
Journal of Information Security and Applications 75 (2023) 103448

A
2

P
E
a

b

c

d

A

K
I
R
P
S

1

t
f
l
d
c
e
s
m
G
p

a
P
s

a

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

ROVE: Provable remote attestation for public verifiability
dlira Dushku a,∗, Md. Masoom Rabbani b, Jo Vliegen b, An Braeken c, Nele Mentens b,d

Department of Electronic Systems, Aalborg University, Copenhagen, Denmark
ES&S, imec-COSIC, ESAT, KU Leuven, Diepenbeek, Belgium
Faculty of Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
LIACS, Leiden University, Leiden, The Netherlands

R T I C L E I N F O

eywords:
oT security
emote attestation
UB/SUB communication
warm attestation

A B S T R A C T

The expanding attack surface of Internet of Things (IoT) systems calls for innovative security approaches to
verify the reliability of IoT devices. To this end, Remote Attestation (RA) serves as a key mechanism that
remotely detects the presence of malware in IoT devices. Typically, RA allows a centralized trusted Verifier to
retrieve reliable evidence about the software integrity of an untrusted Prover. Existing RA schemes generally
rely on the assumption that the Verifier and the Prover know each other and have pre-shared cryptographic
keys during the bootstrap phase. However, these assumptions are not realistic to employ over commonly used
event-driven IoT networks, in which the interacting parties do not know each other and do not communicate
directly.

This paper proposes PROVE, a novel protocol that allows many Verifiers to attest one or more Provers
without pre-shared key material and without using public-key cryptography which is often not suitable for
resource-constraint IoT devices. In particular, PROVE considers a realistic IoT system where devices adopt the
publish/subscribe communication paradigm. In PROVE, the subscribers act as untrusted Verifiers and attest
not only the firmware integrity of the publishers that act as untrusted Provers but also the authenticity
of the received data originated from these publishers. We simulate PROVE on the Contiki emulator and
demonstrate the scalability of the solution. We also validate PROVE through two hardware proof-of-concept
implementations: PROVE and PROVE+, which rely on different cryptographic cores. The results show that a
complete execution of the protocol takes 4605 ns and 324 ns for PROVE and PROVE+, respectively.
. Introduction

The Internet of Things (IoT) revolution is rapidly and radically
ransforming traditional transportation, healthcare and industrial in-
rastructures into smart IoT systems. Such IoT systems consist of a
arge number of interacting IoT devices, producing a vast amount of
ata that can be retrieved, processed and acted upon. An efficient
ommunication approach for mass distribution of sensed data to inter-
sted parties is the publish/subscribe model. Publish/subscribe protocols,
uch as MQTT [1], DDS [2], AMQP [3], have been widely used by
any emerging IoT applications. For example, popular applications like
oogle Home [4], AWS IoT Core [5], AWS Greengrass [6] use MQTT
rotocol.

The publish/subscribe paradigm provides distributed, asynchronous
nd loosely coupled communication between data producers called
ublishers and data consumers called Subscribers. In this paradigm,
ubscribers register their interest in an event, or a pattern of events,

∗ Corresponding author.
E-mail addresses: edu@es.aau.dk (E. Dushku), mdmasoom.rabbani@kuleuven.be (M.M. Rabbani), jo.vliegen@kuleuven.be (J. Vliegen),

n.braeken@vub.ac.be (A. Braeken), nele.mentens@kuleuven.be (N. Mentens).

in order to be asynchronously notified when the events produced by
publishers match their interest. Typically, publish/subscribe interac-
tions rely on a Broker, which manages the subscriptions and provides
efficient message delivery. Due to a lack of explicit dependencies
between publishers and subscribers, the publish/subscribe model fa-
cilitates dynamic, many-to-many and asynchronous communication in
large-scale IoT systems.

With the wide deployment of pervasive and large-scale IoT systems,
the necessity of developing security mechanisms that detect adversarial
presence becomes urgent. To verify the integrity of IoT devices, one
important security mechanism that checks remotely for any adversarial
presence on IoT devices is remote attestation (RA). RA is an interactive
protocol between a Verifier (𝐕𝐫𝐟) and a Prover (𝐏𝐫𝐯), which allows
the former to obtain a cryptographically secure evidence of the state
of the software running on the 𝐏𝐫𝐯. Typically, at attestation time, the
𝐕𝐫𝐟 sends a Challenge 𝐶ℎ to the 𝐏𝐫𝐯, which then measures its software
state and returns an authentic response to the 𝐕𝐫𝐟 .
vailable online 27 May 2023
214-2126/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

ttps://doi.org/10.1016/j.jisa.2023.103448
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jisa
http://www.elsevier.com/locate/jisa
mailto:edu@es.aau.dk
mailto:mdmasoom.rabbani@kuleuven.be
mailto:jo.vliegen@kuleuven.be
mailto:an.braeken@vub.ac.be
mailto:nele.mentens@kuleuven.be
https://doi.org/10.1016/j.jisa.2023.103448
https://doi.org/10.1016/j.jisa.2023.103448
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2023.103448&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.

a
e
p
v
s
r
a
r
t
t
l
t

i
I
s
r
T

t
n
a

2

[
l
E
s
r
W
e
l
i
t
e
s
n
P
d
a
t
a
p

o
p

Overall, existing RA schemes rely on the assumption that the 𝐕𝐫𝐟
and the 𝐏𝐫𝐯 know each other and communicate directly. In particular,
RA schemes assume that the 𝐕𝐫𝐟 learns the expected legitimate con-
figuration of the 𝐏𝐫𝐯 in advance, during an offline deployment phase
before the attestation starts. Additionally, the 𝐕𝐫𝐟 and the 𝐏𝐫𝐯 exchange
some knowledge, e.g., share cryptographic keys. However, these as-
sumptions are unrealistic for the attestation of IoT systems which adopt
the publish/subscribe paradigm. Specifically, in the publish/subscribe
setting, subscribers dynamically subscribe and unsubscribe to events
but they do not know the effective sources of the events. Even though
subscribers do not communicate directly with publishers and do not
have pre-shared knowledge, subscribers are still interested to verify
the firmware integrity of the publishers they are getting data from.
The straightforward approach of using digital signatures to allow a
given publisher to sign the data with its own secret key, which then
allows many subscribers to validate the published data, is not suitable
when publishers and subscribers are resource-constraint devices [7].
Therefore, publish/-subscribe IoT systems demand novel attestation
approaches that release the pre-shared knowledge assumptions between
the 𝐕𝐫𝐟 and the 𝐏𝐫𝐯.

Motivating use case. As a real-world use case, we borrow the
air pollution scenario presented in [8], which relies on an IoT-based
Air Quality Decision Support System. In this scenario, citizens employ
smart sensors (publishers) and their readings are forwarded to the
public research institutes, organizations, and others (Subscribers) to
estimate personal air pollution exposure of a citizen. In this context,
consumers should be able to check the trustworthiness of the devices
they are getting data from and verify that the data they are receiving
are originating from the sensor devices that they agreed to subscribe
with.

Contributions. In this paper, we propose a novel protocol for
Provable Remote attestation for public Verifiability (PROVE) which
enables the attestation of IoT systems that adopt the publish/subscribe
paradigm. PROVE enables each Subscriber 𝐒𝐮𝐛, acting as an untrusted
Verifier 𝐕𝐫𝐟 , to verify data authenticity and attest the firmware in-
tegrity of the Prover 𝐏𝐫𝐯 (i.e, a publisher) without interacting directly
and without pre-sharing knowledge. In this way, PROVE extends the
state-of-the-art attestation schemes by abandoning the presence of a
trusted centralized 𝐕𝐫𝐟 and enabling any party to publicly verify the
attestation results. To overcome the limitations of using public-key
cryptography (i.e., digital signatures) on resource-constraint devices in
terms of computational overhead and network bandwidth, PROVE is in-
spired by techniques based on one-way key chains. We evaluate PROVE
with two hardware proof-of-concept implementations and Contiki em-
ulator. Overall, the contributions of this paper can be summarized as
follows.

1. To the best of our knowledge, PROVE is the first remote at-
testation protocol for event-driven IoT networks that enables
public verifiability of the attestation result, without pre-sharing
knowledge between the Verifier and the Prover.

2. PROVE enables many untrusted Verifiers to publicly verify the
attestation results. This is particularly beneficial in realistic IoT
network scenarios, in which a 𝐕𝐫𝐟 can be untrusted and can try
to steal the network’s cryptographic keys.

3. PROVE is validated through two hardware proof-of-concept im-
plementations, PROVE and PROVE+, which rely on different
cryptographic cores. The experiments show that PROVE’s run-
time is in the range of nanoseconds.

Outline. The remainder of this paper is organized as follows. Sec-
tion 2 presents different approaches of RA protocols in literature and
provides a comparative discussion between existing RA mechanisms
and PROVE. We explain the problem statement in Section 3 and pro-
vide an overview of background knowledge in Section 4. The paper
describes the system model and the adversary model in Section 5. Next,
2

the paper presents the protocol details in Section 6 and the performance s
evaluation in Section 7. We present the security analysis in Section 8
and provide a discussion of the protocol in Section 9. Finally, Section 10
contains the concluding remarks of the paper.

2. Related work

In this section, we discuss related work in the RA domain focusing
mainly on the properties of the proposed protocol, namely, swarm
attestation, public verifiability, and self-attestation.

2.1. RA overview

Overall, RA is classically categorized into three main approaches:
(1) Hardware-based, (2) Software-based, and (3) Hybrid. Each afore-
mentioned RA category has its own advantages and disadvantages w.r.t.
adversarial assumptions, system requirements, network settings etc.

Hardware-based RA schemes (e.g., [9–12]) primarily depend on
specialized hardware component which provides trusted execution

nvironments (TEE) ensuring that the execution of security-critical
arts of the protocol is isolated from untrusted software on the de-
ice [13]. Even though hardware-based approaches provide strong
ecurity guarantees, introducing a specialized hardware component in
esource-constrained IoT devices is often costly and unrealistic. To
ddress this drawback, Software-based RA schemes [14,15] do not
equire any hardware support and rely predominantly on stringent
ime constraints (e.g., [16–18]) or on the lack of free space to store
he malicious code (e.g., [19–21]). Recent software-based approaches
ike [22,23] employ a secure dedicated processor core for attestation
hat improves the security guarantees w.r.t. previous schemes.
Hybrid RA schemes aim to guarantee secure solutions by leverag-

ng the best features of software-based and hardware-based approaches.
n particular, hybrid RA relies on minimal hardware assumptions, con-
isting of low-cost hardware/software co-design. Examples of hybrid
esearch platforms in the literature include SMART [24], TrustLite [25],
yTan [26], VRASED [27].

Besides the aforementioned classification, RA schemes can be fur-
her distinguished based on additional design parameters, such as the
umber of provers, number of verifiers, network topology, adversarial
ssumptions, etc., as described in the following sections.

.2. Swarm attestation

Centralized Verification. Generally, swarm attestation techniques
28] aim to provide scalable solutions that cope with the attestation of
arge networks. Swarm schemes like SEDA [29], LISA [30], SHeLa [31],
APA [32], SAP [33], WISE [34], CoRA [35], FADIA [36] employ a
panning tree based architecture to efficiently propagate attestation
equests and aggregate the results at the root which is typically a 𝐕𝐫𝐟 .
hile the main objective of swarm attestation schemes is to check

fficiently the integrity of devices participating in a swarm, schemes
ike DARPA [37] and SCAPI [38] aim to detect also physical attacks
n a swarm by registering the devices’ presence in each time interval
o eventually report the missing devices. This detection approach is
xtended by slimIoT [39] that relies on a one-way keychain. Since in
limIoT the base station broadcasts authenticated information to the
odes, the keychain is maintained on the Verifier’s side. Instead, in
ROVE, the nodes are the sender and the keychain is maintained on the
evice’s side. Additionally, in the swarm schemes mentioned above, the
ggregated attestation result does not yield publicly verifiable attesta-
ion results. All the aforementioned schemes count on the presence of
centralized and trusted 𝐕𝐫𝐟 , which we do not assume in our dynamic
ublish/subscribe setting.
Distributed verification. Distributed attestation techniques aim to

vercome the challenges of centralized verification by employing multi-
le Verifiers that attest autonomous devices in dynamic networks. The
tate-of-the-art schemes (e.g., DIAT [40], US-AID [41], ESDRA [42],



Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.

R
s
s
t
d

2

t
r
u
t
p
t
a
d
t
p
c
a
b
a
r
t
p
I
D
i
v
r

2

R
t
u
t
d
l
t
a
e
p
m
c
a

Table 1
Related work summary.

Scheme Category No. Provers No. Verifiers Publicly verifiable Key sharing Vrf-Prv Crypto Type Attestation

SEDA [29], DARPA [37], SHeLA [31], SAP [33] Swarm/centralized Many 1 ✗ Direct PKI On-demand
LISA [30] Swarm/centralized Many 1 ✗ Direct Sym. key On-demand
slimIoT [39] Swarm/centralized 1 1 ✗ Direct Sym. key On-demand
DIAT [40], US-AID [41], PASTA [43], ESDRA [42] Swarm/distributed Many Many ✗ Direct PKI On-demand
RADIS [44], SARA [45], ARCADIS [46] Swarm/distributes services Many 1 ✗ Direct PKI On-demand
SANA [47] Publicly verifiable Many 1 ✓ Direct PKI On-demand
SCRAPS [8] Publicly verifiable Many Many ✓ Indirect PKI Queue
ERASMUS [48] Self-attestation 1 1 ✗ Direct Sym. key Self-initiated
SeED [49] Self-attestation 1 1 ✗ Direct PKI Self-initiated
TESLA [50] Broadcast Authentication Many Many ✓ Indirect Sym. key/Hash ✗

How to prove yourself [51] Identification protocol 1 1 ✗ Direct PKI ✗

Identity-based cryptosystems [52] Identification protocol 1 1 ✗ Direct PKI ✗

PROVE Publicly verifiable Many Many ✓ Indirect Sym. key/Hash Self-initiated
a
w

E
t
a
l
t
P
𝐕
m

2

s
c
s
a
a
b
m
t
a
w
P
l
l
(
t
r
s
t

2

i
P
t
a

PASTA [43]) allow provers to act as Verifiers of their neighbor devices
and mutually attest each other. In the state-of-the-art distributed at-
testation schemes, the verification process is distributed, however, the
attestation result is not publicly verifiable.

Attestation of distributed services. The swarm protocols such as
ADIS [44], SARA [45], ARCADIS [46] aim to attest distributed IoT
ervices by verifying device interactions. However, the aforementioned
chemes assume the presence of a centralized trusted 𝐕𝐫𝐟 . In addition,
he 𝐕𝐫𝐟 and the 𝐏𝐫𝐯 are assumed to share knowledge during the offline
eployment phase.

.3. Publicly verifiable attestation

Ambrosin et al. [47] propose SANA as a swarm attestation protocol
hat relies on a multi-signature scheme to aggregate the attestation
esults among a large group of devices. In SANA, each device is set
p with an asymmetric key pair. SANA uses the secret key to sign
he aggregated attestation results which can then be verified by any
arty that knows the public key. However, in SANA, the 𝐏𝐫𝐯 needs
o be capable of running compute-intensive public-key cryptographic
lgorithms, while we assume the 𝐏𝐫𝐯 to be a resource-constrained IoT
evice. PERMANENT [53] is a protocol that relies on the blockchain
echnology to make RA publicly verifiable. PERMANENT considers a
eer-to-peer IoT network of untrusted IoT devices where participants
an take roles of Provers and Verifiers interchangeably. SCRAPS [8]
ims to achieve public verifiability in a publish/subscribe IoT network
y delegating the attestation verification to a smart contract that acts
s a proxy verifier. Here, the proxy verifier handles the attestation
equests from verifiers (subscribers) that are interested in checking
he Provers’ trustworthiness. Then, the verifiers (subscribers) use the
roperties of smart contract and blockchain to verify the RA evidence.
n SCRAPS, Provers (publishers) use public key-based digital signature.
ifferent from SCRAPS, PROVE aims to achieve public verifiability

n publish/subscribe without using PKI. In addition, in PROVE, each
erifier can verify the attestation result without sending attestation
equests and without relying on a proxy verifier.

.4. Self-attestation

Carpent et al. in [48] propose ERASMUS. Unlike a traditional
A protocol, ERASMUS allows the 𝐏𝐫𝐯 to initiate the attestation au-

onomously and to locally generate a pseudo-random nonce. ERASMUS
ses a secure read-only clock to trigger self-attestation at pre-defined
imes. This method of self-attestation releases the constraint of on-
emand attestation. The 𝐏𝐫𝐯 in ERASMUS stores the attestation result
ocally and the 𝐕𝐫𝐟 can attest and collect a set of consecutive attes-
ation results. The authors argue that, through checking consecutive
ttestation results, a 𝐕𝐫𝐟 can identify a mobile adversary that tries to
vade detection by hiding during attestation. Ibrahim et al. in [49]
ropose SeED. In that paper, the authors propose a self-attestation
echanism, in which a reliable Real Time Clock (RTC) is required, to

orrectly report the attestation time. Using a pseudo-random function
nd Attestation Trigger (AT) circuit, the attestation process is triggered
3

t unpredictable points in time. The attestation results are then shared
ith the 𝐕𝐫𝐟 .

Despite the similarity w.r.t. self-attestation, PROVE is different from
RASMUS and SeED. The main differences are: (1) PROVE is event
riggered, i.e., it does not require a secure clock to report or trigger
ttestation; (2) in PROVE, attestation results are stored in a distributed
og storage, while, in ERASMUS, the attestation results are stored in
he 𝐏𝐫𝐯 itself and SeED does not store the log of attestation results; (3)
ROVE does not rely on any pre-shared knowledge exchanged among
𝐫𝐟 and 𝐏𝐫𝐯 and thus allows many untrusted Verifiers to attest one or
ore Provers.

.5. Broadcast authentication

One of the major issues of securing multicast communication is
ource authentication. It is a challenge to guarantee to the data re-
ipient that the received data indeed originate from an authenticated
ource and that the data are not altered while being transferred. To
ddress this issue, the authors of [50] propose TESLA as a multicast
uthentication protocol. TESLA relies on loose time synchronization
etween the sender and the receiver, along with a delayed key release
echanism to validate the received message. PROVE is inspired by

he mechanism of TESLA to authenticate the publishers. Nevertheless,
pplying TESLA directly and unaltered is not possible in the setting that
e consider. The main differences between PROVE and TESLA are: (1)
ROVE does not depend on loose time synchronization between pub-
ishers and subscribers. (2) PROVE does not only authenticate sources,
ike TESLA does, it also provides the attestation result of the source.
3) Unlike TESLA, which makes receivers buffer data (i.e., packets)
o authenticate, PROVE uses a distributed log storage to store all the
eceived packets from the source(s). This storage allows the receivers to
ave precious memory resources and to authenticate the sources from
he buffered packets in the distributed log storage.

.6. Identification protocols

Most identification schemes are identity based [51,52], using the
dentity as public key material. Besides the last two differences with
ROVE, mentioned in the authentication protocols above, two addi-
ional differences can be found: (1) Identification protocols require
t least three communication phases between the 𝐕𝐫𝐟 and the 𝐏𝐫𝐯,

since corroborative evidences need to be exchanged. (2) Public-key
based operations and in some cases even compute-intensive pairing
operations are required in identification protocols.

2.7. Discussion

Table 1 highlights the fundamental differences of the main prop-
erties of PROVE w.r.t. the state-of-the-art RA solutions discussed so
far.

In comparison with classical RA protocols where the Verifier and the
Prover(s) communicate directly following a synchronous point-to-point
communication pattern, PROVE considers indirect communication in



Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.
Fig. 1. Toy example of the Sensing as a Service model in a smart transportation system.

an event-based distributed system where the Publisher(s) and the Sub-
scriber(s) are decoupled in space and time. In contrast to swarm
attestation approaches which aggregate the attestation results in a tree-
like structure rooted at a centralized trusted Verifier, PROVE aims to
employ multiple untrusted verifiers.

To the best of our knowledge, SCRAPS is the most similar state-of-
the-art protocol to PROVE. SCRAPS uses smart contract as an untrusted
proxy to verify Provers’ RA evidences on behalf of actual Verifiers.
However, in PROVE we aim to use symmetric key based algorithms for
the attestation of publish/subscribe networks. Additionally, in PROVE,
the subscribers do not send attestation requests and do not rely on
a proxy for verification. Instead, PROVE tries to follow the standard
publish/subscribe paradigm where subscribers only get notified for the
subscriptions matching their interests.

3. Problem setting

We consider a simplified Sensing as a Service model, as shown in
Fig. 1, which consists of three main layers:

• Sensors (Publishers). Sensor devices measure, sense or detect
physical aspects of the environment and publish their data.

• Service provider (Broker). The service provider manages the
subscription requests from consumers. Upon receiving data from
the sensors, the service provider forwards all the data to the
corresponding consumer.

• Consumers (Subscribers). Data consumers can be business or-
ganizations, institutions, or devices that are interested to get the
sensor data.

In the Sensing as a Service model, sensors and consumers do not
communicate directly: they communicate through the service provider.
Fig. 1 illustrates a toy example of the Sensing as a Service model
in an IoT-based smart transportation system. A smart transportation
system consists of many roadway sensors that measure the weather and
traffic conditions. There are different parties that are interested in smart
transportation. For instance, the data reported by roadway sensors that
detect adverse weather conditions leading to icy or slippery roads or
visibility sensors that detect snow, fog, heavy rain etc. are beneficial for
traffic management agencies, police stations, smart vehicles etc. In this
scenario, through a Sensing as a Service model, all interested parties
subscribe to the sensor data of the shared roadway infrastructure and
then process these data to achieve their own goals.

One critical challenge in the aforementioned scenario lies in en-
abling consumers to trust the sensors that provide the data. For in-
stance, consider the attack scenario where an adversary compromises
the software running on one or more roadway sensors to prevent them
from detecting fog on roads. Indeed, such an attack maliciously affects
the operation of all consumers which use these data. Additionally, an
adversary can impersonate a sensor device and publish forged data.
4

Fig. 2. Publish/subscribe messaging paradigm.

To preserve the generic perspective of the scenario explained above,
we consider an IoT system composed by a number of interacting devices
which act as Publishers (data producers) or Subscribers (data con-
sumers). Publishers and Subscribers do not communicate directly, their
communication is facilitated by an intermediate interface known as a
Broker. When a Publisher publishes an event that matches a subscrip-
tion, the Broker sends a notification to the corresponding Subscriber.
An abstract view of this model is depicted in Fig. 2.

In this setting, Publishers and Subscribers do not know each other,
thus, in realistic scenarios there is no pre-shared cryptographic key
between them. One could think of attesting the Publishers through
the Broker. However, a Broker that serves as a centralized trusted
Verifier could become a single point of failure in the publish/subscribe
setting with dynamic many-to-many communication between the in-
teracting parties. Another solution is the use of public-key cryptog-
raphy (e.g., digital signature). However, Publishers and Subscribers
can be resource-constraint devices, thus the application of public-key
cryptography is not suitable for such devices [7].

In the context of the issues described above, this paper aims to solve
the problem of RA in publish/subscribe networks by allowing many
untrusted Subscribers to act as the Verifiers of many untrusted Pub-
lishers. The Subscribers check the firmware integrity of the Publishers
and verify that the published data are originating from the claimed
Publishers.

4. Preliminaries

Our proposed mechanism is based on a one-way chain. This is a well-
known cryptographic technique, described in literature [54,55]. In this
section, we discuss the working principle of a one-way chain. Let 𝑁
denote the length of the chain. If 𝑥0 is the seed used to generate the
chain and 𝑓 is a one-way function, then a one-way chain can be defined
as 𝜎𝑖 = f(𝜎𝑖−1), 𝜎0 = 𝑥0, where, 𝑖 ∈ (1..N). Given that 𝑓 is a secure one-
way function, in a one-way chain it is infeasible to compute 𝜎𝑖−1 from
𝜎𝑖 in polynomial time. One protocol that builds upon a one-way chain
for multicast authentication is TESLA [50]. TESLA constructs a one-way
key chain, which is a one-way chain where the elements are keys. To
generate a one-way key chain of length N, TESLA picks a random value
KN and pre-computes a sequence of 𝑁 key values of the key chain,
where each element of the key chain can be derived from KN as Ki =
FN-i(KN). TESLA relies on loose time synchronization between senders
and receivers which allows the receiver to know the upper bound of
the time that a message was sent. In TESLA, each key corresponds to
a time interval. Thus, a packet 𝑃𝑖 arrives safely if the receiver, based
on the synchronized time, can precisely decide that the sender did not
yet send the key disclosure packet 𝑃𝑗 , 𝑗 > 𝑖. Afterwards, when the key
disclosure packet is sent, the receiver can authenticate the packet.

5. PROVE: Provable remote attestation for public verifiability

5.1. System model

We consider an IoT system which follows a publish/subscribe com-
munication model, in which the data produced by publishers are de-
livered to the corresponding subscribers. In designing the attestation



Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.
scheme of such a system, we consider the presence of four main entities
as shown in Fig. 3.

• Publisher (𝐏𝐮𝐛): an IoT device that senses and publishes data.
Each publisher 𝐏𝐮𝐛 is uniquely identified by an ID 𝐏𝐮𝐛𝐢𝐝. Each
publisher acts as a Prover (𝐏𝐫𝐯).

• Broker (𝐁𝐫𝐤): a third-party that is responsible for orchestrating
the publish/subscribe paradigm by storing and managing the
subscriptions. In our system model, the 𝐁𝐫𝐤 stores the received
messages of each 𝐏𝐮𝐛 to a log storage 𝐋𝐒. PROVE does not
require any exclusive assumption regarding the 𝐁𝐫𝐤’s trustwor-
thiness. However, we assume that the 𝐁𝐫𝐤 performs its intended
functionality in screening the messages received by Publishers
and disseminating them correctly to the Subscribers. Note that
in practice the 𝐁𝐫𝐤 can be implemented as a network of mul-
tiple distributed brokers that route the events from publishers
to subscribers through different multi-hop paths as discussed in
Section 9. Even though for simplicity, PROVE illustrates the 𝐁𝐫𝐤
as a centralized entity, the protocol details are agnostic from the
underlying implementation details of the Brk(s).

• Network Operator (𝐎𝐏): a trusted entity that follows an offline
procedure (Step 0⃝ in Fig. 3) to guarantee the secure bootstrap
of the software deployed on each 𝐏𝐮𝐛. In addition, the 𝐎𝐏 is
responsible for storing and initializing the chain of keys 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧
inside the 𝐏𝐮𝐛. In the 𝐏𝐮𝐛, the 𝐎𝐏 stores also the checksum
(i.e., collision-resistant hash of 𝐏𝐮𝐛’s firmware) of the legitimate
firmware measurement (𝛾) of 𝐏𝐮𝐛 along with a counter 𝐂𝐭𝐫
initially assigned to 0. The 𝐎𝐏 initiates the first attestation to
ensure that each 𝐏𝐮𝐛 sends the ‘‘correct’’ authenticated attestation
message for 𝐂𝐭𝐫 = 1. Note that 𝐎𝐏’s procedure happens only once
during an offline setup phase.

• Subscriber (𝐒𝐮𝐛): an IoT or traditional device that is subscribed
to a set of topics it is interested in. A 𝐒𝐮𝐛 gets notified when the
data produced by publishers matches its interests expressed in the
subscription. Each 𝐒𝐮𝐛 acts as an untrusted Verifier (𝐕𝐫𝐟) that is
interested to verify the authenticity of the received data and the
firmware integrity of the 𝐏𝐫𝐯 device which produced those data.

• Log Storage (𝐋𝐒): a logging system in which the 𝐁𝐫𝐤 stores the
data received from different publishers 𝐏𝐮𝐛. In our model, we
assume that 𝐋𝐒 is secure: an adversary is not able to tamper with
the recorded history. Given the powerful resources of 𝐁𝐫𝐤, we
also assume an established secure communication between 𝐁𝐫𝐤
and 𝐋𝐒. In practice, 𝐋𝐒 can be implemented as an InterPlanetary
File System (IPFS)1 or a tamper-evident logging system [56].
Note that the choice of the log storage implementation is inde-
pendent from the protocol details presented in this paper. Since
our approach is agnostic from log storage implementation, the
underlying implementation details are considered out of scope of
this paper.

5.2. Protocol overview

In PROVE, the overall attestation consists of two main phases: the
Attestation phase (Step 1⃝– Step 6⃝) and the Verification phase (Step
7⃝– Step 8⃝).
Attestation phase. The attestation starts when a 𝐏𝐮𝐛 publishes a

message to the 𝐁𝐫𝐤. In a typical publish/subscribe setting, the message
publication happens in fixed time intervals or gets triggered by certain
unpredictable events. To generalize the approach, we assume that the
attestation is initiated when the 𝐏𝐮𝐛 is triggered by an event (Step 1⃝in
Fig. 3), which can be, e.g., sensed data, received data by other devices
or a time-based trigger. Upon the event triggering, 𝐏𝐮𝐛 performs the
attestation (Step 2⃝), computes the signing key from the pre-stored

1 https://ipfs.io
5

Fig. 3. System model.

𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 and then publishes to the 𝐁𝐫𝐤 the produced data along with
the attestation result and the MAC (Step 3⃝). Next, the 𝐁𝐫𝐤 stores the
published data in the log storage (Step 4⃝), and confirms the successful
storage by sending an acknowledge message 𝐀𝐜𝐤 to the 𝐏𝐮𝐛 (Step 5⃝).
Since every triggered event corresponds to a counter 𝐂𝐭𝐫, the 𝐏𝐮𝐛
increments 𝐂𝐭𝐫 by 1 upon an 𝐀𝐜𝐤 received by the 𝐁𝐫𝐤 (Step 6⃝).

Verification phase. The verification phase starts when one or some
subscribers 𝐒𝐮𝐛 access the log storage 𝐋𝐒 to verify the historical results
of a publisher 𝐏𝐮𝐛 (Step 7⃝). Starting from the 𝐂𝐭𝐫 and 𝐊𝐂𝐢 included in
each published message 𝐌𝐬𝐠𝐢 published by 𝐏𝐮𝐛, 𝐒𝐮𝐛 is able to validate
whether it can use 𝐊𝐂𝐢 to authenticate any previous message 𝐌𝐬𝐠𝐣,
where 𝑗 < 𝑖. Along with the authenticity, 𝐒𝐮𝐛 is able to validate also
the firmware integrity of 𝐏𝐮𝐛 at the time when the message had been
published (Step 8⃝).

5.3. Adversary model

In our scheme, in line with the adversarial assumptions in [29,47]
we assume an active adversary with the following capabilities.

• Software attack. A Software Adversary 𝐀𝐝𝐯𝐬𝐰 can inject malware
on the 𝐏𝐮𝐛 by exploiting vulnerabilities of the software loaded on
the 𝐏𝐮𝐛.

• Impersonation attack. An Impersonation Adversary 𝐀𝐝𝐯𝐢𝐦𝐩 can
act as a 𝐏𝐮𝐛 by forging the 𝐏𝐮𝐛’s message 𝐌𝐬𝐠 to the 𝐁𝐫𝐤 and/or
revealing the corresponding key 𝐊𝐂𝐢 of the 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 used to
compute the MAC of the 𝐏𝐮𝐛’s message.

• Communication attack. A Communication Adversary 𝐀𝐝𝐯𝐜𝐨𝐦
can have full control over the communication channel between
𝐏𝐮𝐛 and 𝐁𝐫𝐤, e.g.,
𝐀𝐝𝐯𝐜𝐨𝐦 can forge, drop, delay, eavesdrop the messages sent by
the 𝐏𝐮𝐛 to the 𝐁𝐫𝐤. In addition, a untrusted 𝐁𝐫𝐤 can also update
𝐋𝐒 with a forged message.

• Replay attack. A Replay Adversary 𝐀𝐝𝐯𝐫𝐞𝐩 can send an old
authentic message to the 𝐁𝐫𝐤.

Assumptions. In line with the state-of-the-art RA schemes, we
assume software-only adversaries and we keep a Physical Adversary
(𝐀𝐝𝐯𝐩𝐡𝐲) out of our current context. A Distributed Denial of Service
(DDoS) attack is out of scope of this paper. However, in Section 9 we
discuss techniques to limit DDoS attacks such as packet delay or packet
drop.

Device assumptions. Considering the same device assumptions as
in other state-of-the-art RA schemes [29,37,45,47,49], we assume the
presence of the following components inside the 𝐏𝐮𝐛:

https://ipfs.io


Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.

5

s

6

n
a

i
t
t
t

o
(
o
s
t

𝐀
s
w
a

m

c
s
⃝
u
𝐋
f

• Read-Only Memory (ROM). A ROM memory region in which we
store the code of the attestation protocol PROVE. ROM guarantees
that protocol code cannot be tampered with.

• Secure key storage. A secure memory region that allows read
permissions to the attestation code resided in ROM. This region
stores a one-way key chain 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧. To minimize the memory
usage, a very long 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 can be stored partially in the secure
storage [57], as discussed in more details in Section 9.

• Secure writable memory. A memory region that can only be
updated by the attestation protocol. The counter 𝐂𝐭𝐫 and the
operations related to the one-way key chain are securely stored
in this region.

.4. Security requirements

Aligned with state-of-the-art RA protocols like [29,45] PROVE
hould satisfy the following security properties:

• Integrity of the 𝐏𝐮𝐛. The protocol should provide reliable evi-
dence that is publicly verifiable and guarantees the integrity of
the underlying firmware of the 𝐏𝐮𝐛, i.e., the Prover.

• Authenticity of the 𝐏𝐮𝐛. Untrusted Verifiers should publicly
verify the authenticity of the data received from the publishers.
The Verifiers should not be able to forge the data and impersonate
the 𝐏𝐮𝐛.

• Integrity of communication data. The protocol should pro-
vide integrity evidence of the data exchanged among interacting
parties.

• Freshness. The protocol should be able to identify a compro-
mised device which publishes old legitimate data to evade detec-
tion of an ongoing attack.

. Protocol details

We propose PROVE to perform attestation in publish/subscribe IoT
etwork with resource-constraint devices. PROVE is an event-triggered
ttestation, starting from a publisher 𝐏𝐮𝐛 that publishes its data along

with the attestation result. The broker 𝐁𝐫𝐤 stores these data in a log
storage, so that the Publisher’s historical results can be accessed by
Subscribers that are interested in verifying the authenticity and the
integrity of Publisher’s firmware. In particular, subscribers will use the
revealed key 𝐊𝐂𝐢 to authenticate and verify any previous message 𝐌𝐬𝐠𝐣,
where 𝑗 < 𝑖.

In the following, we describe in detail the three main phases that
compose the proposed PROVE protocol: (1) Bootstrap Phase, (2) Attes-
tation Phase, and (3) Verification Phase. Table 2 presents the notation
of PROVE.

6.1. Bootstrap phase

The bootstrap phase is an offline procedure executed only once
during the initial setup. During the bootstrap phase, the Broker 𝐁𝐫𝐤
is equipped with an asymmetric key-pair (𝑠𝑘, 𝑝𝑘), and the network
operator 𝐎𝐏 guarantees the secure setup of the IoT devices (publishers
𝐏𝐮𝐛). The 𝐎𝐏 ensures that each 𝐏𝐮𝐛 is equipped with minimal trust and
installs secure applications on the device. In addition, the 𝐎𝐏 stores the
checksum of the legitimate firmware measurement 𝛾 of the 𝐏𝐮𝐛 inside
the secure memory region of the 𝐏𝐮𝐛. The checksum is a collision-
resistant hash function applied over the device firmware. The 𝐎𝐏 assists
also in the secure generation of a key chain 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧. In particular, the
𝐎𝐏 defines the number 𝐍 of keys of the key chain, picks up randomly
the seed 𝐊𝐂𝐍 of the key chain, and uses the function 𝐇 to compute
the entire 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 as follows: 𝐊𝐂𝐢 = 𝐇N-i(𝐊𝐂𝐍) where 𝐇j(x) = 𝐇j-1(𝐇
(x)) and 𝐇0(x) = x (as applied on Step 0⃝ in Fig. 4). Then, the 𝐎𝐏 stores
the computed key chain in secure storage on each 𝐏𝐮𝐛. Finally, the 𝐎𝐏
nitiates the first attestation procedure to ensure that each 𝐏𝐮𝐛 sends
he ‘‘correct’’ authenticated attestation message (associated to 𝐂𝐭𝐫 = 1)
o the 𝐁𝐫𝐤 which then will be responsible to distribute this message to
6

he subscribers 𝐒𝐮𝐛 upon a successful subscription. 𝐀
Table 2
Notation summary.

Term Description

𝐕𝐫𝐟 Verifier
𝐏𝐫𝐯 Prover
𝐏𝐮𝐛 Publisher
𝐒𝐮𝐛 Subscriber
𝐏𝐮𝐛𝐢𝐝 ID of a Publisher
𝐁𝐫𝐤 Broker
𝑝𝑘 The 𝐁𝐫𝐤’s public key
𝑠𝑘 The 𝐁𝐫𝐤’s secret key
𝐀𝐝𝐯 Adversary
𝐎𝐏 Network Operator
𝛾 Legitimate firmware measurement of 𝐏𝐮𝐛
𝛥 Boolean value to represent 𝐏𝐮𝐛’s state
𝐍 Length of the key chain
𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 Key chain: an array of key values
𝐊𝐂𝐍 Random value, seed of the key chain
𝐊𝐂𝐢 ith value of the key chain, 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 [i]
𝐌𝐊𝐢 ith value of the MAC key chain
𝐌𝐬𝐠 Messages published by the 𝐏𝐮𝐛
𝐂𝐭𝐫 ith value of Counter
𝐍𝐨𝐧𝐜𝐞 Nonce shared by the 𝐁𝐫𝐤
𝐋𝐒 Log storage
𝐀𝐭𝐭𝐑𝐞𝐬 Attestation Result of 𝐏𝐮𝐛
𝐀𝐜𝐤 Acknowledgment message

Procedure Description

𝐚𝐭𝐭𝐞𝐬𝐭() Attestation Procedure in PROVE
𝐜𝐡𝐞𝐜𝐤() Function that returns a value 𝛥

to indicate 𝐏𝐮𝐛’s state
𝐢𝐧𝐜𝐫𝐞𝐦𝐞𝐧𝐭() Procedure to increment the 𝐂𝐭𝐫
𝐋𝐨𝐠() Procedures to store in 𝐋𝐒
Exec(Pub) Regular execution of 𝐏𝐮𝐛
Checksum(Pub) Checksum of the 𝐏𝐮𝐛’firmware
𝐇 Function to generate key chain
𝐇′ Function to generate MAC key

6.2. Attestation phase

During regular operation, the publisher 𝐏𝐮𝐛 generates 𝐝𝐚𝐭𝐚 =
𝐄𝐱𝐞𝐜(𝐏𝐮𝐛). The occurrence of an event (e.g., sensed data, data sent by
ther devices or pre-scheduled time events) triggers the 𝐏𝐮𝐛 to publish
i.e., send) the generated data to the broker 𝐁𝐫𝐤. Despite the origin
f the event, we assume that in all cases the trigger is captured by a
ecure hardware module in the 𝐏𝐮𝐛, which then immediately initiates
he attestation procedure in PROVE (Step 1⃝in Fig. 4).

Once the attestation has been initiated (Step 2⃝), PROVE computes
𝐭𝐭𝐑𝐞𝐬 = Checksum(Pub). Then this result is checked against the pre-

tored legitimate firmware measurement 𝛾, using the 𝐜𝐡𝐞𝐜𝐤() function
hich yields a boolean value 𝛥: 0 if the configuration is a good one,
nd 1 otherwise. 𝐏𝐮𝐛 will then publish 𝛥 along with 𝑑𝑎𝑡𝑎. In PROVE,

each event corresponds to a 𝐂𝐭𝐫, thus PROVE assigns a key 𝐊𝐂𝐢 to
each 𝐂𝐭𝐫, which is initially assigned to 1, i.e., with 𝐂𝐭𝐫 = i the key
𝐊𝐂𝐢 = 𝐇N-i(𝐊𝐂𝐍) is assigned. Then, PROVE uses the function 𝐇′ to
generate a second key 𝐌𝐊𝐢 which is used to compute the MAC of the
messages in each publication: 𝐌𝐊𝐢 = 𝐇′ (𝐊𝐂𝐢). Next, 𝐏𝐮𝐛 updates the

essage: 𝜏 = (𝑑𝑎𝑡𝑎 ‖ 𝐏𝐮𝐛𝐢𝐝 ∥ 𝐀𝐭𝐭𝐑𝐞𝐬 ‖ 𝐂𝐭𝐫) and then computes the
MAC of this message: 𝜇 = MAC(𝐌𝐊𝐢, 𝜏). Finally, 𝐏𝐮𝐛 publishes 𝐌𝐬𝐠 =
(𝜏 ‖ 𝜇 ‖ 𝐊𝐂𝐢−𝟏) (Step 3⃝). Upon receiving the message 𝐌𝐬𝐠, the 𝐁𝐫𝐤
reates a new file to upload in the log storage 𝐋𝐒 (Step 4⃝). After the
uccessful storage, the 𝐁𝐫𝐤 sends an acknowledgment 𝐀𝐜𝐤 to 𝐏𝐮𝐛 (Step
5 ). This is to guarantee that 𝐏𝐮𝐛 is not disclosing the key, which is
sed to compute the MAC of that message, before it is stored in the
𝐒. In particular, this acknowledgment 𝐀𝐜𝐤 = 𝑠𝑖𝑔𝑠𝑘(𝐌𝐬𝐠) is a signature

rom the broker 𝐁𝐫𝐤 on the 𝐏𝐮𝐛’s message 𝐌𝐬𝐠. After receiving the
𝐜𝐤, 𝐏𝐮𝐛 verifies the 𝐁𝐫𝐤’s signature by using the 𝐁𝐫𝐤’s public key 𝑝𝑘



Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.
Fig. 4. The algorithm of PROVE attestation protocol.
Fig. 5. Verification overview.
and increments the 𝐂𝐭𝐫 by one (Step 6⃝) and proceeds with the regular
operation ready to handle the next triggered event.

6.3. Verification phase

In PROVE, the verification phase starts when one or some sub-
scribers 𝐒𝐮𝐛 access the log storage 𝐋𝐒 to verify the results of a given
publisher 𝐏𝐮𝐛. The 𝐒𝐮𝐛 filters the stored results by 𝐏𝐮𝐛𝐢𝐝 and uses the
counter 𝐂𝐭𝐫 to order the historical results of the 𝐏𝐮𝐛. The ordered
𝐏𝐮𝐛’s results (AttRes) should form a Direct Acyclic Graph (DAG). Since
𝐂𝐭𝐫 is always incremental, if the ordered results contain a repeated
value (i.e, form a cycle), the 𝐒𝐮𝐛 claims that 𝐏𝐮𝐛 published old values
and detects a replay attack. If the results form a DAG, 𝐒𝐮𝐛 starts the
verification of the published results. In particular, for each individual
result 𝐌𝐬𝐠 = (𝜏 ‖ 𝜇 ‖ 𝐊𝐂𝐢−𝟏), the 𝐒𝐮𝐛 will compute 𝐌𝐊𝐢 = 𝐇′

(𝐊𝐂𝐢) and verify whether 𝐌𝐊𝐢 allows the verification of authenticity
of previous messages in the historical results, as shown in Fig. 5. If yes,
then 𝐒𝐮𝐛 verifies the 𝛥 added in the data that 𝐏𝐮𝐛 published. Based
on the value of 𝛥 ∈

(

0, 1
)

, the 𝐒𝐮𝐛 identifies the state of the 𝐏𝐮𝐛.
However, if 𝐒𝐮𝐛 knows in advance the expected legitimate firmware
measurement 𝛾 (e.g., 𝐎𝐏 can be a particular type of 𝐒𝐮𝐛), such 𝐒𝐮𝐛 can
verify the 𝐀𝐭𝐭𝐑𝐞𝐬. After the successful verification, 𝐒𝐮𝐛 claims that the
𝐏𝐮𝐛 is trusted if 𝐀𝐭𝐭𝐑𝐞𝐬 matches with the expected legitimate firmware
measurement 𝛾.
7

7. Evaluation

This section presents two proof-of-concept (PoC) implementations
in hardware and one network simulation in software, to evaluate the
proposed solution.

7.1. Hardware PoC implementations

Two hardware PoC implementations have been made: PROVE and
PROVE+. PROVE uses SHA256 as a hashing algorithm to compute
the firmware checksum and BLAKE2s to calculate the Message Au-
thentication Code (MAC). This corresponds to the algorithms used in
ERASMUS [48]. PROVE+ uses a single algorithm for both operations:
Xoodyak [58]. Xoodyak is one of the 10 finalists in the Lightweight
Cryptography Standardization competition of the National Institute for
Standards and Technology (NIST).

Fig. 6 shows the architecture of both PoC implementations. The la-
beled, highlighted blocks represent the ‘‘Hash’’ function and the ‘‘MAC’’
function that are required to compute the checksum and to guarantee
the authenticity of the messages sent by the 𝐏𝐮𝐛. Both of these blocks
are placed within a box that, in its entirety, can be substituted with
the Xoodyak implementation in PROVE+, that takes care of both the
Hash and the MAC. Next to these two distinctive blocks in PROVE and
PROVE+, the remainder of the architecture is the same in both PoCs.



Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.

c
P
e

a
T
o
H

7

t

F
p
5

t
b
t
p
t
t
s
u
o
T

(

Fig. 6. Architecture of the hardware PoC implementation.

Table 3
Resource usage of both PROVE and PROVE+.

Component Registers LUTs Slices BRAM

PROVE 1874 3155 934 4
Blake 783 1411 498 0.0
Memory 1 4 4 4
SHA256 1081 1734 496 0.0

remaining 300’445 605’326 74966 1026.0
remaining [%] 99.0 99.7 98.8 99.6

PROVE+ 1247 2128 602 4
Xoodyak 1201 2061 582 0.0
Memory 2 4 1 4

remaining 301’472 605’953 75298 1026.0
remaining [%] 99.3 99.8 99.2 99.6

The architecture contains a counter (CTR) together with a dual-ported
memory block (MEM). The 𝐎𝐏 writes the 𝐍 256-bit values of the key
hain to this memory during the Bootstrap Phase. Note that, in this
oC implementation, we do not use secure memory. In the eventual
nd product, dedicated secure memory would have to be integrated.

The implementations of PROVE and PROVE+ are implemented on
Xilinx VC707 FPGA board, which contains a Virtex-7 (X485T) FPGA.
he design software used is Xilinx Vivado 2017.4.01. Both the results
n resource utilization and timing are given and compared below. The
DL source code is made available.2

.1.1. PoC results — resources
Table 3 summarizes the implementation cost. In the Virtex-7 FPGA

hat we use, one slice contains four register-LUT pairs.
As can be seen from Table 3, the share of used resources on the

PGA is around one percent for both PROVE and PROVE+. The im-
lementations use 4 memory blocks (Block RAM or BRAM), providing
12 addresses, thus offering room for 512 𝐊𝐂𝐢’s.

In ERASMUS [48] and in VRASED [27], the authors also report on
heir hardware cost by summarizing the used Slice registers and LUTs,
ut a comparison cannot be made lightly. The results that they report,
arget an FPGA implementation of an OpenMSP430 processor. On that
rocessor, the crypto algorithms are still being run in software. In con-
rast, the PoCs represented in our paper are custom hardware designs
o facilitate the required operations. For the sake of completeness it
hould be mentioned, nonetheless that the ERASMUS implementation
ses 655 Slice Registers and 1969 Slice LUTs [48]. The additional cost
f VRASED is 122 LUTs, 37 registers and 4.5 kB + 2.3 kB of ROM/RAM.
he latter would roughly translate to an added cost of 2 BRAMs [27].

2 http://tiny.cc/prove_and_plus
8

Table 4
Timing results of both PROVE and PROVE+, where CC stands for Clock
Cycles.

Component Time 𝐹𝑐𝑙𝑜𝑐𝑘

[CC] [ns] [MHz]

PROVE 307 4605 66.67

SHA256 (𝐌𝐊𝐢) 68+1 1035
SHA256 (𝜏) 68+1 1035
BLAKE2s (init) 85+1 1290
BLAKE2s (process) 82+1 1245

PROVE+ 36 324 111

Xoodyak 35+1 324

Fig. 7. Resource occupation of the PROVE and PROVE+ PoC implementations.

7.1.2. PoC results — timing
Running the protocol in the PROVE implementation consists of 4 se-

quential steps: (1) SHA256 (for 𝐌𝐊𝐢), (2) SHA256 (for 𝜏),
3) initializing BLAKE2s, and (4) processing BLAKE2s (for 𝜇). The

required times for each step are summarized in Table 4. The imple-
mentation is capable of operating at a clock speed of 66.67 MHz. It
is pointed out that initiating the execution of each component comes
with an overhead of one clock cycle.

The PROVE+ implementation, using Xoodyak, contains 3 similar
steps: (1) Absorb key, (2) Absorb Authenticated data (for 𝜏), and (3)
Squeeze (for 𝜇). As all the operations are reflected in the internal state
of Xoodyak, there is no initialization required. The implementation is
capable of working at a clock speed of 111 MHz.

With the 𝐊𝐂𝐢 having 256 bits in width, both PROVE and PROVE+
can hash the message in a single iteration, because the block size of
SHA256 is 512 bits and the block size of Xoodyak is 384 bits. If the
𝐊𝐂𝐢 size would double (to 512 bits), the PROVE implementation could
still handle this in one iteration whereas PROVE+ would need two
iterations.

Given a 256-bit 𝐊𝐂𝐢, running the protocol using SHA256 and
BLAKE2s takes 4605 ns, while running the protocol using Xoodyak only
takes 324 ns. As can be seen from the table, this gain in performance
is thanks to a smaller number of required clock cycles and thanks
to a higher clock frequency. The reported timing covers the required
duration between receiving a trigger signal and sending the processed
result.

Our protocol’s runtime is comparable to state-of-the-art RA schemes
[28]. However, a direct comparison is challenging due to the variations
in the specific implementation and testing environments w.r.t. the
hardware and software assumptions. Despite this, PROVE’s runtime
is still in line with state-of-the-art solutions and offers a balance of
performance, security, and scalability. Simulation runtime varies from
milliseconds to seconds for various state-of-the-art RA schemes [28].
With the proposed hardware support for PROVE and PROVE+, the
simulation runtime is in the range of nanoseconds.

7.1.3. PROVE vs PROVE+
In Fig. 7, the resource occupation of the PROVE and PROVE+ PoCs

are represented graphically. The FPGA resources are deployed by the
cryptographic algorithms and the ‘‘glue’’ logic, i.e., the additional logic

http://tiny.cc/prove_and_plus


Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.

t
a
t
o

e
o
c

c
t
t
I
i

t
m
b
m

resources used to control the algorithms. For the PROVE implementa-
ion, the glue logic is negative, because merging SHA256 and BLAKE2s
llows the hardware design tools to optimize the implementation such
hat the size of the complete hardware architecture is smaller than size
f the separate parts. The total cost in resources of PROVE+ is a little

under 66% of that of PROVE. Although this additional gain in saved
resources is not spectacular, the performance gain most certainly is.
The total duration of based on the PROVE+ implementation is over 14
times lower than the total duration of the protocol based on PROVE,
as we showed in Table 4.

Although modes of operation exist (e.g. HMAC) to use SHA256 or
BLAKE2s for both hashing and MAC generation, the gain in resources
with respect to Xoodyak would be rather small, as can be seen in Fig. 7.

Finally, it is pointed out that the Xoodyak algorithm, used in
PROVE+, also intrinsically facilitates encryption and decryption func-
tionalities. If this were to be added to the protocol, it would have a
minimal effect on the cost and performance of PROVE+. The PROVE
PoC does not have these capabilities.

7.2. Network simulation

We simulate PROVE on realistic network settings using the Instant
Contiki platform, in particular, the Cooja emulator [59]. We choose
Cooja since it is commonly used as a simulation platform to emulate
resource-constrained device networks that communicate with realistic
protocols. We investigate the robustness of PROVE in a scenario where
IoT nodes (i.e., publishers): (1) communicate with a super node (i.e., a
𝐁𝐫𝐤, which acts as cluster head in the network), (2) are tiny and
with limited resources, and (3) use the IEEE 802.15.4 protocol to
communicate. We employ a network of Tmote sky devices (with TI
MSP430F1611 Microcontrollers) to simulate the execution of PROVE.
Tmote Sky has a 16-bit 8 kHz MCU, 10 KB RAM, and 48 KB non-
volatile memory [60]. Broadcasting is achieved via the IEEE 802.15.4
MAC layer protocol which uses 6LoWPAN as an adaptation layer (using
Contiki modules) for standard message communication.

7.2.1. Computation cost
The computation cost mainly depends on the choice of crypto-

graphic functions. In PROVE, we choose SHA256 to compute the 𝐊𝐂𝐢
and BLAKE-2s to compute the 𝐌𝐊𝐢 (𝜇). However, In PROVE+ we
utilize Xoodyak to compute both the 𝐊𝐂𝐢 and 𝐌𝐊𝐢. We also use SHA-
256 to compute the attestation result for each 𝐏𝐮𝐛. Let 𝑎𝑡𝑡, 𝑘𝑒𝑦,
𝐻𝑀𝐴𝐶 , 𝑠𝑒𝑛𝑑 denote the energy required to perform attestation, the
energy required to compute SHA256, the energy required to perform
the HMAC, and the energy required to send the message, respectively.
Thus, the energy consumption for a 𝐏𝐮𝐛 in PROVE to compute and
send the attestation result to a 𝐁𝐫𝐤 is as follows:

𝐏𝐫𝐯𝑖
𝑃𝑅𝑂𝑉 𝐸 ≤

[

𝑎𝑡𝑡 + 𝑘𝑒𝑦 + 𝐻𝑀𝐴𝐶

]

∗ 𝑠𝑒𝑛𝑑 .

7.2.2. Memory cost
The only component the 𝐏𝐮𝐛 must store is the 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧, containing

𝑛 key chain values. The dimensions of the memory, used in both PoCs,
is kept at the minimum amount. This implies that the number of BRAMs
cannot be reduced further. If more key chains are required, the amount
of BRAM will scale linearly. The only effect on the rest of the hardware
is the width of the counter, which is: (a) coming in from the 𝐎𝐏, and
(b) part of message, directly influencing the width of the message.

7.2.3. Communication cost
During the attestation phase in PROVE every 𝐏𝐮𝐛 publishes 𝜏,

i.e., 336 bits (of which 𝑑𝑎𝑡𝑎 is 8 bit, 𝐏𝐮𝐛𝐢𝐝 is 8 bytes, 𝐀𝐭𝐭𝐑𝐞𝐬 is 256 bits,
𝐂𝐭𝐫 is 9 bits) and then computes the MAC of this message: 𝜇, which is
256 bits. Finally, 𝐏𝐮𝐛 publishes 𝐌𝐬𝐠 = (𝜏 ‖ 𝜇 ‖ 𝐊𝐂𝐢) which is 848 bits
(where 𝜏 is 336 bits, 𝜇 is 256 bits and 𝐊𝐂𝐢 is 256 bits). Please note that
these sizes are arbitrary and do not depend on the choice of PROVE or
PROVE+.
9

u

Fig. 8. Runtime of PROVE with increasing network size.

7.2.4. Runtime
We evaluate the runtime of PROVE using the Cooja emulator. We

consider networks of medium–large sizes, from 100 to 1000 devices.
All the communications are carried out over the IEEE 802.15.4 MAC
layer protocol, the de-facto standard protocol for IoT [29,45,61]. The
protocol IEEE 802.15.4 offers a maximum data rate of 250 Kbps, a
maximum range of 75 m, and a frame size of 127 B. We investigate
the runtime of PROVE w.r.t the time it takes for a 𝐁𝐫𝐤 to process the
attestation result to the 𝐋𝐒. Fig. 8 shows the runtime of PROVE for an
increasing network size. The simulation result indicates that the 𝐁𝐫𝐤
needs ≈ 7 seconds to receive and upload the attestation result from
1000 𝑃𝑢𝑏𝑠.

8. Security analysis

The security of the key chain mechanism and the derived keys
strongly depends on the security of the TESLA protocol, which has
been formally proven in [62] using the TAMARIN prover [63]. PROVE,
different from TESLA, performs device attestation, does not rely on
time boundness among interacting parties, and makes different device
assumptions. In this section, we provide an informal discussion of
PROVE’s security properties and extract the axioms (as presented in
Tables A.5 and A.6 in Appendix A) that indicate the trust properties
that must be satisfied in PROVE.

Integrity of the 𝐏𝐮𝐛. In PROVE, each event occurrence triggers the
xecution of the attestation code, which then computes the checksum
f the 𝐏𝐮𝐛’s firmware and performs an XOR operation to compare the
omputed checksum with the pre-stored legitimate measurement 𝛾 of

the 𝐏𝐮𝐛’s firmware. Thus, any arbitrary code executed by an 𝐀𝐝𝐯𝐬𝐰
will be reflected in the checksum, which is collision-resistant and is
executed inside the secured storage together with the XOR operation.
Following the assumptions that the 𝐀𝐝𝐯𝐬𝐰 cannot disable or modify the
attestation protocol and that only the PROVE attestation process can
read the pre-stored 𝛾, the 𝐀𝐝𝐯𝐬𝐰 will not be able to produce a legitimate
attestation result when the 𝐏𝐮𝐛’s software is compromised.

Authenticity of the 𝐏𝐮𝐛. Upon each event triggering, the PROVE
protocol initiates the attestation execution and associates the event 𝑒𝑖
to an incremental counter 𝐂𝐭𝐫𝑖, ∀𝑖 ∈ (1..𝑁). In addition, each counter
𝐂𝐭𝐫𝑖 corresponds to a signing key 𝐊𝐂𝐢 = 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧[i]. Given that only
PROVE has write permissions to update/increment 𝐂𝐭𝐫𝑖 (stored inside
a secure writable memory region) and that only PROVE can have read
access to the 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧, an 𝐀𝐝𝐯𝐢𝐦𝐩 will not be able to reveal a key 𝐊𝐂𝐢
which does not correspond to the current event 𝑒𝑖. 𝐀𝐝𝐯𝐢𝐦𝐩 can randomly
hoose a key 𝐊𝐂𝐢

∗ ← {0, 1}256, however, we argue that the probability
hat 𝐊𝐂𝐢

∗ = 𝐊𝐂𝐢 is negligible. As 𝐊𝐂𝐢 ∈ {0, 1}256, then the probability
hat 𝐀𝐝𝐯𝐢𝐦𝐩 guesses a matching 𝐊𝐂𝐢 is 1∕2256. Additionally, the 𝐏𝐮𝐛’s
D 𝐏𝐮𝐛𝐢𝐝 and the attestation code are stored inside ROM, hence it is
nfeasible for an 𝐀𝐝𝐯𝐢𝐦𝐩 to forge the authenticated attestation result.
Integrity of communication data. In PROVE, each message that

he 𝐏𝐮𝐛 publishes to the 𝐁𝐫𝐤 is associated with the MAC of the
essage. Thus, an 𝐀𝐝𝐯𝐜𝐨𝐦 that alters the plaintext of the message will

e identified during the verification phase. To compute the MAC of a
essage 𝐌𝐬𝐠 𝑖, PROVE uses a symmetric key 𝐌𝐊𝐢 which is generated by

′
sing the function 𝐇 over the corresponding key value in the key chain



Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.

f

9

P

i
𝐏
1
a
h
v
m
o
c
s
o

t
a
i
u
t
i
a
u
𝐁
T
𝐒

b
o
T
e

c
U
a
c
p
i
c
b
r
g
b
w

c
a
S
s
t

𝐊𝐂𝐢: 𝐌𝐊𝐢 = 𝐇′ (𝐊𝐂𝐢). Following the assumptions that the hash function
𝐇′ is collision-resistant, the keychain seed 𝐊𝐂𝐍 is securely stored in the
𝐏𝐮𝐛, and that only PROVE can access 𝐊𝐂𝐢, it will be computationally
infeasible for the 𝐀𝐝𝐯𝐜𝐨𝐦 to forge the data without knowing 𝐌𝐊𝐢.
𝐀𝐝𝐯𝐜𝐨𝐦 can choose a random 𝐌𝐊𝐢

∗ from {0, 1}256, without knowing
the 𝐊𝐂𝐢, however, 𝐌𝐊𝐢

∗ matches 𝐌𝐊𝐢 with a negligible probability
of 1∕2256. In order to know 𝐌𝐊𝐢, the 𝐀𝐝𝐯𝐜𝐨𝐦 will try to delay the
message sent from the 𝐏𝐮𝐛 to the 𝐁𝐫𝐤 in order to wait for the next
message which contains 𝐊𝐂𝐢 of the previous message, and consequently
reveals 𝐌𝐊𝐢. Likewise, a packet-drop scenario which may occur due to
adversarial presence or network congestion can be critical in PROVE
since it may lead to fictive increment of 𝐂𝐭𝐫 with the purpose of
revealing 𝐌𝐊𝐢 of the previous message. To deal with these adversarial
scenarios, PROVE ensures that the 𝐏𝐮𝐛 reveals the key 𝐊𝐂𝐢 of the
previous message only after the 𝐁𝐫𝐤 has sent an 𝐀𝐜𝐤 message to the
𝐏𝐮𝐛 to confirm the successful storage of the published message in the
log storage 𝐋𝐒. As only PROVE can reveal 𝐊𝐂𝐢, the 𝐏𝐮𝐛’s message
with the attestation result is authenticated and cannot be tampered by
the 𝐀𝐝𝐯𝐜𝐨𝐦. Moreover, to deal with the scenario when the 𝐁𝐫𝐤 does
not send an 𝐀𝐜𝐤, in PROVE the 𝐏𝐮𝐛 can be the subscriber of its own
published messages, so it will get notified when its own published
message has been recorded to 𝐋𝐒 by the 𝐁𝐫𝐤. Additionally, using the
same approach a 𝐏𝐮𝐛 can also detect a forged message to 𝐋𝐒 by a
untrusted 𝐁𝐫𝐤.

Freshness. In order to detect a replay attack, the PROVE protocol
should guarantee freshness of the attestation result. To ensure fresh-
ness, PROVE relies on the recursive nature of the one-way 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧
and the unique incremental counter value 𝐂𝐭𝐫. When an 𝐀𝐝𝐯𝐫𝐞𝐩 sends
an ‘‘old’’, legitimate message 𝐌𝐬𝐠𝑜𝑙𝑑 , it will be stored along with
previous messages in 𝐋𝐒. This message, however, will be identical to
the previous message: 𝐌𝐬𝐠 =𝐌𝐬𝐠𝑜𝑙𝑑 . In a legitimate scenario, the unique
incremental counter 𝐂𝐭𝐫 ensures that the historical messages of a 𝐏𝐮𝐛
are represented as a Directed Acyclic Graph (DAG). The presence of a
repeated 𝐂𝐭𝐫 found in both 𝐌𝐬𝐠𝑜𝑙𝑑 and 𝐌𝐬𝐠, will create a cycle in the
structure of the historical messages, which indicates a replay attack.
Thus, the 𝐀𝐝𝐯𝐫𝐞𝐩 cannot evade detection by sending a message with an
‘‘old’’ 𝐂𝐭𝐫 value.

Unforgeability of 𝐀𝐜𝐤: We say that a signature scheme in PROVE
is unforgeable if no adversary 𝐀𝐝𝐯𝐟𝐨𝐫𝐠𝐞 can forge a 𝐀𝐜𝐤 on a message
𝐌𝐬𝐠. Our unforgeability experiment proceeds: Keys are generated for
the 𝐁𝐫𝐤, and the adversary is given the 𝐁𝐫𝐤 public key. The adversary
is also given access to some corrupt 𝐁𝐫𝐤 oracles. At the end of the
execution, 𝐀𝐝𝐯𝐟𝐨𝐫𝐠𝐞 outputs a tuple (𝑝𝑘∗, 𝑚𝑠𝑔∗, 𝜎∗), where 𝑝𝑘∗ is the
public key to verify 𝜎∗. The experiment outcome can be analyzed as
follows:

The experiment returns 0 if:

• If 𝜎∗ is not a valid signature on 𝐌𝐬𝐠∗.
• If 𝐁𝐫𝐤∗ has been corrupted, i.e. the key 𝑠𝑘∗ that corresponds to
𝑝𝑘∗ has been extracted, the experiment returns 0.

If there exists a 𝐁𝐫𝐤∗ with a public key 𝑝𝑘∗ that has never acknowledged
𝐌𝐬𝐠∗, yet (𝐌𝐬𝐠∗,𝐀𝐜𝐤∗) is found in the database, the experiment returns
1.

Theorem 1. Our protocol is unforgeable if the signature scheme used to
sign 𝐀𝐜𝐤 is EU-CMA (Existential Unforgeability under a Chosen Message
Attack) secure.

Proof. We recall the definition of the EU-CMA security of a digital
signature scheme given in [64]. The security of a signature scheme 𝑆𝐼𝐺
is defined through game 𝐸𝑥𝑝𝑒𝑢𝑐𝑚𝑎, which is run between a simulator 𝑆
and an adversary 𝐀𝐝𝐯𝐟𝐨𝐫𝐠𝐞. In this game a pair of signing and verifica-
tion keys (𝑠𝑘, 𝑝𝑘) is generated by running the key generation algorithm
𝐾𝐺. Then, 𝐀𝐝𝐯𝐟𝐨𝐫𝐠𝐞 is given the verification key 𝑝𝑘 and provided with
access to a signing oracle 𝑠𝑖𝑔𝑠𝑘. For each message 𝐌𝐬𝐠 that 𝐀𝐝𝐯𝐟𝐨𝐫𝐠𝐞
10

sends to the oracle via 𝑆, the oracle responds with a signature 𝐀𝐜𝐤 = p
𝑠𝑖𝑔𝑠𝑘(𝐌𝐬𝐠). Eventually, 𝐀𝐝𝐯𝐟𝐨𝐫𝐠𝐞 terminates its execution and outputs
a message and signature pair (𝑝𝑘,𝐀𝐜𝐤,𝐌𝐬𝐠). The experiment returns
1 if 𝐀𝐜𝐤 is a valid signature on 𝐌𝐬𝐠 under 𝑝𝑘, i.e., 𝑣𝑒𝑟𝑝𝑘(𝐀𝐜𝐤,𝐌𝐬𝐠) =
𝑎𝑐𝑐𝑒𝑝𝑡, and the message 𝐌𝐬𝐠 was never queried to the signing oracle.
The experiment returns 0 otherwise. The advantage of the adversary
𝐀𝐝𝐯𝐟𝐨𝐫𝐠𝐞 in breaking EU-CMA for the signature scheme 𝑆𝐼𝐺 is defined
as:

Advantage𝑒𝑢𝑐𝑚𝑎 = Pr[𝐸𝑥𝑝𝑒𝑢𝑐𝑚𝑎 = 1].

The scheme 𝑆𝐼𝐺 is EU-CMA secure if for any probabilistic polynomial
time adversary 𝐀𝐝𝐯𝐟𝐨𝐫𝐠𝐞, its advantage Advantage𝑒𝑢𝑐𝑚𝑎 is a negligible
unction. □

. Discussion

In the following, we discuss some alternative approaches regarding
ROVE’s assumptions and design choices.
Length of the key chain. For simplicity, we assume that each 𝐏𝐮𝐛

n PROVE stores the 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 in secure storage. However, when a
𝐮𝐛 runs on a low-end embedded device (for example an IETF class
device [65]) with limited storage, the 𝐏𝐮𝐛 can store only 𝐊𝐂𝐍

nd compute any other 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 value on demand. In practice, a
ybrid solution, in which 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 is stored partially and the missing
alues are computed, allows to minimize the memory usage with a
inimal recomputation overhead. The work in [57] highlights that a

ne-way chain with 𝐍 elements only requires 𝑙𝑜𝑔(𝑁) storage and 𝑙𝑜𝑔(𝑁)
omputation to access an element of 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧. Alternatively, 𝐏𝐮𝐛 can
tore the encrypted 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 in the untrusted storage and compute any
ther 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 value on demand.
On-demand attestation. While PROVE is initiated on each event

riggering to guarantee continuous monitoring design, PROVE could
lso provide on-demand RA. To conduct an on-demand RA, a 𝐁𝐫𝐤
nitiates the attestation by sending a 𝐍𝐨𝐧𝐜𝐞 to the 𝐏𝐮𝐛. In this way, a
nique and unpredictable 𝐍𝐨𝐧𝐜𝐞 preserves the freshness of the attesta-
ion which, in the continuous monitoring approach, is achieved by the
ncremental counter 𝐂𝐭𝐫. Upon receiving the 𝐍𝐨𝐧𝐜𝐞, the 𝐏𝐮𝐛 performs
ttestation, combines the 𝐀𝐭𝐭𝐑𝐞𝐬 with the 𝐍𝐨𝐧𝐜𝐞 , computes the MAC
sing the 𝐊𝐞𝐲𝐂𝐡𝐚𝐢𝐧 approach, and sends the message to the 𝐁𝐫𝐤. The
𝐫𝐤 uploads the message to the 𝐋𝐒 once it receives it from the 𝐏𝐮𝐛.
he 𝐁𝐫𝐤 then broadcasts the 𝐍𝐨𝐧𝐜𝐞 to the subscribers such that any
𝐮𝐛 can validate the attestation result using the 𝐍𝐨𝐧𝐜𝐞.
Choice of cryptographic algorithms. In this work, Xoodyak has

een chosen as algorithm in PROVE+. This choice could have been any
ther algorithm which facilitates both hashing and MAC generation.
he main idea in PROVE+ is that one single algorithm could be more
conomical than implementing two different dedicated algorithms.
No tolerance for packet drop. One important aspect of message

ommunication between 𝐏𝐮𝐛 and 𝐁𝐫𝐤 is the packet-drop scenario.
nfortunately, most of the RA literature overlooks the scenario where
packet-drop may occur due to, e.g., adversarial presence or network

ongestion. However, in real network systems we should consider the
acket-drop scenario. As 𝐏𝐮𝐛 sends the 𝐀𝐭𝐭𝐑𝐞𝐬 with the data, it is
ndeed critical for the 𝐀𝐭𝐭𝐑𝐞𝐬 to be stored in 𝐋𝐒. To address this
oncern, we employ two techniques: (1) a secure communication can
e established between a 𝐏𝐮𝐛 and 𝐁𝐫𝐤. Thus, when a 𝐁𝐫𝐤 uploads the
eceived 𝐀𝐭𝐭𝐑𝐞𝐬 to the 𝐋𝐒, it sends an ‘‘ack’’ message to the 𝐏𝐮𝐛, which
uarantees the successful upload of the 𝐀𝐭𝐭𝐑𝐞𝐬 to the 𝐋𝐒; (2) a 𝐏𝐮𝐛 can
e the subscriber of its own published messages, so it will get notified
hen its own published message has been recorded to 𝐋𝐒 by the 𝐁𝐫𝐤.
Broker architecture. Even though PROVE illustrates the 𝐁𝐫𝐤 as a

entralized entity, in practice, the centralized broker can be replaced by
network of brokers that cooperate to offer the desired functionality.

uch a distributed implementation can improve the resilience and
calability. Taking this a step further, it is possible to have a fully peer-
o-peer implementation of a publish–subscribe system. This is a very

opular implementation strategy for recent systems. In this approach,



Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.
Table A.5
Security predicates defined in PROVE.

Predicate Predicate meaning

𝐂𝐫𝐲𝐩𝐭𝐨𝐒𝐚𝐟𝐞(TC) Trusted Component TC uses secure cryptographic primitives
𝐏𝐡𝐲𝐒𝐞𝐜𝐮𝐫𝐞(TC) Trusted Component TC is physically secure
𝐒𝐞𝐜𝐮𝐫𝐞𝐌𝐞𝐦𝑤𝑟𝑖𝑡𝑒(data) Data is stored in a secure memory region that can only be updated by PROVE
𝐓𝐫𝐮𝐬𝐭𝐞𝐝𝐸𝑣𝑒𝑛𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒(e) The event capture 𝑒 that triggers the attestation is acting in a trustworthy manner
𝐀𝐮𝐭𝐡𝐞𝐧𝐭𝐢𝐜𝐢𝐭𝐲𝑀𝐴𝐶 (𝐏𝐮𝐛) Authenticity of 𝐏𝐮𝐛 (e.g., MAC is generated securely from the one-way keychain)
𝐓𝐫𝐮𝐬𝐭𝐞𝐝𝐶𝑜𝑚𝑚(𝐏𝐮𝐛, 𝐁𝐫𝐤) The communication between 𝐏𝐮𝐛 and 𝐁𝐫𝐤 is trusted
Table A.6
High-level axioms in PROVE.

Axioms

Ax1 ∀𝑅 [𝐏𝐮𝐛 ← 𝑆], 𝐏𝐡𝐲𝐒𝐞𝐜𝐮𝐫𝐞(TC) ∧ 𝐂𝐫𝐲𝐩𝐭𝐨𝐒𝐚𝐟𝐞(TC) ∧ 𝐓𝐫𝐮𝐬𝐭𝐞𝐝𝐸𝑣𝑒𝑛𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒(ei) ⇔ 𝐈𝐧𝐭𝐞𝐠𝐫𝐢𝐭𝐲𝐶𝑜𝑑𝑒(𝐏𝐮𝐛)

In a publish/subscribe network 𝑆, a Publisher 𝐏𝐮𝐛, hosting the trusted component TC, guarantees the code integrity of
the underlying software if and only if TC is physically secure, has crypto safety, and the event triggering 𝑒𝑖 is captured
by a secure hardware module.

Ax2 ∀𝑅 [𝐏𝐮𝐛 ← 𝑆] ,∀𝑖 ∈ (1..𝑁),
𝐏𝐡𝐲𝐒𝐞𝐜𝐮𝐫𝐞(TC) ∧ 𝐓𝐫𝐮𝐬𝐭𝐞𝐝𝐸𝑣𝑒𝑛𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒(ei) ∧ 𝐒𝐞𝐜𝐮𝐫𝐞𝐌𝐞𝐦𝑤𝑟𝑖𝑡𝑒(𝐂𝐭𝐫𝑖) ⇔ 𝐀𝐮𝐭𝐡𝐞𝐧𝐭𝐢𝐜𝐚𝐭𝐢𝐨𝐧𝐴𝑡𝑡𝑒𝑠𝑡(𝐏𝐮𝐛)

In a publish/subscribe network 𝑆, a Publisher 𝐏𝐮𝐛, hosting the trusted component TC, guarantees
the authenticated attestation result if and only if TC is physically secure, the event triggering 𝑒𝑖 is captured
by a secure hardware module, and the event counter 𝐂𝐭𝐫𝑖 can be incremented only by the PROVE protocol.

Ax3 ∀𝑅 [𝐏𝐮𝐛 ← 𝑆] ,∀𝑖 ∈ (1..𝑁),
𝐏𝐡𝐲𝐒𝐞𝐜𝐮𝐫𝐞(TC) ∧ 𝐂𝐫𝐲𝐩𝐭𝐨𝐒𝐚𝐟𝐞(TC) ∧ 𝐓𝐫𝐮𝐬𝐭𝐞𝐝𝐸𝑣𝑒𝑛𝑡𝐶𝑎𝑝𝑡𝑢𝑟𝑒(ei) ∧ 𝐒𝐞𝐜𝐮𝐫𝐞𝐌𝐞𝐦𝑤𝑟𝑖𝑡𝑒(𝐂𝐭𝐫𝑖)
⇔ 𝐓𝐫𝐮𝐬𝐭𝐞𝐝𝐶𝑜𝑚𝑚(𝐏𝐮𝐛)

In a publish/subscribe network 𝑆, a Publisher 𝐏𝐮𝐛, hosting the trusted component TC, guarantees
the integrity of exchanged communication data if and only if TC is physically secure, has crypto safety,
the event triggering 𝑒𝑖 is captured by a secure hardware module, the event counter 𝐂𝐭𝐫𝑖 can be incremented only by PROVE,
and only PROVE can reveal the key of the previous message.
there is no distinction between publishers, subscribers and brokers; all
nodes act as brokers, cooperatively implementing the required event
routing functionality. In this context, the Broker that we have presented
in PROVE is just an example of the Broker functionality which can be
distributed in many brokers or can be embedded in each Publisher. To
develop a solution that has general applicability, the PROVE algorithm
is agnostic from the implementation of Brokers.

10. Conclusions & future work

This paper presents PROVE, a secure, efficient remote attestation
protocol that considers a publish–subscribe network in which untrusted
verifiers (consumers) can attest one or more untrusted provers (publish-
ers). PROVE overcomes the following challenges that are not addressed
by existing state-of-the-art RA mechanisms: (1) it eliminates the need
for pre-shared cryptographic keys between verifiers and provers as well
as the need for public-key cryptography; (2) it allows the public veri-
fiability of the attestation result by untrusted verifiers; (3) it performs
continuous attestation in a publish/subscribe IoT network. We show the
performance of PROVE via realistic simulations and hardware proof-of-
concept implementations. The results confirm both the practicality and
efficiency of PROVE.

As future work, we will explore ways to reduce the communication
complexity of the proposed scheme by allowing packet-loss. We will
also investigate techniques to efficiently and securely store consider-
ably large key chains for prolonged continuous operation. Finally we
plan to implement a Blockchain based solution to replace the secure
𝐋𝐒.

CRediT authorship contribution statement

Edlira Dushku: Conception and design of study, Writing – original
draft, Writing – review & editing. Md. Masoom Rabbani: Conception
and design of study, Acquisition of data, Analysis and/or interpreta-
11

tion of data, Writing – original draft, Writing – review & editing. Jo
Vliegen: Acquisition of data, Analysis and/or interpretation of data,
Writing – original draft, Writing – review & editing. An Braeken:
Conception and design of study, Writing – original draft, Writing –
review & editing. Nele Mentens: Conception and design of study,
Analysis and/or interpretation of data, Writing – original draft, Writing
– review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Edlira Dushku reports financial support was provided by AS-
SURED project funded by the EU’s Horizon 2020 programme under
Grant Agreement number 952697. MD Masoom Rabbani reports finan-
cial support was provided by CyberSecurity Research Flanders with
reference number VR20192203.

Data availability

Data will be made available on request.

Acknowledgment

This work is supported by CyberSecurity Research Flanders, Bel-
gium with reference number VR20192203. All authors approved ver-
sion of the manuscript to be published.

Appendix A. High-level security sketch

See Tables A.5 and A.6

References

[1] MQTT. 2014, http://mqtt.org/. [Online accessed 31 May 2022].
[2] DDS. 2015, https://www.omg.org/spec/DDS/1.4/. [Online accessed 31 May
2022].

http://mqtt.org/
https://www.omg.org/spec/DDS/1.4/


Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.
[3] OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0. 2012, http://
docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html. [On-
line accessed 31 May 2022].

[4] Google Home. A home that takes care of tasks. 2022, https://home.google.com/.
[Online accessed 31 May 2022].

[5] AWS IoT Core. Easily and securely connect devices to the cloud. 2022, https:
//aws.amazon.com/iot-core/. [Online accessed 31 May 2022].

[6] AWS IoT Greengrass. Build intelligent IoT devices faster. 2022, https://aws.
amazon.com/greengrass/. [Online accessed 31 May 2022].

[7] Ledwaba LPI, Hancke GP, Venter HS, Isaac SJ. Performance costs of software
cryptography in securing new-generation internet of energy endpoint devices.
IEEE Access 2018;6:9303–23. http://dx.doi.org/10.1109/ACCESS.2018.2793301.

[8] Petzi L, Yahya AEB, Dmitrienko A, Tsudik G, Prantl T, Kounev S. SCRAPS:
Scalable collective remote attestation for Pub-Sub IoT networks with untrusted
proxy verifier. In: 31st USENIX security symposium. Boston, MA: USENIX
Association; 2022, URL https://www.usenix.org/conference/usenixsecurity22/
presentation/petzi.

[9] Tan H, Hu W, Jha S. A remote attestation protocol with trusted platform modules
TPMs in wireless sensor networks. Sec Commun Netw 2015;8(13):2171–88.

[10] Sailer R, Zhang X, Jaeger T, van Doorn L. Design and implementation of a TCG-
based integrity measurement architecture. In: Proceedings of the 13th conference
on USENIX security symposium. 2004.

[11] Noorman J, Agten P, Daniels W, Strackx R, Herrewege AV, Huygens C, et al.
Sancus: Low-cost trustworthy extensible networked devices with a zero-software
trusted computing base. In: 22nd USENIX security symposium. Washington, D.C.:
USENIX Association; 2013, p. 479–98, URL https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/noorman.

[12] Noorman J, Bulck JV, Mühlberg JT, Piessens F, Maene P, Preneel B, et al.
Sancus 2.0: A low-cost security architecture for IoT devices. ACM Trans Priv
Secur 2017;20(3). http://dx.doi.org/10.1145/3079763.

[13] Maene P, Götzfried J, de Clercq R, Müller T, Freiling F, Verbauwhede I.
Hardware-based trusted computing architectures for isolation and attestation.
IEEE Trans Comput 2018;67(3):361–74. http://dx.doi.org/10.1109/TC.2017.
2647955.

[14] Steiner RV, Lupu E. Attestation in wireless sensor networks: A survey. ACM
Comput Surv 2016;49(3). http://dx.doi.org/10.1145/2988546.

[15] Ankergård SFJJ, Dushku E, Dragoni N. State-of-the-art software-based remote
attestation: Opportunities and open issues for Internet of Things. Sensors
2021;21(5).

[16] Seshadri A, Perrig A, Van Doorn L, Khosla P. SWATT: Software-based attestation
for embedded devices. In: Proceedings of the 2004 IEEE symposium on security
& privacy. 2004, p. 272–82.

[17] Seshadri A, Luk M, Perrig A, van Doom L, Khosla PK. Pioneer: Verifying
code integrity and enforcing untampered code execution on legacy systems. In:
Malware detection. 2007, p. 253–89.

[18] Yang X, He X, Yu W, Lin J, Li R, Yang Q, et al. Towards a low-cost remote
memory attestation for the smart grid. Sensors 2015;15(8):20799–824. http:
//dx.doi.org/10.3390/s150820799.

[19] AbuHmed T, Nyamaa N, Nyang D. Software-based remote code attestation in
wireless sensor network. In: GLOBECOM 2009 - 2009 IEEE global telecommu-
nications conference. 2009, p. 1–8. http://dx.doi.org/10.1109/GLOCOM.2009.
5425280.

[20] Choi Y-G, Kang J, Nyang D. Proactive code verification protocol in wireless
sensor network. In: Gervasi O, Gavrilova ML, editors. Computational science
and its applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007, p.
1085–96.

[21] Yang Y, Wang X, Zhu S, Cao G. Distributed software-based attestation for node
compromise detection in sensor networks. In: 2007 26th IEEE international
symposium on reliable distributed systems. 2007, p. 219–30. http://dx.doi.org/
10.1109/SRDS.2007.31.

[22] Ammar M, Crispo B, Tsudik G. SIMPLE: A remote attestation approach for
resource-constrained IoT devices. In: 2020 ACM/IEEE 11th international con-
ference on cyber-physical systems. 2020, p. 247–58. http://dx.doi.org/10.1109/
ICCPS48487.2020.00036.

[23] Surminski S, Niesler C, Brasser F, Davi L, Sadeghi A-R. RealSWATT: Remote
software-based attestation for embedded devices under realtime constraints. In:
Proceedings of the 2021 ACM SIGSAC conference on computer and communica-
tions security. New York, NY, USA: Association for Computing Machinery; 2021,
p. 2890–905. http://dx.doi.org/10.1145/3460120.3484788.

[24] Eldefrawy K, Tsudik G, Francillon A, Perito D. SMART: Secure and minimal
architecture for (establishing dynamic) root of trust. In: Proceedings of the 19th
annual network & distributed system security symposium. 2012.

[25] Koeberl P, Schulz S, Sadeghi A-R, Varadharajan V. TrustLite: A security architec-
ture for tiny embedded devices. In: Proceedings of the 9th European conference
on computer systems. 2014, p. 1–14.

[26] Brasser F, El Mahjoub B, Sadeghi A-R, Wachsmann C, Koeberl P. TyTAN: tiny
trust anchor for tiny devices. In: Proceedings of the 52nd design automation
conference. 2015, p. 1–6.

[27] Nunes IDO, Eldefrawy K, Rattanavipanon N, Steiner M, Tsudik G. VRASED: A
verified hardware/software co-design for remote attestation. In: 28th USENIX
security symposium. Santa Clara, CA: USENIX Association; 2019, p. 1429–46.
12
[28] Ambrosin M, Conti M, Lazzeretti R, Rabbani MM, Ranise S. Collective remote
attestation at the internet of things scale: State-of-the-art and future challenges.
IEEE Commun Surv Tutor 2020;22(4):2447–61.

[29] Asokan N, Brasser F, Ibrahim A, Sadeghi A-R, Schunter M, Tsudik G, et al. SEDA:
Scalable embedded device attestation. In: Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security. 2015, p. 964–75.

[30] Carpent X, ElDefrawy K, Rattanavipanon N, Tsudik G. LIghtweight Swarm
Attestation: a tale of two LISA-s. In: Proceedings of the 2017 ACM on Asia
conference on computer and communications security. ACM; 2017, p. 86–100.

[31] Rabbani MM, Vliegen J, Winderickx J, Conti M, Mentens N. SHeLA: Scalable
heterogeneous layered attestation. IEEE Internet Things J 2019;6(6):10240–50.

[32] Yan W, Fu A, Mu Y, Zhe X, Yu S, Kuang B. EAPA: Efficient attestation resilient
to physical attacks for IoT devices. In: Proceedings of the 2nd international ACM
workshop on security and privacy for the internet-of-things. ACM; 2019, p. 2–7.

[33] De Oliveira Nunes I, Dessouky G, Ibrahim A, Rattanavipanon N, Sadeghi A-R,
Tsudik G. Towards systematic design of collective remote attestation protocols.
In: 2019 IEEE 39th international conference on distributed computing systems.
2019, p. 1188–98. http://dx.doi.org/10.1109/ICDCS.2019.00120.

[34] Ammar M, Crispo B. WISE: A lightweight intelligent swarm attestation scheme
for the internet of things. ACM Trans Internet Things 2020;1(3). http://dx.doi.
org/10.1145/3386688.

[35] Diop A, Laurent M, Leneutre J, Traoré J. CoRA: A scalable collective remote
attestation protocol for sensor networks. In: Furnell S, Mori P, Weippl ER,
Camp O, editors. Proceedings of the 6th international conference on information
systems security and privacy. SCITEPRESS; 2020, p. 84–95. http://dx.doi.org/
10.5220/0008962700840095.

[36] Mansouri M, Jaballah WB, Önen M, Rabbani MM, Conti M. FADIA: Fairness-
driven collaborative remote attestation. In: Proceedings of the 14th ACM
conference on security and privacy in wireless and mobile networks. 2021, p.
60–71.

[37] Ibrahim A, Sadeghi A-R, Tsudik G, Zeitouni S. DARPA: Device attestation resilient
to physical attacks. In: Proceedings of the 9th ACM conference on security and
privacy in wireless and mobile networks. 2016, p. 171–82.

[38] Kohnhäuser F, Büscher N, Gabmeyer S, Katzenbeisser S. SCAPI: a scalable
attestation protocol to detect software and physical attacks. In: Proceedings of the
10th ACM conference on security and privacy in wireless and mobile networks.
2017, p. 75–86.

[39] Ammar M, Washha M, Ramabhadran GS, Crispo B. SlimIoT: Scalable lightweight
attestation protocol for the internet of things. In: 2018 IEEE conference on
dependable and secure computing. 2018, p. 1–8. http://dx.doi.org/10.1109/
DESEC.2018.8625142.

[40] Abera T, Bahmani R, Brasser F, Ibrahim A, Sadeghi A, Schunter M. DIAT: Data
integrity attestation for resilient collaboration of autonomous system. In: 26th
annual network & distributed system security symposium. 2019.

[41] Ibrahim A, Sadeghi A-R, Tsudik G. US-AID: Unattended scalable attestation of
IoT devices. In: 2018 IEEE 37th symposium on reliable distributed systems. 2018,
p. 21–30.

[42] Kuang B, Fu A, Yu S, Yang G, Su M, Zhang Y. ESDRA: An efficient and secure
distributed remote attestation scheme for IoT swarms. IEEE Internet Things J
2019.

[43] Kohnhäuser F, Büscher N, Katzenbeisser S. A practical attestation protocol for
autonomous embedded systems. In: 2019 IEEE European symposium on security
and privacy. 2019, p. 263–78.

[44] Conti M, Dushku E, Mancini LV. RADIS: Remote attestation of distributed IoT
services. In: 6th IEEE international conference on software defined systems. 2019.

[45] Dushku E, Rabbani MM, Conti M, Mancini LV, Ranise S. SARA: Secure asyn-
chronous remote attestation for IoT systems. IEEE Trans Inf Forensics Secur
2020;15:3123–36.

[46] Halldórsson RM, Dushku E, Dragoni N. ARCADIS: Asynchronous remote control-
flow attestation of distributed IoT services. IEEE Access 2021;9:144880–94.

[47] Ambrosin M, Conti M, Ibrahim A, Neven G, Sadeghi A-R, Schunter M. SANA:
Secure and scalable aggregate network attestation. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. 2016.

[48] Carpent X, Rattanavipanon N, Tsudik G. Remote attestation via self-measurement.
ACM Trans Des Autom Electron Syst 2018;24(1).

[49] Ibrahim A, Sadeghi A-R, Zeitouni S. SeED: Secure non-interactive attestation for
embedded devices. In: Proceedings of the 10th ACM conference on security and
privacy in wireless and mobile networks. 2017, p. 64–74.

[50] Perrig A, Canetti R, Song D, Tygar JD. Efficient and secure source authentication
for multicast. In: In network and distributed system security symposium. 2001,
p. 35–46.

[51] Fiat A, Shamir A. How to prove yourself: Practical solutions to identification and
signature problems. In: Crypto 1986. 1987, p. 186–94.

[52] Shamir A. Identity-based cryptosystems and signature schemes. In: Crypto 1984.
1985, p. 47–53.

[53] Ankergård SFJJ, Dragoni N. PERMANENT: Publicly verifiable remote attesta-
tion for internet of things through blockchain. In: Aïmeur E, et al., editors.
Foundations and Practice of Security. LNCS 13291, Cham: Springer International
Publishing; 2021, p. 1–17.

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://home.google.com/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
http://dx.doi.org/10.1109/ACCESS.2018.2793301
https://www.usenix.org/conference/usenixsecurity22/presentation/petzi
https://www.usenix.org/conference/usenixsecurity22/presentation/petzi
https://www.usenix.org/conference/usenixsecurity22/presentation/petzi
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb9
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb9
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb9
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb10
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb10
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb10
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb10
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb10
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
http://dx.doi.org/10.1145/3079763
http://dx.doi.org/10.1109/TC.2017.2647955
http://dx.doi.org/10.1109/TC.2017.2647955
http://dx.doi.org/10.1109/TC.2017.2647955
http://dx.doi.org/10.1145/2988546
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb15
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb15
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb15
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb15
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb15
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb16
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb16
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb16
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb16
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb16
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb17
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb17
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb17
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb17
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb17
http://dx.doi.org/10.3390/s150820799
http://dx.doi.org/10.3390/s150820799
http://dx.doi.org/10.3390/s150820799
http://dx.doi.org/10.1109/GLOCOM.2009.5425280
http://dx.doi.org/10.1109/GLOCOM.2009.5425280
http://dx.doi.org/10.1109/GLOCOM.2009.5425280
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb20
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb20
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb20
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb20
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb20
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb20
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb20
http://dx.doi.org/10.1109/SRDS.2007.31
http://dx.doi.org/10.1109/SRDS.2007.31
http://dx.doi.org/10.1109/SRDS.2007.31
http://dx.doi.org/10.1109/ICCPS48487.2020.00036
http://dx.doi.org/10.1109/ICCPS48487.2020.00036
http://dx.doi.org/10.1109/ICCPS48487.2020.00036
http://dx.doi.org/10.1145/3460120.3484788
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb24
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb24
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb24
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb24
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb24
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb25
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb25
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb25
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb25
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb25
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb26
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb26
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb26
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb26
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb26
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb27
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb27
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb27
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb27
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb27
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb28
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb28
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb28
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb28
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb28
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb29
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb29
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb29
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb29
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb29
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb30
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb30
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb30
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb30
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb30
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb31
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb31
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb31
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb32
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb32
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb32
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb32
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb32
http://dx.doi.org/10.1109/ICDCS.2019.00120
http://dx.doi.org/10.1145/3386688
http://dx.doi.org/10.1145/3386688
http://dx.doi.org/10.1145/3386688
http://dx.doi.org/10.5220/0008962700840095
http://dx.doi.org/10.5220/0008962700840095
http://dx.doi.org/10.5220/0008962700840095
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb36
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb36
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb36
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb36
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb36
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb36
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb36
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb37
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb37
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb37
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb37
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb37
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb38
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb38
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb38
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb38
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb38
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb38
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb38
http://dx.doi.org/10.1109/DESEC.2018.8625142
http://dx.doi.org/10.1109/DESEC.2018.8625142
http://dx.doi.org/10.1109/DESEC.2018.8625142
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb40
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb40
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb40
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb40
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb40
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb41
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb41
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb41
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb41
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb41
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb42
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb42
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb42
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb42
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb42
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb43
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb43
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb43
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb43
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb43
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb44
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb44
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb44
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb45
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb45
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb45
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb45
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb45
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb46
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb46
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb46
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb47
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb47
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb47
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb47
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb47
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb48
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb48
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb48
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb49
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb49
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb49
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb49
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb49
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb50
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb50
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb50
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb50
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb50
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb51
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb51
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb51
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb52
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb52
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb52
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb53
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb53
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb53
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb53
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb53
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb53
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb53


Journal of Information Security and Applications 75 (2023) 103448E. Dushku et al.
[54] Lamport L. Password authentication with insecure communication. Commun
ACM 1981;24(11):770–2.

[55] Haller N. The S/KEY one-time password system. In: In proceedings of the internet
society symposium on network and distributed systems. 1994, p. 151–7.

[56] Crosby SA, Wallach DS. Efficient data structures for tamper-evident logging. In:
Proceedings of the 18th conference on USENIX security symposium. USENIX
Association; 2009, p. 317–34.

[57] Coppersmith D, Jakobsson M. Almost optimal hash sequence traversal. In:
Financial cryptography. Lecture notes in computer science, 2002.

[58] Daemen J, Hoffert S, Peeters M, Van Assche G, Van Keer R. Xoodyak, a
lightweight cryptographic scheme. IACR Trans Symmetric Cryptol 2020;2020:60–
87, URL https://tosc.iacr.org/index.php/ToSC/article/view/8618.

[59] Instant contiki. 2017, http://www.contiki-os.org/start.html. [Online accessed 31
May 2022].
13
[60] Moteiv Corporation. Tmote sky details. 2006, http://www.snm.ethz.ch/snmwiki/
pub/uploads/Projects/tmote_sky_datasheet.pdf.

[61] Ambrosin M, Conti M, Lazzeretti R, Rabbani MM, Ranise S. PADS: Practical
attestation for highly dynamic swarm topologies. In: 2018 international workshop
on secure internet of things. 2018, p. 18–27.

[62] Meier S. Advancing automated security protocol verification [Ph.D. thesis], 2013.
[63] Meier S, Schmidt B, Cremers C, Basin D. The TAMARIN prover for the symbolic

analysis of security protocols. In: International conference on computer aided
verification. Springer; 2013, p. 696–701.

[64] Goldwasser S, Micali S, Rivest RL. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J Comput 1988;17(2):281–308.

[65] Bormann C, Ersue M, Keranen A. Terminology for constrained-node networks.
RFC 7228, 2014, http://dx.doi.org/10.17487/RFC7228, https://www.rfc-editor.
org/info/rfc7228.

http://refhub.elsevier.com/S2214-2126(23)00032-7/sb54
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb54
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb54
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb55
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb55
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb55
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb56
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb56
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb56
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb56
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb56
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb57
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb57
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb57
https://tosc.iacr.org/index.php/ToSC/article/view/8618
http://www.contiki-os.org/start.html
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote_sky_datasheet.pdf
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb61
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb61
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb61
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb61
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb61
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb62
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb63
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb63
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb63
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb63
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb63
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb64
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb64
http://refhub.elsevier.com/S2214-2126(23)00032-7/sb64
http://dx.doi.org/10.17487/RFC7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228

	PROVE: Provable remote attestation for public verifiability
	Introduction
	Related Work
	RA Overview
	Swarm attestation
	Publicly verifiable attestation
	Self-attestation
	Broadcast Authentication
	Identification protocols
	Discussion

	Problem Setting
	Preliminaries
	PROVE: Provable Remote Attestation for Public Verifiability
	System Model
	Protocol Overview
	Adversary Model
	Security Requirements

	Protocol details
	Bootstrap Phase
	Attestation Phase
	Verification Phase

	Evaluation
	Hardware PoC Implementations
	PoC Results — Resources
	PoC Results — Timing
	PROVE vs PROVE+

	Network Simulation
	Computation Cost
	Memory Cost
	Communication Cost
	Runtime


	Security Analysis
	Discussion
	Conclusions & Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	Appendix A. High-level Security Sketch
	References


