussian Processes

Since the update complexity of Gaussian process regres-
sion scales quadratically with the number of training sam-
ples, we employ the recently proposed approach of locally

growing random trees of GPs [10], which preserves benefi-
cial properties of exact GP inference such as the existence of
uniform prediction error bounds. LoG-GPs rely on the idea
of iteratively constructing a tree, whose leaf nodes contain lo-
cally active GP models. In detail, the construction starts with
a single GP model, which is updated with incoming stream-
ing data until a prescribed threshold of training samples N̄ is
reached. When the GP model contains N̄ training samples in
its data set D0, the data set is split into 2 subsets Di, i = 1, 2,
by assigning data in D0 to a subset Di via sampling from a
Lipschitz continuous probability function p0 : Rd → [0, 1].
Thereby, a tree with 2 leaf nodes is generated, which contain
all the data, such that individual GP models can be efficiently
computed using (6) and (7). New streaming data obtained af-
ter the splitting can be assigned to the subsets Di by sampling
from p0(·) again until either of the subsets Di reaches the
capacity limit N̄ . Then, a new probability function pi : Rd →
[0, 1] is defined to distribute the data to new subsets, thereby
extending the tree of GPs by a new layer. By repeating
this procedure every time a subset Di reaches N̄ training
samples, a tree of GP models is iteratively constructed with
a computational complexity of Op(log(N)) allowing updates
with rates up to 1kHz [10], which is fast enough to satisfy
the computational constraint (3) in many systems.

For computing predictions with LoG-GPs, we simply
multiply the probabilities pi(x) along a path to a leaf node l
to obtain the weight ωl(x). Then, a generalized product of
experts aggregation scheme [5] can be employed to obtain
the approximate GP prediction

µ̃(x)=
∑
l∈L

ωl(x)σ̃2(x)

σ2
l (x)

µl(x), σ̃−2(x)=
∑
l∈L

ωl(x)

σ2
l (x)

, (8)

where L denotes the set of leaf nodes of the tree of GP
models. By defining the probability functions such that only
a single child node has a positive probability in most of
the input domain Rd, most of the weights ωl(x) become 0.
Since the definition of the aggregated mean µ̃(·) implies
that the local GP predictions µl(x) and σ2

l (x) must only
be computed if ωl(x) > 0, models with ωl(x) = 0 can be
considered locally inactive at x and therefore, aggregated
predictions can be efficiently computed in Op(log2(N))
complexity. Moreover, this construction of the aggregated
prediction µ̃(·) ensures that uniform error bounds are directly
inherited from exact GP regression.

Lemma 1 ([10]): Assume the function f : Rd → R
is a sample from a Gaussian process GP(0, k(·, ·)) with
a Lk-Lipschitz kernel k : Rd × Rd → R. Then, the
aggregated mean function (8) of a LoG-GP trained with
data satisfying Assumption 2 guarantees a probabilistically,
uniformly bounded prediction error on a compact domain
Ω ⊂ Rd, i.e., for δ ∈ (0, 1) and ρ ∈ R+, we have

P (|f(x)− µ̃(x)| ≤ η(x),∀x ∈ Ω) ≥ 1− δ, (9)

where

η(x) =
√
β(δ, ρ)

∑
l∈L

ωl(x)σ̃2(x)

σl(x)
+ γ(ρ) (10)
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Fig. 2. A local model l ∈ L is inactive if its active region Xl does not
intersect with the tube Tt2t1 induced by the tracking error bound ϑ(κt) as
illustrated for the region in the top right. The set of active models Â is found
by over-approximating the tube Tt2t1 with balls Bξ , from which random
samples x(i) are drawn to determine the active models Ax(i) at these states.

β(δ, ρ) =2 log
(
d
d
2 |L| max

x,x′∈Rd
‖x−x′‖d∞

)
−2 log

(
δ2dρd

)
(11)

γ(ρ) =
∑
l∈L

ωlσ̃
2(x)

σ2
l (x)

(
Lµlρ+

√
β(ρ)Lσlτ

)
+ Lfρ, (12)

and Lf , Lµl , Lσl are Lipschitz constants of f(·), µl(·), σl(·).
This result relies on a well-calibrated prior GP, which is a

rather unrestrictive assumption in practice since the sample
spaces of GPs are very expressive for many frequently used
kernels, e.g., the space of continuous functions for GPs
with a squared exponential kernel [9]. Since the posterior
variances σ2

l (x) are guaranteed to converge to 0 for dense
data [16], this result ensures that arbitrarily accurate models
can be obtained. Therefore, LoG-GPs are accompanied by
strong theoretical guarantees for their prediction accuracy as
required in safety-critical applications.

C. Sampling-Based Identification of Active Models
Since Lemma 1 ensures bounded prediction errors when

using (8) to learn a model f̂(·) of the unknown dynam-
ics f(·), we can determine the system states x which can
be potentially reached within a fixed time interval using
the tracking error bound ϑ(κt) introduced in Assumption 1.
Therefore, we can obtain the models, which need to be avail-
able in the local memory, by finding all individual GP models
which are active for states x in the potentially reachable set.

In detail, this set A of potentially active models during
a time window W = [t1, t2], t1, t2 ∈ R, t2 > t1, is
defined through the intersections between active regions
Xl = {x : ωl(x) > 0} of local models l ∈ L and the
tube Tt2t1 = {x ∈ Rd : ∃t ∈W,x ∈ Bϑ(κt)} based on balls
Bϑ(κt) = {x∈Rd : ‖x−xref(t)‖≤ϑ(κt)} with radius given
by Assumption 1, i.e., A={l∈L : Xl∩Tt2t1 6=∅} as illustrated
in Fig. 2. Since the computation of the intersections Xl∩Tt2t1
requires an explicit representation of the active regions
Xl of local models l ∈ L, which is not provided by
LoG-GPs, the definition of A cannot be directly used in
practice. We follow a different idea exploiting the implicit
representation of the active regions Xl via the weights ωl(·),
which allows to directly compute the set of active models
Ax = {l∈L : ωl(x)>0} for a given state x. Therefore, we
can alternatively represent the set of potentially active models
during the time window W via A =

⋃
t∈W

⋃
x∈Bϑ(κt)

Ax.
By approximating the unions over uncountable sets via dis-
cretization and random sampling as outlined in Algorithm 1,
we can over-approximate the set A via Â and obtain

Algorithm 1: Determining Active Models
1 Function ActiveModels(Ns, t1, t2, ∆t):
2 Â← ∅
3 compute ξ using (14)
4 for j = 0 : d t2−t1

∆t
e do

5 for i = 1 : Ns do
6 Determine active models Ax(i) for input x(i)∼U(Bξ)
7 Â← Â ∪ Ax(i)

8 return Â

µ̂(x)=
∑
l∈Â

ωl(x)σ̂2(x)

σ2
l (x)

µl(x), σ̂−2(x)=
∑
l∈Â

ωl(x)

σ2
l (x)

. (13)

If sufficiently many samples are used, this approximation
yields identical predictions as shown in the following result.

Theorem 1: Consider a dynamical system (1) and assume
Assumptions 1 and 2 hold. Choose ‖e(t1)‖ ≤ ϑ(κt1) and

ξ = 2ζ + Lxref

∆t

2
+ ϑ(κt1+j∆t) (14)

for constants ζ,∆t ∈ R+. Then, with probability of at least

1−‖L‖
⌈
t2−t1

∆t

⌉(
1−min{rdxmin, ζ

dx}
ξdx

)Ns
, (15)

where rmin denotes the radius of the largest ball contained
in the smallest active region of a leaf node l ∈ L, the
predictions µ̂(x(t)) and µ̃(x(t)) are identical for all t ∈W.

Proof: See Appendix A.
Since this theorem ensures that (8) and (13) are identical

with probability greater than (15), it ensures that using µ̂(·)
as model in a control law πf̂ (·) yields no reduction in control
performance with high probability. Therefore, it allows us to
determine irrelevant data for a time interval W, which we
exploit in the following section for transmitting data to the
cloud, thereby reducing the local memory occupation.

D. Transmission Scheme

Due to the non-negligible time required for a data transfer,
the transmission to and from the cloud must be carefully
scheduled in order to ensure that the necessary data is
always available locally. For simplicity, we consider that
data is transmitted at regularly spaced time instances j∆T ,
j = N, such that each time interval Wj = [(j−1)∆T, j∆T ]
has a length of ∆T ∈ R+. During each time interval Wj , we
propose the transmission scheme illustrated in Fig. 3, where
the idea is that the memory is divided into two parts. During
each interval Wj , half of the memory is used for updating
the local data set with data from the cloud, while the other
half contains the data set Dj necessary for computing the
mean predictions µ̂(·) during time interval Wj according
to the potentially active models Âj . For updating the local
memory, the data set Dj−1 from the previous interval
Wj−1, which contains newly measured training samples as
well as data from the cloud, is sent to the cloud. Once this
transmission has been completed, the cloud contains the
complete data set D(j−1)∆T obtained until time (j − 1)∆T ,
such that Algorithm 1 can be employed to determine the
possibly active models Âj+1 for the next time interval Wj+1
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Fig. 3. During each interval Wj = [j∆T, (j + 1)∆T ], the previously
necessary data Dj−1 is sent to the cloud and the data Dj+1 for the next
interval Wj+1 is fetched. While these data sets occupy memory during
the interval Wj , parts of Dj−1 and Dj+1 are in transmission and not
available on the local system. Therefore, these data sets cannot be used
for prediction, which is highlighted through the dotted pattern. The data in
the cloud is updated with incoming transmissions, such that it contains the
complete data set D(j−1)∆T up to the end of previous interval j − 1.

in the cloud. The corresponding data set Dj+1 is sent to the
local memory, such that it is available for t ≥ (j + 1)∆T .

It is straightforward to see that this transmission scheme
can ensure the satisfaction of the network constraint (5)
for a fixed data set Dj , if Taccess = ∆T/2 is sufficiently
large. However, due to the online generation of data during
system operation, it generally cannot be ensured that the data
sets Dj have a bounded size, such that the fixed time ∆T
might eventually not be sufficient to finish the transmission
within the time interval Wj . Therefore, the real-time learning
with data generated online during system operation has
to be stopped eventually at some interval Wι, ι ∈ N in
order to upper bound the size of all sets Dj . This leads
to the data transfer scheme outlined in Algorithm 2 for the
cloud and in Algorithm 3 for the local system, for which
it is straightforward to prove the satisfaction of the network
constraint (5) as shown in the following result.

Lemma 2: Choose ∆T ≥ M̄
B + 2Td and ι ∈ N such that

the memory constraint (4) is satisfied. Then, Algorithms 2
and 3 ensure the satisfaction of the network constraint (5).

Proof: See Appendix B.
In order to apply this lemma in a real-world system, it

remains to develop an approach for enforcing the memory
constraint (4) by choosing a suitable value of ι. In practice,
this value can be selected online using heuristics such that
learning can be stopped, e.g., when the number of active
models exceeds a threshold. Moreover, when the reference
xref is periodic, we can determine ι based on the data sets
from previous periods, as shown in the following theorem.

Theorem 2: Assume the reference trajectory is periodic
with period Tp = q∆T for ∆T ≥ M̄

B + 2Td and q ∈ N. Let

ι=q+ min
|Dj |> M̄−2m̄

2

j, m̄=max
j∈N
|D(j+q)|−|D̂j |≤

⌈
Tp
τ

⌉
. (16)

Then, Algorithms 2 and 3 ensure the satisfaction of the
memory constraint (4) and network constraint (5).

Proof: See Appendix C.
This theorem allows to determine online when to stop

adding new training samples to the LoG-GP by checking if
|Dj | > M̄

2 −m̄, which can be performed with low complexity
and can be directly implemented. Moreover, it provides
valuable insight into the interrelations between achievable
tracking accuracy, memory constraint M̄ , time delay Td and
limited bandwidth B. In order to see this, note that the data
set size |Dj | usually grows almost linearly with the interval

Algorithm 2: Data Transfer Scheme: Cloud
1 Function UpdateLoop(∆T , τ , ∆t):
2 for n = 1, . . . ,∞ do
3 if nτ ≥ j∆T then
4 j ← j + 1
5 Dj−1 ←Receive ()
6 Âj+1←ActiveModels(Ns, j∆T, (j+1)∆T,∆t)
7 Transmit (Dj+1)

Algorithm 3: Data Transfer Scheme: Local System
1 Function UpdateLoop(∆T , ι, τ):
2 for n = 1, . . . ,∞ do
3 if nτ ≤ ι∆T then
4 Dloc

t ← Dloc
t ∪ (x(n), y(n))

5 if nτ ≥ j∆T then
6 j ← j + 1
7 Transmit (Dj−1)
8 Delete (Dj−1)
9 Dj+1 ←Receive ()

length ∆T . Since an increase in bandwidth B admits smaller
∆T , learning can continue up to higher values of ι in general.
Therefore, a higher data density can be achieved, which in
turn yields a lower GP variance [16] guaranteeing a smaller
tracking error. In contrast, an increase in local memory
M̄ admits larger data set sizes |Dj |, but in turn requires
longer intervals ∆T , such that the achievable data density
and consequently the tracking accuracy are barely affected.
Finally, a reduction of the delay Td allows smaller values of
∆T and thereby also leads to an improvement in achievable
control performance. Therefore, available bandwidth B for
data transmission and time delay Td are crucial for the
achievable tracking accuracy when using the networked
online learning control law, while finite local memory M̄
only has secondary relevance to enable implementation of the
transmission scheme using Algorithm 2 and 3. This insight
can be beneficially used for the design of autonomous sys-
tems in practice, since it allows a reduction of local memory
when sufficient bandwidth for data transmission is available.

IV. EFFICIENT TRACKING ERROR BOUNDS

In order to demonstrate the applicability of the proposed
networked online learning approach, we exemplarily derive a
tracking error bound ϑ(κt) for a feedback linearizing control
law, which can be applied to a wide range of practically rel-
evant systems such as robotic manipulators, unmanned aerial
and autonomous underwater vehicles. For the derivation of
ϑ(κt) we employ Lyapunov stability theory, such that com-
puting ϑ(κt) effectively reduces to determining the regions
of the state space with decreasing Lyapunov function along
system trajectories. Due to the prediction error bound η(·),
this decrease condition can be efficiently decoupled for feed-
back linearizing control laws as illustrated in Fig. 4. Thereby,
we obtain a straightforwardly implementable tracking error
bound, which can be directly used in Algorithms 2 and 3.

In more detail, we consider feedback linearizable systems

ẋ1 = x2, ẋ2 = x3, . . . ẋdx = f(x) + g(x)u, (17)

where a scalar control input u as well as scalar functions
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Fig. 4. Ultimate boundedness is analyzed using Lyapunov theory with
Lyapunov function V (e) = eTPe. For exact feedback linearization, the
closed-loop dynamics are linear with ė = Ae and ensure a decreasing
Lyapunov function along system trajectories. Due to model errors, which
can be expressed through the model error bound η(xref) at the reference
xref and the error (Lf +Lµ̃)‖e‖ of linearization around the reference,
the uncertainty in the dynamics can be bounded. Thereby, the region with
decreasing Lyapunov function can be efficiently determined.

f : X → R and g : X → R are assumed only for simplicity
of exposition, while all derived results straightforwardly
extend to multi-input systems in the canonical form. Similar
to previous work [11], we assume that f(·) is an unknown
function, while g(·) is known. The knowledge of g(·) is
merely used to streamline the presentation, but all results
can be extended to unknown functions g(·) following the
approach in [15]. In order to ensure global controllability
of (1), the following assumption is needed.

Assumption 3: The function g(·) is positive, i.e., g(x)>0.
This assumption is a standard condition when designing

control laws for systems in the canonical form [14, Definition
13.1], and ensures the non-singularity of g(·). It is naturally
satisfied by many systems such as Euler-Lagrange systems,
where g(·) corresponds to the positive inertia. Therefore, this
assumption is not restrictive in practice.

Additionally, we assume that the unknown function is
well-behaved, which is formalized in the following.

Assumption 4: The function f(·) is Lf -Lipschitz.
This assumption globally ensures a unique solution for

the system (1) [14], such that it can be commonly found in
control. Since it is satisfied by many systems such as Euler-
Lagrange dynamics in practice, it is not restrictive.

In order to allow the accurate tracking of the reference tra-
jectory with system (17), we consider reference trajectories

xref (t) =
[
xref(t) ẋref(t) · · · ddx−1

dtdx−1xref(t)
]T
, (18)

where xref : R→ R is dx times continuously differentiable.
For tracking this trajectory, we employ the control law

u = πFL(x) = g−1(x)
(
− µ̃(x) + ν +

ddx

dtdx
xref(t)

)
, (19)

where the mean µ̃(x) defined in (8) is used as model. The
input ν to the approximately linearized system is given by
the linear feedback law ν = −kc

[
λ1 · · · λdx−1 1

]
e,

where kc ∈ R+ is the control gain and λ1, . . . , λdx−1 ∈ R
are coefficients such that for s ∈ C, the polynomial
sdx−1 + λdx−1s

dx−2 + . . . + λ1 is Hurwitz. Due to these
choices, the error dynamics can be compactly expressed by

ė=

[
0 I

−λ1kc −
[
λ2kc · · · kc

]]︸ ︷︷ ︸
A

e+(f(x)−µ̃(x))

0
...
1

. (20)

The matrix A defines a stable dynamical system because
of the Hurwitz coefficients λi, which is independent of the

online learning. Therefore, the second summand in (20)
can be considered a disturbance depending on the online
learning, which allows us to straightforwardly analyze the
ultimate boundedness of this system using Lyapunov theory.

Theorem 3: Consider a dynamical system (1), where f(·)
is a sample from a Gaussian process with Lk-Lipschitz kernel
k(·, ·). Moreover, assume Assumptions 2, 3 and 4 hold, and
choose a positive definite, symmetric matrix Q ∈ Rd×d and
a control gain kc such that

‖pd(kc)‖ <
λmin(Q)

2(Lf + Lµ̃)
, (21)

where P = [p1(kc) · · · pd(kc)] is the solution to the
Lyapunov equation ATP +PA = −Q and Lµ̃ denotes
the Lipschitz constant of the LoG-GP mean µ̃(·). Then,
the online learning feedback linearizing control law (19)
guarantees an ultimately bounded tracking error

ϑ(κt)=
2 ‖pd(kc)‖

√
λmax(P ) maxt′∈[0,t] η (xref(t

′))

(λmin(Q)−2 ‖pd(kc)‖ (Lf+Lµ̃))
√
λmin(P )

. (22)

Proof: See Appendix D.
This theorem has the advantage over previously derived re-

sults in similar settings [9], [11] that the ultimate bound ϑ(κt)
in Theorem 3 depends only on the standard deviation along
the reference xref . Thereby, the ultimate bound (22) can be
efficiently computed, whereas the results in previous works
provide only an implicit representation of the ultimate bound
due to the dependency of the GP error bound on the state x.
This advantage resulting from the linearization around the
reference xref in (26) comes at the cost of the additional
constraint (21) for the control gain kc compared to existing
approaches [9], [11]. Even though this constraint makes the
application of Theorem 3 more restrictive, this weakness is
strongly outweighed by the benefit of the explicit tracking
error bound for determining the active models online.

Remark 1: Due to the definition of A in (20), it can be
straightforwardly checked that it is always possible to ensure
the satisfaction of (21) for a fixed matrix Q by choosing
a sufficiently large gain kc. Therefore, condition (21) ef-
fectively imposes a lower bound for the control gains kc
admitting ultimate tracking error bounds (22).

V. EVALUATION IN EXOSKELETON CONTROL

In order to evaluate the applicability of the proposed
networked online learning approach for resource constrained
systems3, we employ it for the control of an upper-limb
human-exoskeleton assisting a user in tracking a reference
trajectory, which is simulated in Julia [17], a modern pro-
gramming language for accelerating physics simulations.
Since the exoskeleton is intended to be used in a portable
manner, this scenario resembles an example for a wearable
robotic system with memory and computational constraints.
These constraints are particularly challenging for the control
of the exoskeleton as human user data is required in practice
to infer models allowing for personalized assistance.

3Open-source code conceptually demonstrating the proposed method is
available at https://gitlab.lrz.de/online-GPs/cloud-GPs.



Fig. 5. Visualization of the upper-limb human-exoskeleton simulation and
trajectory tracking task. The green circles depict discrete points along the
elliptic reference trajectory, which must be followed with the hand.

TABLE I
BANDWIDTH B, TIME DELAY Td , STATE MEASUREMENT STANDARD

DEVIATION σx AND RESULTING TIME WHEN LEARNING IS STOPPED Ts

low medium high large state
bandwidth bandwidth bandwidth delay noise

B [samples/s] 1500 3000 10000 10000 1500
Td [s] 0.1 0.1 0.1 1.0 0.1
σx [rad] — — — — 0.0001
Ts [s] 44.67 60.04 — 30.81 43.13

For the simulation, we assume a rigid kinematic coupling
between the human and exoskeleton arm, which allows the
modelling of both as one kinematic chain consisting of
four DoFs. The exoskeleton model is based on the design
described in [18], whilst the model parameter for the human
are chosen according to anthropometric tables [19]. Here, the
reference is set to 70 kg and 1.75 m. As illustrated in Fig. 5,
the goal is to track an elliptic trajectory with the hand of the
human by employing the learning-based feedback linearizing
control law (19). Each period of the ellipse takes Tp = 6s,
the simulation runs at 1kHz, and we consider a memory
constraint of M̄ = 4000 data pairs for the local memory.
Streaming data for online learning is generated with noise
standard deviation σy = 0.05 at a sampling rate of 100Hz,
i.e., τ = 10ms. Each local GP model can contain a maximum
of N̄ = 100 training points and the hyperparameters are set
to σf = 1, li = 1/li = 3 for inputs corresponding to joint
angles/angular velocities. Algorithm 1 is run with temporal
discretization ∆t = 10ms and Ns = 1000 random samples.
Finally, the control gains are set to kc = 400 and λ = 1.

In order to investigate the dependency of the tracking
accuracy and memory occupation on the network bandwidth
B and time delay Td, we compare networked LoG-GP
controllers under different simulation conditions as outlined
in Table I. In this comparison, we also consider the case
of noisy state measurements to demonstrate the robustness
of the proposed method against sufficiently small noise on
training inputs xn. Moreover, we employ a LoG-GP without
memory constraints, i.e., M̄ = ∞, as baseline to illustrate
the absence of a performance loss of the networked LoG-GP
when a sufficiently high bandwidth is available. The average
update time for the LoG-GP is 0.3ms<τ in all simulations,
and the resulting curves for the evolution of the local memory
occupation are depicted in Fig. 6. Since the LoG-GP has
low accuracy during the first period, the tracking error bound
ϑ(κ) is large during the first 6s, such that all data is required
on the local system. After this period, the different curves
exhibit the behavior discussed in Section III-D: The lower
the bandwidth B, the faster the local memory consumption
grows. Moreover, an increase in time delay Td causes a
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Fig. 6. The higher the bandwidth B, the longer the LoG-GP can learn
before the number of training pairs in the local memory reaches the
limitations. Large time delay Td causes a significantly earlier stopping of
learning, as indicated by the arrows.
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Fig. 7. When the memory limitation is reached and the learning process
stops, the tracking error stagnates. Since higher bandwidthsB allow learning
for a longer time, larger values of B yield lower tracking errors eventually.
While learning is not stopped, networked LoG-GPs ensure the same tracking
accuracy as LoG-GPs without any constraints. Overall, online learning
significantly improves the tracking accuracy over the baseline case without
model learning, which is not depicted since it permanently exceeds 2·10−2.

significantly faster growing memory occupation. Due to the
limited local memory, this leads to an early stop in learning
at the times depicted in Table I, after which the memory
occupation stagnates. Note that the state measurement noise
has effectively no impact on the local memory consumption.

The stagnation has an immediate effect on the evolution of
the tracking error, as illustrated in Fig. 7. While the feedback
linearizing control law (19) with networked LoG-GP model
achieves the same improvement in tracking accuracy as
with the unconstrained LoG-GP when model updates are
performed, the tracking performance ceases to improve and
effectively remains constant after the learning has stopped.
The same behavior can be observed with noisy state measure-
ments, but the tracking error exhibits an offset since the noise
also affects the linear feedback control ν. Due to the contin-
ual learning of the networked LoG-GP with a high bandwidth
connection, the corresponding evolution of the tracking error
is visually identical to the curve resulting from usage of the
LoG-GP without memory constraint. This clearly demon-
strates that the proposed approach allows a transfer of data
to the cloud without any loss in performance when sufficient
transmission bandwidth is available. Moreover, even when
online learning has to be stopped early, it still yields a
significant improvement in tracking accuracy compared to
the baseline case without model learning, where a stationary
error of ≈ 2 · 10−2 rad has been observed. This strongly
underlines the practical advantages of online model inference
for model-based control despite resource constraints.

VI. CONCLUSION
This paper presents a novel networked online learning

approach for control of safety-critical systems with local re-
source constraints based on Gaussian process regression. By
employing a tree-structured local GP approximation, relevant



local models for control can be efficiently determined in a
sampling-based fashion. This is exploited in the design of an
effective data transmission scheme, which ensures the timely
availability of data in the local computing unit. The effec-
tiveness of the proposed networked online learning approach
is demonstrated in a simulation of a robotic exoskeleton.

APPENDIX

A. Proof of Theorem 1

Proof: Due to Assumption 1, at each time t, the
tracking error e is bounded by ϑ(κt). It is straightforward
to see that xref(·) is Lipschitz continuous, such that

‖e(t)‖ ≤ ξ−2ζ ∀t∈
[
t1+

2j−1

2
∆t, t1+

2j+1

2
∆t
]

(23)

and consequently Tt2t1 ⊂ ⋃d t2−t1∆t e
j=1 Bξ−2ζ . Therefore,

it remains to show that the set of active models for
time t1 + j∆t defined as At1+j∆t =

⋃
x∈Bξ−2ζ

Ax is
overapproximated by Algorithm 1. For this purpose, choose
any model l ∈ At+j∆t. Then, the intersection between
the active region Xl of this model and the ball Bξ has a
volume of at least πdx/2(min{rmin, ζ})dx/Γ(dx2 +1), where
Γ : R+ → R+ denotes Euler’s gamma function. Therefore,
the probability of a sample x(i) ∼ U(Bξ) being in the active
region of model l can be bounded by

P (ωl(x
(i)) > 0|l ∈ At1+j∆t) ≥ min{rdxmin, ζ

dx}/ξdx . (24)

The probability of none of the Ns samples falling into the
active region Xl is consequently upper bounded by (1−
P (ωl(x

(i))>0|l∈At1+j∆t))
Ns , such that (15) follows from

the union bound over all time steps and all models l ∈ L.

B. Proof of Lemma 2

Proof: Satisfaction of the memory constraint (4) implies
that the transmission of Dj , j ∈ N, can be achieved with
time Ttrans≤ M̄

2B+Td. Hence, we have Taccess = ∆T
2 ≥Ttrans,

guaranteeing satisfaction of the network constraint (5).

C. Proof of Theorem 2

Proof: Since the cardinality of Dj+q can be bounded by
|Dj+q| ≤ |Dj |+ m̄, memory constraints are satisfied as long
as |Dj | ≤ M̄/2− m̄. Therefore, ι as defined in (16) ensures
that the memory constraint (4) is satisfied, which implies the
satisfaction of the network constraint (5) due to Lemma 2.

D. Proof of Theorem 3

Proof: In order to prove the ultimate bound, we
employ the Lyapunov function V (e) = eTPe, where P
is a positive definite matrix as λ is a Hurwitz vector. The
derivative of the Lyapunov function is guaranteed to satisfy

V̇ (e) = −eTQe+ 2eTpd(kc) (f(x)− µ̃(x)) . (25)

Due to Lipschitz continuity, we obtain

V̇ (e)≤−λmin(Q)‖e‖2+2‖e‖‖pd(kc)‖(Lf+Lµ̃)‖x−xref‖
+2‖e‖ ‖pd(kc)‖ |(f(xref)−µ̃ (xref))| , (26)

where the Lipschitz constant Lµ̃ in (21) follows directly
from Lipschitz continuity of the individual mean functions

resulting from the Lk-Lipschitz kernel k(·, ·) [9]. Due to
Lemma 1, the error between the unknown function f(·) and
the LoG-GP mean µ̃(·) can be bounded, such that we obtain

V̇ (e) ≤ − (λmin(Q)− 2 ‖pd(kc)‖ (Lf + Lµ̃)) ‖e‖2
+ 2‖e‖ ‖pd(kc)‖ η (xref) . (27)

Due to (21), the Lyapunov derivative is negative for

‖e‖ > 2 ‖pd(kc)‖ η (xref)

λmin(Q)− 2 ‖pd(kc)‖ (Lf + Lµ̃)
. (28)

Since the ultimately bounded set is given by the small-
est sub-level set of V (·) which contains the ball defined
through (28), we can directly determine it as {e : V (e) ≤
ϑ(κt)

2λmin(P )} due to the quadratic structure of V (·).
Over-approximating this set by a ball concludes the proof.
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Physically Consistent Learning of Conservative Lagrangian Systems
with Gaussian Processes

Giulio Evangelisti and Sandra Hirche

Abstract— This paper proposes a physically consistent Gaus-
sian Process (GP) enabling the data-driven modelling of un-
certain Lagrangian systems. The function space is tailored
according to the energy components of the Lagrangian and
the differential equation structure, analytically guaranteeing
properties such as energy conservation and quadratic form.
The novel formulation of Cholesky decomposed matrix kernels
allow the probabilistic preservation of positive definiteness.
Only differential input-to-output measurements of the function
map are required while Gaussian noise is permitted in torques,
velocities, and accelerations. We demonstrate the effectiveness
of the approach in numerical simulation.

I. INTRODUCTION

Euler-Lagrange (EL) systems represent a wide variety
of physical systems and are the foundation of a large
class of theoretical concepts in control, such as stability,
passivity, and in feedback law design. The application of
Gaussian Processes (GPs) in learning-based control holds
great promise for the control of uncertain systems, improving
important aspects like performance [1], safety [2], and data-
efficiency [3]. Yet, in general GP regression does not account
for physically consistency, hampering the provision of safety
guarantees when used in model-based control approaches.

We address this issue by formulating GPs consistent
with the relevant physical laws and mathematical models,
thus implicitly performing a trade-off between the flexibility
of learning and physics-imposed symmetries. Traditionally,
parametric techniques [4] have been applied to the identifica-
tion of EL systems, as reviewed in [5]. However, mostly as-
suming linearity in the parameters, these methods eventually
become infeasible with increasingly nonlinear, and coupled,
dynamics, as for example in soft robots [6], aircrafts [7], and
marine vehicles [8].

Based on Bayesian principles, GPs allow the inclusion of
analytical prior knowledge, thus forming a bridge to para-
metric model-based approaches. The authors of [9] propose
the regression of Hamiltonian systems with GPs, preserving
the symplectic structure, but without any guarantees and
requiring the availability of noiseless impulse measurements.
A Lagrangian kernel is derived in [10] within the framework
of Reproducing Kernel Hilbert Spaces (RKHS). While analo-
gies to our stochastic GP-based approach naturally exist, the
work lacks a further specification of the associated function
space, prohibiting a comprehensive analysis of control rele-
vant properties closely intertwined with physical consistency.

Both authors are members of the Chair of Information-oriented Control,
Department of Electrical and Computer Engineering, Technical University
of Munich, D-80333 Munich, Germany [giulio.evangelisti,
hirche]@tum.de

In [11], the EL residual dynamics are compensated by em-
ploying independent GPs per degree of freedom, neglecting
correlations and structure. This leads to an implicit differen-
tial equation system, the necessity of noiseless acceleration
measurements and the curse of dimensionality. Guaranteeing
physical consistency of data-driven methods still represents
a major open problem.

The main contribution of this work is the derivation of
a physically consistent Lagrangian-Gaussian Process (L-GP)
constructed by linear operators, embedding the differential
equation structure into the model. Combined with quadratic
kernels, we extend the GP concept from scalar function
to symmetric matrix spaces. Based on a Cholesky decom-
position of the underlying matrix kernel, we are able to
provide a probabilistic guarantee for the positive definiteness
of the estimates. Further physical consistencies of the L-GP
analytically preserving equilibria, passivity, and conservatism
are formally shown.

After defining the problem setting in Section II, we review
the framework of GPs in Section III and describe our pro-
posed unification with EL systems in Section IV. Section V
presents our main results. Numerical illustrations validate
theory and effectiveness of the approach in Section VI.

II. PROBLEM FORMULATION

In this paper, we consider the class of conservative EL
systems whose equations of motion are given by1

d

dt
(∇q̇L)−∇qL = τ (1)

based on the set of generalized coordinates q ∈ RN and the
unknown Lagrangian L. The generalized forces τ ∈ RN are
the measurable, possibly underactuated, inputs to the system.

Assumption 1: The unknown Lagrangian is autonomous
with L ≡ L(q, q̇) = T (q, q̇) − V (q) and composed of the
difference between unknown kinetic energy T : RN×RN →
R and unknown potential energy V : RN → R.

1Notation: Vectors a and matrices A are denoted with bold lower and
upper case characters, respectively. The nabla operator ∇ multiplied with
a differentiable scalar field f(x) gives its gradient w.r.t. x ∈ X . The
partial gradient w.r.t. a subset of variables y ∈ Y , Y ⊂ X , is described
by ∇yf . I denotes the identity, 0 the zero and 1 the ones matrix. A
collection of D indexed vectors xi ∈ RN is stacked row-wise in the matrix
X = [x>i ]Di=1 ∈ RD×N such that xij refers to the j-th component of xi.
For notational convenience, we omit the indexing in the matrix expressions
writing [xij ] =X = [x>i ] = [yj ] = Y

> = [yij ]. E[·], Var[·] and Cov[·]
denote the expectation, variance and covariance operators w.r.t. random
variables. The Hadamard product and square are denoted by x ◦ y and
x◦2 = x ◦ x, respectively, the Kronecker product with ⊗, and the direct
sum with⊕. With λk(·) we denote the k-th largest eigenvalue corresponding
to the components of the decreasingly ordered eigenvalue vector λ↓(·).



Assumption 2: The kinetic energy is of the form
T (q, q̇) = 1

2 q̇
TM(q)q̇ where M : RN → RN×N is the

unknown, (symmetric) positive definite, inertia matrix.
Assumption 3: The potential energy is decomposable

into the sum V (q) = G(q)+U(q) of gravitational and elastic
potential energies G and U , respectively, where the former
has an equilibrium, G(0) = 0, ∇qG(0) = 0, and the latter
is given by U(q) = 1

2q
TS(q)q with unknown, (symmetric)

positive definite, stiffness matrix S : RN → RN×N .
Assumptions 1–3 essentially describe the considered sys-

tem class and represent its physical properties. Assumption 1
restricts the systems described by (1) to be only implicitly
dependent on time and free from disturbances caused by
other external forces such as dissipation. Extending to handle
dissipative and time-variant systems is possible and topic of
current research. Assumption 2 is a valid approach when
dealing, e.g., with classical mechanical rigid body systems,
while Assumption 3 constrains chosen coordinates to have
an equilibrium at the origin.

Exploiting Assumptions 1–3 and applying the chain rule
to (1), we obtain the well-known matrix-vector expression

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ , (2)

introducing the (non-unique) generalized Coriolis matrix
C(q, q̇) := 1

2 [∇q̇∇>q T+Ṁ(q)−∇q∇>q̇ T ] as in [12] and the
vector of generalized potential forces g(q) := ∇qV , having
exploited ∇q̇∇>q̇ T = M(q), ∇qT = 1

2 (∇q∇>q̇ T )q̇ as well
as
(
∇q̇∇>q T

)
q̇ = Ṁ(q)q̇. Note that there are other ways to

define the matrix C(q, q̇). This particular choice, however,
has the unique property that Ṁ − 2C is skew-symmetric.

Our objective is to approximate the unknown Lagrangian
function L(q, q̇) by a data-based estimate L̂(q, q̇) which
is physically consistent, i.e., maximally aligned with the
existing physical knowledge, in our case Assumptions 1–
3. We assume access to noisefree positional observations qi,
i = 1, . . . , D with D ∈ N, and to potentially noisy velocity,
acceleration and torque measurements

ẋi =

[
q̇i
q̈i

]
+

[
ωi
αi

]
,

[
ωi
αi

]
∼ N

(
0,

[
Σωi

0
0 Σαi

])
, (3a)

yi = τi(qi, q̇i, q̈i) + εi , εi ∼ N (0,Σεi) . (3b)

The noise processes {ωi}, {αi} and {εi} are white, zero-
mean, uncorrelated, and have known covariance matrices
Σωi , Σαi and Σεi , respectively. After collecting all D
observations at positions Q = [q>i ] with analogous matrices
Ẋ = [ẋ>i ] and Y = [y>i ], we obtain the training data set

D = {Q, Ẋ,Y } .

Remark 1: Extending to noisy positional inputs is possi-
ble via certain GP-based methods as in, e.g., [13], [14], yet
they are mostly based on first-order Taylor approximations.

III. GAUSSIAN PROCESS FRAMEWORK

This section gives a brief overview of the mathematical
framework of GPs based on [15]. For a more complete
introduction, the reader is referred to the literature [16]–[18].

A. Inference with GPs

For x,x′ ∈ X in a continuous domain X ⊆ R2N , a GP
with mean m(x) and covariance k(x,x′), denoted by

f(x) ∼ GP (m(x), k(x,x′)) (4)

and with scalar f(x) ∈ R, is a stochastic process extending
the Gaussian probability distribution from random variables
to functions. As such, it inherits the convenient mathematical
properties of the Normal distribution. In particular, any finite
marginalization z = [zi] of function observations zi =
f(xi) + ζi, corrupted by the zero-mean white-noise process
ζi ∈ R and corresponding to the finite subset of function
evaluations at {xi} ⊂ X , is jointly Gaussian distributed.

A GP is fully characterized by its mean and kernel
function m(x) = E[f(x)] and k(x,x′) = Cov[f(x), f(x′)],
respectively. The former allows the analytical inclusion of
prior knowledge about the unknown function, whereas the
latter determines higher level functional properties such as
smoothness. Estimation of the covariance describing hyper-
parameters is mostly done via optimization of the marginal
likelihood to maximize the probability of observing the
measured outputs.

For regression, GPs exploit the joint Gaussian distribution
of observations z at measurement locations X = [x>i ] and
prediction f(x) w.r.t. the test input x ∈ X given by[

f(x)
z

]
∼ N

([
m(x)
m

]
,

[
k(x,x) k>(x)
k(x) K + Σ

])
, (5)

where we have introduced the mean m = [m(xi)] and
covariance k(x) = [k(xi,x)] vectors, the Gram matrix
K = [k(xi,xj)] as well as the noise covariance matrix
Σ = Var[ζ] with ζ = [ζi]. Here, we have dropped the
dependencies of m(X), k(X,x) and K(X,X) on X
for notational simplicity. Conditioning on the observations
yields a conditional Gaussian distribution with posterior
mean f̂(x) ≡ E[f(x)|z] given analytically by

f̂(x) = m(x) + k>(x) (K + Σ)
−1

(z −m) . (6)

B. Linear Operators and GPs

Derivatives and integrals of GPs remain GPs, since these
operations are linear. Applying a linear transformation op-
erator T x to the GP of (4) leads to a new, possibly
multidimensional, GP in the form of

T xf(x) ∼ GP (mT (x),KT (x,x′)) (7)

with transformed mean mT (x) = T xm(x) and kernel

KT (x,x′) = T xk(x,x′)T >x′ . (8)

Here, T >x′ is applied from the right [9] as is necessary when
considering matrix operators.

IV. REGRESSION OF LAGRANGIAN SYSTEMS

Our key idea is to consistently model the unknown La-
grangian using a GP. We propose a structural approach for
the application of GP regression (4)–(6) to EL systems (1)–
(2): deriving specific GPs and kernels, we ensure consistency



with physical requirements, as in Assumptions 1–3, and
embed the structure of the differential equations using Nabla
operators ∇, thereby inducing multidimensional L-GPs ac-
cording to (7)–(8) based on the linearity of differentiation.

A. Energy Structuring

Firstly, we model the Lagrangian as a composite GP
L(q, q̇) = T (q, q̇)− V (q) writing

L(q, q̇) ∼ GP (mL(q, q̇), kL(q, q̇, q′, q̇′)) (9)

with the subjacent kinetic and potential energy GPs

T (q, q̇) ∼ GP (mT (q, q̇), kT (q, q̇, q′, q̇′)) , (10a)
V (q) ∼ GP (mV (q), kV (q, q′)) . (10b)

Here, the means mL = mT−mV and covariances kL = kT+
kV specify the L-GP (9) in a structurally consistent manner.
In particular, the potential energy GP (10b) depends only on
the position q by construction. It is split up further into the
sum V (q) = G(q) + U(q) of independent gravitational and
elastic potential GPs

G(q) ∼ GP (mG(q), kG(q, q′)) , (11a)
U(q) ∼ GP (mU (q), kU (q, q′)) . (11b)

B. Quadratic and Positive Definite Structures

Consistency of kinetic and elastic GPs is ensured by
according design of their mean and covariance functions.
If available, we impose on the according priors the same
quadratic structure based on, e.g., for the kinetic energy, the
(symmetric) positive definite a-priori matrix M0(q) � 0,
∀q ∈ RN , as described in the following.

Assumption 4: The priors mfk ∈ {mU ,mT } are in the
same form as the unknown energy functions

fk(q) :=
1

2

(k)
q >Hk(q)

(k)
q (12)

for k ∈ {0, 1}, where mf0 ≡ mU with H00 ≡ S0 and
mf1 ≡ mT with H10 ≡ M0. In addition, the gravitational
prior fulfills the equilibrium condition such that mG(0) = 0
and ∇qmG(0) = 0 hold.

Having specified the means in (10a) and (11b), we now
move on to the kernels. Consider the quadratic functional

κk(q, q′) =
1

4

(
(k)
q ◦

(k)
q ′
)>

Θk(q, q′)
(

(k)
q ◦

(k)
q ′
)

(13)

with differential-operational index k ∈ {0, 1} and the (sym-
metric) positive definite Cholesky decomposed matrix kernel

Θk(q, q′) = R>k (q, q′)Rk(q, q′) . (14)

The Cholesky factor Rk is an upper-right triangular matrix

Rk(q, q′) =

rk11(q, q′) . . . rk1N (q, q′)
. . .

...
0 rkNN (q, q′)

 (15)

consisting for 0 ≤ n ≤ m ≤ N of kernels rknm(q, q′). We
now use (13) to set the covariances in (10a) and (11b) to:

kU ≡ kf0 := κ0 , (16a)
kT ≡ kf1 := κ1 . (16b)

Thus, we implicitly model the stiffness and inertia matrices
denoted in accordance with (12) by Hk := [hknm] as
symmetric, matrix-valued, GPs with entries

hknm(q) ∼ GP (ηknm(q), θknm(q, q′)) ,

where hknm = hkmn, and analagously constructing Hk0 :=
[ηknm]. The kernels θknm = ρ>knρkm stem from the inner
product of the non-zero columns from (15), i.e, ρkm :=
[rklm] ∈ RP for P = min{n,m}. Note that, due to the
nonlinearity of multiplication, the rklm may not be associated
any further with underlying GPs, or more specifically, Gaus-
sian Random Variables (GRVs). However, the covariances
θknm remain valid kernel functions according to [15].

C. Differential Equation Embedding

Let us now use the chain rule to expand Lq ≡ d
dt∇q̇−∇q

from (1) by writing

Lq =
(
∇>q̇ q̈ +∇>q q̇

)
∇q̇ −∇q := Lq,q̇(q̇, q̈) . (17)

Applying the Lagrangian-differential vector operator (17) to
the GP from (9), we obtain for the torques (1)–(2) a vector-
valued GP τ ≡ τ (q, q′; q̇, q̈, q̇′, q̈′) ∈ RN denoted by

τ ∼ GP (mτ (q; q̇, q̈),Kτ (q, q′; q̇, q̈, q̇′, q̈′)) (18)

with mean vector mτ = LqmL and kernel matrix Kτ =
LqL>q′kL. As indicated in (18) via the semicolon, q̇ and q̈
have the role of regressors, whereas q remains a conventional
input.

D. Joint GP Distribution

Finally, we assert a joint GP for the energies (10a)–(10b)
and torques (18). Including for γ>(q) := [V (q),∇>q V (q)]
the equilibrium condition

γ0 := γ(0) = 0

in alignment with Assumption 3, we write
T
V
γ0

y

∼ N


mT

mV

0
my

 ,

σ2
T 0 0> k>yT
0 σ2

V k>0V k>yV
0 k0V K0 K>y0

kyT kyV Ky0 Ky


 (19)

dropping dependencies on all variables for notational brevity.
Also, we have introduced: the stacked vector of outputs y =
vec(Y >) with mean my = [mτ (qi; q̇i, q̈i)] and covariance

Ky =
[
Kτ (qi, qj ; q̇i, q̈i, q̇j , q̈j)

]
+⊕iΣεi , (20)

the energy variances σ2
T (q, q̇) = kT (q, q̇, q, q̇) and σ2

V (q) =
kV (q, q), the equilibrium variance

K0 =

[
kV (0,0) ∇>q′kV (0,0)

∇qkV (0,0) ∇q∇>q′kV (0,0)

]



and covariance Ky0 = [kyV (0),∇>q kyV (0)], as well as
the remaining equilibrium-potential k0V (q) and Lagrangian-
differential energy kyT (q, q̇), kyV (q) covariances

k0V (q) =

[
kV (0, q)
∇qikV (0, q)

]
, (21a)

kyT (q, q̇) =
[
Lqi,q̇i(q̇i, q̈i)kT (qi, q̇i, q, q̇)

]
, (21b)

kyV (q) = [∇qikV (qi, q)] . (21c)

The fully formulated L-GP (19) is the first part of our contri-
bution. Before moving on to analyze its physical consistency,
we propose a method for partial input noise compensation.

E. Nonlinear Noise Compensation

The regressor structure stemming from the application of
(17) to (16b) allows for the compensation of noise in the
differential inputs q̇i and q̈i. Therefore, as a last step, we
combine (2) and (18) in order to transform (3b) into

yi = τ (qi; ẋi) + ε̃i

with the transformed composite noise variable

ε̃i = −(∇q̇i∇>q̇iT )αi − (∇q̇i∇>qiT )ωi + εi .

Approximating the product of two GRVs to remain Gaussian,
we obtain a heteroscedastic (state-dependent) noise model

ε̃i ∼ N (0,Σε̃i(qi, q̇i)) , (22)

where Σε̃i = Σα̃i
(qi) + Σω̃i

(qi, q̇i) + Σεi . After extensive
computations, it can be verified that the transformed Σα̃i

:=
Var[(∇q̇i∇>q̇iT )αi] and Σω̃i

:= Var[(∇q̇i∇>qiT )ωi], ex-
ploiting stochastic independencies, are given by

Σα̃i
= M0Σαi

M0 + (1−I)◦Σαi
◦Θ1ii + diag(Θ1iiσαi

)

Σω̃i = C0ΣωiC
>
0 + diag (Γ(qi, q̇i)σωi) (23)

with the inertial variance Θ1ii := Θ1(qi, qi), the Coriolis
mean C0(qi, q̇i) = [M0(qi)q̇i]∇>qi and variance Γ(qi, q̇i) =
[Θ1(qi, qi)q̇

◦2
i ](∇◦2qi )> matrices as well as the main diago-

nals vectors σαi
and σωi

of Σαi
and Σωi

, respectively.
Proposition 1: The distribution (22) with state-dependent

variances (23) is a stochastically consistent approximation
which becomes exact for the limit case Σαi

,Σωi
→ 0, or

the case of certainly known T = mT with kT ≡ 0.
Proof: The limit case Σαi ,Σωi → 0 leads to noisefree

inputs with ε̃i = εi ∼ N (0,Σεi). The case of known T
with certainty kT ≡ 0 leads to M0 ≡ M and Σα̃i

=
M0Σαi

M>
0 , respectively. Since the transformation α̃i =

−Mα is linear, α̃i ∼ N (0,Σα̃i
) holds exactly. Proceeding

analgously for ω̃i = −(∇q̇i∇>qiT )ω, we arrive at (22). �
By casting from the temporal into the spatial domain, (22)

unifies the L-GP framework with techniques from nonlinear
Kalman filtering [19]. For effective noise compensation in
the inputs q̇i and q̈i, we replace the block matrices Σεi
in (20) by Σε̃i(qi, ξi) from (22), where ξi := [ẋin]. Also,
we compute the torque covariance matrix (20) and the
Lagrangian-differential kinetic covariance vector (21b) by
setting ẋ>i = [q̇>i , q̈

>
i ], ∀i, j ∈ {1, . . . , D}.

V. INVARIANCE PROPERTIES

Having introduced the novel framework of L-GPs, we now
investigate their properties and derive certain guarantees.

A. Quadratic Form

Employing the kernel structure (13), quadratic form of the
energy GPs (10a) and (11b) can be guaranteed analytically.
In order to specify our result in Lemma 1, we require
the following definition: for δxi ∈ RN and fixed q, the
directional derivative of Θk(qi, q) along δxi at qi gives

Φk(qi, δxi, q) :=
[
δx>i ∇qiθknm(qi, q)

]
(24)

The matrix Φk is the directional matrix-derivative of Θk

from (14) moving through position qi with velocity δxi. In
particular, note that

Φk(qi(τ), q̇i(τ), q) = Θ̇k(qi(τ), q)

holds for fixed q by deriving w.r.t. the virtual time τ .
Lemma 1: The mean estimates f̂k(q) ≡ E[fk(q)|y,γ0]

of kinetic and elastic GPs (10a) and (11b) in the joint model
(19) are analytically guaranteed to be of quadratic form:

f̂k(q) =
1

2

(k)
q>Ĥk(q)

(k)
q . (25)

The posterior matrix estimates Ĥk are decomposed as

Ĥk(q) = Hk0(q) +
1

2

D∑
i=1

Nki(q) +N>ki(q) , (26)

where the basis matrices Nki are given by

Nki(q) =
∂k

∂τk

[
δxi

(k)
qi
>(τ) ◦Θk(qi(τ), q)

]
+

1

2
(−1)k

(k)
qi

(k)
qi
> ◦Φk(qi, δxi, q)

(27)

with the subvectors δxi = [∆xn]iNn=1+(i−1)N of the trans-
formed innovation ∆x = K−1

D ∆y, the Kalman-like kernel
gain matrix KD = Ky−Ky0K

−1
0 K>y0, and the innovation

difference ∆y = y −my .
Proof: We set G ≡ 0 w.l.o.g., leading to V = U ≡ f0 and

k0V = 0 due to (16a) and (13). Marginalizing (19) over the
complementary fk̄ for {k̄} = {0, 1} \ {k} and conditioning
on y and γ0 yields another Gaussian distribution with mean

f̂k(q) = mfk(q) +
[
0> k>yfk(q)

] [K0 K>y0

Ky0 Ky

]−1 [
γ0

∆y

]
.

Then, applying standard inversion formulas for partitioned
matrices together with γ0 = 0, we can write

f̂k(q)=mfk(q)+k>yfk(q)(Ky−Ky0K
−1
0 K

>
y0)−1∆y . (28)

Defining lki(q) ≡ Lqiκk(qi, q) as the application of (17) to
(13) such that kyfk = [lki], it can be verified that

lki(q) =
1

2

∂k

∂τk

[
(k)
q(t)

(k)
qi
>(τ) ◦Θk(qi(τ), q(t))

]
(k)
q(t)

+
1

4
(−1)k

∑
n

∑
m

(k)
qin

(k)
qim

(k)
qn

(k)
qm∇qiθknm(qi, q)



holds after some differential vector-algebraic computations,
where we utilize among other intermediate steps that

∇q̇i∇>qiκk(qi, q) =

{
0 , k = 0
1
2 q̇q̇

> ◦Φk(qi, q̇i, q) , k = 1
.

The full derivation is omitted due to space limitations. Fur-
ther exploiting the commutativity of the Hadamard product
and the definition of the projected gradient matrix Φk in (24),
we follow that δx>i lki(q) = 1

2q
(k)>Nki(q)q(k) with Nki as

in (27). Then, eliminating the skew-symmetric part of Nki

combined with the quadratic priors mfk from Section IV-B,
we reformulate (28) using k>yfkK

−1
D ∆y =

∑
i δx

>
i lki and

obtain (25)–(26). �
Essentially, Lemma 1 follows from the quadratic kernel

structure (13). The summation (26) represents an extension
of matrix decompositions from vector to matrix spaces which
are aligned with the Lagrangian structure (1)–(2).

B. Positive Definiteness

We now move on to investigate positive definiteness of
the matrix estimates Ĥk. Before that, however, we impose
a minor structural restriction on the used kernel functions.

Assumption 5: The Cholesky matrix kernel components
rknm from (15) and the gravitational covariance kG from
(11a) belong to the class of metric kernels M given by

M =
{
Λ � 0

∣∣ kM(|d|) = σ2 exp
(
− 1/2d>Λd

)}
(29)

parametrized by σknm,Λknm and σG,ΛG, respectively.
Note that class M in Assumption 5 includes a wide

variety of covariance functions including the commonly used
squared exponential kernel [15]. Therein, kernels k(q, q′) ≡
kM(|d|) are Gaussian radial basis functions. They depend
only on the squared length of the difference

d := q − q′ (30)

in the Riemann space [20, p. 243] defined by metric Λ � 0.
The special case of variance σ2 = (2π)−N/2|det Λ1/2| leads
to i.i.d. d ∼ N (0,Λ−1).

We can now explicitly state the components rknm of the
Cholesky factor Rk from (15). Introducing for 0 ≤ n ≤
m ≤ N the functions r̃knm ∈ M from Assumption 5 with
identical Riemannian hypermetrics Λknm = Λk, we set

rknm ≡ r̃knm , Σfk := [σ2
knm] , Σdk

:= Λ−1
k . (31)

Note that the hypervariance Σfk is upper-triangular.
We now make a stochastic analysis of the data set D gath-

ered via (3a)–(3b), enabling the probabilistic investigation of
positive definiteness preservation. Based on the product p(n)

i

and difference dj vectors

(n)
pi := δxi ◦

(n)
qi , ∀n ∈ {k, 2k} , (32a)

dj := q − qj , ∀j = 1, . . . , D , (32b)

we define for µk,νk ∈ RD the composite random variable

βk := µk + νk (33)

for those i ∈ {1, . . . , D} which satisfy component-wise ∀n ∈
{k, 2k}, k ∈ {0, 1}, the condition p(n)

i > 0, by

µki = Υk

(
(2k)
pi

)
det diag

(
%↓k ◦

(2k)
pi
↑
)

+ 2kϑ̇ki

Υk

(
(k)
pi

)
det diag

(
%↓k ◦

(k)
pi
↑
)

ϑ̇ki ≥ 0

%k1 maxn
(k)
pin ϑ̇ki < 0

νki = ϕki

Υk

(
(k)
qi
◦2
)

det diag
(
%↓k ◦

(k)
qi
◦2↑
)

ϕki ≥ 0

%k1 maxn
(k)
qin

2 ϕki < 0

with constant, decreasingly ordered, radial vector %↓k ∈ RN ,
%↓k > 0. Here, the projection ϕki, the differential angle ϑ̇ki
and the normalizing function Υk(pi) are given by

ϕki(δxi) = (−1)kd>i Λkδxi , (34a)

ϑ̇ki(qi(τ)) = ϕki(q̇i(τ)) , (34b)

Υk(pi) = 1/ΠN−1
j=1 λj(Σ

2
fk

diag(pi)) . (34c)

If p(n)
i > 0 does not hold ∀n ∈ {k, 2k}, we define

βki := exp(‖di‖2Λk
)λN (Ĥki) ,

(n)
pi ≯ 0 , (35)

where Ĥki = 1
2 (Nki+N

>
ki) from (26). The random variable

βk from (33)–(35) is the result of nonlinearly transformed
GRVs stemming from the data set D. We now formulate the
main result.

Theorem 1: Consider the posterior, generalized, matrix-
valued L-GP estimate Ĥk(q) from (26) with metric covari-
ances rknm ∈ M forming the Cholesky kernel Θk(qi, q)
from (14) identically specified by Riemannian hypermetric
Σ−1
dk

via Assumption 5 and (31). Positive definiteness of the
generalized matrix estimate is guaranteed with probability

Pr{Ĥk(q) � 0} = 1− δk(q) , (36)

where the physical inconsistency measure δk(q) is upper
bounded according to

δk(q) ≤ Pr
{
λN (Hk0) + exp

[
−vec(Σ−1

dk
)>D(q)

]
βk ≤ 0

}
based on the column-wise Kronecker-constructed squared
distance matrix

D(q) = [dj(q)⊗ dj(q)]

which depends only on the absolute values of the positional
joint distances |dj(q)| = |q − qj |.

Proof: Firstly, we express the basis matrices (27) from
Lemma 1 writing Θk ≡ Θ̃k(d) based on Assumption 5
and (31). Proceeding analogously via Φk ≡ Φ̃k(d, δxi), we
follow that

Φ̃k(di, δxi) = (−1)k2ϕki(δxi)Θ̃k(di)

with the projection ϕki and the difference vector di as in
(34a) and (32b), respectively. Then, we can write for each
matrix summand Nki in (27) that

Nki = N̄ki ◦ Θ̃k(|di|) ,



where

N̄ki =

k∑
n=0

(
2ϑ̇ki(qi)

)k−n
δxi

(n+k)
qi
>+ϕki(δxi)

(k)
qi

(k)
qi
> (37)

dropping dependencies on q for the sake of notational
brevity. Consider now the i-th summand Ĥki = 1

2 (Nki +
N>ki) from (26). Exploiting

Θ̃k(|di|) = exp(−‖di‖2Λk
)Σ2

fk
,

where Σ2
fk

= Σ>fkΣfk , and its eigenvalue decomposition

Σ2
fk

= Wkdiag(%k)W>
k

with decreasingly ordered %k = λ↓(Σ2
fk

) > 0, we now
leverage the eigenvalue behavior of the sum of Hermi-
tian matrices [21] in combination with Weyl’s inequality
[22, Theorem III.2.1]. Thus, with the Hermitian summation
Ĥk =

∑
i Ĥki as in (26), we derive

λN (Ĥk) ≥
D∑
i=1

λN (Ĥki) .

Then, utilizing the product constructions (37), we obtain

λN (Ĥk) ≥ λN (Hk0) + exp
[
−vec(Λk)>D

]
βk (38)

by successively exploiting the invariance of eigenvalues
w.r.t. similarity transforms and by using ‖di‖2Λk

= (di ⊗
di)
>vec(Λk) as well as the definition of the random vector

βk ∈ RD as given component-wise by (33)–(35). Taking
the complement of the set in which the lower bound (38) is
positive, we arrive at (36) and finish the proof. �

Note that, for a given data set D, the upper bound on δk
in Theorem 1 can be used to deterministically estimate the
domain in which positive definiteness is fulfilled. A proba-
bilistic computation can be made by means of the distribution
of products and quotients of continuous, nonstandardized,
independent Normal random variables [23].

C. Equilibria

Despite the point-wise inclusion of γ0 = 0 in the dis-
tribution (19) being stochastic, we can provide an analytical
guarantee for the preservation of the equilibrium at the origin.

Theorem 2: The L-GP-based potential mean estimate
V̂ (q) ≡ E[V (q)|y,γ0] is guaranteed to have an equilibrium:

V̂ (0) = 0 , ∇qV̂ (0) = 0 . (39)
Proof: Analogously to the derivation of (28), we now

marginalize (19) over T instead of V , and condition on y as
well as γ0. This leads to V̂ (q) ≡ E[V (q)|y,γ0] with

V̂ (q) = mV (q) +
(
k>yV − k>0VK−1

0 K>y0

)
K−1
D ∆y . (40)

Based on the quadratic form of Û proven in Lemma 1, we set
U ≡ 0 w.l.o.g. and obtain V = G. Exploiting the structure
(29) of the gravitational kernel kG according to Assumption
5 then leads to k>0V (0) = [σ2

G,0
>], block-diagonal K0 =

σ2
Gdiag(1,ΛG) and thus k>0V (0)K−1

0 = [1,0>]. Therefore,

k>yV (0) = k>0V (0)K−1
0 K>y0 . (41)

Plugging (41) into (40) and using mG(0) = 0 due to
Assumption 3, we follow V̂ (0) = 0 holds. Similarly ap-
plying the ∇ operator to (40), we compute ∇qk>yV (0) =

∇qk>0V (0)K−1
0 K>y0. Thus we can conclude that ∇qV̂ (0) =

0 holds, again for ∇qmG(0) = 0 as in Assumption 3. �
Corollary 1: The estimative Lagrangian L̂ ≡ E[L|y,γ0]

based on (19) is analytically guaranteed to have a stationary
point at q = q̇ = 0, i.e., ∇q,q̇L̂(0,0) = 0, with L̂(0,0) = 0.

Proof: Since L̂ = T̂ − Ĝ− Û , this directly follows from
the preservation of quadratic kinetic and elastic forms proven
in Lemma 1 combined with the guaranteed gravitational
equilibrium from Theorem 2, i.e., Ĝ(0) = 0. �

D. Energy Conservation

Lastly, the L-GP is also equivalent to a dynamic system.
We investigate this intuition in the following.

Proposition 2: Upon explicit inclusion of a test torque
τ (q, q̇, q̈) in the form of (18) in (19), the conditional
expectation τ̂ (q, q̇, q̈) ≡ E[τ (q, q̇, q̈)|y,γ0] is given by

τ̂ (q, q̇, q̈) = M̂(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q) (42)

with Ĉ = 1
2 [∇q̇∇>q T̂ +

˙̂
M − ∇q∇>q̇ T̂ ], M̂ from (26) for

k = 1, and ĝ = ∇qV̂ from (40) and (26) for k = 0.
Proof: Follows as a direct consequence of the kernel

construction via the Lagrangian-differential operator (17) and
the equivalent representation of (1) by (2). Thus, we include
(18) in (19) and get

E[τ (q, q̇, q̈)|y,γ0] ≡ Lq,q̇L̂(q, q̇) = τ̂ (q, q̇, q̈)

after marginalization and conditioning, proving the result. �
We now show that the equivalent L-GP dynamics (42)

preserve the physical property of energy conservation as a
last result. For notational consistency, we use the (estimative)
state vector x̂> = [q>, q̇>] in the following.

Corollary 2: Consider the system ˙̂x = φ̂(x̂, û) defined
∀x̂ ∈ Ξ in the compact domain Ξ ⊆ X ⊆ R2N with

Ξ =
{
0
}
∪
{
M̂(x̂1) � 0 ∧ V̂ (x̂1) ≥ −1/2λN (M̂)‖x̂2‖2

}
spanned ∀û ∈ RN by the GP (18) with estimate (42), where

φ̂(x̂, û)=

[
x̂2

M̂−1(x̂1)
(
û− Ĉ(x̂1, x̂2)x̂2 − ĝ(x̂1)

)] . (43)

The dynamic system (43) with state vector x̂> = [x̂>1 , x̂
>
2 ]

and input û = τ̂ is passive and, moreover, lossless, with
respect to the energy storage function Ê = T̂ + V̂ , where

Ê(x̂) = 1/2x̂>2 M̂(x̂1)x̂2 + V̂ (x̂1) , (44)

based on (25), (40), and the system output mapping ŷ = x̂2.
Proof: From the definition of Ξ, we can follow that (43)

is locally Lipschitz in the domain Ξ×RN . Also, the storage
function (44) is positive semidefinite, since Ê(0) = 0 due
to Corollary 1 and λN (M̂)‖x̂2‖2 ≤ x̂>2 M̂x̂2 for M̂ � 0
ensures Ê(x̂) ≥ 0, ∀x ∈ Ξ. The output function ŷ = x̂2 is
continuous and for the dynamics φ̂(0,0) = 0 holds. Taking



the time derivative of (44) along the trajectories (43), we
obtain the power fed into the system by input û computing

˙̂
E = x̂>2

(
M̂(x̂1) ˙̂x2 +

1

2
˙̂
M(x̂1)x̂2 +∇x̂1

V̂ (x̂1)

)
= x̂>2

(
M̂(x̂1) ˙̂x2 + Ĉ(x̂1, x̂2)x̂2 + ĝ(x̂1)

)
= ŷ>û ,

where we have exploited the symmetry of M̂ = M̂>, the
identity ˙̂

M = Ĉ+Ĉ> and the skew-symmetry of ˙̂
M−2Ĉ>.

Thus, according to [24], the system (43) is lossless. �
Note that from the passivity of system (43) we can also

directly follow stability of the origin of the unforced system
˙̂x = φ̂(x̂,0) by taking (44) as a Lyapunov function [24].

VI. NUMERICAL ILLUSTRATIONS

In this section, we now demonstrate the efficacy of our ap-
proach and validate the derived theoretical results, choosing
a simple example for the sake of easy interpretation.

A. Setup

We benchmark our method on the two-link robotic ma-
nipulator from [12, p. 164]. Gravity g = 10 ms−2 acts along
the positive x-axis, leading to an equilibrium at the origin
q = 0. The links have unit masses mn = 1 kg and unit
lengths ln = 1 m for n ∈ {1, 2}. Estimates are available
but erroneous: m̂n = (1 + ∆n)mn, l̂n = (1 + ∆n)ln, where
∆n = (−1)n/2.

For all of the numerical simulations, we use only 25
training pairs equally distanced on the domain q ∈ [−1, 1]2

with fixed q̇n = (−1)n and q̈ = 1. The torque measurement
noise has covariance Σεi = σ2

εI , σε = 0.1 Nm, while the
differential process noise corrupting the accelerations has
covariance Σαi

= σ2
αI , σα = π/180 rad/s2. Positions

and velocities are kept noisefree, enabling explicit numer-
ical integration with ode45. We reduce the kinetic mass
inertia hypermetrics Λknm = Λk, ∀n,m ∈ {1, 2}, to the
constant Euclidian form Λ−1

k = σ2
dT
I , where k = 1, and

fix σdT
= 102. The same is done for the gravitational

distance covariance keeping Σ
1/2
dG

= diag([1.6, 2.7]). The
remaining radial gravitational hypervariance σ2

G along with
the Cholesky-kinetic upper-triangular hypercovariance Σfk ,
where again k = 1, are optimized via the log-likelihood.

B. Results

As a first experiment, we demonstrate the closed-loop
applicability of the L-GP model. For this, we compare a
standard PD tracking controller [12, p. 194] with its L-
GP-based version as shown in Fig. 1. Starting from the
equilibrium, the controllers with gains Kp = Kd = 10I
have the task of following a sinusoidal reference trajectory
qd(t) = ad sin t1 with amplitude ad = π/2. The simulation
shows that the L-GP-based version considerably improves
the accuracy, demonstrating reliable performance despite the
suboptimal distribution of the data points, independent from
the reference trajectory, requiring substantial extrapolation.

-1 0 1 2

-2

-1

0

1

2

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15

0

0.5

1

1.5

2

2.5

Fig. 1. Tracking performance of the standard PD controller (dashed yellow
line) and its L-GP augmented version (solid blue line). The top left plot
shows the reference trajectory (dashed red line) w.r.t. the end-effector in
its cartesian work space, the top right the closed-loop behavior in the state
space of the first joint along with the training data points (purple crosses).
The bottom two subfigures indicate the Euclidian norms of position and
velocity tracking errors over time.

Fig. 2. Eigenmanifolds of the generalized inertia matrix of the two-link
robot over the domain q ∈ [−π/2, π/2]2. The top left and right surface
plots show the maximum and minimum estimative eigenvalue manifolds
of the L-GP-based estimate M̂(q), respectively, while the bottom two
subfigures are heat maps indicating the relative approximation errors in
percent.

Next, we validate the physical consistency of the L-GP.
Therefore, using the same parametrization as in the previous
experiment, we evaluate the mass inertia estimate over the
joint domain q ∈ [−ad, ad]2 and investigate its eigenman-
ifolds, as shown in Fig. 2. Clearly, the L-GP accurately
approximates the positive definite function space despite
only being a subcomponent of the input-output relation. The
consistency of the gravitational potential estimate with equi-
librium is validated in Fig. 3, along with the conservatism of
the equivalent L-GP-based dynamics simulated for different
initial conditions x̂(0) = [a01

>,0>]> with displacement
amplitudes a0 = 0.1 (red line), a0 = 0.5 (yellow line)



Fig. 3. Potential energy estimate and free trajectories of the L-GP
equivalent dynamic system (top left plot) with initial conditions q(0) = a01
and q̇(0) = 0 for a0 = 0.1 (red line), a0 = 0.5 (yellow line) and a0 = 1
(purple line). The constant time evolution of the energy estimates are shown
in the top right plot for the same trajectories. The bottom left plot visualizes
the signed potential approximation error, the bottom right one the signed
relative energy error in permille.

and a0 = 1 (purple line). The signed potential and energy
approximation errors show their properties of local positive
definiteness and passivity, respectively.

VII. CONCLUSION

This paper presented an approach for the identification
of uncertain Lagrangian systems exploiting prior physical
knowledge by kernel construction. Physical consistency of
the data-driven method in terms of guarantuees for the
fulfillment of certain properties was proven rigorously and
validated in numerical simulation, along with the effective
applicability of the model to an exemplary tracking control
problem. Future research will focus on the extension of the
approach to handle dissipative and time-variant systems. An-
other promising direction is the application of the Lagrangian
variance estimate for uncertainty quantification.

VIII. ACKNOWLEDGMENTS

This work was supported by the Consolidator Grant ”Safe
data-driven control for human-centric systems” (CO-MAN)
of the European Research Council (ERC) under grant agree-
ment ID 864686, and by the Horizon 2020 Research and
Innovation Action project ”Rehabilitation based on Hybrid
neuroprosthesis” (ReHyb) of the European Union (EU) under
grant agreement number 871767. The authors gratefully ac-
knowledge the thoughtful comments from L. Evangelisti, In-
stitute of System Dynamics and Control, German Aerospace
Center (DLR), and the fruitful discussions with A. Lederer,
Chair of Information-oriented Control, Technical University
of Munich.

REFERENCES

[1] A. Gahlawat, P. Zhao, A. Patterson, N. Hovakimyan, and
E. Theodorou, “L1-gp: L1 adaptive control with bayesian learning,”
in Proceedings of the 2nd Conference on Learning for Dynamics
and Control, vol. 120 of Proceedings of Machine Learning Research,
pp. 826–837, PMLR, 10–11 Jun 2020.

[2] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
gaussian processes,” in 2016 IEEE 55th Conference on Decision and
Control (CDC), pp. 4661–4666, 2016.

[3] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408–
423, 2015.

[4] L. Ljung, System Identification: Theory for the User. PTR Prentice
Hall Information and System Sciences, Pearson, 2nd ed., 1998.

[5] Q. Leboutet, J. Roux, A. Janot, J. R. Guadarrama-Olvera, and
G. Cheng, “Inertial parameter identification in robotics: A survey,”
Applied Sciences, vol. 11, no. 9, 2021.

[6] A. A. Amiri Moghadam, K. Torabi, A. Kaynak, M. N. H. Zainal Alam,
A. Kouzani, and B. Mosadegh, “Control-oriented modeling of a
polymeric soft robot,” Soft Robotics, vol. 3, no. 2, pp. 82–97, 2016.

[7] R. E. Day, “Coupling dynamics in aircraft: A historical perspective,”
special publication, NASA Dryden Flight Research Center, Edwards,
CA, 1997.

[8] T. I. Fossen and O.-E. Fjellstad, “Nonlinear modelling of marine
vehicles in 6 degrees of freedom,” Mathematical Modelling of Systems,
vol. 1, no. 1, pp. 17–27, 1995.

[9] K. Rath, C. G. Albert, B. Bischl, and U. von Toussaint, “Symplectic
gaussian process regression of maps in hamiltonian systems,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 31, no. 5,
p. 053121, 2021.

[10] C.-A. Cheng and H.-P. Huang, “Learn the lagrangian: A vector-valued
rkhs approach to identifying lagrangian systems,” IEEE Transactions
on Cybernetics, vol. 46, no. 12, pp. 3247–3258, 2016.
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