Published November 30, 2020 | Version v1
Journal article Restricted

Distribution of enzymatic and alkaline oxidative activities of phenolic compounds in plants

Description

Kim, Jorma, Palijarvi, Maija, Karonen, Maarit, Salminen, Juha-Pekka (2020): Distribution of enzymatic and alkaline oxidative activities of phenolic compounds in plants. Phytochemistry (112501) 179: 1-11, DOI: 10.1016/j.phytochem.2020.112501, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112501

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:770B4779290AFFCAFFA2FFC8BF26E025

References

  • Russo, M., Di Gaudio, F., Autore, G., Campiglia, P., Marzocco, S., 2016. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods. J. Sci. Food Agric. 96, 4194-4206. https://doi.org/10.1002/jsfa.7622.
  • Aniszewski, T., Lieberei, R., Culewicz, K., 2008. Research on catecholases, laccases and cresolases in plants. Recent progress and future needs. Acta Biol. Cracoviensia 50, 7-18.
  • Apel, L., Kammerer, D.R., Stintzing, F.C., Spring, O., 2017. Comparative metabolite profiling of triterpenoid saponins and flavonoids in flower color mutations of Primula veris L. Int. J. Mol. Sci. 18, 153. https://doi.org/10.3390/ijms18010153.
  • Appel, H.M., 1993. Phenolics in ecological interactions: the importance of oxidation. J. Chem. Ecol. 19, 1521-1552.
  • Baert, N., Karonen, M., Salminen, J.-P., 2015. Isolation, characterisation and quantification of the main oligomeric macrocyclic ellagitannins in Epilobium angustifolium by ultra-high performance chromatography with diode array detection and electrospray tandem mass spectrometry. J. Chromatogr. A 1419, 26-36. https:// doi.org/10.1016/j.chroma.2015.09.050.
  • Barbehenn, R.V., Jones, C.P., Hagerman, A.E., Karonen, M., Salminen, J.-P., 2006. Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: potential impact on caterpillars. J. Chem. Ecol. 32, 2253-2267. https://doi.org/10.1007/s10886-006-9143-7.
  • Barreira, J.C.M., Dias, M.I., ˇZivkovic ´, J., Stojkovic, D., Sokovic ´, M., Santos-Buelga, C., Ferreira, I.C.F.R., 2014. Phenolic profiling of Veronica spp. grown in mountain, urban and sandy soil environments. Food Chem. 163, 275-283. https://doi.org/ 10.1016/j.foodchem.2014.04.117.
  • Bennett, R.N., Mellon, F.A., Kroon, P.A., 2004. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J. Agric. Food Chem. 52, 428-438. https://doi.org/10.1021/jf030530p.
  • Budan, A., Bellenot, D., Freuze, I., Gillmann, L., Chicoteau, P., Richomme, P., Guilet, D., 2014. Potential of extracts from Saponaria officinalis and Calendula officinalis to modulate in vitro rumen fermentation with respect to their content in saponins. Biosci. Biotechnol. Biochem. 78, 288-295. https://doi.org/10.1080/ 09168451.2014.882742.
  • Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., Martens, S., 2013. Plant phenolics: recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol. Biochem. 72, 1-20. https://doi.org/10.1016/j.plaphy.2013.05.009.
  • Czerwi´nska, M.E., ´Swierczewska, A., Wo´zniak, M., Kiss, A.K., 2017. Bioassay-guided isolation of iridoids and phenylpropanoids from aerial parts of Lamium album and their anti-inflammatory activity in human neutrophils. Planta Med. 83, 1011-1019. https://doi.org/10.1055/s-0043-107031.
  • Dubois, M.-A., Zoll, A., Chopin, J., 1985. Isomollupentin- O -glucosides from Cerastium arvense. Phytochemistry 24, 1077-1080.
  • Engstrom ¨, M.T., P¨alij¨arvi, M., Fryganas, C., Grabber, J.H., Mueller-Harvey, I., Salminen, J.-P., 2014. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J. Agric. Food Chem. 62, 3390-3399. https://doi.org/10.1021/jf500745y.
  • Engstrom¨, M.T., Palijarvi ¨¨, M., Salminen, J.-P., 2015. Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin-, kaempferol- and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. J. Agric. Food Chem. 63, 4068-4079. https://doi.org/10.1021/acs.jafc.5b00595.
  • Fairbrothers, D.E., Mabry, T.J., Scogin, R.L., Turner, B.L., 1975. The bases of angiosperm phylogeny: chemotaxonomy. Ann. Mo. Bot. Gard. 62, 765-800. https://doi.org/ 10.2307/2395273.
  • Flamini, G., Antognoli, E., Morelli, I., 2001. Two flavonoids and other compounds from the aerial parts of Centaurea bracteata from Italy. Phytochemistry 57, 559-564. https://doi.org/10.1016/S0031-9422(01)00066-8.
  • Hahn, R., Nahrstedt, A., 1993. Hydroxycinnamic acid derivatives, caffeoylmalic and new caffeoylaldonic acid esters, from Chelidonium majus. Planta Med. 59, 71-75. https://doi.org/10.1055/s-2006-959608.
  • H¨aikio ¨, E., Makkonen, M., Julkunen-Tiitto, R., Sitte, J., Freiwald, V., Silfver, T., Pandey, V., Beuker, E., Holopainen, T., Oksanen, E., 2009. Performance and secondary chemistry of two hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones in long-term elevated ozone exposure. J. Chem. Ecol. 35, 664-678. https://doi.org/10.1007/s10886-009-9644-2.
  • Haribal, M., Renwick, J.A.A., 1998. Isovitexin 6''-O -β- D-glucopyranoside: a feeding deterrent to Pieris napi oleracea from Alliaria petiolata. Phytochemistry 47, 1237-1240. https://doi.org/10.1016/S0031-9422(97)00740-1.
  • Hatano, T., Ogawa, N., Kira, R., Yasuhara, T., Okuda, T., 1989. Tannins of cornaceous plants. I. Cornusiins A, B and C, dimeric monomeric and trimeric hydrolyzable tannins from Cornus officinalis, and orientation of valoneoyl group in related tannins. Chem. Pharm. Bull. 37, 2083-2090.
  • Hegnauer, R., 1986. Phytochemistry and plant taxonomy-an essay on the chemotaxonomy of higher plants. Phytochemistry 25, 1519-1535. https://doi.org/ 10.1016/S0031-9422(00)81204-2.
  • Hirose, R., Kazuta, Y., Koga, D., Ide, A., Yagishita, K., 1981. On the structure of C - glycosyl flavones, flavoayamenin and luteoayamenin, in petals of Iris nertshinskia Loddiges form. albifiora HONDA. Agric. Biol. Chem. 45, 551-555. https://doi.org/ 10.1271/bbb1961.45.551.
  • Hokkanen, J., Mattila, S., Jaakola, L., Pirttil¨a, A.M., Tolonen, A., 2009. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J. Agric. Food Chem. 57, 9437-9447. https://doi.org/10.1021/jf9022542.
  • Hunyadi, A., Martins, A., Danko, B., Chang, F.R., Wu, Y.C., 2014. Protoflavones: a class of unusual flavonoids as promising novel anticancer agents. Phytochemistry Rev. 13, 69-77. https://doi.org/10.1007/s11101-013-9288-2.
  • Ieri, F., Martini, S., Innocenti, M., Mulinacci, N., 2013. Phenolic distribution in liquid preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 24, 467-475. https://doi.org/10.1002/pca.2462.
  • Jalal, M.A.F., Read, D.J., Haslam, E., 1982. Phenolic composition and its seasonal variation in Calluna vulgaris. Phytochemistry 21, 1397-1401. https://doi.org/ 10.1007/978-3-540-71095-0_1566.
  • Jay, M., Viricel, M.-R., 1980. Les flavonoides des feuilles du Phragmites australis: essai de d´efinition du profil polyph´enolique de l' esp`ece. Phytochemistry 19, 2627-2628.
  • Karioti, A., Bolognesi, L., Vincieri, F.F., Bilia, A.R., 2010. Analysis of the constituents of aqueous preparations of Stachys recta by HPLC-DAD and HPLC-ESI-MS. J. Pharmaceut. Biomed. Anal. 53, 15-23. https://doi.org/10.1016/j. jpba.2010.03.002.
  • Karonen, M., H¨am¨al¨ainen, M., Nieminen, R., Klika, K.D., Loponen, J., Ovcharenko, V.V., Moilanen, E., Pihlaja, K., 2004. Phenolic extractives from the bark of Pinus sylvestris L. and their effects on inflammatory mediators nitric oxide and prostaglandin E2. J. Agric. Food Chem. 52, 7532-7540. https://doi.org/10.1021/jf048948q.
  • Kim, J., P¨alij¨arvi, M., Karonen, M., Salminen, J.-P., 2018. Oxidatively active plant phenolics detected by UHPLC-DAD-MS after enzymatic and alkaline oxidation. J. Chem. Ecol. 44, 483-496. https://doi.org/10.1007/s10886-018-0949-x.
  • Klejdus, B., Vitamv´asova- ´St ˇˇerbov´a, D., Kuba´ˇn, V., 2001. Identification of isoflavone conjugates in red clover (Trifolium pratense) by liquid chromatography-mass spectrometry after two-dimensional solid-phase extraction. Anal. Chim. Acta 450, 81-97. https://doi.org/10.1016/S0003-2670(01)01370-8.
  • Kruse, S.O., Lohning ¨, A., Pauli, G.F., Winterhoff, H., Nahrstedt, A., 1999. Fukiic and piscidic acid esters from the rhizome of Cimicifuga racemosa and the in vitro estrogenic activity of fukinolic acid. Planta Med. 65, 763-764. https://doi.org/ 10.1055/s-2006-960862.
  • Lachowicz, S., Kolniak-Ostek, J., Oszmianski ´, J., Wi´sniewski, R., 2017. Influence of maturity on the content of phenolic compounds of Alium ursinum L. J. Food Process. Preserv. 41, 1-10. https://doi.org/10.1111/jfpp.13089.
  • Lavola, A., Maukonen, M., Julkunen-Tiitto, R., 2018. Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age. Phytochemistry 153, 102-110. https://doi.org/10.1016/j. phytochem.2018.05.021.
  • Lee, D., Kang, S.-J., Lee, S.-H., Ro, J., Lee, K., Kinghorn, A.D., 2000. Phenolic compounds from the leaves of Cornus controversa. Phytochemistry 53, 405-407. https://doi.org/ 10.1016/S0031-9422(99)00502-6.
  • Leporini, L., Menghini, L., Foddai, M., Petretto, G.L., Chessa, M., Tirillini, B., Pintore, G., 2015. Antioxidant and antiproliferative activity of Stachys glutinosa L. ethanol extract. Nat. Prod. Res. 29, 899-907. https://doi.org/10.1080/ 14786419.2014.955490.
  • Letunic, I., Bork, P., 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242-W245. https://doi.org/10.1093/nar/gkw290.
  • Li, J., Kuang, G., Chen, X., Zeng, R., 2016. Identification of chemical composition of leaves and flowers from Paeonia rockii by UHPLC-Q-Exactive Orbitrap HRMS. Molecules 21, 1-8. https://doi.org/10.3390/molecules21070947.
  • Liu, Z., Cheng, Z., He, Q., Lin, B., Gao, P., Li, L., Liu, Q., Song, S., 2016. Secondary metabolites from the flower buds of Lonicera japonica and their in vitro anti-diabetic activities. Fitoterapia 110, 44-51. https://doi.org/10.1016/j.fitote.2016.02.011.
  • Marczak, L., Stobiecki, M., Jasinski ´, M., Oleszek, W., Kachlicki, P., 2010. Fragmentation pathways of acylated flavonoid diglucuronides from leaves of Medicago truncatula. Phytochem. Anal. 21, 224-233. https://doi.org/10.1002/pca.1189.
  • Marsh, K.J., Kulheim, C., Blomberg, S.P., Thornhill, A.H., Miller, J.T., Wallis, I.R., Nicolle, D., Salminen, J.-P., Foley, W.J., 2017. Genus-wide variation in foliar polyphenolics in eucalypts. Phytochemistry 144, 197-207. https://doi.org/10.1016/ j.phytochem.2017.09.014.
  • Matthews, S., Mila, I., Scalbert, A., Donnelly, D.M.X., 1997. Extractable and nonextractable proanthocyanidins in barks. Phytochemistry 45, 405-410. https://doi. org/10.1016/S0031-9422(96)00873-4.
  • Milutinovi´c, V., Niketi´c, M., Uˇsjak, L., Nikolic ´, D., Krunic ´, A., Zidorn, C., Petrovic ´, S., 2018. Methanol extracts of 28 Hieracium species from the Balkan Peninsula - comparative LC-MS analysis, chemosystematic evaluation of their flavonoid and phenolic acid profiles and antioxidant potentials. Phytochem. Anal. 29, 30-47. https://doi.org/10.1002/pca.2712.
  • Moilanen, J., Salminen, J.-P., 2008. Ecologically neglected tannins and their biologically relevant activity: chemical structures of plant ellagitannins reveal their in vitro oxidative activity at high pH. Chemoecology 18, 73-83. https://doi.org/10.1007/ s00049-007-0395-7.
  • Moilanen, J., Koskinen, P., Salminen, J.-P., 2015. Distribution and content of ellagitannins in Finnish plant species. Phytochemistry 116, 188-197. https://doi. org/10.1016/j.phytochem.2015.03.002.
  • Nawwar, M.A.M., El Sissi, H.I., Baracat, H.H., 1980. The flavonoids of Phragmites australis flowers. Phytochemistry 19, 1854-1856.
  • Nicholls, K.W., Bohm, B.A., 1982. Flavonoids and affinities of some North American lupines. Can. J. Bot. 61, 708-730. https://doi.org/10.1139/b83-081.
  • Nishizawa, M., Yamagishi, T., Nonaka, G., Nishioka, I., 1980. Structure of gallotannins in Paeoniae radix. Chem. Pharm. Bull. (Tokyo) 28, 2850-2852. https://doi.org/ 10.1248/cpb.37.3229.
  • Novakovic ´, M., Stankovi´c, M., Vuˇckovic ´, I., Todorovic ´, N., Trifunovi´c, S., Teˇsevic ´, V., Vajs, V., Milosavljevi´c, S., 2013. Diarylheptanoids from Alnus glutinosa bark and their chemoprotective effect on human lymphocytes DNA. Planta Med. 79, 499-505. https://doi.org/10.1055/s-0032-1328301.
  • Okuda, T., Yoshida, T., Hatano, T., Iwasaki, M., Kubo, M., Orime, T., Yoshizaki, M., Naruhashi, N., 1992. Tannins as chemotaxonomic in the Rosaceae. Phytochemistry 31, 3091-3096.
  • Oszmia´nski, J., Kalisz, S., Aneta, W., 2014. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimi´c). Molecules 19, 14625-14636. https://doi.org/10.3390/ molecules190914625.
  • Pang, S., Ge, Y., Wang, L., Liu, X., Lin, C., Yang, H., 2013. Isolation and purification of orientin and isovitexin from Thlaspi arvense Linn. Adv. Mater. Res. 781-784, 615-618. https://doi.org/10.4028/amr.781-784.615.
  • Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hucherig, S., Janiak, V., Kim, K.H., Sander, M., Weitzel, C., Wolters, S., 2009. Evolution of rosmarinic acid biosynthesis. Phytochemistry 70, 1663-1679. https://doi.org/10.1016/j. phytochem.2009.05.010.
  • Pinelli, P., Ieri, F., Vignolini, P., Bacci, L., Baronti, S., Romani, A., 2008. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J. Agric. Food Chem. 56, 9127-9132. https://doi.org/10.1021/jf801552d. Polasek, J., Queiroz, E.F., Hostettmann, K., 2007. On-line identification of phenolic compounds of Trifolium species using HPLC-UV-MS and post-column UVderivatisation. Phytochem. Anal. 18, 13-23. https://doi.org/10.1002/pca.946.
  • Potter, D., Eriksson, T., Evans, R.C., Oh, S., Smedmark, J.E.E., Morgan, D.R., Kerr, M., Robertson, K.R., Arsenault, M., Dickinson, T.A., Campbell, C.S., 2007. Phylogeny and classification of Rosaceae. Plant Systemat. Evol. 1-2, 5-43. https://doi.org/ 10.1007/s00606-007-0539-9.
  • Ravn, H.W., Mondolot, L., Kelly, M.T., Lykke, A.M., 2015. Plantamajoside - a current review. Phytochem. Lett. 12, 42-53. https://doi.org/10.1016/j.phytol.2015.02.002.
  • Salminen, J.-P., Karonen, M., 2011. Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol. 25, 325-338. https://doi.org/10.1111/ j.1365-2435.2010.01826.x.
  • Salminen, J.-P., Karonen, M., Sinkkonen, J., 2011. Chemical ecology of tannins: recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem. Eur J. 17, 2806-2816. https://doi.org/10.1002/chem.201002662.
  • Sati, S.C., Sati, N., Sati, O.P., 2011. Bioactive constituents and medicinal importance of genus Alnus. Phcog. Rev. 5, 174-183. https://doi.org/10.4103/0973-7847.91115.
  • Schutz, K., Kammerer, D.R., Carle, R., Schieber, A., 2005. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 179-186. https://doi.org/ 10.1002/rcm.1767.
  • Slimestad, R., Hostettmann, K., 1996. Characterisation of phenolic constituents from juvenile and mature needles of Norway spruce by means of high performance liquid chromatography-mass spectrometry. Phytochem. Anal. 7, 42-48. https://doi.org/ 10.1002/(SICI)1099-1565(199601)7:1<42::AID-PCA282>3.0.CO;2-K.
  • Sugahara, K., Kitao, K., Watanabe, T., Yamagaki, T., 2019. Imaging mass spectrometry analysis of flavonoids in blue viola petals and their enclosure effects on violanin during color expression. Anal. Chem. 91, 896-902. https://doi.org/10.1021/acs. analchem.8b03815.
  • Sunnerheim, K., Palo, R.T., Theander, O., Knutsson, P.-G., 1988. Chemical defense in birch. Platyphylloside: a phenol from Betula pendula inhibiting digestibility. J. Chem. Ecol. 14, 549-560.
  • Suzuki, H., Sasaki, R., Ogata, Y., Nakamura, Y., Sakurai, N., Kitajima, M., Takayama, H., Kanaya, S., Aoki, K., Shibata, D., Saito, K., 2008. Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Phytochemistry 69, 99-111. https://doi.org/ 10.1016/j.phytochem.2007.06.017.
  • Telysheva, G., Dizhbite, T., Bikovens, O., Ponomarenko, J., Janceva, S., Krasilnikova, J., 2011. Structure and antioxidant activity of diarylheptanoids extracted from bark of grey alder (Alnus incana) and potential of biorefinery-based bark processing of European trees. Holzforschung 65, 623-629. https://doi.org/10.1515/hf.2011.096.
  • The Angiosperm Phylogeny Group, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20. https://doi.org/10.1111/boj.12385.
  • T´oth, G., Barab´as, C., Toth ´, A., K´ery, A ´., B´eni, S., Boldizs´ar, I., Varga, E., Nosz´al, B., 2016. Characterization of antioxidant phenolics in Syringa vulgaris L. flowers and fruits by HPLC-DAD-ESI-MS. Biomed. Chromatogr. 30, 923-932. https://doi.org/10.1002/ bmc.3630.
  • Tuominen, A., Sinkkonen, J., Karonen, M., Salminen, J.-P., 2015. Sylvatiins, acetylglucosylated hydrolysable tannins from the petals of Geranium sylvaticum show co-pigment effect. Phytochemistry 115, 239-251. https://doi.org/10.1016/j. phytochem.2015.01.005.
  • Tusevski, O., Krstikj, M., Stanoeva, J.P., Stefova, M., Gadzovska Simic, S., 2018. Phenolic profile and biological activity of Hypericum perforatum L.: can roots be considered as a new source of natural compounds? South Afr. J. Bot. 117, 301-310. https://doi. org/10.1016/j.sajb.2018.05.030.
  • Veit, M., Bauer, K., Beckert, C., Kast, B., Geiger, H., Czygan, F.C., 1995. Phenolic characters of British hybrid taxa in Equisetum subgenus Equisetum. Biochem. Systemat. Ecol. 23, 79-87. https://doi.org/10.1016/0305-1978(95)93661-L.
  • Vihakas, M., P¨alij¨arvi, M., Karonen, M., Roininen, H., Salminen, J.-P., 2014. Rapid estimation of the oxidative activities of individual phenolics in crude plant extracts. Phytochemistry 103, 76-84. https://doi.org/10.1016/j.phytochem.2014.02.019.
  • Vihakas, M., Gomez ´, I., Karonen, M., T¨ahtinen, P., Sa¨¨aksjarvi ¨, I., Salminen, J.-P., 2015. Phenolic compounds and their fates in tropical lepidopteran larvae: modifications in alkaline conditions. J. Chem. Ecol. 41, 822-836. https://doi.org/10.1007/s10886- 015-0620-8.
  • Webb, C.O., Donoghue, M.J., 2005. Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes 5, 181-183. https://doi.org/10.1111/j.1471-8286.2004.00829.x.
  • Williams, C.A., Harborne, J.B., Colasante, M., 1997. Flavonoid and xanthone patterns in bearded Iris species and the pathway of chemical evolution in the genus. Biochem. Systemat. Ecol. 25, 309-325.
  • Yoruk, R., Marshall, M.R., 2003. Physicochemical properties and function of plant polyphenol oxidase: a review. J. Food Biochem. 27, 361-422. https://doi.org/ 10.1111/j.1745-4514.2003.tb00289.x.