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The steady growth in industrial production of synthetic plastics and their limited recycling
have resulted in severe environmental pollution and contribute to global warming and oil
depletion. Currently, there is an urgent need to develop efficient plastic recycling technolo-
gies to prevent further environmental pollution and recover chemical feedstocks for polymer
re-synthesis and upcycling in a circular economy. Enzymatic depolymerization of synthetic
polyesters by microbial carboxylesterases provides an attractive addition to existing me-
chanical and chemical recycling technologies due to enzyme specificity, low energy con-
sumption, and mild reaction conditions. Carboxylesterases constitute a diverse group of
serine-dependent hydrolases catalysing the cleavage and formation of ester bonds. How-
ever, the stability and hydrolytic activity of identified natural esterases towards synthetic
polyesters are usually insufficient for applications in industrial polyester recycling. This ne-
cessitates further efforts on the discovery of robust enzymes, as well as protein engineering
of natural enzymes for enhanced activity and stability. In this essay, we discuss the cur-
rent knowledge of microbial carboxylesterases that degrade polyesters (polyesterases) with
focus on polyethylene terephthalate (PET), which is one of the five major synthetic poly-
mers. Then, we briefly review the recent progress in the discovery and protein engineering
of microbial polyesterases, as well as developing enzyme cocktails and secreted protein
expression for applications in the depolymerisation of polyester blends and mixed plastics.
Future research aimed at the discovery of novel polyesterases from extreme environments
and protein engineering for improved performance will aid developing efficient polyester
recycling technologies for the circular plastics economy.

Introduction
Global plastics production has increased 20-fold since the 1960s, reaching over 390 million tonnes in
2021 [1]. Plastics production is expected to double over the next 20 years demonstrating a rapidly ris-
ing demand for plastic products. Plastic production continues to rise yearly, with 390.7 million metric
tonnes (Mt) of plastics produced in 2021, of which 352.3 Mt were from petroleum-based synthetic plas-
tics, and estimates predicting a quadrupling of production to 1,800 Mt of resin per year by 2050 [1,2]. A
significant fraction of consumer plastics encompasses polyesters, particularly polyethylene terephthalate
(PET), which accounted for an estimated 24.2 Mt (6.2%) of total global production in 2021 [1,2] (Table
1). Polyesters are found in packaging, textiles, automotive parts to name a few [1,3]. Despite the conven-
tional recycling streams commonly processing polyester (PET) waste with up to 60% of consumer waste
reaching recycling plants; recycled PET accounts for just 24% of PET products in Europe [4].

The recalcitrant nature of plastics leads to their prolonged persistence and accumulation across a range
of environments [5,6]. Previous studies have shown that between 4.8–12.7 Mt of macroplastics and 1.5 Mt
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Table 1 Common polyester plastics and their characteristics

Polymers Monomer structure Tg (◦C) Tm (◦C) Applications Ref.

Major Polyesters

Poly(ethylene
terephthalate) (PET)

40 250–265 Packaging, textiles and
photovoltaics

[55,161,162]

Poly(butylene
terephthalate) (PBT)

55–65 225 Electrical insulation and
automotive manufacture

[163]

Polylactic acid (PLA) 45–60 150–162 Biodegradable packaging
and agriculture

[164]

Other polyesters

Polytrimethylene
terephthalate (PTT)

45 228 Fabrics [165]

Polycaprolactone (PCL) -60 60 Drug delivery [166]

Polyethylene naphthalate
(PEN)

112–120 270 High-performance fibres [167]

Polybutylene adipate
terephthalate (PBAT)

5 170–180 Biodegradable packaging [168]

Polybutylene succinate
(PBS)

-26 116.4 Disposable tablewear [169]

Polyglycolic acid (PGA) 34–40 220–230 Medical suturing [164]

Polyhydroxyalkanoates
(PHA)

2–8 160–175 Surgical fasteners [170]

Related polymers

Polyurethane (PUR) -53 N/A Upholstery and bedding [171]

of microplastics are entering oceans every year, and there are estimates that nearly 2/3 of all plastics ever produced are
ending in landfills or in the environment [2,7,8]. Therefore, plastics recycling is important for reducing environmental
pollution, energy consumption, and CO2 emission, as well as for the recovery of polymers and conservation of fossil
feedstocks [1].

Currently, plastics recycling mainly occurs via a mechanical approach based on sorting plastics by polymer type,
shredding and melting [9]. However, mixed-polymer plastics and soiled plastics cannot be recycled in this way, leading
to a significant fraction of ‘recycled’ plastics being dispensed to landfill [1] or into the environment [10–13] (Figure
1). Moreover, over time we see a ‘downcycling’ of materials recycled in this way, that are suitable for only lower per-
formance applications with every round of recycling [9], thus maintaining the need for de novo synthesis of plastics
[14]. Therefore, current approaches to plastic waste management (PWM) are evidently unable to deal with the cri-
sis of environmental plastic pollution [15]. To address these issues, a new model of plastics production and reuse is
required, encompassing the improved collection of waste, depolymerisation, resynthesis, and valorisation through
chemical and biochemical recycling [15] (Figure 1). Creating a closed cycle of plastic materials via the recycling and
upcycling of polymers with only minimal input from de novo synthesis using petroleum feedstocks will allow the
move towards a circular economy of plastics [9] (Figure 1). Furthermore, the valorisation of plastic waste materials
is predicted to be a major growth industry for plastics in years to come [16,17]. Polyesters are especially suited for a
circular process of production and waste management, due to the presence of ester groups that can be attacked during
depolymerisation.
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Figure 1. Linear and circular models of plastics economy

(A) The current linear model of plastic economy where the majority of plastic waste ends up in landfill, litters the environment,

or is incinerated. (B) The circular plastics economy is based on using renewable feedstocks, improved waste collection, plastic

waste recycling to monomers using physical, chemical, and enzyme-based technologies, monomer valorisation or polymer resyn-

thesis, and production of new plastic materials. With biocatalysis we refer to enzyme-based recycling with physical and chemical

pre-treatment steps.

Chemical recycling has been mooted as a more efficient alternative to physical recycling, allowing both resynthesis
and upcycling of materials [18]. Primarily, chemical recycling refers to feedstock recycling – whereby waste plastic
products are depolymerised becoming feedstock for the next round of synthesis [15,19]. The chemical methods of
polyester (PET) recycling, such as methanolysis [20] and glycolysis [21], have been extensively explored [22–26].
However, they are reliant on large thermal inputs [22], elevated pressures [23], and toxic reagents [24–26].

An attractive alternative towards plastic waste recycling is biocatalysis based on using of enzymes as catalysts
[27–29]. In recent decades, many sectors such as the pulp and paper [30] or textile industries [31] have replaced
traditional catalysts with biocatalysts. However, most biotechnological enzymes, including known plastic-degrading
proteins, are derived from mesophilic organisms as can be seen in the Plastic Active Enzyme Database (PAZy) [32].
Therefore, they are active and stable within a narrow range of temperatures making them not applicable for industrial
polyester depolymerisation. Thus, an expansion of the enzyme repertoire for more thermostable and robust proteins
is required for full-scale utilisation of enzymes in PWM [33,34].
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Extremophilic microorganisms as a source of robust
enzymes for polyester recycling
One of the major limitations to widespread adoption of biocatalysis in polyester recycling is that most biotechnological
enzymes are of mesophilic origin and exhibit low performance at harsh reaction conditions required for industrial
polyester depolymerisation. Although extreme environments present significant challenges to microorganisms, some
of them enjoy their life in severities of temperature (-20 to -122◦C, pH 0–12.8, salt concentration (>5 M NaCl)
and pressure (110 MPa) [35–38]. Such microorganisms (extremophiles) achieve this by evolving a suite of enzymes
(extremozymes) enabling them to flourish under conditions. The known biochemical adaptions of extremozymes
include an increased hydrogen bonding [39], increased hydrophobicity of protein core [40], reduced charge [41,42],
and reduced surface-to-volume ratio [43–46]. Several extremozymes have already been used in molecular biology and
biotechnology, whereas other enzymes are currently being developed [47,48]. Thus, extremophilic microorganisms
represent an attractive and still a vastly underexplored resource for the mining of biocatalysts for polyester recycling.

Thermophilic microorganisms thrive in hot environments (45–113◦C) [38,49,50], and they have evolved various
thermostable enzymes. Thermophilic enzymes are especially advantageous for polyester depolymerisation as higher
temperatures increase flexibility and accessibility of polyester chains for enzymatic hydrolysis [33]. Archaea are com-
mon in thermophilic habitats; however, their enzymes remain largely underexplored compared to bacteria [48]. Ther-
mophilic enzymes retain high activity at elevated temperatures (>60◦C) near the melting point (Tm) of polyesters.
Furthermore, many enzymes from thermophilic and hyperthermophilic microorganisms show robust performance at
90–103◦C [51,52] (near Tm of some polyesters), and in some cases they retain significant activity at these temperatures
for several hours [51,52]. It is hypothesised that the biodegradation efficiency of PET is limited by the accessibility
of ester bonds, and that the susceptibility of polymeric chains increases with temperatures [53,54]. Thus, enzymes
exhibiting significant activity above the surface glass transition temperature (Tg) of PET (∼40◦C) are of high value
for applications in polyester recycling [55,56].

Acid-resistant enzymes are also important for polyester depolymerisation, as acid pre-treatment increases the ac-
cessibility of polyester chains, and polyester hydrolysis releases organic acids (terephthalic acid for PET) [57,58]. Sim-
ilarly, alkali-tolerant enzymes are useful for polyester depolymerisation under alkaline conditions or in combination
with alkaline PET pre-treatment, which can enhance degradation yields by reducing polymer crystallinity, leading to
improved enzyme access to polymer chains [59,60]. Many halophilic enzymes also exhibit significant thermostability
and alkali tolerance, whereas psychrophilic enzymes retain high activity at low temperatures (5–15◦C) [61–63].

Discovery of extremophilic enzymes for polyester recycling
Currently, the discovery of novel enzymes is primarily based on three approaches: in silico (homology-based)
sequence mining, activity-based protein profiling (ABPP), and activity-based screening of metagenomic libraries
[64,65].

Homology-based mining of genome and metagenome sequences is generally regarded as the simplest and cheapest
approach to enzyme discovery [66–73]. The sequence homology-based approach involves mining publicly available
sequence datasets for enzymes of relevance. Recently, this approach was used with great success with the identification
of 37 thermostable enzymes with PET degrading activity from public databases [69]. Subsequent analysis using se-
quence data exploration platforms such as those offered by the Joint Genome Institute [74] and functional prediction
software such as HMMER [75] are utilised to mine for known motifs and predict putative protein function based on
sequence homology. However, sequence homology-based approaches are limited to identifying known motifs, and
therefore they cannot identify novel activity types [76].

ABPP is based on small-molecule probes, which bind specifically to enzyme active sites and ‘tag’ them with dif-
ferent reporter molecules [77–83]. The strength of ABPP as an enzyme discovery tool lies in direct identification of
novel enzymes, which have no sequence similarity to known biocatalysts [84,85]. In the field of drug discovery, the
application of ABPP was highly successful in recent years [86]. However, despite its potential to provide direct analysis
of enzymatic activity [85,92], ABPP remains an underutilised tool in the exploration of extremophilic proteomes for
plastics degrading enzymes [65,85].

Enzyme activity (näıve) screening of metagenomic gene libraries is a general approach to enzyme discovery based
on screening Escherichia coli clones expressing metagenomic DNA fragments against different substrates [87,88].
An advantage of such functional screens is their ability to identify new enzymes without relying on sequence homol-
ogy to already characterised proteins, and thus they can uncover proteins representing fundamentally novel enzyme
families [89]. This approach was used by many groups with great success leading to a trove of enzyme discoveries
[51,87,90–93]. There are certain limitations to this approach, including a narrow range of hosts, suboptimal protein
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Table 2 Selected biochemically and structurally characterised prominent microbial polyesterases

Enzyme Source Uniprot ID
Degraded
polyesters Topt (◦C) Structure PDB ID Ref.

LCCut (cutinase) Leaf-branch
compost

metagenome
uncultured
bacterium

G9BY57 PET 65 4EB0 [107]

TfCut 2 (cutinase) Thermobifida fusca Q6A0I4 PET 60 4CG1 [103]

Est119 (cutinase) Thermobifida alba F7IX06 PET, PBSA, PLA 50 3VIS [106]

IsPETase
(carboxylesterase)

Ideonella sakaiensis A0A0K8P6T7 PET 40 5XJH [110]

HiC (cutinase) Humicola insolens A0A075B5G4 PET, PU-PE 70–80 4OYY [104]

expression, and reliance on general substrates [76,94]; moreover, the only recent development of metagenome screens
directly assaying for plastic biodegradation activity [95] means that more time will be required for such screens to
uncover novel classes of polymer-degrading enzymes.

Recently, activity-based metagenome screening approaches have been expanded and complemented by applica-
tion of microfluidics and flow cytometry [96–99], as well as in vivo reporter systems making use of fluorescence
biosensors, which allow for semi-quantitative monitoring of PET degradation product formation [99–101]. Over-
all, a combination of all three outlined methodologies seems to be the most successful approach in search for novel
polyesterases.

Polyester degrading microbial carboxylesterases
(polyesterases)
Carboxylic-ester hydrolases – carboxylesterases (EC 3.1.1.1), cutinases (EC 3.1.1.74) and lipases (EC 3.1.1.3) – are
key targets of enzyme discovery for polyester recycling. To this end, several thermophilic PET hydrolases (PETases)
were discovered in the early 2010s including cutinases, LCC (from leaf-branch compost) [102], Tfcut 2 (from Ther-
mobifida fusca) [103], HiC from Humicola insolens [104,105], and Est119 from Thermobifida alba [106] (Table 2).
These enzymes exhibited significant thermotolerance with optimal reaction temperatures above the surface Tg of PET
(Table 2), with LCC outperforming other enzymes (Topt of 65◦C) [102,107,108]. In 2016, the mesophilic bacterium
Ideonella sakaiensis was isolated from a plastics recycling facility, representing the first described microorganism
with a 2-enzyme system for PET degradation comprising two carboxylesterases – IsPETase and IsMHETase [109,110]
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Figure 2. Example applications of enzyme cocktails for polyester degradation

The primary approaches of secreted expression (including surface display and direct secretion), and use of purified enzymes in

synergistic cocktails to tackle polyesters and their intermediary degradation products are vital for true polyester degradation. Shown

are structures of PET with its primary degradation products, IsPETase (5XJH) and IsMHETase (6QZ4).

(Table 2). The hydrolytic activity of IsPETase against PET is likely a result of its natural substrate promiscuity rather
than of in situ evolution, as discussed elsewhere [111]. This enzyme degrades PET to a monoester intermediate,
mono(2-hydroxyethyl)terephthalate (MHET), which is hydrolysed by IsMHETase to terephthalic acid and ethylene
glycol (Figure 2). In addition, thermotolerant PET-hydrolysing activity was also demonstrated in fungal lipases from
Candida antarctica (CalB) [105,112,113] and Thermomyces lanuginosus [114–116].

Engineering polyesterases for enhanced activity and stability
While some wild-type polyesterases (e.g. cutinases LCC [102] and Tfcut 2 [103] (Table 2)) have been shown to exhibit
significant PETase activity, there is a great demand for expanding our ‘enzyme toolbox’ by adding novel highly active
and robust polyesterases [32]. However, the natural evolution of PETases and other polyesterases is delayed by the
recalcitrant nature of polymers making them ‘invisible’ to microorganisms that prefer to use other, easy-to-degrade
carbon sources available in situ. Nevertheless, natural polyesterases appear to have evolved before the era of the in-
dustrial production of synthetic polyesters as indicated by the presence of polyesterase activity in microbial cutinases
and in many promiscuous carboxylesterases [117]. Therefore, recent years have seen an explosion in protein engi-
neering techniques applied to PETases including rational design, fusion proteins, directed evolution, surface display,
and ‘Plurizymes’ (engineered enzymes with several active sites) [13,59,108,118–132].

The rational design engineering for improving enzyme thermostability and activity is based on detailed knowledge
of enzyme structure [133,134]. This engineering strategy can be facilitated by using additional in silico approaches,
such as molecular docking, analysis of enzyme surface, and structural modelling (AlphaFold2) [108,135]. Amino acid
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substitutions in the substrate-binding cavity, insertion of new catalytic residues, replacing the metal binding sites with
disulfide bonds has been shown to have various effects on enzyme activity and stability [88,110,136]. Rational design
has already been applied to improve the thermostability of the relatively thermotolerant LCC cutinase resulting in
several enhanced variants with the LCCICCG protein degrading 90% of amorphous or pre-treated PET within 10 h
at 72◦C [56,108]. Next, the recovered monomers were used to produce virgin PET and new bottles, thus closing the
recycling loop. Another engineering strategy for improving the thermostability of the T. fusca cutinase Tf Cut2 and
homologous PETases involved substituting the Ca2+-binding site near the enzyme active site with a salt bridge or
disulfide bond [108,131,137,138].

Recent advances in structural bioinformatics have led to the development of computational tools for enzyme en-
gineering for improved stability, activity, and substrate specificity [139]. The GRAPE approach (greedy accumulated
strategy for protein engineering) involved a systematic clustering analysis and selection of beneficial mutations from a
computationally derived protein library of IsPETase and produced the DuraPETase variant with enhanced thermosta-
bility and PET degradation [125]. Last year, a structure-based, machine learning approach was applied to improve
the PET-hydrolysing activity of IsPETase producing FAST-PETase with superior activity [120,121]. Recent protein
design studies with IsPETase also reported the development of more stable and active variants using rational protein
engineering (ThermoPETase) or directed evolution (HotPETase) [119,140]. Finally, ancestral sequence reconstruc-
tion was used to trace the evolutionary origin of IsPETase from ancient cutinases and generated several variants with
improved activity and stability [141].

Another promising strategy for improving enzymatic PET depolymerisation is based on covalent fusion of PETases
to various substrate-binding domains including the cellulose-binding domains (from Cellulomonas fimi and Tri-
choderma reesei), the polyhydroxyalcanoate-binding module from the Alcaligenes faecalis PHA-depolymerase,
the chitin-binding module from the Chitinoliticbacter meiyuanensis chitinase CmChi1, and fungal hydrophobins
[137,142–144]. Similar to cellulases, the polymer binding modules are suspected to stimulate PETase binding to PET
at low to intermediate substrate loading levels.

Additional approaches for improving enzymatic PET
depolymerisation
Microorganisms are known to secrete synergistic enzyme mixtures to degrade recalcitrant natural polymers, such as
cellulose, hemicellulose, and chitin [145,146]. Natural microbial communities degrade various polymers using even
more complex enzyme mixtures, which show higher efficiency compared with single enzymes [55,105,147–151].
These enzyme cocktails usually include two types of enzymes, the first acting on polymeric substrates and produc-
ing various oligomeric products and the second degrading oligomeric intermediates to monomers. The discovery of
a two-enzyme PET degrading system from I. sakaiensis comprising IsPETase and IsMHETase suggests that these
multienzyme systems also have capacity to act promiscuously and synergistically to degrade synthetic polyesters
[109,148]. This also implies that synergistic multienzyme cocktails can be designed for the depolymerisation of syn-
thetic polyesters and complex polymer blends. In this respect, the combinations of wild type or thermostable vari-
ants of IsPETase and IsMHETase demonstrated synergistic activity in the conversion of amorphous PET films to
terephthalic acid and ethylene glycol, whereas the IsPETase–IsMHETase fusion showed even better performance
[55,147,148]. Similarly, combinations of the promiscuous T. fusca carboxylesterase Tf Ca (exhibiting both BHETase
and MHETase activities) with various polyester hydrolases were amongst the first dual enzyme systems for PET hy-
drolysis reported, and showed significantly improved activity compared with single enzymes: the use of immobilised
Tf Ca in concert with Tf Cut2 and LCC exhibited a 91 and 104% increase in degradation products, respectively [149],
and recent work combining an engineered variant of Tf Ca with IsPETase penta-mutant [138] to create a dual enzyme
system resulted in an up to 14-fold increase in TPA production compared with the PETase alone [152]. Likewise,
the combination of the Humicola insolens cutinase HiC and Candida antarctica lipase CalB catalysed complete
PET hydrolysis with HiC acting as a PETase and CalB as a MHETase [104,105,112]. PET degradation performance of
IsPETase was also improved by the addition of free hydrophobins, catalytically inactive lytic polysaccharide monooxy-
genase PcAA14A from Pycnoporus coccineus, and a zwitterionic Lys-Glu polymer [122,143,153].

Enzyme immobilization represents a powerful tool for increasing enzyme stability and its life span, as well as for
reducing enzyme costs via the biocatalyst reuse. In this regard, immobilization of IsPETase on Co3(PO4)2 nanopar-
ticles has been shown to increase the enzyme lifetime by 75% [154]. Furthermore, the silica-immobilised PETase
was successfully applied for wastewater treatment [154,155], whereas magnetic nanoparticles-tagged PETase was
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Figure 3. Approaches for whole cell biocatalysis for enzyme-based plastics recycling

(A) Curli display; (B) Bacillus spp. machinery-based secretion; (C) Sec-dependent secretion; (D) Membrane anchoring.

used for removal of PET microplastic [156]. Protein surface display represents another strategy for enzyme im-
mobilisation, which is based on a functional display of target enzymes through fusion to various secreted pro-
teins [59,123,124,127,129] (Figure 3). Moreover, surface display allows for a streamlining of conventional functional
screening assays [157]. The E. coli protein CsgA represents the building block of curli nanofibers assembled on
the cell surface enabling functional expression and immobilisation of target proteins fused to CsgA [128,150]. The
CsgA-IsPETase fusion protein (‘BIND-PETase’) was secreted by E. coli cells forming self-assembling fibres (Figure 3)
[123] and degraded 9.1% of postconsumer PET in seven days [123]. The co-display of IsPETase with the hydrophobin
HFB1 from Trichoderma reesei demonstrated enhanced degradation of both high- and low- crystallinity PET sub-
strates [59]. In both cases, the biocatalysts also displayed excellent durability, with BIND-PETase remaining active for
7 days at 30◦C and stable at 4◦C for at least 30 days. The co-display system retained full activity after seven days at
30◦C, whereas free IsPETase lost 40% of its activity after one day [59].

Likewise, secreted expression of soluble polyesterases can reduce the enzyme costs for enzymatic polyester recy-
cling. Enzyme secretion methods are based on covalent fusion of target enzymes to host-specific signal peptides or
secreted proteins [13,126,130,158,159]. Several groups have reported on using the E. coli Sec-dependent pathway
with the IsPETase–PelB fusion showing high secretion and degradation of PET at 30◦C [160]. The protein secretion
machinery of Bacillus subtilis was used to produce extracellular LCCICCG fused with the signal peptide SPaprE, which
showed high PET degradation (approximately 7%) after 8 days at 70◦C [130].

Concluding remarks
For the effective degradation of highly crystalline post-consumer plastic waste several important elements are re-
quired. Firstly, thermal and acid pre-treatment of plastic waste materials to make them more accessible for degra-
dation. Secondly, the single enzyme model must be re-considered towards implementation of enzyme cocktails for
catalytic breakdown of polymers, intermediary products, and additives present in plastic materials.
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In both cases, the currently sparse enzymatic toolkit requires upgrading to include stable and robust enzymes with a
high degree of substrate promiscuity and active in the broad range of physico-chemical conditions. In that context, ex-
tremophilic microorganisms represent a critically under-explored resource to enzyme bioprospecting. Furthermore,
the naturally evolved wild-type enzymes can be further improved using protein engineering. Engineered natural and
artificial enzymes represent a true shift in the bioprocessing of plastic waste and allow for cost effective methods of
material recycling, thereby enabling the move towards the circular economy.

Summary
• A significant progress has been achieved in the past two decades in discovery and characterisation

of polyester-active enzymes, in particular, using activity-centred metagenomics.

• A number of ground-breaking studies on engineering of polyester-active enzymes have delivered
enzyme variants active against recalcitrant polyesters.

• Important studies on the development of application of whole-cell catalysts, enzymatic cocktails,
enzyme fusion with substrate-binding domains, and surface display have been conducted.

• Despite the importance of high-temperature-active, thermostable and solvent-resistant biocatalysts,
extremophilic, and particularly, thermophilic microorganisms have largely been overlooked as a po-
tential source of such enzymes.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
Authors acknowledge the Centre for Environmental Biotechnology Project co-funded by the European Regional Development
Fund (ERDF) through the Welsh Government, the FuturEnzyme Project funded by the European Union’s Horizon 2020 Research
and Innovation Programme under Grant Agreement [grant number 101000327 (to A.F.Y., A.N.K. and P.N.G.)], Sêr Cymru pro-
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146 Eijsink, V.G.H., Vaaje-Kolstad, G., Vårum, K.M. and Horn, S.J. (2008) Towards new enzymes for biofuels: lessons from chitinase research. Trends
Biotechnol. 26, 228–235, https://doi.org/10.1016/j.tibtech.2008.02.004

147 Feng, S., Yue, Y., Zheng, M., Li, Y., Zhang, Q. and Wang, W. (2021) IsPETase- and IsMHETase-catalyzed cascade degradation mechanism toward
polyethylene terephthalate. ACS Sustain Chem. Eng. 9, 9823–9832, https://doi.org/10.1021/acssuschemeng.1c02420

148 Knott, B.C., Erickson, E., Allen, M.D., Gado, J.E., Graham, R., Kearns, F.L. et al. (2020) Characterization and engineering of a two-enzyme system for
plastics depolymerization. Proc. Natl. Acad. Sci. USA 117, 25476–25485, https://doi.org/10.1073/pnas.2006753117

149 Barth, M., Honak, A., Oeser, T., Wei, R., Belisário-Ferrari, M.R., Then, J. et al. (2016) A dual enzyme system composed of a polyester hydrolase and a
carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol. J. 11, 1082–1087,
https://doi.org/10.1002/biot.201600008

150 Zverlov, V.V., Schantz, N. and Schwarz, W.H. (2005) A major new component in the cellulosome of Clostridium thermocellum is a processive
endo-β-1,4-glucanase producing cellotetraose. FEMS Microbiol. Lett. 249, 353–358, https://doi.org/10.1016/j.femsle.2005.06.037
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