1 A vision for safer food contact materials: public health concerns as

2 drivers for improved testing

3 Jane Muncke^{a*}, Anna-Maria Andersson^b, Thomas Backhaus^c, Scott M.

4 Belcher^d, Justin M. Boucher^a, Bethanie Carney Almroth^c, Terrence J.

5 Collins^e, Birgit Geueke^a, Ksenia J. Groh^f, Jerrold J. Heindel^g, Frank A. von

6 Hippel^h, Juliette Leglerⁱ, Maricel V. Maffini^j, Olwenn V. Martin^k, John

7 Peterson Myers^{e,1}, Angel Nadal^m, Cristina Nerinⁿ, Ana M. Soto^o, Leonardo

8 Trasande^p, Laura N. Vandenberg^q, Martin Wagner^r, Lisa Zimmermann^a, R.

9 Thomas Zoeller^q and Martin Scheringer^{s*}

10 *aFood Packaging Forum Foundation, Zurich, Switzerland; bDept. of Growth and*

11 Reproduction, Rigshospitalet and Centre for Research and Research Training in Male

12 Reproduction and Child Health (EDMaRC), Copenhagen University Hospital –

13 Rigshospitalet, Copenhagen, Denmark, Copenhagen, Denmark; ^cDept of Biological and

14 Environmental Sciences, University of Gothenburg, Sweden; ^dDept. of Biological

15 Sciences, North Carolina State University, Raleigh, NC, USA; ^eDept. of Chemistry,

16 *Carnegie Mellon University, PA, USA; ^fDepartment of Environmental Toxicology,*

17 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf,

18 Switzerland; ⁸Healthy Environment and Endocrine Disruptor Strategies, Durham, NC,

19 USA; ^hMel & Enid Zuckerman College of Public Health, University of Arizona, AZ,

20 USA; ⁱDept. of Population Health Sciences, Faculty of Veterinary Medicine, University

21 of Utrecht, Netherlands; ^jIndependent consultant, Frederick, MD, USA; ^kPlastic Waste

22 Innovation Hub, Department of Arts and Science, University College London, England,

23 UK; ¹Environmental Health Sciences, Charlottesville, VA, USA; ^mIDiBE and

24 CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain; ⁿDept. of

25 Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain; ^oDepartment of

26 Immunology, Tufts University School of Medicine, Boston, MA, USA and Centre

27 Cavaillès, Ecole Normale Supérieure, Paris, France; ^pCollege of Global Public Health

28 and Grossman School of Medicine and Wagner School of Public Service, New York

29 University, New York, NY, USA; ^{*q*}Department of Environmental Health Sciences,

30 School of Public Health & Health Sciences, University of Massachusetts Amherst,

31 Amherst, MA, USA; 'Dept. of Biology, Faculty of Natural Sciences, Norwegian

- 32 University of Science and Technology, Trondheim, Norway; ^sEnvironmental Chemistry
- 33 and Modelling, RECETOX, Masaryk University, Brno, Czech Republic and Department
- 34 of Environmental System Sciences, ETH Zurich, Switzerland
- 35 *corresponding authors: jane.muncke@fp-forum.org; scheringer@usys.ethz.ch
- 36

37 Abbreviations

- 38 AOP Adverse Outcome Pathway
- 39 BPA bisphenol A
- 40 CVD Cardiovascular Disease
- 41 FCC Food Contact Chemical
- 42 NCD Non-Communicable Disease
- 43 NIAS Non-Intentionally Added Substance
- 44 PFAS Per- and polyfluoroalkyl Substances
- 45 PFOA perfluorooctanoic acid
- 46 SCOD Six Clusters of Disease

A vision for safer food contact materials: public health concerns as 48 drivers for improved testing 49

50	Food contact materials (FCMs) and food contact articles are ubiquitous in today's
51	globalized food system. Chemicals migrate from FCMs into foodstuffs, so called
52	food contact chemicals (FCCs), but current regulatory requirements do not
53	sufficiently protect public health from hazardous FCCs because only individual
54	substances used to make FCMs are tested and mostly only for genotoxicity while
55	endocrine disruption and other hazard properties are disregarded. Indeed, FCMs
56	are a known source of a wide range of hazardous chemicals, and they likely
57	contribute to highly prevalent non-communicable diseases. FCMs can also
58	include non-intentionally added substances (NIAS), which often are unknown
59	and therefore not subject to risk assessment. To address these important
60	shortcomings, we outline how the safety of FCMs may be improved by (1)
61	testing the overall migrate, including (unknown) NIAS, of finished food contact
62	articles, and (2) expanding toxicological testing beyond genotoxicity to multiple
63	endpoints associated with non-communicable diseases relevant to human health.
64	To identify mechanistic endpoints for testing, we group chronic health outcomes
65	associated with chemical exposure into Six Clusters of Disease (SCOD) and we
66	propose that finished food contact articles should be tested for their impacts on
67	these SCOD. Research should focus on developing robust, relevant, and sensitive
68	in-vitro assays based on mechanistic information linked to the SCOD, e.g.,
69	through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants.
70	Implementing this vision will improve prevention of chronic diseases that are
71	associated with hazardous chemical exposures, including from FCMs.
72	Keywords: food packaging; hazard assessment; chronic disease; chemical safety

Keywords: food packaging; hazard assessment; chronic disease; chemical safety

73 **1. Introduction**

74 In today's globalized food system, food contact materials (FCMs) and food 75 contact articles (Fig. 1) such as food packaging, tableware, and food processing 76 equipment are ubiquitous, especially those made of plastic (Chakori et al. 2021; Poças 77 et al. 2009). This increases exposures to food contact chemicals (FCCs) migrating from 78 FCMs (Biryol et al. 2017; Koch and Calafat 2009; Qian et al. 2018). This widespread, 79 continuous exposure to a wide range of synthetic chemicals requires a more stringent 80 safety assessment of FCMs than the current approaches used in low-, middle- and high-81 income countries (Neltner et al. 2013a; Maffini et al. 2013; Alger et al. 2013; Grob et al. 82 2006; Muncke et al. 2017).

83 [Figure 1 near here]

84 FCMs have been studied for over 50 years and are a known source of chemicals 85 that migrate into foodstuffs (Castle et al. 1989; Bradley et al. 2008; Dionisi and Oldring 86 2002; Jickells et al. 1993; Sanchis, Yusà, and Coscollà 2017; Nerin and Asensio 2007; 87 Geueke et al. 2022; Tsochatzis et al. 2021; Oldring et al. 2014). Numerous FCCs, either 88 intentionally used in the manufacture of FCMs or non-intentionally added substances 89 (NIAS) that are present in the finished food contact article and that migrate into 90 foodstuffs (Nerin et al. 2013; Qian et al. 2018; Tisler and Christensen 2022), are known 91 to be hazardous and implicated with adverse human health impacts (Zimmermann et al. 92 2022; Groh et al. 2021; Van Bossuyt et al. 2019, 2016; Souton et al. 2017; Bengtstrom 93 et al. 2016; Symeonides et al. 2021).

However, the current approach to chemical risk assessment for FCMs is largely focused on assessing genotoxicity of single substances used to manufacture FCMs and therefore fails to account for other highly relevant mechanisms of toxicity that are of equal concern as genotoxicity (Muncke et al. 2017) and, what is more, the current

98	approach does not assess NIAS that also migrate from FCMs (Fig. 2) (Muncke et al.
99	2020; Geueke et al. 2022). Addressing both issues, the limited scope of toxicity testing
100	as well as the lack of testing for all migrating FCCs, is necessary to protect public
101	health, and it can be done in a cost-efficient way.

102 [Figure 2 near here]

Indeed, non-cancer non-communicable diseases (NCDs) of increasing
prevalence in the global human population have been associated with several widely
used FCCs, such as bisphenol A (BPA), bisphenol F (BPF), perchlorate, and di(2-ethyl
hexyl) phthalate (DEHP), to name a few. Given that humans are in daily contact with
FCMs, those materials are likely a relevant exposure source of hazardous chemicals that
contribute to various NCDs.

109 In this article, we outline an improved assessment scheme for hazard 110 identification of FCCs that captures all exposure-relevant chemicals (known as the 111 overall migrate, i.e., all chemicals migrating as a mixture from finished food contact 112 articles into foodstuffs) including (unknown) NIAS, and we present a vision for 113 assessing the safety of FCMs that addresses biological effects linked to the most 114 prevalent NCDs (Muncke 2021; Zare Jeddi et al. 2021). These include heart disease, 115 stroke, cancer, diabetes, reproductive disorders, immunological disorders, and several 116 neurological conditions. We provide guidance on research and policy actions that 117 should be developed to protect the public from avoidable chronic chemical exposures originating from FCMs and finished food contact articles. 118

119 **2. Problem set-up: Shortcomings of the current approach**

120 2.1 Non-communicable diseases are increasingly prevalent and associated with 121 chemical exposures

122 NCDs are a significant contributor to global mortality (WHO 2018). However, 123 the impact of NCDs is far greater than mortality alone, especially in low- and middle-124 income countries where health care is often limited compared to high-income countries. 125 Both mortality and morbidity of selected NCDs have increased substantially over the 126 last 30 years. Premature deaths (<70 years) are primarily associated with cardiovascular 127 disease (17.7 million deaths per year, accounting for 45% of all NCD deaths), cancer 128 (8.8 million deaths per year, 22% of all NCD deaths), chronic respiratory disease (3.9 129 million deaths per year, 10% of all NCD deaths) and diabetes (1.6 million deaths per 130 year, 4% of all NCD deaths) (WHO 2018). Expressed in Disability-Adjusted Life 131 Years, cardiovascular diseases have increased by a factor of 1.4 from 1990 to 2017, 132 neoplasms by a factor of 1.5, and diabetes, urogenital, blood and endocrine diseases by 133 a factor of 1.6 (from 1990 to 2016) (Roser, Ritchie, and Spooner 2021) (Fig. S1). 134 Furthermore, among reproductive-age women and men, infertility is now the most 135 prevalent chronic disease (WHO 2020). Importantly, NCDs incur significant human 136 suffering in addition to their estimated economic costs (Kassotis et al. 2020; Attina et al. 137 2016; Trasande et al. 2015; Trasande et al. 2016; Obsekov, Kahn, and Trasande 2022), 138 which further stresses the need for urgent action towards prevention of morbidities 139 associated with NCDs.

Chemical exposures are an important contributor to NCDs, especially when they
occur during sensitive stages such as early life, or persist over extended periods of time.
Several well-studied types of chemicals such as toxic metals, halogenated aromatics,

143 and some pesticides (Bergman et al. 2013; Rojas-Rueda et al. 2021), as well as some 144 members of the endocrine disrupting compounds (Gore et al. 2015; Goralczyk 2021; 145 Demeneix and Slama 2019; Tanner et al. 2020; Chamorro-Garcia et al. 2017) are 146 associated with NCDs such as brain-related disorders, cancers, metabolic disorders, 147 reproductive disorders and cardiovascular disease. Specific FCCs such as BPA and 148 several members of the ortho-phthalates group are associated with NCDs such as heart 149 disease, diabetes, and some forms of cancer (Martínez-Ibarra et al. 2021; Svensson et al. 150 2021) (Table 1). Further, the effects of chemical exposures on risk of NCDs are 151 complex and multifaceted, with some outcomes occurring across generations through 152 transgenerational inheritance (Walker et al. 2018; Feil and Fraga 2012; Chamorro-153 Garcia et al. 2017). It is also clear that these effects are not limited to laboratory 154 animals, as mixtures of chemicals including FCCs have been associated with adverse 155 health outcomes in prenatally exposed humans (Svensson et al. 2021; Tanner et al. 156 2020; Kortenkamp and Faust 2018; Bornehag et al. 2021; Bornehag et al. 2019; 157 Caporale et al. 2022).

158 [Table 1 near here]

NCDs that are increasingly prevalent in the human population and that are associated with hazardous chemical exposures can be grouped into disease clusters. On this basis, we developed the novel concept of Six Clusters of Disease (SCOD) (Fig. 3). The six clusters are cancers, cardiovascular diseases, reproductive disorders, brainrelated disorders, immunological disorders, and metabolic diseases. The SCOD concept provides a framework for systematically assessing the safety of chemicals in FCMs, with a focus on the prevention of chemical-associated, highly prevalent, and severe

166 NCDs. As such, the SCOD concept expands current efforts for chemical risk assessment167 of FCCs.

168 [Figure 3 near here]

169 2.2 Current risk assessment of food contact chemicals is not sufficiently 170 protective of human health

171 The universe of known FCCs comprises at least 14,153 substances, and for at 172 least 1,822 FCCs empirical evidence for migration from food contact articles and 173 materials is publicly available (Geueke et al. 2022). Evidence of human exposure exists 174 for hundreds of these chemicals (Barr et al. 2003; Calafat et al. 2005; Silva et al. 2004; 175 Caporale et al. 2022; Correia-Sá et al. 2017; Cortéjade et al. 2017; Koch and Calafat 176 2009; Pouech et al. 2015; Rudel et al. 2011; Susmann et al. 2019; Isaacs et al. 2022; 177 Domínguez-Romero et al. 2022; Bil et al. 2023; Jung et al. 2022; Ruan et al. 2019). At 178 least 388 FCCs in use today are known to be carcinogenic, mutagenic or toxic to 179 reproduction, possess endocrine disrupting properties, or have other properties of 180 concern such as persistence, and for at least 127 of these FCCs of concern there is 181 evidence for migration from FCMs into food or food simulant (Zimmermann et al. 182 2022).

Currently, in the United States (US), Canada, the European Union (EU), China and other countries, chemical risk assessment is required for all migrating substances (Fig. 2). In practice, however, it is predominantly the intentionally used substances that are assessed for their risk to human health (Muncke et al. 2017). Humans are exposed to many more FCCs that are non-intentionally added to the finished food contact material or foodstuff. These NIAS include impurities of the starting substances, reaction byproducts, or degradation products of starting substances (like additives) (Horodytska,

190	Cabanes, and Fullana 2020; Qian et al. 2018; Bradley and Coulier 2007; Bauer et al.
191	2019), and also contaminants that accumulate in reused or recycled FCMs (Geueke et
192	al. 2023; Geueke, Groh, and Muncke 2018; Biedermann et al. 2013; Oldring et al.
193	2023). NIAS most often are unidentified, they are common in FCMs with high chemical
194	complexity, and they are likely to be biologically active (Geueke 2018). Under the
195	current chemicals risk assessment paradigm for FCMs, where a chemical's identity
196	must be known, unidentified FCCs cannot be assessed, although, for example, the EU
197	plastic food contact regulation requires the risk assessment of NIAS (EU 2011), and
198	also US FDA's Food Contact Notification has information requirements on impurities
199	and reaction by-products (FDA 2007).
200	A second problem is the lack of testing of substances present in the finished

2020

100

201 food contact material. Several approaches have been developed to approximate the 202 health risks of unknown NIAS (Koster et al. 2015; Koster et al. 2013; Pieke et al. 2017; 203 Taylor and Sapozhnikova 2022; Leeman and Krul 2015; Omer et al. 2019; 204 Sapozhnikova, Nuñez, and Johnston 2021), but these approaches contain substantial 205 uncertainties related to hazard estimation, chemical identification, and quantification 206 (Bschir accepted; Van Bossuyt et al. 2017) because they are based on assumptions that 207 cannot be entirely supported by empirical evidence. For example, generic thresholds for 208 chronic exposures to nongenotoxic carcinogens were derived from testing chemicals at 209 maximum tolerable doses (MTD) and at 1/2 MTD, but it depends on the exact 210 mechanism by which a chemical exerts its toxicity whether a low-dose extrapolation 211 from MTD dosing is appropriate or not (Bailey et al. 2009; Williams et al. 2009).

Finally, because some laws prohibit the use of chemicals that cause cancer in humans or animals, testing methods currently focus on genotoxicity as a proxy for

214 predicting cancer risk (Muncke et al. 2017; Neltner et al. 2013b). But other hazards that 215 are not related to genotoxic effects are currently not systematically assessed, , including 216 outcomes relevant to other chronic NCDs. Thus, there is a need for novel and more 217 robust approaches to more fully evaluate all the relevant hazards to human health 218 associated with FCCs.

219 **3.** Our vision: to make safer food contact materials

220 3.1 Assessing toxicological effects relevant to the Six Clusters of Disease

221 Chronic exposure to hazardous chemicals is a known modifiable risk factor for 222 cancer and reducing exposure to hazardous or untested chemicals from consumer 223 products, including FCMs, is a recommended preventive measure (Madia et al. 2019). It 224 is reasonable to assume that the same holds true for other NCDs that are associated with 225 chemical exposures, especially for endocrine disrupting chemicals (Table 1). Indeed, 226 exposure reductions can lower the incidence of disease (Scholz et al. 2022), for example 227 for neurodevelopmental disorders (Bennett et al. 2016), obesity (Mohanto et al. 2021) or 228 male reproductive disorders (Foresta, Tescari, and Di Nisio 2018).

229 NCDs that are increasingly prevalent in the human population and that are 230 associated with hazardous chemical exposures can be grouped into disease clusters. On 231 this basis, we have developed the novel concept of SCOD (Fig. 3). The SCOD concept 232 emerged from discussions with the Food Packaging Forum's Scientific Advisory Board 233 (SAB) during several meetings between 2016 and 2022. The SCOD concept provides 234 for the first time a framework for systematically assessing the safety of chemicals in 235 FCMs, with a focus on the prevention of chemical-associated, highly prevalent and 236 severe NCDs. As such, the SCOD concept expands current efforts for chemical risk 237 assessment of FCCs beyond cancers induced via a genotoxic mechanism (Beneventi,

238 Tietz, and Merkel 2020; Muncke et al. 2017). For each disease cluster within the 239 SCOD, many widely used FCCs have been associated with relevant diseases in both 240 epidemiology and animal studies (Tables 1 and 2). For some, mechanistic evidence 241 strengthens these associations (Table 2). It is also this mechanistic evidence that 242 provides opportunities to use *in-silico* and *in-vitro* assays to better map toxicity profiles 243 of individual FCCs in finished FCMs, before they are placed on the market, as well as 244 mixtures, extracts and migrates from FCMs and food contact articles. The SCOD 245 provides organizing principles for such an approach.

3.2 Assessing real-life chemical exposures: testing overall migrate from food contact materials

248 All FCCs that are relevant for human exposure should be tested, in other words, 249 FCCs used in the manufacturing of FCMs should be tested as single substances, and the 250 real-life mixture of all migrating FCCs, the overall migrate, should also be tested. If the 251 overall migrate displays positive findings in the in-vitro assays, it should be subjected to 252 non-targeted chemical analyses in order to elucidate its chemical composition, including 253 NIAS, and to identify the substances driving the overall migrate's toxicity (Nerín et al. 254 2022). This combined testing and chemical identification approach could inform the 255 development of safer FCMs by selecting less hazardous ingredients and developing 256 manufacturing processes that generate fewer and less biologically active NIAS. Such an 257 approach would be aligned with the proposed Safe and Sustainable by Design 258 framework included in the EU's Chemicals Strategy for Sustainability (EU 2020a).

The already available as well as emerging *in-vitro* assays provide an opportunity to identify hazardous properties of single substances and of the overall migrate. *In-vitro* test systems are small-scale, often single-cell or small organism systems, for example human cancer cell lines, bacteria, and fungi (e.g. yeast). Other high-throughput
screening assays utilize embryos and larvae from vertebrates such as zebrafish (*Danio rerio*) or African clawed frog (*Xenopus laevis*). These assays can be performed
efficiently both in terms of time and cost and are usually based on mechanistic
pathways (Groh and Muncke 2017; Severin et al. 2017; Akoueson et al. 2023).

267 Test batteries, where several relevant assays are combined simultaneously, can 268 also be operated as high-throughput screening methods such as those developed in 269 Tox21 and ToxCast (Richard et al. 2016; Tice et al. 2013; Filer et al. 2022), which 270 demonstrate the feasibility of this approach. In this way, diverse information about the 271 interaction properties of a single chemical with different biological systems can be 272 generated efficiently, and with lower cost, compared to whole-animal testing used in 273 traditional toxicology. Further, overall migrate, that is, mixtures of chemicals migrating 274 from FCMs, can be tested in such assays, too (Akoueson et al. 2023; Zimmermann et al. 275 2019; Bengtstrom et al. 2016).

276 These assessments should be guided by the SCOD concept. However, gaps exist 277 in the current understanding of molecular pathways related to the SCOD, and these *in*-278 vitro assays remain insufficient to identify the full panoply of potential hazards, 279 especially those mediated by endocrine mechanisms. In-vitro assays included in high-280 throughput test batteries need to be appropriate for predicting relevant human health 281 outcomes; should be demonstrated to be reproducible, sufficiently specific and 282 sensitive; and must be executed transparently (Janesick et al. 2016; Schug et al. 2013). 283 Because of the limited *in-vitro* assays for known pathways and mechanisms of action 284 associated with endocrine disruption and other complex biological cascades, animal 285 testing needs to continue, but actual in-vivo tests will be fewer than in the past. For

example, no current *in-vitro* approaches would have revealed what is now known to be
a feature of some chemical exposures, e.g., transgenerational epigenetic inheritance
(Fitz-James and Cavalli 2022). Acknowledging these and other gaps, the European
Commission is funding EURION, a program to develop new testing and screening
methods (including many *in-vitro* approaches) for identifying endocrine disrupting
chemicals (Street et al. 2021).

292

3.3 Shifting from the status quo to a more comprehensive approach to testing

Within the SCOD, increasingly available mechanistic information enables an understanding of how chemicals contribute to highly prevalent NCDs. Two emerging frameworks are being implemented to describe how chemicals affect complex diseases and to provide a more uniform approach to evaluating mechanistic evidence: the key characteristics concept, and adverse outcome pathways (AOPs). Both offer opportunities to shift from the status quo, modernize hazard assessments, and develop suitable *in-vitro* assays.

300 3.3.1 The Key Characteristics concept: modernizing chemical hazard assessments

301 The key characteristics concept makes use of information about the properties of 302 hazardous chemicals that have empirical evidence linking them causally to relevant 303 apical (disease) endpoints (Smith et al. 2016). The underlying premise is that chemicals 304 that cause the same disease outcomes in whole organisms share molecular properties 305 (i.e., key characteristics) that are relevant for their hazardous properties. The key 306 characteristics for different disease outcomes are hence defined using empirical 307 evidence for well-characterized chemicals, combined from epidemiological, in-vivo and 308 mechanistic studies. These disease-specific key characteristics can then be used to 309 develop mechanistic in-vitro assays to screen chemicals for their propensity to

contribute to different disease clusters and thereby reduce the need for *in-vivo*experiments while still decreasing scientific uncertainty normally associated with *in- vitro* data.

313 The key characteristics were first developed for carcinogens, drawing from 314 existing mechanistic information from thoroughly assessed chemicals that are known to 315 be carcinogenic in humans (Smith et al. 2016; Guyton et al. 2018; Krewski et al. 2019; 316 Al-Zoughool et al. 2019; Guyton and Schubauer-Berigan 2021). Additional key 317 characteristics of other disease-causing chemicals have also been described, such as for 318 hepatotoxicants (Rusyn et al. 2021), endocrine disrupting chemicals (La Merrill et al. 319 2020), female reproductive toxicants (Luderer et al. 2019), male reproductive toxicants 320 (Arzuaga et al. 2019), cardiovascular toxicants (Lind et al. 2021), and immunotoxicants 321 (Germolec et al. 2022). For metabolic toxicants and neurotoxicants, work to describe 322 key characteristics is ongoing. Taken together, the key characteristics approach provides 323 an excellent starting point for the mechanistic understanding of how certain chemicals 324 are associated with NCDs, such as those covered in the SCOD.

325 *3.3.2 Using other mechanistic information to develop suitable in-vitro assays*

326 In addition to the key characteristics, further important mechanistic 327 understanding is becoming available and can be useful to inform development of 328 dedicated in-vitro screening assays for hazard assessments of FCCs. Chemicals exert 329 toxic effects by combinations of many different molecular-level events. These 330 mechanistic events leading to apical endpoints of toxicity can be organized in an AOP 331 (Ankley et al. 2010). Several AOPs relevant to NCDs in the SCOD have been proposed, 332 such as estrogen receptor activation leading to breast cancer (Coumoul et al. 2022) and 333 the upregulation of thyroid hormone catabolism (via activation of hepatic nuclear

receptors) leading to subsequent adverse neurodevelopmental outcomes in mammals,
specifically the loss of cochlear function (Friedman, Crofton, and Gilbert 2022). Thus,
AOPs are an emerging approach to organize mechanistic information so that molecular
or cellular-level targets can be identified for developing *in-vitro* assays that are relevant
to the SCOD.

339 3.3.3 The novel approach: A vision for safer food contact materials

Based on the presumption that mechanistic *in-vitro* testing of chemicals supports
the prevention of NCDs within the SCOD, we propose a novel approach for testing
FCCs that

- 343 (1) covers individual FCCs as well as real-life mixtures, migrating (or extractable)
 344 from finished FCMs, including all known and unknown NIAS,
- 345 (2) assesses the health impacts of FCCs and real-life mixtures with respect to the
 346 most prevalent NCDs in the human population, and
- 347 (3) evaluates effects that are upstream from the disease, relying on mechanistic
 348 information and *in-vitro* screening approaches (wherever possible) to accurately
 349 predict health effects induced by FCCs and migrates.

This shift from current practice to the proposed approach is summarized in Fig. 4, and a detailed overview is provided in Fig. 5. Our approach overcomes the most challenging shortcomings of the current testing paradigm of chemical hazard assessment of FCMs, fully recognizing that to assess all adverse effects of chemicals on biological systems, adequate *in-vivo* testing is required, where additional aspects would be addressed such as metabolic activation, unknown modes of action leading to apical endpoints, and transgenerational effects. However, we also realize that such extensive,

- 357 multigeneration *in-vivo* testing may not always be feasible for various reasons,
- 358 including ethical and practical ones. Therefore, we propose this vision to improve FCC
- testing from the currently too limited scope towards a much more comprehensive yet
- 360 feasible approach that holds promise for better protection of public health.
- 361 [Figure 4 near here]
- 362 [Figure 5 near here]

363 4. Implementing the vision: assessing impacts of FCCs and relevant mixtures 364 on human health outcomes in the SCOD using mechanistic approaches

- 365 Here we review the mechanistic basis for each of the disease clusters included in
 366 the SCOD, and selectively highlight available *in-vitro* testing methods. Importantly,
 367 some available assays cover key characteristics that are relevant for several disease
 368 clusters.
- This vision for expanded hazard assessment of FCMs is based on the finding that for each of the disease clusters included in the SCOD, some mechanistic
- 371 understanding is available for the way that chemicals cause disease (Table 2).
- 372 [Table 2 near here]
- 373 4.1 Cancer
- 374 As defined by Willis,
- A neoplasm is an abnormal mass of tissue, the growth of which exceeds and is
 uncoordinated with that of the normal tissues and persists in the same excessive
 manner after cessation of the stimulus which evoked the change (Willis 1948).
- 378 Regarding cancer causation, the somatic mutation theory posits that cancer is a

379 cellular disease caused by mutations of genes that disrupt the control of cell 380 proliferation. Yet, substantive contradictions exist between this theory and empirical 381 evidence (Naxerova 2021), which inspired competing theories consider cancer as a 382 problem of tissue organization akin to organogenesis (Sonnenschein and Soto 2020; 383 Maffini et al. 2004; Rønnov-Jessen and Bissell 2009). Importantly, not all carcinogens 384 are mutagens (Keri et al. 2007) and, thus, carcinogenicity cannot be equated with 385 genotoxicity. Yet, because legal requirements restrict the use of cancer-causing agents 386 in FCMs, testing of FCCs has focused on genotoxicity as a proxy to identify 387 carcinogenic substances.

388 Both carcinogens and mutagens are found in FCMs including 1) formaldehyde, 389 a known human carcinogen (IARC Group 1) (IARC 2012a), which migrates from 390 various plastics including melamine-formaldehyde plastics used as tableware for 391 children, and polyethylene terephthalate plastic (PET) (Kim et al. 2021; Bach et al. 392 2013); 2) antimony trioxide, which "is reasonably anticipated to be a human 393 carcinogen" (NTP 2021) and "probably carcinogenic to humans" (IARC Group 2A) 394 (IARC 2022), and it is used in the manufacture of PET, where antimony is found to 395 migrate into soft drinks (Westerhoff et al. 2008; Bach et al. 2013); and 3) per- and 396 polyfluoroalkyl substances (PFAS) are widely used in the manufacture of FCMs as 397 processing aids in plastic and paper food contact material production (Trier, Granby, 398 and Christensen 2011; Minet et al. 2022), and perfluorooctanoic acid has limited 399 evidence for testicular and kidney cancers in humans and is "possibly carcinogenic to 400 humans" (IARC Group 2B) (Benbrahim-Tallaa et al. 2014).

401 The key characteristics for carcinogens reveal that these chemicals can be402 mutagens, but that there are numerous other common features for these agents as well,

403 such as inducing oxidative stress, modulating receptor-mediated effects and inducing chronic inflammation (Smith et al. 2016; Guyton et al. 2018; Krewski et al. 2019; Al-404 405 Zoughool et al. 2019; Guyton and Schubauer-Berigan 2021). Guyton and Schubauer-406 Berigan (2021) recommended the use of *in-vitro* assays based on the key characteristics 407 to identify carcinogens in high-throughput screening (Guyton and Schubauer-Berigan 408 2021). Further, Rider et al. (2021) proposed methods to use the key characteristics to 409 test chemical mixtures and their propensity to affect cancer development including in 410 mixtures of chemicals with different key characteristics of carcinogens (Rider et al. 411 2021). Approaches such as these will provide important information for testing mixtures 412 such as the overall migrate from finished FCMs. Methods for evaluating genotoxicity 413 are readily available, validated, and trusted. Chemicals are considered genotoxic if they 414 damage the structure, information content, or segregation of DNA, with mutagenicity 415 (i.e. changes to the nucleotide sequence) being a sub-type of genotoxicity (OECD 416 2015).

417 These methods include (Muncke 2009):

Mutagenicity: The Ames test, based on bacterial reverse mutagenicity, is the
 most employed test for mutagenicity (Organisation for Economic Co-operation
 and Development (OECD) test guideline (TG) 471). A mammalian cell (mouse
 lymphoma) gene mutation test (OECD TG 490) is also available (OECD 2022)

- 422 Chromosomal aberration: Cultured mammalian cells are assessed for the
 423 presence of chromatid-type and chromosome-type aberrations during metaphase
 424 (OECD TG 473)
- 425 Micronucleus: Micronuclei represent chromosomal damage (chromosome
 426 fragments or whole chromosomes) that have been transmitted to daughter cells.

427 Micronuclei can be assessed *in-vitro* by using mammalian cells (OECD TG 487)
428 or *in-vivo* with erythrocytes collected from bone marrow or peripheral blood
429 (OECD TG 874)

430 These methods are recommended or required for assessing intentionally used 431 FCCs (EFSA 2008; FDA 2007). Several other *in-vitro* assays for assessing the 432 genotoxic potential of FCCs are also available (Pinter et al. 2020). However, these 433 strategies have not kept pace with discoveries in cancer biology (Chiara, Indraccolo, 434 and Trevisan 2020). Currently, no *in-vitro* assays are available that capture features of 435 carcinogenicity beyond genotoxicity, but research is underway to address this technical 436 gap (Hwang et al. 2020). On the other hand, the causal role of the microenvironment in 437 carcinogenicity, as put forward by tissue-based theories on carcinogenicity (Maffini et 438 al. 2004), is not captured by such *in-vitro* assays, because the reciprocal interactions 439 between stroma and parenchyma during development, regeneration, and remodeling are 440 not being considered (Soto et al. 2013). Although in-vivo assays involving mammals are 441 available, traditional 2-year rodent carcinogenicity studies (OECD TG 451), either 442 alone or in combination with chronic toxicity studies, are rarely performed for FCCs.

443 4.2 Cardiovascular diseases

444 Cardiovascular diseases (CVDs) are a group of disorders arising due to
445 disfunction of the heart and blood vessels. The most recognized forms of CVD,
446 coronary heart disease and cerebrovascular disease, result in damage to tissues caused
447 by limited or complete loss of blood supply (WHO 2021).

FCCs including several phthalates and bisphenols contribute to the causation of
 CVDs, independent of obesity and diabetes (Lind et al. 2021). Bisphenols can disrupt
 calcium signalling in myocardium and vasculature; and phthalates and bisphenols are

451 oxidant stressors that accelerate coronary and other arterial inflammation (Lind et al.
452 2021). In the US alone, 100,000 premature deaths from CVD among 55–64-year-olds
453 each year are attributed to exposure to one phthalate, DEHP (Wen, Wang, and Zhang
454 2022). Other FCCs, such as antimony, may also impair cardiovascular function and
455 accelerate CVDs (El-Kersh et al. 2022).

456 Lind et al. (2021) compiled the key characteristics of cardiovascular toxicants 457 and provided a comprehensive overview of robust and sensitive in-vitro, ex vivo and in*vivo* assays that are available for measuring dysregulation of Ca^{2+} ion homeostasis and 458 459 resulting arrhythmogenic activities of chemicals. For example, the increased risk for 460 CVDs associated with higher exposures to BPA is mechanistically associated with Ca²⁺ 461 release and reuptake resulting in proarrhythmic delays after depolarizations in isolated cardiomyocytes. BPA promotes Ca^{2+} -mediated arrhythmias *ex vivo* in the whole heart 462 463 of rats and mice (Yan et al. 2011). However, this is only one of many possible 464 mechanisms for inducing CVDs, and further assay development is required.

465 Although several FCCs have been associated with CVDs, cardiovascular 466 toxicity is generally not evaluated for FCCs, whether they are intentionally used to 467 make FCMs or NIAS present in finished FCMs. This is in part due to a reliance on in-468 vivo guideline testing of general toxicity for chemicals migrating at very high levels and 469 limited to assessment of neoplastic and non-neoplastic cardiac lesions in rodent models, 470 which can be confounded by a high incidence of background pathology in many of the 471 rodent strains used for toxicity testing (Gear, Kendziorski, and Belcher 2017). However, 472 these are insensitive apical endpoints that only identify highly cardiotoxic chemicals 473 that result in robust pathology but miss subtle molecular effects (Gao and Wang 2014; 474 Jokinen et al. 2011).

475 We recommend that comprehensive testing for all new chemicals include in-476 vitro and in-silico testing harmonized with the Comprehensive in-vitro Proarrhythmia 477 Assay approach (CiPA) (FDA 2022; CIPA 2019). The CiPA initiative was launched to 478 address limitations in the current cardiac safety testing methods used to assess the risk 479 for adverse cardiac events of new drugs. The CiPA aims to develop a new approach for 480 evaluating the potential of drugs to cause cardiac arrhythmias, particularly a specific 481 type known as Torsades de Pointes (TdP). It is a multi-step approach that combines *in*-482 *vitro* assays and computational modeling to assess proarrhythmic risk and predict the 483 risk of TdP by considering the complex interactions of multiple ion channels and 484 cellular components involved in cardiac electrophysiology. The CiPA could be used as 485 an important approach for identifying cardiotoxic hazards of FCCs.

486 4.3 Brain-based disorders

487 Disrupted neurodevelopment can have numerous consequences including a 488 lower intelligence quotient, delayed language acquisition, attention deficit hyperactivity 489 disorder (ADHD), and autism (Caporale et al. 2022; Bornehag et al. 2021; Kim et al. 490 2022). Because the role of thyroid hormone in brain development is well established, 491 hypothyroidism, especially during early development, is also a condition of concern 492 upstream of neurodevelopmental disorders. Neurotoxicity can also result from impaired 493 neuronal function due to a variety of factors, such as neuronal misplacement during 494 development, altered synapses, hypomyelin, or degeneration. Other neurodegenerative 495 conditions that typically arise later in life include Parkinson's disease, Alzheimer's 496 disease, and other forms of dementia.

497 The role of FCCs in the causation of many brain-based disorders is well498 established, with substantial contribution to the burden of disease for both

499 neurodevelopmental and neurodegenerative disorders (Attina et al. 2016). For example, 500 FCCs that interfere with thyroid hormone systems or sex steroids (e.g., phthalates and 501 perchlorate) can affect brain development as well as cognitive function in adults 502 (Bennett et al. 2016; Grandjean and Landrigan 2006). The vulnerability of the 503 developing brain and the lack of systematic assessment of neurodevelopmental toxicity 504 for FCCs raises serious concerns (Maffini, Trasande, and Neltner 2016; Mustieles and 505 Fernández 2020). At present, the key characteristics of neurotoxicants remain 506 undescribed, but relevant work is ongoing.

507 In addition to assays covering interference with the thyroid and sex steroid axes, 508 *in-vitro* testing of neurotoxicants requires sophisticated and reliable models due to the 509 complexity of the brain (Marty et al. 2021). Neuronal cell lines, primary central nervous 510 system cells, transformed neuronal precursors and stem cell derived progenitor cells are 511 used in neurotoxicity assays (Arshajyothirmayi and Gulia 2022) to evaluate endpoints 512 including migration, synapsis formation, network activity and differentiation. Although 513 single-cell cultures are informative, multi-cell type and three-dimensional models 514 utilizing microfluidics more adequately represent the diversity and spatial properties of 515 the brain (Caffrey, Button, and Robert 2021; Kilic et al. 2016; Maoz 2021; Park et al. 516 2021), but high throughput versions of these methods are not yet available, and thus 517 their use in evaluating FCCs has been limited. Additional *in-vitro* assays for chemical 518 screening of neurotoxicants are under development in EU-funded research programs 519 (Cediel-Ulloa et al. 2022) and research is ongoing to develop further *in-vitro* assays 520 targeting the thyroid system (Kortenkamp et al. 2020). Recently, the establishment of a 521 human cell-based in-vitro battery has been reported; it combines 10 assays selected to 522 cover major key events in the relevant AOPs (Sachana et al. 2021) and was shown to 523 provide 82% sensitivity in that it was able to identify 24 out of 28 known neurotoxicants

- - -

525	New low- and medium-throughput screening assays have been developed. For
526	example, the nematode is a promising model for evaluating known neurodevelopmental
527	toxicants and could be expanded to profiling chemicals with unknown neurotoxicity
528	(Ruszkiewicz et al. 2018; Hunt et al. 2018). Spontaneous movements (Parng et al.
529	2007), number and location of neurons (Rericha et al. 2022), and behavioral effects
530	(Fitzgerald et al. 2021) are some of the neurological endpoints measured in zebrafish.
531	Validated high-throughput screening assays using African clawed frog tadpoles are also
532	available (OECD TG 248).

533 In-vivo testing in rodents can be used to assess different functional aspects of 534 neurotoxicity including impacts on cognition, learning and memory; and anxiety-like, 535 depressive-like and reproductive behaviors. OECD developmental neurotoxicity 536 (OECD TG 426) and extended one-generation reproductive toxicity assays (OECD TG 537 443) include optional measurements of learning and memory, motor and sensory 538 function, motor activity, and auditory startle. Neurodegeneration is not covered because 539 this endpoint can only be studied in animals which age, and animals used in assays are 540 typically not kept until the end of their natural lifetime where neurodegeneration would 541 manifest itself (Huff, Jacobson, and Davis 2008).

542

2 4.4 Obesity and Metabolic diseases

543 Metabolic diseases, including obesity, involve the many tissues that comprise 544 the metabolic system (Mohajer et al. 2021). These include adipose tissue, skeletal 545 muscle, pancreas, liver, gastrointestinal tract, bone, and brain. Type-2 diabetes, an 546 important metabolic disease with increasing prevalence in human populations, occurs 547 due to systemic insulin resistance, often with an increasing production of insulin by the 548 pancreas. Type-1 diabetes occurs due to a progressive loss of β -cell insulin secretion.

549 Non-alcoholic fatty liver disease is another metabolic disease with increasing

550 prevalence in human populations.

551 While poor diet and insufficient physical activity are considered the chief drivers 552 of the obesity and diabetes twin pandemics, chemical exposures (for example, to 553 phthalates, bisphenols, parabens, PFAS, etc.) can disrupt the balance between energy 554 expenditure and energy intake (Heindel et al. 2022). A large comprehensive review of 555 metabolic disrupting chemicals, including those that can induce obesity (obesogens), 556 provides strong evidence that numerous FCCs are associated with type-2 diabetes, 557 obesity, and fatty liver disease (Heindel 2019). The key characteristics of metabolic 558 disruptors and obesogens are being compiled. Rusyn et al. (2021) have described the 559 key characteristics of acute and chronic human hepatotoxicants and note that only one 560 of 12 key characteristics are specific to liver tissue (KC9: causing cholestasis) (Rusyn et 561 al. 2021), indicating that there are overlaps with the key characteristics of other 562 toxicants, i.e. carcinogens, cardiovascular toxicants, endocrine disrupting chemicals, 563 and male and female reproductive toxicants.

564 The simplest assays to identify an obesity hazard are those that measure the 565 effect of chemical exposures on the development of adipocytes (Kassotis et al. 2022; 566 Kassotis and Stapleton 2019; Seo, Shin, and Kim 2019). Primary preadipocyte cultures, 567 or mesenchymal stem cell assays, use animal or human cells to assess proliferation and 568 differentiation into adipocytes (Desai et al. 2018b; Shoucri et al. 2018; Kassotis and 569 Stapleton 2019; Chamorro-Garcia and Blumberg 2019; Lane et al. 2014; Tang, Otto, 570 and Lane 2004; Pillai et al. 2014). Using this *in-vitro* assay, a recent study found that 571 around one third of tested plastic food contact articles contained metabolic disrupting

572 chemicals (Völker et al. 2022). Recently, spheroid adipocyte models have been 573 developed that improve the efficiency and speed of differentiation (Turner et al. 2017) 574 and can be used for a more comprehensive understanding of adipocyte physiology than 575 monolayer cultures. The zebrafish obesogenic test offers an *in-vivo* approach to 576 screening chemicals that target adiposity; it measures adipocyte lipid droplet size and 577 normalized triacylglycerol content as an assessment of adiposity in a whole-organism 578 assay of larvae to test for obesogenic and anti-obesogenic chemicals and mixtures 579 (Tingaud-Sequeira, Ouadah, and Babin 2011).

580 Other non-adipocyte cell lines, when well characterized such as the mouse bone 581 marrow-derived mesenchymal stem cells (mBMSCs), are also useful for mechanistic 582 studies (Auerbach et al. 2016; Janesick et al. 2016). In addition to adipocyte 583 differentiation, several other mechanisms are implicated with metabolic disease 584 causations, for example the disruption of energy homeostasis at the level of the 585 hypothalamus and brain. Therefore, *in-vitro* assays that examine effects on 586 hypothalamic neurons are useful (Ye et al. 2016; Loganathan et al. 2018).

587 No assays have been developed to identify metabolic disruptors acting as 588 diabetogens. Ongoing projects are developing assays to measure β -cell function and 589 survival (Audouze et al. 2020; Legler et al. 2020; Küblbeck et al. 2020) using rodent β-590 cell lines (INS-1E and MIN-6) and a human β-cell line (ENDOC-βH1). Assays of 591 insulin function on the human liver cell line HepaRG, the skeletal muscle cell line 592 C2C12, and adipocytes are also under investigation (Legler et al. 2020). One well 593 established system of assays employing both *in-vitro* and *in-vivo* methods has been used 594 to explore the relationship between BPA and type-2 diabetes (Dos Santos et al. 2022).

595

The most used assays to screen chemicals for effects on the liver use the

596 HepaRG and HepG2 cell lines. The HepG2 cell line can be customized with different 597 expression levels of various drug metabolizing enzymes (Tolosa et al. 2018). Other 2D 598 and 3D in-vitro approaches use primary hepatocytes, immortalized liver cell lines, and 599 hepatocytes derived from stem cells that are grown in monolayers, as spheroids or 600 organoids, or used in emerging technologies (like organ-on-a-chip) to identify liver 601 toxicants (Yang et al. 2023). Each of the approaches available has strengths and 602 weaknesses; for example, the use of human primary hepatocytes in 2D culture can 603 produce patient-specific evaluations that account for differences in metabolism and 604 sensitivity, but these assessments come at high cost. Several of these methods are 605 currently being used to evaluate liver toxicity in the screening of pharmaceuticals 606 (Serras et al. 2021), making them similarly well suited to evaluate FCCs for potential 607 effects on liver outcomes.

608 4.5 Immunological disorders

609 The immune system is an intricate network of many different, highly specialized 610 cells interacting with each other and with the nervous and endocrine systems (Nicholson 611 2016). Disorders of the immune system include autoimmune disorders such as multiple 612 sclerosis, Graves' and Hashimoto's diseases, lupus, Celiac's, Addison's, and 613 rheumatoid arthritis, among others. Other diseases including type-1 diabetes and asthma 614 have an important immune component. Therefore, assays for immunotoxicity need to 615 capture a multitude of potential effects, including immunosuppression, 616 immunostimulation, hypersensitivity reactions, mechanisms of autoimmunity, and 617 developmental immunotoxicity, e.g., delayed immunotoxic responses to toxic 618 influences (Germolec et al. 2017).

619 The human immune system is highly effective, but also sensitive to synthetic

chemical insults during development and adult life. Effects of chemicals on the immune
system are less well understood in humans than other disease endpoints, but emerging
evidence implicates PFAS exposure in reducing immune response to vaccines and
increasing susceptibility to infections in early life (Grandjean et al. 2017). Other FCCs
including bisphenols and phthalates increase the risk of atopy and asthma (Xie et al.
2016; Wang, Chen, and Bornehag 2016; Kim et al. 2017), and infections in early life
(Gascon et al. 2015).

627 The key characteristics of immunotoxicants have been described (Germolec et 628 al. 2022). This offers a starting point for development of suitable in-vitro assays for 629 testing FCCs for immunotoxicity. Due to the complexity of the immune system 630 components and responses, a comprehensive battery of *in-vitro* assays covering all 631 relevant aspects of immunotoxicity has not been established. However, several in-vitro 632 assays, dealing for example with direct immunosuppression, allergic hypersensitivity, or 633 autoimmunity, are being developed to detect a range of immunotoxicants (Corsini and 634 Roggen 2017; Luebke 2012; Deprouw et al. 2022; Naidenko et al. 2021) and these 635 assays could be used to screen FCCs (Ogungbesan, Neal-Kluever, and Rice 2019).

636 4.6 Reproductive disorders

In industrialized countries, male reproductive health has declined over the past
decades, including a 50-60% decrease in sperm counts since 1973 (Levine et al. 2017;
Skakkebæk et al. 2022; Levine et al. 2022) and an increase in testicular cancer (Znaor et
al. 2022). Female fertility is also affected, as are maternal health and pregnancy
outcomes, and conditions such as polycystic ovary syndrome (PCOS), endometriosis,
and premature ovarian failure (Boomsma et al. 2006).

643 The sperm count decrease is associated with chemical exposures (to, e.g. 644 phthalates), especially during fetal development (Skakkebæk, Rajpert-De Meyts, and 645 Main 2001). Strong evidence from animal experiments support this interpretation (Gore 646 et al. 2015; Skakkebaek et al. 2016; Jorgensen et al. 2021; Kortenkamp 2020). FCC 647 exposures are also associated with PCOS (Soave et al. 2020), and other aspects of 648 reproductive toxicity (Nerín et al. 2020; Garcia-Calvo et al. 2020a). These adverse 649 outcomes have even been found for FCCs promoted as safer alternatives to hazardous 650 chemicals such as the plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester 651 (tradename Hexamoll DINCH) (Boisvert et al. 2016), which is used as a replacement 652 for DEHP and other phthalates. Several FCCs such as BPA have been studied for 653 mechanistic-level impacts on female fertility, including oogenesis, folliculogenesis, and 654 altered expression of gonadotropin and gonadotropin hormone-releasing hormone 655 receptors (Vessa et al. 2022a). The key characteristics of male (Arzuaga et al. 2019) and 656 female reproductive toxicants (Luderer et al. 2019) have been described. Development 657 and function of the reproductive system is fundamentally dependent on sex hormone 658 action. Thus, the key characteristics of endocrine disrupting chemicals (La Merrill et al. 659 2020) are also relevant to the study of chemicals that affect reproductive outcomes. 660 However, a systematic overview of available in-vitro assays for hazard identification of 661 endocrine disrupting chemicals that affect male and female fertility is unavailable.

In-vitro assays that identify chemical interference with sex hormone production and signalling have been validated (OECD TG 493, 455, 458, 456). These include assays based on nuclear receptor activation and steroid hormone synthesis. The bovine oocyte maturation assay (ECVAM TM 2010-05) is also a reproduction-relevant *in-vitro* assay. A good correlation between *in-vitro* results and *in-vivo* observations has been established for female fertility endpoints (Corton et al. 2022; Pinto et al. 2018).

Validated *in-vivo* assays exist to evaluate reproductive toxicity for impacts on both male and female fertility (OECD TG 443), but these may not be sufficiently sensitive or comprehensive, as they fail to evaluate numerous key characteristics of male and female reproductive toxicants (Luderer et al. 2019; Arzuaga et al. 2019).

672

5. What is needed to implement the vision for safer food contact materials?

To achieve our vision, we propose a multi-pronged approach that is grounded in the SCOD concept, which includes many of the most prevalent NCDs of high relevance to human health. We identified three components needed to realize this vision: analytical methods and testing strategies, data integration and interpretation, and science

677 to inform decision making.

678 5.1 Analytical methods and testing strategies

679 In Section 4 we list several available and emerging assays used in the 680 identification of hazard for each of the SCOD. However much more is needed, 681 especially high-throughput non-animal and low-medium throughput assays with non-682 mammalian models that are specific, sensitive, reliable and robust, and adequate for 683 predicting effects relevant to humans. These assays would overcome challenges with 684 cost, time, and scientific relevance as the selection of suitable in-vitro assays would be 685 based on robust mechanistic evidence from key characteristics and AOPs. Identification 686 of the key characteristics for brain disorders and metabolic diseases will form the basis 687 for identification and/or development of relevant *in-vitro* assays to identify hazardous 688 chemicals related to these clusters. For *in-vitro* testing based on mechanistic pathways 689 to succeed, additional dedicated expertise and financial support are needed to identify 690 assays that would address relevant key characteristics. This work is ongoing and the 691 website keycharacteristics.org collates all available information and publications in this

692	area (Key Characteristics 2022). It also remains to be shown if <i>in-vitro</i> assays based on
693	the key characteristics of hazardous chemicals will be sufficiently predictive of
694	chemical hazards when used in pre-market assessments, rather than in ex-ante
695	evaluations (where the key characteristics are currently used).

Another important aspect of testing is the development and validation of methods that reflect real-world chemical exposures from FCMs, including the effects of metabolites formed from FCCs in the human body. Migration testing protocols exist but ongoing research efforts need to be expanded and validated to ensure minimal loss of potentially hazardous chemicals during sample preparation (e.g. by using polar and apolar food simulants and by capturing not only non-volatile compounds, but also those that are semi-volatile and volatile) (Nerín et al. 2022; Oldring et al. 2023).

Lastly, a battery of screening assays addressing the SCOD needs to be defined
and validated. This step will need the contribution of experts in each field to ensure that
the selected endpoints are reliable and result in high confidence.

706 Implementation of this vision will depend on the successful progress in all of707 these areas.

708

5.2 Data interpretation and integration

709 Methods must be developed to interpret and corroborate *in-vitro* test results.

710 Individual assays should be integrated into an overall high-level / aggregated scheme

711 (e.g. using visualization approaches such as ToxPi (Rajkumar et al. 2022; Marvel et al.

- 712 2018)). Also, non-targeted chemical analyses are challenging, as confirmation of
- 713 identified compounds is very time- and labour intensive, and at times not possible at all.
- Also, reliable quantification of chemicals that lack analytical standards is not possible.
- 715 Therefore, non-targeted approaches need to be advanced to allow for better

716 identification of currently unknown compounds, especially when present at low 717 concentrations. One way to improve the latter is to create comprehensive and open mass 718 spectrometry libraries of FCCs, including NIAS. Ideally, an open-access repository of 719 information about food contact material manufacturing processes and the major FCCs 720 associated with specific materials should be generated. Confidential business 721 information poses a critical obstacle, as the full disclosure of the chemical composition 722 of FCMs is commonly not available. Accordingly, a mechanism needs to be developed 723 that enables such an FCC library without infringing on intellectual property rights.

724

5.3 Science for decision making

725 The results of testing single chemicals or overall migrate (or, for a worst-case 726 assessment, the extract) from a finished FCM (i.e., an FCA) using a battery of assays for 727 each of the SCOD would need to be interpreted and integrated with available evidence 728 to reach a conclusion within a regulatory context. A framework, similar to that available 729 for read-across (Lizarraga et al. 2023; European Chemicals Agency 2017), should be 730 developed to effectively utilize results and support conclusions that are actionable for 731 policy makers and regulatory enforcement. The experience gained from development of 732 effect-based trigger values for water quality assessment in Europe could be highly 733 informative (Escher et al. 2018; Neale et al. 2023). Here, effect-based trigger values 734 have been developed as a means to interpret the results of *in-vitro* assays through 735 linking the existing water quality guideline values to observed levels of bioactivity 736 elicited by a reference chemical. Then, if a test chemical or mixture causes an activity 737 above the trigger value set for a specific assay, it is highlighted for a follow-up 738 assessment, such as calculation of concentration factors and *in-vitro* to *in-vivo* 739 extrapolation (Escher and Neale 2021; Robitaille et al. 2022; Escher, Neale, and Leusch 740 2015). In theory, effect-based trigger values for FCMs could be developed following the

same principle, e.g. by matching effect concentrations in relevant bioassays with
existing specific migration limits for FCCs of concern, and possibly factoring in
additional exposure-related parameters. This approach appears highly promising, since
it has been demonstrated that derivation of effect-based trigger values greatly facilitates
regulatory and practical uptake of *in-vitro* methods into specific assessment pipelines
(Neale et al. 2023), but it is evident that further dedicated efforts are required for an
effective implementation of such an approach to the safety assessment of FCMs.

748 **6. Conclusion**

749 The novel approach we present here is in line with the goals laid out in the EU's 750 Chemicals Strategy for Sustainability (EU 2020a), the EU Farm to Fork Strategy (EU 751 2020b), and the European Parliament's report on FCMs (European Parliament 2016), 752 which emphasize the need for revising the food contact material regulation in Europe to 753 adequately reflect recent scientific understanding and improve compliance. Further, this 754 work adds to previous publications on policies and methods related to the risk 755 assessment of food contact chemicals and materials (Zimmermann et al. 2022; Muncke 756 et al. 2020; Muncke et al. 2017), and to the use of new approach methodologies for 757 assessing the health impacts of industrial chemicals (Stucki et al. 2022).

We think that our vision to create safer FCMs by linking hazard identification more directly to human health has the potential to spur innovation in assay development and testing, and ultimately, for safer materials as such. Additionally, new findings on the key characteristics for the NCDs included in the SCOD, as well as mechanistic understanding derived from AOP research, will support the development of new assays.

Awareness of adverse health effects of synthetic chemicals is increasing globally,
and the need is obvious for significant and urgent improvements in the ways that risks

are assessed and managed for FCCs (Fenner and Scheringer 2021).

766 Acknowledgements

767 We are grateful to Michele La Merrill for constructive comments on this manuscript.

768 **Declarations**

769 Competing Interests

770 The authors have no competing interests to declare. For the sake of transparency, the 771 authors list their relationships with various research funders and other organizations in 772 the following. As researchers employed by the Food Packaging Forum Foundation 773 (FPF) (JMB, BG, JM, LZ) or working pro bono as members of the Foundation's board 774 (TB, JPM, MS) and its Scientific Advisory Board (SAB) (AMA, TJC, KJG, JJH, MVM, 775 OVM, AN, CN, AMS, LT, MW, RTZ), we report that the FPF receives unconditional 776 donations from diverse companies that may be affected by the research reported in this 777 manuscript. FPF funders have no influence on any of the work at FPF and were not 778 involved in any way in the preparation of this manuscript. TB declares that he serves as 779 the board member of the International Panel on Chemical Pollution (IPCP), the Swedish 780 Toxicological Council and the EU Commission's Committee on Health, Environmental 781 and Emerging Risks (SCHEER). All those activities are pro bono and have no bearing 782 on the content of the manuscript. None of the aforementioned organizations have had 783 any impact on the content of the manuscript. TJC declares that he is the creator-founder 784 of Sudoc, LLC, which deploys TAML catalysts for many applications and has potential 785 for remediating FCCs in water. JL reports that she receives funding for another research 786 project (ZonMw/Health-Holland Microplastics and Health project MOMENTUM 787 458001101) of which some partners may be affected by the research reported here.

788 MVM is a paid consultant to the FPF. OVM is one of the representatives of the 789 European Parliament on the European Chemical Agency's Management Board. JPM is 790 co-founder and board member of Sudoc and he declares to have given all his shares to 791 an irrevocable grantor trust so that he will not benefit financially if the company is 792 successful. AN declares to have received travel reimbursement from universities, NGOs 793 and scientific societies, to speak about endocrine-disrupting chemicals. LNV has 794 received travel reimbursements from universities, governments, NGOs, and industry. 795 She has received research funding from the US National Institutes of Health, the 796 University of Massachusetts Amherst, and NGOs including the Cornell Douglas 797 Foundation, the Allen Family Foundation, and the Great Neck Breast Cancer Coalition. 798 She is a scientific advisor to Sudoc LLC. The FPF foundation board, whose members 799 have no connection with any of the FPF's funders and receive no remuneration for their 800 work, is legally obliged to guarantee that the work of the FPF is in no way influenced 801 by the interests or views of the funders.

802 Authors' contributions

- 803 This manuscript was initiated by the FPF's SAB and guests participating in SAB
- 804 meetings in 2017, 2018, 2019, 2020, 2021; AMA, MVM, JM, JPM, RTZ and MS were
- 805 responsible for preparing an outline and a first version; JM, LVM, MVM and MS edited
- the final draft, and all authors contributed to the various intermediate versions, wrote
- separate sections of the manuscript, and approved the final version.

808 Funding

- 809 This work was supported by the FPF's own resources. FPF is a charitable foundation
- 810 and it funded four meetings of its SAB with external scientific experts as guests (SMB,
- 811 BCA, FAvH, JL, LNV) during which this manuscript was prepared. Funding for travel

- 812 and accommodation was provided for three meetings and two additional meetings were
- 813 held online. Neither FPF's SAB members nor guest participants were reimbursed for
- 814 their contributions to this manuscript. FPF's funding sources are declared on its website
- 815 (https://www.foodpackagingforum.org/about-us/funding). MS acknowledges funding by
- 816 the CETOCOEN PLUS project (CZ.02.1.01/0.0/0.0/15_003/0000469), the project
- 817 CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17_043/0009632), and RECETOX
- 818 RI (LM2018121) financed by the Czech Ministry of Education, Youth and Sports.
- 819 Availability of data and materials
- 820 Not applicable.

821 **References**

- 822 Akash, Muhammad Sajid Hamid, Shakila Sabir, and Kanwal Rehman. 2020. 'Bisphenol 823 A-induced metabolic disorders: From exposure to mechanism of action', 824 Environmental Toxicology and Pharmacology, 77: 103373. 825 Akoueson, F., I. Paul-Pont, K. Tallec, A. Huvet, P. Doyen, A. Dehaut, and G. Duflos. 826 2023. 'Additives in polypropylene and polylactic acid food packaging: Chemical 827 analysis and bioassays provide complementary tools for risk assessment', 828 Science of The Total Environment, 857: 159318. 829 Al-Zoughool, Mustafa, Michael Bird, Jerry Rice, Robert A. Baan, Mélissa Billard, 830 Nicholas Birkett, Daniel Krewski, and Jan M. Zielinski. 2019. 'Development of 831 a database on key characteristics of human carcinogens', Journal of Toxicology 832 and Environmental Health, Part B, 22: 264-87. 833 Alger, Heather M., Maricel V. Maffini, Neesha R. Kulkarni, Erin D. Bongard, and 834 Thomas Neltner. 2013. 'Perspectives on How FDA Assesses Exposure to Food 835 Additives When Evaluating Their Safety: Workshop Proceedings',
- 836 COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 12:
 837 90-119.
- Ankley, G. T., R. S. Bennett, R. J. Erickson, D. J. Hoff, M. W. Hornung, R. D. Johnson,
 D. R. Mount, J. W. Nichols, C. L. Russom, P. K. Schmieder, J. A. Serrrano, J. E.
 Tietge, and D. L. Villeneuve. 2010. 'Adverse Outcome Pathways: A Conceptual

841	Framework To Support Ecotoxicology Research And Risk Assessment. ',
842	Environmental Toxicology and Chemistry, 29: 730-41.
843	Arshajyothirmayi, V. A., and Kamalesh K. Gulia. 2022. '26 - Neurotoxicity assays.' in
844	P. V. Mohanan (ed.), Biomedical Product and Materials Evaluation (Woodhead
845	Publishing).
846	Arzuaga, X., M. T. Smith, C. F. Gibbons, N. E. Skakkebaek, E. E. Yost, B. E. J.
847	Beverly, A. K. Hotchkiss, R. Hauser, R. L. Pagani, S. M. Schrader, L. Zeise, and
848	G. S. Prins. 2019. 'Proposed Key Characteristics of Male Reproductive
849	Toxicants as an Approach for Organizing and Evaluating Mechanistic Evidence
850	in Human Health Hazard Assessments', Environ Health Perspect, 127: 65001.
851	ATSDR. 2021. 'Toxicological Profile for Perfluoroalkyls', Accessed 23 Dec 2022.
852	https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=1117&tid=237.
853	Attina, Teresa M., Russ Hauser, Sheela Sathyanarayana, Patricia A. Hunt, Jean-Pierre
854	Bourguignon, John Peterson Myers, Joseph DiGangi, R. Thomas Zoeller, and
855	Leonardo Trasande. 2016. 'Exposure to endocrine-disrupting chemicals in the
856	USA: a population-based disease burden and cost analysis', Lancet Diabetes
857	Endo, 4: 996-1003.
858	Audouze, Karine, Denis Sarigiannis, Paloma Alonso-Magdalena, Celine Brochot,
859	Maribel Casas, Martine Vrijheid, Patrick J. Babin, Spyros Karakitsios, Xavier
860	Coumoul, and Robert Barouki. 2020. 'Integrative Strategy of Testing Systems
861	for Identification of Endocrine Disruptors Inducing Metabolic Disorders—An
862	Introduction to the OBERON Project', International Journal of Molecular
863	Sciences, 21: 2988.
864	Auerbach, S., D. Filer, D. Reif, V. Walker, A. C. Holloway, J. Schlezinger, S.
865	Srinivasan, D. Svoboda, R. Judson, J. R. Bucher, and K. A. Thayer. 2016.
866	'Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes
867	Research: A Screening Approach Using ToxCast [™] High-Throughput Data',
868	Environ Health Perspect, 124: 1141-54.
869	Bach, C., X. Dauchy, I. Severin, J. F. Munoz, S. Etienne, and M. C. Chagnon. 2013.
870	'Effect of temperature on the release of intentionally and non-intentionally added
871	substances from polyethylene terephthalate (PET) bottles into water: chemical
872	analysis and potential toxicity', Food Chem, 139: 672-80.
873	Bailey, George S., Ashok P. Reddy, Clifford B. Pereira, Ulrich Harttig, William Baird,
-----	--
874	Jan M. Spitsbergen, Jerry D. Hendricks, Gayle A. Orner, David E. Williams, and
875	James A. Swenberg. 2009. 'Nonlinear Cancer Response at Ultralow Dose: A
876	40800-Animal ED001 Tumor and Biomarker Study', Chemical Research in
877	<i>Toxicology</i> , 22: 1264-76.
878	Barr, D. B., M. J. Silva, K. Kato, J. A. Reidy, N. A. Malek, D. Hurtz, M. Sadowski, L.
879	L. Needham, and A. M. Calafat. 2003. 'Assessing human exposure to phthalates
880	using monoesters and their oxidized metabolites as biomarkers', Environ Health
881	Perspect, 111: 1148-51.
882	Bauer, Anna, Florencia Jesús, María José Gómez Ramos, Ana Lozano, and Amadeo
883	Rodríguez Fernández-Alba. 2019. 'Identification of unexpected chemical
884	contaminants in baby food coming from plastic packaging migration by high
885	resolution accurate mass spectrometry', Food Chemistry, 295: 274-88.
886	Benbrahim-Tallaa, Lamia, Béatrice Lauby-Secretan, Dana Loomis, Kathryn Z. Guyton,
887	Yann Grosse, Fatiha El Ghissassi, Véronique Bouvard, Neela Guha, Heidi
888	Mattock, and Kurt Straif. 2014. 'Carcinogenicity of perfluorooctanoic acid,
889	tetrafluoroethylene, dichloromethane, 1,2-dichloropropane, and 1,3-propane
890	sultone', The Lancet Oncology, 15: 924-25.
891	Beneventi, Elisa, Thomas Tietz, and Stefan Merkel. 2020. 'Risk Assessment of Food
892	Contact Materials', EFSA Journal, 18: e181109.
893	Bengtstrom, L., A. K. Rosenmai, X. Trier, L. K. Jensen, K. Granby, A. M. Vinggaard,
894	M. Driffield, and J. Hojslev Petersen. 2016. 'Non-targeted screening for
895	contaminants in paper and board food-contact materials using effect-directed
896	analysis and accurate mass spectrometry', Food Addit Contam Part A Chem
897	Anal Control Expo Risk Assess, 33: 1080-93.
898	Bennett, Deborah, David C. Bellinger, Linda S. Birnbaum, Asa Bradman, Aimin Chen,
899	Deborah A. Cory-Slechta, Stephanie M. Engel, M. Daniele Fallin, Alycia
900	Halladay, Russ Hauser, Irva Hertz-Picciotto, Carol F. Kwiatkowski, Bruce P.
901	Lanphear, Emily Marquez, Melanie Marty, Jennifer McPartland, Craig J.
902	Newschaffer, Devon Payne-Sturges, Heather B. Patisaul, Frederica P. Perera,
903	Beate Ritz, Jennifer Sass, Susan L. Schantz, Thomas F. Webster, Robin M.
904	Whyatt, Tracey J. Woodruff, R. Thomas Zoeller, Laura Anderko, Carla
905	Campbell, Jeanne A. Conry, Nathaniel DeNicola, Robert M. Gould, Deborah

906 Hirtz, Katie Huffling, Philip J. Landrigan, Arthur Lavin, Mark Miller, Mark A. 907 Mitchell, Leslie Rubin, Ted Schettler, Ho Luong Tran, Annie Acosta, Charlotte 908 Brody, Elise Miller, Pamela Miller, Maureen Swanson, and Nsedu Obot 909 Witherspoon. 2016. 'Project TENDR: Targeting Environmental Neuro-910 Developmental Risks The TENDR Consensus Statement', Environ Health 911 Perspect, 124: A118-A22. 912 Bergman, Ake, Anna-Maria Andersson, Georg Becher, Martin van den Berg, Bruce 913 Blumberg, Poul Bjerregaard, Carl-Gustaf Bornehag, Riana Bornman, Ingvar 914 Brandt, Jayne Brian, Stephanie Casey, Paul Fowler, Heloise Frouin, Linda 915 Giudice, Taisen Iguchi, Ulla Hass, Susan Jobling, Anders Juul, Karen Kidd, 916 Andreas Kortenkamp, Monica Lind, Olwenn Martin, Derek Muir, Roseline 917 Ochieng, Nicolas Olea, Leif Norrgren, Erik Ropstad, Peter Ross, Christina 918 Ruden, and Martin Scheringer. 2013. 'Science and policy on endocrine 919 disrupters must not be mixed: a reply to a "common sense" intervention by 920 toxicology journal editors', Environmental Health, 12: 69. 921 Biedermann, Maurus, Jan-Erik Ingenhoff, Michael Zurfluh, Lydia Richter, Thomas 922 Simat, Antje Harling, Werner Altkofer, Rüdiger Helling, and Koni Grob. 2013. 923 'Migration of mineral oil, photoinitiators and plasticizers from recycled 924 paperboard into dry foods: a study under controlled conditions', Food Additives 925 & Contaminants: Part A: null-null. 926 Bil, W., E. Govarts, M. J. Zeilmaker, M. Woutersen, J. Bessems, Y. Ma, C. Thomsen, 927 L. S. Haug, S. Lignell, I. Gyllenhammar, L. Palkovicova Murinova, L. Fabelova, 928 J. Snoj Tratnik, T. Kosjek, C. Gabriel, D. Sarigiannis, S. Pedraza-Diaz, M. 929 Esteban-López, A. Castaño, L. Rambaud, M. Riou, C. Franken, A. Colles, N. 930 Vogel, M. Kolossa-Gehring, T. I. Halldorsson, M. Uhl, G. Schoeters, T. 931 Santonen, and A. M. Vinggaard. 2023. 'Approaches to mixture risk assessment 932 of PFASs in the European population based on human hazard and biomonitoring 933 data', International Journal of Hygiene and Environmental Health, 247: 114071. 934 Biryol, Derya, Chantel I. Nicolas, John Wambaugh, Katherine Phillips, and Kristin 935 Isaacs. 2017. 'High-throughput dietary exposure predictions for chemical 936 migrants from food contact substances for use in chemical prioritization', 937 Environ Int, 108: 185-94.

938	Blum, J., S. Masjosthusmann, K. Bartmann, F. Bendt, X. Dolde, A. Dönmez, N. Förster,
939	A. K. Holzer, U. Hübenthal, H. E. Keßel, S. Kilic, J. Klose, M. Pahl, L. C.
940	Stürzl, I. Mangas, A. Terron, K. M. Crofton, M. Scholze, A. Mosig, M. Leist,
941	and E. Fritsche. 2022. 'Establishment of a human cell-based in vitro battery to
942	assess developmental neurotoxicity hazard of chemicals', Chemosphere, 311:
943	137035.
944	Boisvert, Annie, Steven Jones, Leeyah Issop, Hanno C. Erythropel, Vassilios
945	Papadopoulos, and Martine Culty. 2016. 'In vitro functional screening as a
946	means to identify new plasticizers devoid of reproductive toxicity',
947	Environmental Research, 150: 496-512.
948	Boomsma, C. M., M. J. Eijkemans, E. G. Hughes, G. H. Visser, B. C. Fauser, and N. S.
949	Macklon. 2006. 'A meta-analysis of pregnancy outcomes in women with
950	polycystic ovary syndrome', Hum Reprod Update, 12: 673-83.
951	Bornehag, Carl-Gustaf, Elin Engdahl, Maria Unenge Hallerbäck, Sverre Wikström,
952	Christian Lindh, Joëlle Rüegg, Eva Tanner, and Chris Gennings. 2021. 'Prenatal
953	exposure to bisphenols and cognitive function in children at 7 years of age in the
954	Swedish SELMA study', Environ Int, 150: 106433.
955	Bornehag, Carl-Gustaf, Efthymia Kitraki, Antonios Stamatakis, Emily Panagiotidou,
956	Christina Rudén, Huan Shu, Christian Lindh, Joelle Ruegg, and Chris Gennings.
957	2019. 'A Novel Approach to Chemical Mixture Risk Assessment—Linking Data
958	from Population-Based Epidemiology and Experimental Animal Tests', Risk
959	Analysis, 39: 2259-71.
960	Bradley, E. L., M. Driffield, N. Harmer, P. K. T. Oldring, and L. Castle. 2008.
961	'Identification of potential migrants in epoxy phenolic can coatings', Int. J.
962	Polym. Anal. Charact., 13: 200-23.
963	Bradley, Emma, and L Coulier. 2007. "An investigation into the reaction and
964	breakdown products from starting substances used to produce food contact
965	plastics." In, edited by Food Standards Agency. London: Central Science
966	Laboratory.
967	Bschir, Karim. accepted. 'Risk, Uncertainty and Precaution in Science: The case of the
968	Threshold of Toxicological Concern Approach in Food Toxicology', J Sci Eng
060	Ethics

970	Buckley, J. P., S. M. Engel, J. M. Braun, R. M. Whyatt, J. L. Daniels, M. A. Mendez, D.
971	B. Richardson, Y. Xu, A. M. Calafat, M. S. Wolff, B. P. Lanphear, A. H.
972	Herring, and A. G. Rundle. 2016. 'Prenatal Phthalate Exposures and Body Mass
973	Index Among 4- to 7-Year-old Children: A Pooled Analysis', Epidemiology, 27:
974	449-58.
975	Caffrey, T. M., E. B. Button, and J. Robert. 2021. 'Toward three-dimensional in vitro
976	models to study neurovascular unit functions in health and disease', Neural
977	Regen Res, 16: 2132-40.
978	Calafat, A., Z. Kuklenyik, J. A. Reidy, S. P. Caudill, J. Ekong, and L. L. Needham.
979	2005. 'Urinary Concentrations of Bisphenol A and 4-Nonylphenol in a Human
980	Reference Population', Environ Health Perspect, 113: 391-95.
981	Caporale, Nicolò, Michelle Leemans, Lina Birgersson, Pierre-Luc Germain, Cristina
982	Cheroni, Gábor Borbély, Elin Engdahl, Christian Lindh, Raul Bardini Bressan,
983	Francesca Cavallo, Nadav Even Chorev, Giuseppe Alessandro D'Agostino,
984	Steven M. Pollard, Marco Tullio Rigoli, Erika Tenderini, Alejandro Lopez
985	Tobon, Sebastiano Trattaro, Flavia Troglio, Matteo Zanella, Åke Bergman,
986	Pauliina Damdimopoulou, Maria Jönsson, Wieland Kiess, Efthymia Kitraki,
987	Hannu Kiviranta, Eewa Nånberg, Mattias Öberg, Panu Rantakokko, Christina
988	Rudén, Olle Söder, Carl-Gustaf Bornehag, Barbara Demeneix, Jean-Baptiste
989	Fini, Chris Gennings, Joëlle Rüegg, Joachim Sturve, and Giuseppe Testa. 2022.
990	'From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures',
991	<i>Science</i> , 375: eabe8244.
992	Castle, L., A. Mayo, C. Crews, and J. Gilbert. 1989. 'Migration of Poly(ethylene
993	terephthalate) (PET) Oligomers from PET Plastics into Foods during Microwave
994	and Conventional Cooking and into Bottled Beverages', J Food Prot., 52: 337-
995	42.
996	Cediel-Ulloa, Andrea, Diana Loana Lupu, Ylva Johansson, Maria Hinojosa, Fatih Özel,
997	and Joëlle Rüegg. 2022. 'Impact of endocrine disrupting chemicals on
998	neurodevelopment: the need for better testing strategies for endocrine
999	disruption-induced developmental neurotoxicity', Expert Review of
1000	Endocrinology & Metabolism, 17: 131-41.

1001 Chakori, Sabrina, Ammar Abdul Aziz, Carl Smith, and Paul Dargusch. 2021. 1002 'Untangling the underlying drivers of the use of single-use food packaging', 1003 Ecological Economics, 185: 107063. 1004 Chamorro-Garcia, R., and B. Blumberg. 2019. 'Current Research Approaches and 1005 Challenges in the Obesogen Field', Front Endocrinol (Lausanne), 10: 167. 1006 Chamorro-Garcia, R., C. Diaz-Castillo, B. M. Shoucri, H. Käch, R. Leavitt, T. Shioda, 1007 and B. Blumberg. 2017. 'Ancestral perinatal obesogen exposure results in a 1008 transgenerational thrifty phenotype in mice', Nat Commun, 8: 2012. 1009 Charazac, A., C. Hinault, B. Dolfi, S. Hautier, C. Decondé Le Butor, F. Bost, and N. 1010 Chevalier. 2022. 'Low Doses of PFOA Promote Prostate and Breast Cancer 1011 Cells Growth through Different Pathways', Int J Mol Sci, 23. 1012 Chiara, Federica, Stefano Indraccolo, and Andrea Trevisan. 2020. 'Filling the gap 1013 between risk assessment and molecular determinants of tumor onset', 1014 Carcinogenesis, 42: 507-16. 1015 CIPA. 2019. 'CIPA Initiative', Accessed 23 Dec 2022. https://cipaproject.org/. 1016 Cooper, B. L., and N. G. Posnack. 2022. 'Characteristics of Bisphenol Cardiotoxicity: 1017 Impaired Excitability, Contractility, and Relaxation', Cardiovasc Toxicol, 22: 1018 273-80. 1019 Correia-Sá, Luísa, André Schütze, Sónia Norberto, Conceição Calhau, Valentina F. 1020 Domingues, and Holger M. Koch. 2017. 'Exposure of Portuguese children to the 1021 novel non-phthalate plasticizer di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate 1022 (DINCH)', Environ Int, 102: 79-86. Corsini, Emanuela, and Erwin L. Roggen. 2017. 'Overview of in vitro assessment of 1023 1024 immunotoxicity', Current Opinion in Toxicology, 5: 13-18. 1025 Cortéjade, Aurélie, Audrey Buleté, Laura Prouteau, Saber Chatti, Cécile Cren, and 1026 Emmanuelle Vulliet. 2017. 'Development and optimisation of home-made stir 1027 bar sorptive extraction for analysis of plastic additives: application in human urine', Analytical Methods, 9: 3549-60. 1028 1029 Corton, J. C., J. Liu, N. Kleinstreuer, M. R. Gwinn, and N. Ryan. 2022. 'Towards 1030 replacement of animal tests with in vitro assays: a gene expression biomarker 1031 predicts in vitro and in vivo estrogen receptor activity', Chem Biol Interact, 363: 1032 109995.

1033	Coumoul, Xavier, Robert Barouki, Meriem Koual, Karine Audouze, and Celine
1034	Tomkiewicz. 2022. 'Activation of the AhR leading to breast cancer. AOP 439',
1035	Accessed 23 Dec 2022. https://aopwiki.org/aops/439.
1036	Dales, Robert Edgar, Lisa Marie Kauri, and Sabit Cakmak. 2018. 'The associations
1037	between phthalate exposure and insulin resistance, β -cell function and blood
1038	glucose control in a population-based sample', Science of The Total
1039	Environment, 612: 1287-92.
1040	Demeneix, B.A., and R. Slama. 2019. "Endocrine Disruptors: From the scientific
1041	evidence to human health protection." In Report to the European Parliament
1042	European Parliament.
1043	Deprouw, C., A. Courties, J. B. Fini, M. S. Clerget-Froidevaux, B. Demeneix, F.
1044	Berenbaum, J. Sellam, and K. Louati. 2022. 'Pollutants: a candidate as a new
1045	risk factor for osteoarthritis-results from a systematic literature review', RMD
1046	Open, 8.
1047	Desai, M., M. G. Ferrini, G. Han, J. K. Jellyman, and M. G. Ross. 2018a. 'In vivo
1048	maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and
1049	appetite regulators', Environ Res, 164: 45-52.
1050	Desai, M., M. G. Ferrini, J. K. Jellyman, G. Han, and M. G. Ross. 2018b. 'In vivo and in
1051	vitro bisphenol A exposure effects on adiposity', J Dev Orig Health Dis, 9: 678-
1052	87.
1053	Desmarchais, Alice, Ophélie Téteau, Pascal Papillier, Manon Jaubert, Xavier Druart,
1054	Aurélien Binet, Virginie Maillard, and Sebastien Elis. 2020. 'Bisphenol S
1055	Impaired In Vitro Ovine Early Developmental Oocyte Competence',
1056	International Journal of Molecular Sciences, 21: 1238.
1057	DeWitt, Jamie C., Sarah J. Blossom, and Laurel A. Schaider. 2019. 'Exposure to per-
1058	fluoroalkyl and polyfluoroalkyl substances leads to immunotoxicity:
1059	epidemiological and toxicological evidence', J Expo Sci Environ Epidemiol, 29:
1060	148-56.
1061	Dhimolea, E., P. R. Wadia, T. J. Murray, M. L. Settles, J. D. Treitman, C.
1062	Sonnenschein, T. Shioda, and A. M. Soto. 2014. 'Prenatal exposure to BPA
1063	alters the epigenome of the rat mammary gland and increases the propensity to
1064	neoplastic development', PLoS One, 9: e99800.

1065 Dionisi, G., and P. K. Oldring. 2002. 'Estimates of per capita exposure to substances 1066 migrating from canned foods and beverages', Food Addit Contam, 19: 891-903. 1067 Domínguez-Romero, Elena, Klára Komprdová, Jiří Kalina, Jos Bessems, Spyros 1068 Karakitsios, Dimosthenis A. Sarigiannis, and Martin Scheringer. 2022. 'Time-1069 trends in human urinary concentrations of phthalates and substitutes DEHT and 1070 DINCH in Asian and North American countries (2009–2019)', J Expo Sci 1071 Environ Epidemiol. 1072 Dos Santos, Reinaldo Sousa, Regla María Medina-Gali, Ignacio Babiloni-Chust, Laura 1073 Marroqui, and Angel Nadal. 2022. 'In Vitro Assays to Identify Metabolism-1074 Disrupting Chemicals with Diabetogenic Activity in a Human Pancreatic 1075 β-Cell Model', International Journal of Molecular Sciences, 23: 5040. 1076 Eales, J., A. Bethel, T. Galloway, P. Hopkinson, K. Morrissey, R. E. Short, and R. 1077 Garside. 2022. 'Human health impacts of exposure to phthalate plasticizers: An 1078 overview of reviews', Environ Int, 158: 106903. 1079 EFSA. 2008. 'Guidance document on the submission of a dossier on a substance to be 1080 used in Food Contact Materials for evaluation by EFSA by the Panel on 1081 additives, flavourings, processing aids and materials in contact with food 1082 (AFC)', EFSA Journal. 1083 El-Kersh, Karim, C. Danielle Hopkins, Xiaoyong Wu, Shesh N. Rai, Lu Cai, and 1084 Jiapeng Huang. 2022. 'Plasma level of antimony correlates with pulmonary arterial hypertension severity', Current Research in Toxicology, 3: 100080. 1085 1086 Escher, B. I., and P. A. Neale. 2021. 'Effect-Based Trigger Values for Mixtures of 1087 Chemicals in Surface Water Detected with In Vitro Bioassays', Environ Toxicol 1088 Chem, 40: 487-99. 1089 Escher, B. I., P. A. Neale, and F. D. Leusch. 2015. 'Effect-based trigger values for 1090 in vitro bioassays: Reading across from existing water quality guideline values', 1091 Water Res, 81: 137-48. 1092 Escher, Beate I., Selim Aït-Aïssa, Peter A. Behnisch, Werner Brack, François Brion, Abraham Brouwer, Sebastian Buchinger, Sarah E. Crawford, David Du 1093 1094 Pasquier, Timo Hamers, Karina Hettwer, Klára Hilscherová, Henner Hollert, 1095 Robert Kase, Cornelia Kienle, Andrew J. Tindall, Jochen Tuerk, Ron van der 1096 Oost, Etienne Vermeirssen, and Peta A. Neale. 2018. 'Effect-based trigger 1097 values for in vitro and in vivo bioassays performed on surface water extracts

1098 supporting the environmental quality standards (EQS) of the European Water 1099 Framework Directive', Science of The Total Environment, 628-629: 748-65. 1100 Estill, Molly, Russ Hauser, Feiby L. Nassan, Alan Moss, and Stephen A. Krawetz. 1101 2019. The effects of di-butyl phthalate exposure from medications on human 1102 sperm RNA among men', Scientific Reports, 9: 12397. 1103 EU. 2011. "COMMISSION REGULATION (EU) No 10/2011 of 14 January 2011 on 1104 plastic materials and articles intended to come into contact with food." In EU 10/2011, edited by European Union. Brussels: European Union. 1105 1106 -. 2020a. "Chemicals Strategy for Sustainability. Towards a Toxic-Free 1107 Environment." In.: European Commission. 1108 -. 2020b. "A Farm to Fork Strategy for a fair, healthy and environmentally-1109 friendly food system." In.: European Commission. 1110 European Chemicals Agency. 2017. "Read-Across Assessment Framework (RAAF)." 1111 In.: European Chemicals Agency. 1112 European Parliament. 2016. "Implementation of the Food Contact Materials Regulation. 1113 European Parliament resolution of 6 October 2016 on the implementation of the 1114 Food Contact Materials Regulation (EC) No 1935/2004 (2015/2259(INI))." In. 1115 FDA. 2007. 'Guidance for Industry: Preparation of Premarket Submissions for Food 1116 Contact Substances: Chemistry Recommendations.', Accessed 23 December 1117 2022. https://www.fda.gov/regulatory-information/search-fda-guidance-1118 documents/guidance-industry-preparation-premarket-submissions-food-contact-1119 substances-chemistry. 1120 -. 2022. 'Impact Story: Improved Assessment of Cardiotoxic Risk in Drug 1121 Candidates: The Comprehensive in vitro Proarrhythmia Assay', Accessed 23 1122 Dec 2022. https://www.fda.gov/drugs/regulatory-science-action/impact-story-1123 improved-assessment-cardiotoxic-risk-drug-candidates-comprehensive-vitro-1124 proarrhythmia. 1125 Feil, Robert, and Mario F. Fraga. 2012. 'Epigenetics and the environment: emerging 1126 patterns and implications', Nature Reviews Genetics, 13: 97-109. 1127 Fenner, K., and M. Scheringer. 2021. 'The Need for Chemical Simplification As a 1128 Logical Consequence of Ever-Increasing Chemical Pollution', Environ Sci 1129 Technol, 55: 14470-72.

1130	Filer, D. L., K. Hoffman, R. M. Sargis, L. Trasande, and C. D. Kassotis. 2022. 'On the
1131	Utility of ToxCast-Based Predictive Models to Evaluate Potential Metabolic
1132	Disruption by Environmental Chemicals', Environ Health Perspect, 130: 57005.
1133	Fitz-James, Maximilian H., and Giacomo Cavalli. 2022. 'Molecular mechanisms of
1134	transgenerational epigenetic inheritance', Nature Reviews Genetics, 23: 325-41.
1135	Fitzgerald, Jennifer A., Sarah Könemann, Laura Krümpelmann, Anže Županič, and
1136	Colette vom Berg. 2021. 'Approaches to Test the Neurotoxicity of
1137	Environmental Contaminants in the Zebrafish Model: From Behavior to
1138	Molecular Mechanisms', Environmental Toxicology and Chemistry, 40: 989-
1139	1006.
1140	Foresta, C., S. Tescari, and A. Di Nisio. 2018. 'Impact of perfluorochemicals on human
1141	health and reproduction: a male's perspective', J Endocrinol Invest, 41: 639-45.
1142	Friedman, Katie Paul, Kevin Crofton, and Mary Gilbert. 2022. 'Upregulation of Thyroid
1143	Hormone Catabolism via Activation of Hepatic Nuclear Receptors, and
1144	Subsequent Adverse Neurodevelopmental Outcomes in Mammals. AOP 8',
1145	Accessed 23 Dec 2022. https://aopwiki.org/aops/8.
1146	Fu, Xiangjun, Jie Xu, Renyi Zhang, and Jie Yu. 2020. 'The association between
1147	environmental endocrine disruptors and cardiovascular diseases: A systematic
1148	review and meta-analysis', Environmental Research, 187: 109464.
1149	Gao, X., and H. S. Wang. 2014. 'Impact of bisphenol a on the cardiovascular system -
1150	epidemiological and experimental evidence and molecular mechanisms', $Int J$
1151	Environ Res Public Health, 11: 8399-413.
1152	Garcia-Calvo, E., A. Machuca, C. Nerín, N. Rosales-Conrado, D. S. Anunciação, and J.
1153	L. Luque-Garcia. 2020a. 'Integration of untargeted and targeted mass
1154	spectrometry-based metabolomics provides novel insights into the potential
1155	toxicity associated to surfynol', Food Chem Toxicol, 146: 111849.
1156	Garcia-Calvo, Estefania, Andres Machuca, Cristina Nerín, Noelia Rosales-Conrado,
1157	Daniela S. Anunciação, and Jose L. Luque-Garcia. 2020b. 'Integration of
1158	untargeted and targeted mass spectrometry-based metabolomics provides novel
1159	insights into the potential toxicity associated to surfynol', Food and Chemical
1160	<i>Toxicology</i> , 146: 111849.
1161	Gascon, Mireia, Maribel Casas, Eva Morales, Damaskini Valvi, Ana Ballesteros-
1162	Gómez, Noelia Luque, Soledad Rubio, Núria Monfort, Rosa Ventura, David

1163	Martínez, Jordi Sunyer, and Martine Vrijheid. 2015. 'Prenatal exposure to
1164	bisphenol A and phthalates and childhood respiratory tract infections and
1165	allergy', Journal of Allergy and Clinical Immunology, 135: 370-78.e7.
1166	Gear, R., J. A. Kendziorski, and S. M. Belcher. 2017. 'Effects of bisphenol A on
1167	incidence and severity of cardiac lesions in the NCTR-Sprague-Dawley rat: A
1168	CLARITY-BPA study', Toxicol Lett, 275: 123-35.
1169	Geiger, S. D., P. Yao, M. G. Vaughn, and Z. Qian. 2021. 'PFAS exposure and
1170	overweight/obesity among children in a nationally representative sample',
1171	Chemosphere, 268: 128852.
1172	Germolec, D., R. Luebke, A. Rooney, K. Shipkowski, R. Vandebriel, and H. van
1173	Loveren. 2017. 'Immunotoxicology: A brief history, current status and strategies
1174	for future immunotoxicity assessment', Curr Opin Toxicol, 5: 55-59.
1175	Germolec, D. R., H. Lebrec, S. E. Anderson, G. R. Burleson, A. Cardenas, E. Corsini,
1176	S. E. Elmore, B. L. F. Kaplan, B. P. Lawrence, G. M. Lehmann, C. C. Maier, C.
1177	M. McHale, L. P. Myers, M. Pallardy, A. A. Rooney, L. Zeise, L. Zhang, and M.
1178	T. Smith. 2022. 'Consensus on the Key Characteristics of Immunotoxic Agents
1179	as a Basis for Hazard Identification', Environ Health Perspect, 130: 105001.
1180	Geueke, B. 2018. "Non-intentionally added substances (NIAS)." In FPF Dossier, edited
1181	by Food Packaging Forum. Food Packaging Forum Foundation.
1182	Geueke, Birgit, Ksenia J. Groh, Maricel V. Maffini, Olwenn V. Martin, Justin M.
1183	Boucher, Yu-Ting Chiang, Frank Gwosdz, Phoenix Jieh, Christopher D.
1184	Kassotis, Paulina Łańska, John Peterson Myers, Alex Odermatt, Lindsey V.
1185	Parkinson, Verena N. Schreier, Vanessa Srebny, Lisa Zimmermann, Martin
1186	Scheringer, and Jane Muncke. 2022. 'Systematic evidence on migrating and
1187	extractable food contact chemicals: Most chemicals detected in food contact
1188	materials are not listed for use', Critical Reviews in Food Science and Nutrition:
1189	1-11.
1190	Geueke, Birgit, Ksenia Groh, and Jane Muncke. 2018. 'Food packaging in the circular
1191	economy: Overview of chemical safety aspects for commonly used materials',
1192	Journal of Cleaner Production, 193: 491-505.
1193	Geueke, Birgit, Drake W. Phelps, Lindsey V. Parkinson, and Jane Muncke. 2023.
1194	'Hazardous chemicals in recycled and reusable plastic food packaging',
1195	Cambridge Prisms: Plastics, 1: e7.

1196	Goralczyk, Katarzyna. 2021. "A Review of the Impact of Selected Anthropogenic
1197	Chemicals from the Group of Endocrine Disruptors on Human Health." In
1198	Toxics.
1199	Gore, A. C., V. A. Chappell, S. E. Fenton, J. A. Flaws, A. Nadal, G. S. Prins, J. Toppari,
1200	and R. T. Zoeller. 2015. 'EDC-2: The Endocrine Society's Second Scientific
1201	Statement on Endocrine-Disrupting Chemicals', Endocrine Reviews, 36: E1-
1202	E150.
1203	Grandjean, P., and P. J. Landrigan. 2006. 'Developmental neurotoxicity of industrial
1204	chemicals', Lancet, 368: 2167-78.
1205	Grandjean, Philippe, Carsten Heilmann, Pal Weihe, Flemming Nielsen, Ulla B.
1206	Mogensen, Amalie Timmermann, and Esben Budtz-Jørgensen. 2017. 'Estimated
1207	exposures to perfluorinated compounds in infancy predict attenuated vaccine
1208	antibody concentrations at age 5-years', Journal of Immunotoxicology, 14: 188-
1209	95.
1210	Grob, K., M. Biedermann, E. Scherbaum, M. Roth, and K. Rieger. 2006. 'Food
1211	contamination with organic materials in perspective: packaging materials as the
1212	largest and least controlled source? A view focusing on the European situation',
1213	Crit Rev Food Sci Nutr, 46: 529-35.
1214	Groh, Ksenia J., Birgit Geueke, Olwenn Martin, Maricel Maffini, and Jane Muncke.
1215	2021. 'Overview of intentionally used food contact chemicals and their hazards',
1216	Environ Int, 150: 106225.
1217	Groh, Ksenia J., and Jane Muncke. 2017. 'In Vitro Toxicity Testing of Food Contact
1218	Materials: State-of-the-Art and Future Challenges', COMPREHENSIVE
1219	REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 16: 1123–50.
1220	Guyton, Kathryn Z, Ivan Rusyn, Weihsueh A Chiu, Denis E Corpet, Martin van den
1221	Berg, Matthew K Ross, David C Christiani, Frederick A Beland, and Martyn T
1222	Smith. 2018. 'Application of the key characteristics of carcinogens in cancer
1223	hazard identification', Carcinogenesis, 39: 614-22.
1224	Guyton, Kathryn Z., and Mary K. Schubauer-Berigan. 2021. 'Invited Perspective:
1225	Prioritizing Chemical Testing and Evaluation Using Validated in Vitro Assays
1226	Relevant to Key Characteristics', Environ Health Perspect, 129: 071303.
1227	Hager, E., J. Chen, and L. Zhao. 2022. 'Minireview: Parabens Exposure and Breast
1228	Cancer', Int J Environ Res Public Health, 19.

1229 He, X., Y. Liu, B. Xu, L. Gu, and W. Tang. 2018. 'PFOA is associated with diabetes 1230 and metabolic alteration in US men: National Health and Nutrition Examination 1231 Survey 2003-2012', Sci Total Environ, 625: 566-74. 1232 Heindel, J. J. 2019. 'History of the Obesogen Field: Looking Back to Look Forward', 1233 Front Endocrinol (Lausanne), 10: 14. 1234 Heindel, J. J., S. Howard, K. Agay-Shay, J. P. Arrebola, K. Audouze, P. J. Babin, R. 1235 Barouki, A. Bansal, E. Blanc, M. C. Cave, S. Chatterjee, N. Chevalier, M. 1236 Choudhury, D. Collier, L. Connolly, X. Coumoul, G. Garruti, M. Gilbertson, L. 1237 A. Hoepner, A. C. Holloway, G. Howell, 3rd, C. D. Kassotis, M. K. Kay, M. J. 1238 Kim, D. Lagadic-Gossmann, S. Langouet, A. Legrand, Z. Li, H. Le Mentec, L. 1239 Lind, P. Monica Lind, R. H. Lustig, C. Martin-Chouly, V. Munic Kos, N. 1240 Podechard, T. A. Roepke, R. M. Sargis, A. Starling, C. R. Tomlinson, C. 1241 Touma, J. Vondracek, F. Vom Saal, and B. Blumberg. 2022. 'Obesity II: 1242 Establishing causal links between chemical exposures and obesity', Biochem 1243 Pharmacol, 199: 115015. 1244 Hessel, Ellen V. S., Elisa C. M. Tonk, Peter M. J. Bos, Henk van Loveren, and Aldert 1245 H. Piersma. 2015. 'Developmental immunotoxicity of chemicals in rodents and 1246 its possible regulatory impact', Critical Reviews in Toxicology, 45: 68-82. 1247 Hlisníková, H., I. Petrovičová, B. Kolena, M. Šidlovská, and A. Sirotkin. 2021. 'Effects 1248 and mechanisms of phthalates' action on neurological processes and neural 1249 health: a literature review', Pharmacol Rep, 73: 386-404. 1250 Horodytska, O., A. Cabanes, and A. Fullana. 2020. 'Non-intentionally added substances 1251 (NIAS) in recycled plastics', Chemosphere, 251: 126373. 1252 Hsieh, T. J., P. C. Hsieh, Y. H. Tsai, C. F. Wu, C. C. Liu, M. Y. Lin, and M. T. Wu. 1253 2012. 'Melamine induces human renal proximal tubular cell injury via 1254 transforming growth factor- β and oxidative stress', *Toxicol Sci*, 130: 17-32. 1255 Huff, James, Michael F. Jacobson, and Devra Lee Davis. 2008. 'The Limits of Two-1256 Year Bioassay Exposure Regimens for Identifying Chemical Carcinogens', 1257 Environ Health Perspect, 116: 1439-42. 1258 Hunt, Piper Reid, Nicholas Olejnik, Keenan D. Bailey, Cory A. Vaught, and Robert L. 1259 Sprando. 2018. 'C. elegans Development and Activity Test detects mammalian 1260 developmental neurotoxins', Food and Chemical Toxicology, 121: 583-92.

1261	Hwang, S. H., H. Yeom, B. I. Han, B. J. Ham, Y. M. Lee, M. R. Han, and M. Lee. 2020.
1262	'Predicting Carcinogenic Mechanisms of Non-Genotoxic Carcinogens via
1263	Combined Analysis of Global DNA Methylation and In Vitro Cell
1264	Transformation', Int J Mol Sci, 21.
1265	Hyun, S. A., C. Y. Lee, M. Y. Ko, S. H. Chon, Y. J. Kim, J. W. Seo, K. K. Kim, and M.
1266	Ka. 2021. 'Cardiac toxicity from bisphenol A exposure in human-induced
1267	pluripotent stem cell-derived cardiomyocytes', Toxicol Appl Pharmacol, 428:
1268	115696.
1269	IARC. 2010. "Some Aromatic Amines, Organic Dyes, and Related Exposures. IARC
1270	Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 99."
1271	In IARC Monographs, edited by International Agency for Research on Cancer.
1272	Lyon, France: IARC.
1273	2012a. "Chemical Agents and Related Occupations. IARC Monographs on the
1274	Evaluation of Carcinogenic Risks to Humans Volume 100F." In IARC
1275	Monographs, edited by International Agency for Research on Cancer. Lyon,
1276	France: International Agency for Research on Cancer.
1277	——. 2012b. "Some Chemicals Present in Industrial and Consumer Products, Food
1278	and Drinking-water. IARC Monographs on the Evaluation of Carcinogenic
1279	Risks to Humans Volume 101." In IARC Monographs, edited by International
1280	Agency for Research on Cancer. Lyon, France: IARC.
1281	———. 2016. "Some Chemicals Used as Solvents and in Polymer Manufacture. IARC
1282	Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 110."
1283	In IARC Monographs, edited by International Agency for Research on Cancer.
1284	Lyon, France.
1285	———. 2019. "Some Chemicals That Cause Tumours of the Urinary Tract in Rodents.
1286	IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume
1287	119." In IARC Monographs, edited by International Agency for Research on
1288	Cancer. Lyon, France.
1289	2022. "Agents classified by the IARC monographs, volumes 1-129." In, edited
1290	by International Agency for Research on Cancer.
1291	https://monographs.iarc.who.int/agents-classified-by-the-iarc/.
1292	Isaacs, K. K., J. T. Wall, A. R. Williams, K. A. Hobbie, J. R. Sobus, E. Ulrich, D.
1293	Lyons, K. L. Dionisio, A. J. Williams, C. Grulke, C. A. Foster, J. McCoy, and C.

1294	Bevington. 2022. 'A harmonized chemical monitoring database for support of
1295	exposure assessments', Sci Data, 9: 314.
1296	Janesick, A. S., G. Dimastrogiovanni, L. Vanek, C. Boulos, R. Chamorro-García, W.
1297	Tang, and B. Blumberg. 2016. 'On the Utility of $ToxCast^{TM}$ and $ToxPi$ as
1298	Methods for Identifying New Obesogens', Environ Health Perspect, 124: 1214-
1299	26.
1300	Jickells, S. M., P. Gancedo, C. Nerin, L. Castle, and J. Gilbert. 1993. 'Migration of
1301	styrene monomer from thermoset polyester cookware into foods during high
1302	temperature applications', Food Addit Contam, 10: 567-73.
1303	Jokinen, M. P., W. G. Lieuallen, C. L. Johnson, J. Dunnick, and A. Nyska. 2005.
1304	'Characterization of spontaneous and chemically induced cardiac lesions in
1305	rodent model systems: the national toxicology program experience', Cardiovasc
1306	<i>Toxicol</i> , 5: 227-44.
1307	Jokinen, Micheal P., Warren G. Lieuallen, Michael C. Boyle, Crystal L. Johnson, David
1308	E. Malarkey, and Abraham Nyska. 2011. 'Morphologic Aspects of Rodent
1309	Cardiotoxicity in a Retrospective Evaluation of National Toxicology Program
1310	Studies', Toxicologic Pathology, 39: 850-60.
1311	Jorgensen, A., T. Svingen, H. Miles, T. Chetty, J. B. Stukenborg, and R. T. Mitchell.
1312	2021. 'Environmental Impacts on Male Reproductive Development: Lessons
1313	from Experimental Models', Hormone Research in Paediatrics.
1314	Jun, J. H., J. E. Oh, J. K. Shim, Y. L. Kwak, and J. S. Cho. 2021. 'Effects of bisphenol
1315	A on the proliferation, migration, and tumor growth of colon cancer cells: In
1316	vitro and in vivo evaluation with mechanistic insights related to ERK and 5-
1317	HT3', Food Chem Toxicol, 158: 112662.
1318	Jung, S. K., W. Choi, S. Y. Kim, S. Hong, H. L. Jeon, Y. Joo, C. Lee, K. Choi, S. Kim,
1319	K. J. Lee, and J. Yoo. 2022. 'Profile of Environmental Chemicals in the Korean
1320	Population-Results of the Korean National Environmental Health Survey
1321	(KoNEHS) Cycle 3, 2015-2017', Int J Environ Res Public Health, 19.
1322	Kassotis, C. D., and H. M. Stapleton. 2019. 'Endocrine-Mediated Mechanisms of
1323	Metabolic Disruption and New Approaches to Examine the Public Health
1324	Threat', Front Endocrinol (Lausanne), 10: 39.
1325	Kassotis, C. D., F. S. Vom Saal, P. J. Babin, D. Lagadic-Gossmann, H. Le Mentec, B.
1326	Blumberg, N. Mohajer, A. Legrand, V. Munic Kos, C. Martin-Chouly, N.

1327	Podechard, S. Langouët, C. Touma, R. Barouki, M. J. Kim, K. Audouze, M.
1328	Choudhury, N. Shree, A. Bansal, S. Howard, and J. J. Heindel. 2022. 'Obesity
1329	III: Obesogen assays: Limitations, strengths, and new directions', Biochem
1330	Pharmacol, 199: 115014.
1331	Kassotis, Christopher D., Laura N. Vandenberg, Barbara A. Demeneix, Miquel Porta,
1332	Remy Slama, and Leonardo Trasande. 2020. 'Endocrine-disrupting chemicals:
1333	economic, regulatory, and policy implications', The Lancet Diabetes &
1334	Endocrinology, 8: 719-30.
1335	Keri, Ruth A., Shuk-Mei Ho, Patricia A. Hunt, Karen E. Knudsen, Ana M. Soto, and
1336	Gail S. Prins. 2007. 'An Evaluation of Evidence for the Carcinogenic Activity of
1337	Bisphenol A', Reprod Tox, 24: 240-52.
1338	Key Characteristics. 2022. 'Key Characteristics. Identifying the Key Characteristics of
1339	Hazardous Chemicals and Other Exposures: A Collaborative Approach',
1340	Accessed 23 Dec 2022. https://keycharacteristics.org/.
1341	Kilic, O., D. Pamies, E. Lavell, P. Schiapparelli, Y. Feng, T. Hartung, A. Bal-Price, H.
1342	T. Hogberg, A. Quinones-Hinojosa, H. Guerrero-Cazares, and A. Levchenko.
1343	2016. 'Brain-on-a-chip model enables analysis of human neuronal differentiation
1344	and chemotaxis', Lab Chip, 16: 4152-62.
1345	Kim, E. H., B. H. Jeon, J. Kim, Y. M. Kim, Y. Han, K. Ahn, and H. K. Cheong. 2017.
1346	'Exposure to phthalates and bisphenol A are associated with atopic dermatitis
1347	symptoms in children: a time-series analysis', Environ Health, 16: 24.
1348	Kim, Hyung Soo, Ye Jin Lee, Ye Ji Koo, Eun Chul Pack, Kyung Min Lim, and Dal
1349	Woong Choi. 2021. 'Migration of monomers, plastic additives, and non-
1350	intentionally added substances from food utensils made of melamine-
1351	formaldehyde resin following ultraviolet sterilization', Food Control, 125:
1352	107981.
1353	Kim, Johanna Inhyang, Young Ah Lee, Choong Ho Shin, Yun-Chul Hong, Bung-Nyun
1354	Kim, and Youn-Hee Lim. 2022. 'Association of bisphenol A, bisphenol F, and
1355	bisphenol S with ADHD symptoms in children', Environ Int, 161: 107093.
1356	Kirk, Andrea B. 2006. 'Environmental perchlorate: Why it matters', Analytica Chimica
1357	Acta, 567: 4-12.
1358	Koch, H. M., and A. M. Calafat. 2009. 'Human body burdens of chemicals used in
1359	plastic manufacture', Philos Trans R Soc Lond B Biol Sci, 364: 2063-78.

1360 Kofron, Celinda M., Tae Yun Kim, Fabiola Munarin, Arvin H. Soepriatna, Rajeev J. 1361 Kant, Ulrike Mende, Bum-Rak Choi, and Kareen L. K. Coulombe. 2021. 'A 1362 predictive in vitro risk assessment platform for pro-arrhythmic toxicity using 1363 human 3D cardiac microtissues', Scientific Reports, 11: 10228. 1364 Kortenkamp, A. 2020. 'Which chemicals should be grouped together for mixture risk 1365 assessments of male reproductive disorders?', Mol Cell Endocrinol, 499: 1366 110581. Kortenkamp, Andreas, Marta Axelstad, Asma H. Baig, Åke Bergman, Carl-Gustaf 1367 1368 Bornehag, Peter Cenijn, Sofie Christiansen, Barbara Demeneix, Arash 1369 Derakhshan, Jean-Baptiste Fini, Caroline Frädrich, Timo Hamers, Lina Hellwig, 1370 Josef Köhrle, Tim I.M. Korevaar, Johan Lindberg, Olwenn Martin, Marcel E. 1371 Meima, Philipp Mergenthaler, Nikolai Nikolov, David Du Pasquier, Robin P. 1372 Peeters, Bjorn Platzack, Louise Ramhøj, Sylvie Remaud, Kostja Renko, Martin 1373 Scholze, Harald Stachelscheid, Terje Svingen, Fabian Wagenaars, Eva Bay 1374 Wedebye, and R. Thomas Zoeller. 2020. 'Removing Critical Gaps in Chemical 1375 Test Methods by Developing New Assays for the Identification of Thyroid 1376 Hormone System-Disrupting Chemicals—The ATHENA Project', International 1377 Journal of Molecular Sciences, 21: 3123. 1378 Kortenkamp, Andreas, and Michael Faust. 2018. 'Regulate to reduce chemical mixture 1379 risk', Science, 361: 224-26. 1380 Koster, S, MH Bani-Estivals, M Bonuomo, E Bradley, MC Chagnon, ML Garcia, F 1381 Godts, T Gude, R Helling, P Paseiro-Losada, G Pieper, M Rennen, T Simat, and 1382 L Spack. 2015. "Guidance on best practices on the risk assessment of non-1383 intentionally added substances (NIAS) in food contact materials and articles." In.: ILSI Europe. 1384 1385 Koster, Sander, Monique Rennen, Winfried Leeman, Geert Houben, Bas Muilwijk, 1386 Frederique van Acker, and Lisette Krul. 2013. 'A novel safety assessment 1387 strategy for non-intentionally added substances (NIAS) in carton food contact 1388 materials', Food Additives & Contaminants: Part A, 31: 422-43. 1389 Krewski, Daniel, Michael Bird, Mustafa Al-Zoughool, Nicholas Birkett, Mélissa 1390 Billard, Brittany Milton, Jerry M. Rice, Yann Grosse, Vincent J. Cogliano, Mark 1391 A. Hill, Robert A. Baan, Julian Little, and Jan M. Zielinski. 2019. 'Key

1392	characteristics of 86 agents known to cause cancer in humans', Journal of
1393	Toxicology and Environmental Health, Part B, 22: 244-63.
1394	Krishna, S., B. Berridge, and N. Kleinstreuer. 2021. 'High-Throughput Screening to
1395	Identify Chemical Cardiotoxic Potential', Chem Res Toxicol, 34: 566-83.
1396	Küblbeck, Jenni, Taina Vuorio, Jonna Niskanen, Vittorio Fortino, Albert Braeuning,
1397	Khaled Abass, Arja Rautio, Jukka Hakkola, Paavo Honkakoski, and Anna-Liisa
1398	Levonen. 2020. 'The EDCMET Project: Metabolic Effects of Endocrine
1399	Disruptors', International Journal of Molecular Sciences, 21: 3021.
1400	La Merrill, Michele A., Laura N. Vandenberg, Martyn T. Smith, William Goodson,
1401	Patience Browne, Heather B. Patisaul, Kathryn Z. Guyton, Andreas
1402	Kortenkamp, Vincent J. Cogliano, Tracey J. Woodruff, Linda Rieswijk, Hideko
1403	Sone, Kenneth S. Korach, Andrea C. Gore, Lauren Zeise, and R. Thomas
1404	Zoeller. 2020. 'Consensus on the key characteristics of endocrine-disrupting
1405	chemicals as a basis for hazard identification', Nature Reviews Endocrinology,
1406	16: 45-57.
1407	Lane, J. M., J. R. Doyle, J. P. Fortin, A. S. Kopin, and J. M. Ordovás. 2014.
1408	'Development of an OP9 derived cell line as a robust model to rapidly study
1409	adipocyte differentiation', PLoS One, 9: e112123.
1410	Larsson-Nyrén, G., J. Sehlin, P. Rorsman, and E. Renström. 2001. 'Perchlorate
1411	stimulates insulin secretion by shifting the gating of L-type Ca2+ currents in
1412	mouse pancreatic B-cells towards negative potentials', Pflugers Arch, 441: 587-
1413	95.
1414	Leeman, Winfried, and Lisette Krul. 2015. 'Non-intentionally added substances in food
1415	contact materials: how to ensure consumer safety', Current Opinion in Food
1416	Science, 6: 33-37.
1417	Legler, Juliette, Daniel Zalko, Fabien Jourdan, Miriam Jacobs, Bernard Fromenty,
1418	Patrick Balaguer, William Bourguet, Vesna Munic Kos, Angel Nadal, Claire
1419	Beausoleil, Susana Cristobal, Sylvie Remy, Sibylle Ermler, Luigi Margiotta-
1420	Casaluci, Julian L. Griffin, Bruce Blumberg, Christophe Chesné, Sebastian
1421	Hoffmann, Patrik L. Andersson, and Jorke H. Kamstra. 2020. 'The GOLIATH
1422	Project: Towards an Internationally Harmonised Approach for Testing
1423	Metabolism Disrupting Compounds', International Journal of Molecular
1424	Sciences, 21: 3480.

1425	Levine, H., N. Jørgensen, A. Martino-Andrade, J. Mendiola, D. Weksler-Derri, I.
1426	Mindlis, R. Pinotti, and S. H. Swan. 2017. 'Temporal trends in sperm count: a
1427	systematic review and meta-regression analysis', Hum Reprod Update, 23: 646-
1428	59.
1429	Levine, Hagai, Niels Jørgensen, Anderson Martino-Andrade, Jaime Mendiola, Dan
1430	Weksler-Derri, Maya Jolles, Rachel Pinotti, and Shanna H Swan. 2022.
1431	'Temporal trends in sperm count: a systematic review and meta-regression
1432	analysis of samples collected globally in the 20th and 21st centuries', Human
1433	Reproduction Update, 29: 157-76.
1434	Li, J., L. Zheng, X. Wang, K. Yao, L. Shi, X. Sun, G. Yang, L. Jiang, C. Zhang, Y.
1435	Wang, L. Jiang, and X. Liu. 2019. 'Taurine protects INS-1 cells from apoptosis
1436	induced by Di(2-ethylhexyl) phthalate via reducing oxidative stress and
1437	autophagy', Toxicol Mech Methods, 29: 445-56.
1438	Li, N., G. D. Papandonatos, A. M. Calafat, K. Yolton, B. P. Lanphear, A. Chen, and J.
1439	M. Braun. 2020. 'Gestational and childhood exposure to phthalates and child
1440	behavior', Environ Int, 144: 106036.
1441	Lind, Lars, Jesus A. Araujo, Aaron Barchowsky, Scott Belcher, Brian R. Berridge,
1442	Nipavan Chiamvimonvat, Weihsueh A. Chiu, Vincent J. Cogliano, Sarah
1443	Elmore, Aimen K. Farraj, Aldrin V. Gomes, Cliona M. McHale, Kathleen B.
1444	Meyer-Tamaki, Nikki Gillum Posnack, Hugo M. Vargas, Xi Yang, Lauren
1445	Zeise, Changcheng Zhou, and Martyn T. Smith. 2021. 'Key Characteristics of
1446	Cardiovascular Toxicants', Environ Health Perspect, 129: 095001.
1447	Liu, P., F. Yang, Y. Wang, and Z. Yuan. 2018. 'Perfluorooctanoic Acid (PFOA)
1448	Exposure in Early Life Increases Risk of Childhood Adiposity: A Meta-Analysis
1449	of Prospective Cohort Studies', Int J Environ Res Public Health, 15.
1450	Liu, Qicai. 2021. 'Effects of Environmental Endocrine-Disrupting Chemicals on Female
1451	Reproductive Health.' in Huidong Zhang and Jie Yan (eds.), Environment and
1452	Female Reproductive Health (Springer Singapore: Singapore).
1453	Liu, Wang, Jiye Zhang, Xuefang Liang, Yuchen Wang, Ruimin Liu, Ruiqing Zhang,
1454	Jinmiao Zha, and Christopher J. Martyniuk. 2022. 'Environmental
1455	concentrations of 2, 4-DTBP cause immunotoxicity in zebrafish (Danio rerio)
1456	and may elicit ecological risk to wildlife', Chemosphere, 308: 136465.

1457	Lizarraga, L. E., G. W. Suter, J. C. Lambert, G. Patlewicz, J. Q. Zhao, J. L. Dean, and P.
1458	Kaiser. 2023. 'Advancing the science of a read-across framework for evaluation
1459	of data-poor chemicals incorporating systematic and new approach methods',
1460	Regul Toxicol Pharmacol, 137: 105293.
1461	Loganathan, Neruja, Ashkan Salehi, Jennifer A Chalmers, and Denise D Belsham.
1462	2018. 'Bisphenol A Alters Bmal1, Per2, and Rev-Erba mRNA and Requires
1463	Bmal1 to Increase Neuropeptide Y Expression in Hypothalamic Neurons',
1464	Endocrinology, 160: 181-92.
1465	Luderer, Ulrike, Brenda Eskenazi, Russ Hauser, Kenneth S. Korach, Cliona M. McHale,
1466	Francisco Moran, Linda Rieswijk, Gina Solomon, Osamu Udagawa, Luoping
1467	Zhang, Marya Zlatnik, Lauren Zeise, and Martyn T. Smith. 2019. 'Proposed Key
1468	Characteristics of Female Reproductive Toxicants as an Approach for
1469	Organizing and Evaluating Mechanistic Data in Hazard Assessment', Environ
1470	Health Perspect, 127: 075001.
1471	Luebke, R. 2012. 'Immunotoxicant screening and prioritization in the twenty-first
1472	century', Toxicol Pathol, 40: 294-9.
1473	Madia, Federica, Andrew Worth, Maurice Whelan, and Raffaella Corvi. 2019.
1474	'Carcinogenicity assessment: Addressing the challenges of cancer and chemicals
1475	in the environment', Environ Int, 128: 417-29.
1476	Maffini, M. V., L. Trasande, and T. G. Neltner. 2016. 'Perchlorate and Diet: Human
1477	Exposures, Risks, and Mitigation Strategies', Curr Environ Health Rep, 3: 107-
1478	17.
1479	Maffini, Maricel V., Heather M. Alger, Erik D. Olson, and Thomas G. Neltner. 2013.
1480	'Looking Back to Look Forward: A Review of FDA's Food Additives Safety
1481	Assessment', COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD
1482	SAFETY, 12.
1483	Maffini, Maricel V., Ana M. Soto, Janine M. Calabro, Angelo A. Ucci, and Carlos
1484	Sonnenschein. 2004. 'The stroma as a crucial target in rat mammary gland
1485	carcinogenesis', Journal of Cell Science, 117: 1495-502.
1486	Mahalingam, S., L. Ther, L. Gao, W. Wang, A. Ziv-Gal, and J. A. Flaws. 2017. 'The
1487	effects of in utero bisphenol A exposure on ovarian follicle numbers and
1488	steroidogenesis in the F1 and F2 generations of mice', Reprod Toxicol, 74: 150-
1489	57.

1490	Manikkam, M., R. Tracey, C. Guerrero-Bosagna, and M. K. Skinner. 2013. 'Plastics
1491	derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic
1492	transgenerational inheritance of obesity, reproductive disease and sperm
1493	epimutations', PLoS One, 8: e55387.
1494	Maoz, Ben M. 2021. 'Brain-on-a-Chip: Characterizing the next generation of advanced
1495	in vitro platforms for modeling the central nervous system', APL
1496	Bioengineering, 5: 030902.
1497	Mariana, Melissa, Joana Feiteiro, Ignacio Verde, and Elisa Cairrao. 2016. 'The effects
1498	of phthalates in the cardiovascular and reproductive systems: A review', Environ
1499	Int, 94: 758-76.
1500	Marroqui, L., J. Martinez-Pinna, M. Castellano-Muñoz, R. S. Dos Santos, R. M.
1501	Medina-Gali, S. Soriano, I. Quesada, J. A. Gustafsson, J. A. Encinar, and A.
1502	Nadal. 2021. 'Bisphenol-S and Bisphenol-F alter mouse pancreatic β -cell ion
1503	channel expression and activity and insulin release through an estrogen receptor
1504	ERβ mediated pathway', <i>Chemosphere</i> , 265: 129051.
1505	Martínez-Ibarra, A., L. D. Martínez-Razo, K. MacDonald-Ramos, M. Morales-Pacheco,
1506	E. R. Vázquez-Martínez, M. López-López, M. Rodríguez Dorantes, and M.
1507	Cerbón. 2021. 'Multisystemic alterations in humans induced by bisphenol A and
1508	phthalates: Experimental, epidemiological and clinical studies reveal the need to
1509	change health policies', Environmental Pollution, 271: 116380.
1510	Martinez-Pinna, J., L. Marroqui, A. Hmadcha, J. Lopez-Beas, S. Soriano, S. Villar-
1511	Pazos, P. Alonso-Magdalena, R. S. Dos Santos, I. Quesada, F. Martin, B. Soria,
1512	JÅ Gustafsson, and A. Nadal. 2019. 'Oestrogen receptor β mediates the actions
1513	of bisphenol-A on ion channel expression in mouse pancreatic beta cells',
1514	Diabetologia, 62: 1667-80.
1515	Marty, Sue, Manon Beekhuijzen, Alex Charlton, Nina Hallmark, Bethany R. Hannas,
1516	Sylvia Jacobi, Stephanie Melching-Kollmuss, Ursula G. Sauer, Larry P. Sheets,
1517	Volker Strauss, Daniel Urbisch, Philip A. Botham, and Bennard van
1518	Ravenzwaay. 2021. 'Towards a science-based testing strategy to identify
1519	maternal thyroid hormone imbalance and neurodevelopmental effects in the
1520	progeny – part II: how can key events of relevant adverse outcome pathways be
1521	addressed in toxicological assessments?', Critical Reviews in Toxicology, 51:
1522	328-58.

1523	Marvel, Skylar W., Kimberly To, Fabian A. Grimm, Fred A. Wright, Ivan Rusyn, and
1524	David M. Reif. 2018. 'ToxPi Graphical User Interface 2.0: Dynamic exploration,
1525	visualization, and sharing of integrated data models', BMC Bioinformatics, 19:
1526	80.
1527	McDonough, Callie M., Hannah Shibo Xu, and Tai L. Guo. 2021. 'Toxicity of bisphenol
1528	analogues on the reproductive, nervous, and immune systems, and their
1529	relationships to gut microbiome and metabolism: insights from a multi-species
1530	comparison', Critical Reviews in Toxicology, 51: 283-300.
1531	Melnick, R. L. 2001. 'Is peroxisome proliferation an obligatory precursor step in the
1532	carcinogenicity of di(2-ethylhexyl)phthalate (DEHP)?', Environ Health
1533	Perspect, 109: 437-42.
1534	Messerlian, C., I. Souter, A. J. Gaskins, P. L. Williams, J. B. Ford, Y. H. Chiu, A. M.
1535	Calafat, and R. Hauser. 2016. 'Urinary phthalate metabolites and ovarian reserve
1536	among women seeking infertility care', Hum Reprod, 31: 75-83.
1537	Midya, Vishal, Elena Colicino, David V. Conti, Kiros Berhane, Erika Garcia, Nikos
1538	Stratakis, Sandra Andrusaityte, Xavier Basagaña, Maribel Casas, Serena Fossati,
1539	Regina Gražulevičienė, Line Småstuen Haug, Barbara Heude, Léa Maitre,
1540	Rosemary McEachan, Eleni Papadopoulou, Theano Roumeliotaki, Claire
1541	Philippat, Cathrine Thomsen, Jose Urquiza, Marina Vafeiadi, Nerea Varo,
1542	Miriam B. Vos, John Wright, Rob McConnell, Martine Vrijheid, Lida Chatzi,
1543	and Damaskini Valvi. 2022. 'Association of Prenatal Exposure to Endocrine-
1544	Disrupting Chemicals With Liver Injury in Children', JAMA Network Open, 5:
1545	е2220176-е76.
1546	Minet, Laura, Zhanyun Wang, Anna Shalin, Thomas A. Bruton, Arlene Blum, Graham
1547	F. Peaslee, Heather Schwartz-Narbonne, Marta Venier, Heather Whitehead, Yan
1548	Wu, and Miriam L. Diamond. 2022. 'Use and release of per- and polyfluoroalkyl
1549	substances (PFASs) in consumer food packaging in U.S. and Canada',
1550	Environmental Science: Processes & Impacts, 24: 2032-42.
1551	Mohajer, N., C. Y. Du, C. Checkcinco, and B. Blumberg. 2021. 'Obesogens: How They
1552	Are Identified and Molecular Mechanisms Underlying Their Action', Front
1553	Endocrinol (Lausanne), 12: 780888.
1554	Mohanto, Nayan Chandra, Yuki Ito, Sayaka Kato, and Michihiro Kamijima. 2021.
1555	'Life-Time Environmental Chemical Exposure and Obesity: Review of

1556 Epidemiological Studies Using Human Biomonitoring Methods', Frontiers in 1557 Endocrinology, 12. 1558 Moon, Shinje, Sung Hoon Yu, Chang Beom Lee, Young Joo Park, Hyung Joon Yoo, 1559 and Dong Sun Kim. 2021. 'Effects of bisphenol A on cardiovascular disease: An 1560 epidemiological study using National Health and Nutrition Examination Survey 1561 2003–2016 and meta-analysis', Science of The Total Environment, 763: 142941. 1562 Moore, Sonja, Laura Paalanen, Lisa Melymuk, Andromachi Katsonouri, Marike Kolossa-Gehring, and Hanna Tolonen. 2022. 'The Association between ADHD 1563 1564 and Environmental Chemicals— A Scoping Review', International 1565 Journal of Environmental Research and Public Health, 19: 2849. 1566 Muncke, J. 2009. 'Exposure to endocrine disrupting compounds via the food chain: Is 1567 packaging a relevant source?', Sci Total Environ, 407: 4549-59. 1568 Muncke, J., T. Backhaus, B. Geueke, M. V. Maffini, O. V. Martin, J. P. Myers, A. M. 1569 Soto, L. Trasande, X. Trier, and M. Scheringer. 2017. 'Scientific challenges in 1570 the risk assessment of food contact materials', Environ Health Perspect, 125: 1571 095001. 1572 Muncke, Jane. 2021. 'Tackling the toxics in plastics packaging', PLOS Biology, 19: 1573 e3000961. 1574 Muncke, Jane, Anna-Maria Andersson, Thomas Backhaus, Justin M. Boucher, Bethanie 1575 Carney Almroth, Arturo Castillo Castillo, Jonathan Chevrier, Barbara A. 1576 Demeneix, Jorge A. Emmanuel, Jean-Baptiste Fini, David Gee, Birgit Geueke, 1577 Ksenia Groh, Jerrold J. Heindel, Jane Houlihan, Christopher D. Kassotis, Carol 1578 F. Kwiatkowski, Lisa Y. Lefferts, Maricel V. Maffini, Olwenn V. Martin, John 1579 Peterson Myers, Angel Nadal, Cristina Nerin, Katherine E. Pelch, Seth Rojello 1580 Fernández, Robert M. Sargis, Ana M. Soto, Leonardo Trasande, Laura N. 1581 Vandenberg, Martin Wagner, Changqing Wu, R. Thomas Zoeller, and Martin 1582 Scheringer. 2020. 'Impacts of food contact chemicals on human health: a 1583 consensus statement', Environmental Health, 19: 25. 1584 Mustieles, Vicente, and Mariana F. Fernández. 2020. 'Bisphenol A shapes children's 1585 brain and behavior: towards an integrated neurotoxicity assessment including 1586 human data', Environmental Health, 19: 66.

1587 Naderi, Mohammad, and Raymond W. M. Kwong. 2020. 'A comprehensive review of 1588 the neurobehavioral effects of bisphenol S and the mechanisms of action: New 1589 insights from in vitro and in vivo models', Environ Int, 145: 106078. 1590 Naidenko, Olga V., David Q. Andrews, Alexis M. Temkin, Tasha Stoiber, Uloma Igara 1591 Uche, Sydney Evans, and Sean Perrone-Gray. 2021. 'Investigating Molecular 1592 Mechanisms of Immunotoxicity and the Utility of ToxCast for Immunotoxicity 1593 Screening of Chemicals Added to Food', International Journal of Environmental 1594 Research and Public Health, 18: 3332. 1595 Naxerova, Kamila. 2021. 'Mutation fingerprints encode cellular histories', *Nature*, 597: 1596 334-36. 1597 Neale, P. A., B. I. Escher, M. L. de Baat, J. Enault, and F. D. L. Leusch. 2023. 'Effect-1598 Based Trigger Values Are Essential for the Uptake of Effect-Based Methods in 1599 Water Safety Planning', Environ Toxicol Chem, 42: 714-26. 1600 Neltner, Thomas G., Heather M. Alger, Jack E. Leonard, and Maricel V. Maffini. 1601 2013a. 'Data Gaps in Toxicity Testing of Chemicals Allowed in Food in the 1602 United States', Reproductive Toxicology. 1603 -. 2013b. 'Data gaps in toxicity testing of chemicals allowed in food in the United 1604 States', Reproductive Toxicology, 42: 85-94. Nerin, C., P. Alfaro, M. Aznar, and C. Domeño. 2013. 'The challenge of identifying 1605 1606 non-intentionally added substances from food packaging materials: A review', 1607 Analytica Chimica Acta, 775: 14-24. 1608 Nerin, C., and E. Asensio. 2007. 'Migration of organic compounds from a multilayer 1609 plastic-paper material intended for food packaging', Analytical and 1610 Bioanalytical Chemistry, 389: 589-96. 1611 Nerín, C., Q. Z. Su, P. Vera, N. Mendoza, and R. Ausejo. 2020. 'Influence of 1612 nonylphenol from multilayer plastic films on artificial insemination of sows', 1613 Anal Bioanal Chem, 412: 6519-28. 1614 Nerin, C., J. L. Ubeda, P. Alfaro, Y. Dahmani, M. Aznar, E. Canellas, and R. Ausejo. 1615 2014. 'Compounds from multilayer plastic bags cause reproductive failures in 1616 artificial insemination', Sci. Rep., 4. 1617 Nerín, Cristina, Siméon Bourdoux, Birgit Faust, Thomas Gude, Céline Lesueur, 1618 Thomas Simat, Angela Stoermer, Els Van Hoek, and Peter Oldring. 2022. 1619 'Guidance in selecting analytical techniques for identification and quantification

1620	of non-intentionally added substances (NIAS) in food contact materials
1621	(FCMS)', Food Additives & Contaminants: Part A, 39: 620-43.
1622	Nerin, Cristina, Elena Canellas, Paula Vera, Estefanía Garcia-Calvo, José Luis Luque-
1623	Garcia, Carmen Cámara, Raquel Ausejo, Joaquín Miguel, and Noelia Mendoza.
1624	2018. 'A common surfactant used in food packaging found to be toxic for
1625	reproduction in mammals', Food and Chemical Toxicology, 113: 115-24.
1626	Nicholson, L. B. 2016. 'The immune system', Essays Biochem, 60: 275-301.
1627	Nowak, Karolina, Ewa Jabłońska, and Wioletta Ratajczak-Wrona. 2019.
1628	'Immunomodulatory effects of synthetic endocrine disrupting chemicals on the
1629	development and functions of human immune cells', Environ Int, 125: 350-64.
1630	NTP. 2018. "Report on Carcinogens. Monograph on Antimony Trioxide." In RoC
1631	Monograph, edited by National Toxicology Program. U.S. Department of Health
1632	and Human Services.
1633	2021. 'RoC Review of Antimony Trioxide', U.S. Department of Health and
1634	Human Services, Accessed 23 Dec 2022.
1635	https://ntp.niehs.nih.gov/whatwestudy/assessments/cancer/completed/antimonyt/
1636	index.html.
1637	Obsekov, Vladislav, Linda G. Kahn, and Leonardo Trasande. 2022. 'Leveraging
1638	Systematic Reviews to Explore Disease Burden and Costs of Per- and
1639	Polyfluoroalkyl Substance Exposures in the United States', Exposure and
1640	Health.
1641	OECD. 2015. "Guidance Document on Revisions to OECD Genetic Toxicology Test
1642	Guidelines." In, edited by Organisation for Economic Co-operation and
1643	Development.
1644	——. 2022. 'OECD Test Guidelines for Chemicals', Accessed 23 Dec 2022.
1645	https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchem
1646	icals.htm.
1647	Ogungbesan, Adejoke, April Neal-Kluever, and Penny Rice. 2019. 'Exploring the use of
1648	current immunological assays for the developmental immunotoxicity assessment
1649	of food contact materials', Food and Chemical Toxicology, 133: 110801.
1650	Oldring, P. K. T., L. Castle, C. O'Mahony, and J. Dixon. 2014. 'Estimates of dietary
1651	exposure to bisphenol A (BPA) from light metal packaging using food
1652	consumption and packaging usage data: a refined deterministic approach and a

1653 fully probabilistic (FACET) approach', Food Additives & Contaminants: Part A, 1654 31: 466-89. 1655 Oldring, Peter, Birgit Faust, Thomas Gude, Céline Lesueur, Thomas Simat, Angela 1656 Stoermer, Els Van Hoek, and Cristina Nerin. 2023. "An Overview of 1657 Approaches for Analysing NIAS from different FCMs." In, edited by ILSI 1658 Europe. Zenodo: ILSI Europe. 1659 Omer, Elsa, Emmanuelle Bichon, Sébastien Hutinet, Anne-Lise Royer, Fabrice Monteau, Hélène Germon, Paul Hill, Gérald Remaud, Gaud Dervilly-Pinel, 1660 1661 Ronan Cariou, and Bruno Le Bizec. 2019. 'Toward the characterisation of non-1662 intentionally added substances migrating from polyester-polyurethane lacquers 1663 by comprehensive gas chromatography-mass spectrometry technologies', 1664 Journal of Chromatography A, 1601: 327-34. 1665 Pant, J., P. Ranjan, and S. B. Deshpande. 2011. 'Bisphenol A decreases atrial contractility involving NO-dependent G-cyclase signaling pathway', J Appl 1666 1667 Toxicol, 31: 698-702. 1668 Park, S., J. M. Lee, J. W. Kim, J. H. Cheong, H. J. Yun, Y. C. Hong, Y. Kim, D. H. 1669 Han, H. J. Yoo, M. S. Shin, S. C. Cho, and B. N. Kim. 2015. 'Association 1670 between phthalates and externalizing behaviors and cortical thickness in children with attention deficit hyperactivity disorder', Psychol Med, 45: 1601-12. 1671 1672 Park, Sunghee Estelle, Jinchul Ahn, Hyo-Eun Jeong, Inchan Youn, Dongeun Huh, and 1673 Seok Chung. 2021. 'A three-dimensional in vitro model of the peripheral 1674 nervous system', NPG Asia Materials, 13: 2. 1675 Parng, Chuenlei, Nicole Marie Roy, Christopher Ton, Yingxin Lin, and Patricia 1676 McGrath. 2007. 'Neurotoxicity assessment using zebrafish', Journal of 1677 Pharmacological and Toxicological Methods, 55: 103-12. 1678 Pérez-Bermejo, M., I. Mas-Pérez, and M. T. Murillo-Llorente. 2021. 'The Role of the 1679 Bisphenol A in Diabetes and Obesity', Biomedicines, 9. 1680 Piekarski, D. J., K. R. Diaz, and M. W. McNerney. 2020. 'Perfluoroalkyl chemicals in 1681 neurological health and disease: Human concerns and animal models', NeuroToxicology, 77: 155-68. 1682 1683 Pieke, E. N., K. Granby, X. Trier, and J. Smedsgaard. 2017. 'A framework to estimate 1684 concentrations of potentially unknown substances by semi-quantification in

1685 liquid chromatography electrospray ionization mass spectrometry', Analytica 1686 Chimica Acta, 975: 30-41. 1687 Pierozan, P., F. Jerneren, and O. Karlsson. 2018. 'Perfluorooctanoic acid (PFOA) 1688 exposure promotes proliferation, migration and invasion potential in human 1689 breast epithelial cells', Arch Toxicol, 92: 1729-39. 1690 Pillai, Hari K., Mingliang Fang, Dmitri Beglov, Dima Kozakov, Sandor Vajda, Heather 1691 M. Stapleton, Thomas F. Webster, and Jennifer J. Schlezinger. 2014. 'Ligand Binding and Activation of PPARy by Firemaster® 550: Effects on Adipogenesis 1692 1693 and Osteogenesis <i>in Vitro</i>', Environ Health Perspect, 122: 1225-32. 1694 Pinter, E., B. Rainer, T. Czerny, E. Riegel, B. Schilter, M. Marin-Kuan, and M. Tacker. 1695 2020. 'Evaluation of the Suitability of Mammalian In Vitro Assays to Assess the 1696 Genotoxic Potential of Food Contact Materials', Foods, 9. 1697 Pinto, C. L., K. Markey, D. Dix, and P. Browne. 2018. 'Identification of candidate reference chemicals for in vitro steroidogenesis assays', Toxicol In Vitro, 47: 1698 1699 103-19. 1700 Poças, M. F. F., J. C. Oliveira, H. J. Pinto, M. E. Zacarias, and T. Hogg. 2009. 1701 'Characterization of patterns of food packaging usage in Portuguese homes', 1702 Food Addit. Contam., Part A 26: 1314-24. 1703 Pouech, Charlène, Agneta Kiss, Florent Lafay, Didier Léonard, Laure Wiest, Cécile 1704 Cren-Olivé, and Emmanuelle Vulliet. 2015. 'Human exposure assessment to a 1705 large set of polymer additives through the analysis of urine by solid phase 1706 extraction followed by ultra high performance liquid chromatography coupled to 1707 tandem mass spectrometry', J Chromatogr A, 1423: 111-23. 1708 Predieri, Barbara, Patrizia Bruzzi, Elena Bigi, Silvia Ciancia, Simona F. Madeo, Laura 1709 Lucaccioni, and Lorenzo Iughetti. 2020. 'Endocrine Disrupting Chemicals and 1710 Type 1 Diabetes', International Journal of Molecular Sciences, 21: 2937. 1711 Prins, G. S., W. Y. Hu, G. B. Shi, D. P. Hu, S. Majumdar, G. Li, K. Huang, J. L. Nelles, 1712 S. M. Ho, C. L. Walker, A. Kajdacsy-Balla, and R. B. van Breemen. 2014. 1713 'Bisphenol A promotes human prostate stem-progenitor cell self-renewal and 1714 increases in vivo carcinogenesis in human prostate epithelium', Endocrinology, 1715 155: 805-17. 1716 Qian, Shasha, Hanxu Ji, XiaoXiao Wu, Ning Li, Yang Yang, Jiangtao Bu, Xiaoming 1717 Zhang, Ling Qiao, Henglin Yu, Ning Xu, and Chi Zhang. 2018. 'Detection and

1718 quantification analysis of chemical migrants in plastic food contact products', 1719 PLoS One, 13: e0208467. 1720 Qin, Wei-Ping, Lin-Ying Cao, Chuan-Hai Li, Liang-Hong Guo, John Colbourne, and 1721 Xiao-Min Ren. 2020. 'Perfluoroalkyl Substances Stimulate Insulin Secretion by 1722 Islet ß Cells via G Protein-Coupled Receptor 40', Environmental Science & 1723 Technology, 54: 3428-36. 1724 Radke, Elizabeth G., Joseph M. Braun, John D. Meeker, and Glinda S. Cooper. 2018. 1725 'Phthalate exposure and male reproductive outcomes: A systematic review of the 1726 human epidemiological evidence', Environ Int, 121: 764-93. 1727 Radke, Elizabeth G., Joseph M. Braun, Rebecca M. Nachman, and Glinda S. Cooper. 1728 2020. 'Phthalate exposure and neurodevelopment: A systematic review and 1729 meta-analysis of human epidemiological evidence', Environ Int, 137: 105408. 1730 Rajkumar, Abishankari, Trang Luu, Marc A. Beal, Tara S. Barton-Maclaren, Barbara F. 1731 Hales, and Bernard Robaire. 2022. 'Phthalates and alternative plasticizers 1732 differentially affect phenotypic parameters in gonadal somatic and germ cell 1733 lines[†]', Biology of Reproduction, 106: 613-27. 1734 Ramadan, Manelle, Blake Cooper, and Nikki Gillum Posnack. 2020. 'Bisphenols and 1735 phthalates: Plastic chemical exposures can contribute to adverse cardiovascular 1736 health outcomes', Birth Defects Research, 112: 1362-85. 1737 Rancière, Fanny, Jasmine G. Lyons, Venurs H.Y. Loh, Jérémie Botton, Tamara Galloway, Tiange Wang, Jonathan E. Shaw, and Dianna J. Magliano. 2015. 1738 1739 'Bisphenol A and the risk of cardiometabolic disorders: a systematic review with 1740 meta-analysis of the epidemiological evidence', Environmental Health, 14: 1-23. 1741 Rebolledo-Solleiro, Daniela, Laura Y Castillo Flores, and Helena Solleiro-1742 Villavicencio. 2021. 'Impact of BPA on behavior, neurodevelopment and 1743 neurodegeneration', FBL, 26: 363-400. 1744 Rericha, Yvonne, Lisa Truong, Connor Leong, Dunping Cao, Jennifer A. Field, and 1745 Robyn L. Tanguay. 2022. 'Dietary Perfluorohexanoic Acid (PFHxA) Exposures 1746 in Juvenile Zebrafish Produce Subtle Behavioral Effects across Generations', 1747 Toxics, 10: 372. 1748 Ribeiro, C. M., B. T. S. Beserra, N. G. Silva, C. L. Lima, P. R. S. Rocha, M. S. Coelho, 1749 F. A. R. Neves, and A. A. Amato. 2020. 'Exposure to endocrine-disrupting

1750 chemicals and anthropometric measures of obesity: a systematic review and 1751 meta-analysis', BMJ Open, 10: e033509. 1752 Richard, A. M., R. S. Judson, K. A. Houck, C. M. Grulke, P. Volarath, I. 1753 Thillainadarajah, C. Yang, J. Rathman, M. T. Martin, J. F. Wambaugh, T. B. 1754 Knudsen, J. Kancherla, K. Mansouri, G. Patlewicz, A. J. Williams, S. B. Little, 1755 K. M. Crofton, and R. S. Thomas. 2016. 'ToxCast Chemical Landscape: Paving 1756 the Road to 21st Century Toxicology', Chem Res Toxicol, 29: 1225-51. Rider, Cynthia V., Cliona M. McHale, Thomas F. Webster, Leroy Lowe, William H. 1757 1758 Goodson, Michele A. La Merrill, Glenn Rice, Lauren Zeise, Luoping Zhang, and 1759 Martyn T. Smith. 2021. 'Using the Key Characteristics of Carcinogens to 1760 Develop Research on Chemical Mixtures and Cancer', Environ Health Perspect, 129: 035003. 1761 1762 Robitaille, J., N. D. Denslow, B. I. Escher, H. G. Kurita-Oyamada, V. Marlatt, C. J. 1763 Martyniuk, L. Navarro-Martín, R. Prosser, T. Sanderson, V. Yargeau, and V. S. 1764 Langlois. 2022. 'Towards regulation of Endocrine Disrupting chemicals (EDCs) 1765 in water resources using bioassays - A guide to developing a testing strategy', 1766 Environ Res, 205: 112483. 1767 Rojas-Rueda, David, Emily Morales-Zamora, Wael Abdullah Alsufyani, Christopher H. 1768 Herbst, Salem M. AlBalawi, Reem Alsukait, and Mashael Alomran. 2021. 1769 'Environmental Risk Factors and Health: An Umbrella Review of Meta-1770 Analyses', International Journal of Environmental Research and Public Health, 1771 18:704. 1772 Rønnov-Jessen, L, and MJ Bissell. 2009. 'Breast cancer by proxy: can the 1773 microenvironment be both the cause and consequence? ', Trends Mol Med., 15: 1774 5-13. 1775 Roser, Max, Hannah Ritchie, and Fiona Spooner. 2021. 'Burden of disease', 1776 OurWorldInData.org, Accessed 23 December 2022. 1777 https://ourworldindata.org/burden-of-disease. 1778 Rotenberg Iu, S., V. T. Mazaev, and T. G. Shlepnina. 1978. 'Peculiarities of alkyl tin 1779 effects on respiration and oxidative phosphorylation of rat liver mitochondria', Ukr Biokhim Zh (1978), 50: 695-700. 1780 1781 Ruan, Yuefei, Dipa Lalwani, Karen Y. Kwok, Eriko Yamazaki, Sachi Taniyasu, Nirmal 1782 J. I. Kumar, Paul K. S. Lam, and Nobuyoshi Yamashita. 2019. 'Assessing

1783	exposure to legacy and emerging per- and polyfluoroalkyl substances via hair –
1784	The first nationwide survey in India', Chemosphere, 229: 366-73.
1785	Rudel, Ruthann A., Janet M. Gray, Connie L. Engel, Teresa W. Rawsthorne, Robin E.
1786	Dodson, Janet M. Ackerman, Jeanne Rizzo, Janet L. Nudelman, and Julia Green
1787	Brody. 2011. 'Food Packaging and Bisphenol A and Bis(2-Ethyhexyl) Phthalate
1788	Exposure: Findings from a Dietary Intervention', Environ Health Perspect, 119:
1789	914-20.
1790	Rusyn, I., X. Arzuaga, R. C. Cattley, J. C. Corton, S. S. Ferguson, P. Godoy, K. Z.
1791	Guyton, N. Kaplowitz, S. R. Khetani, R. A. Roberts, R. A. Roth, and M. T.
1792	Smith. 2021. 'Key Characteristics of Human Hepatotoxicants as a Basis for
1793	Identification and Characterization of the Causes of Liver Toxicity', Hepatology,
1794	74: 3486-96.
1795	Ruszkiewicz, Joanna A., Adi Pinkas, Mahfuzur R. Miah, Rebecca L. Weitz, Michael J.
1796	A. Lawes, Ayodele J. Akinyemi, Omamuyovwi M. Ijomone, and Michael
1797	Aschner. 2018. 'C. elegans as a model in developmental neurotoxicology',
1798	Toxicology and Applied Pharmacology, 354: 126-35.
1799	Sachana, M., C. Willett, F. Pistollato, and A. Bal-Price. 2021. 'The potential of
1800	mechanistic information organised within the AOP framework to increase
1801	regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of
1802	assays', <i>Reprod Toxicol</i> , 103: 159-70.
1803	Sanchis, Yovana, Vicent Yusà, and Clara Coscollà. 2017. 'Analytical strategies for
1804	organic food packaging contaminants', Journal of Chromatography A, 1490: 22-
1805	46.
1806	Sang, C., Y. Song, T. W. Jin, S. Zhang, L. Fu, Y. Zhao, X. Zou, Z. Wang, H. Gao, and
1807	S. Liu. 2021. 'Bisphenol A induces ovarian cancer cell proliferation and
1808	metastasis through estrogen receptor-a pathways', Environ Sci Pollut Res Int,
1809	28: 36060-68.
1810	Sant, K. E., H. M. Jacobs, K. A. Borofski, J. B. Moss, and A. R. Timme-Laragy. 2017.
1811	'Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic
1812	organogenesis in the zebrafish, Danio rerio', Environ Pollut, 220: 807-17.
1813	Sapozhnikova, Yelena, Alberto Nuñez, and John Johnston. 2021. 'Screening of
1814	chemicals migrating from plastic food contact materials for oven and microwave

1815 applications by liquid and gas chromatography - Orbitrap mass spectrometry', 1816 Journal of Chromatography A, 1651: 462261. 1817 Scholz, Stefan, Werner Brack, Beate I. Escher, Jörg Hackermüller, Matthias Liess, 1818 Martin von Bergen, Lukas Y. Wick, Ana C. Zenclussen, and Rolf Altenburger. 1819 2022. 'The EU chemicals strategy for sustainability: an opportunity to develop 1820 new approaches for hazard and risk assessment', Archives of Toxicology, 96: 1821 2381-86. Schug, T. T., R. Abagyan, B. Blumberg, T. J. Collins, D. Crews, P. L. DeFur, S. M. 1822 1823 Dickerson, T. M. Edwards, A. C. Gore, L. J. Guillette, T. Hayes, J. J. Heindel, 1824 A. Moores, H. B. Patisaul, T. L. Tal, K. A. Thayer, L. N. Vandenberg, J. C. 1825 Warner, C. S. Watson, F. S. vom Saal, R. T. Zoeller, K. P. O'Brien, and J. P. 1826 Myers. 2013. 'Designing endocrine disruption out of the next generation of 1827 chemicals', Green Chemistry. 1828 Seo, Y., T. H. Shin, and H. S. Kim. 2019. 'Current Strategies to Enhance Adipose Stem 1829 Cell Function: An Update', Int J Mol Sci, 20. 1830 Serras, Ana S., Joana S. Rodrigues, Madalena Cipriano, Armanda V. Rodrigues, Nuno 1831 G. Oliveira, and Joana P. Miranda. 2021. 'A Critical Perspective on 3D Liver 1832 Models for Drug Metabolism and Toxicology Studies', Frontiers in Cell and 1833 Developmental Biology, 9. 1834 Severin, Isabelle, Emilie Souton, Laurence Dahbi, and Marie Christine Chagnon. 2017. 1835 'Use of bioassays to assess hazard of food contact material extracts: State of the 1836 art', Food and Chemical Toxicology, 105: 429-47. 1837 Shaffer, R. M., K. K. Ferguson, L. Sheppard, T. James-Todd, S. Butts, S. 1838 Chandrasekaran, S. H. Swan, E. S. Barrett, R. Nguyen, N. Bush, T. F. McElrath, 1839 and S. Sathyanarayana. 2019. 'Maternal urinary phthalate metabolites in relation 1840 to gestational diabetes and glucose intolerance during pregnancy', Environ Int, 1841 123: 588-96. 1842 Sharma, Aditi, Josephine Mollier, Richard W. K. Brocklesby, Charlotte Caves, Channa N. Jayasena, and Suks Minhas. 2020. 'Endocrine-disrupting chemicals and male 1843 1844 reproductive health', Reproductive Medicine and Biology, 19: 243-53. 1845 Shoucri, B. M., V. T. Hung, R. Chamorro-García, T. Shioda, and B. Blumberg. 2018. 1846 'Retinoid X Receptor Activation During Adipogenesis of Female Mesenchymal 1847 Stem Cells Programs a Dysfunctional Adipocyte', *Endocrinology*, 159: 2863-83.

1848	Silva, M. J., A. R. Slakman, J. A. Reidy, J. L. Preau, Jr., A. R. Herbert, E. Samandar, L.
1849	L. Needham, and A. M. Calafat. 2004. 'Analysis of human urine for fifteen
1850	phthalate metabolites using automated solid-phase extraction', J Chromatogr B
1851	Analyt Technol Biomed Life Sci, 805: 161-7.
1852	Skakkebaek, N. E., E. Rajpert-De Meyts, G. M. Buck Louis, J. Toppari, A. M.
1853	Andersson, M. L. Eisenberg, T. K. Jensen, N. Jørgensen, S. H. Swan, K. J.
1854	Sapra, S. Ziebe, L. Priskorn, and A. Juul. 2016. 'Male Reproductive Disorders
1855	and Fertility Trends: Influences of Environment and Genetic Susceptibility',
1856	Physiol Rev, 96: 55-97.
1857	Skakkebæk, N. E., E. Rajpert-De Meyts, and K. M. Main. 2001. 'Testicular dysgenesis
1858	syndrome: an increasingly common developmental disorder with environmental
1859	aspects: Opinion', Human Reproduction, 16: 972-78.
1860	Skakkebæk, Niels E., Rune Lindahl-Jacobsen, Hagai Levine, Anna-Maria Andersson,
1861	Niels Jørgensen, Katharina M. Main, Øjvind Lidegaard, Lærke Priskorn, Stine
1862	A. Holmboe, Elvira V. Bräuner, Kristian Almstrup, Luiz R. Franca, Ariana
1863	Znaor, Andreas Kortenkamp, Roger J. Hart, and Anders Juul. 2022.
1864	'Environmental factors in declining human fertility', Nature Reviews
1865	Endocrinology, 18: 139-57.
1866	Smith, M. T., K. Z. Guyton, C. F. Gibbons, J. M. Fritz, C. J. Portier, I. Rusyn, D. M.
1867	DeMarini, J. C. Caldwell, R. J. Kavlock, P. F. Lambert, S. S. Hecht, J. R.
1868	Bucher, B. W. Stewart, R. A. Baan, V. J. Cogliano, and K. Straif. 2016. 'Key
1869	Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of
1870	Carcinogenesis', Environ Health Perspect, 124: 713-21.
1871	Soave, I., T. Occhiali, C. Assorgi, R. Marci, and D. Caserta. 2020. 'Environmental toxin
1872	exposure in polycystic ovary syndrome women and possible ovarian neoplastic
1873	repercussion', Curr Med Res Opin, 36: 693-703.
1874	Sonnenschein, Carlos, and Ana M. Soto. 2020. 'Over a century of cancer research:
1875	Inconvenient truths and promising leads', PLOS Biology, 18: e3000670.
1876	Soto, A.M., C. Brisken, C.M. Schaeberle, and C Sonnenschein. 2013. 'Does cancer start
1877	in the womb? Altered mammary gland development and predisposition to breast
1878	cancer due to in utero exposure to endocrine disruptors.', J Mammary Gland Biol
1879	Neoplasia, 18: 199-208.

1880 Souton, Emilie, Isabelle Severin, Ludovic Le Hegarat, Kevin Hogeveen, Abdulhadi 1881 Aljawish, Valérie Fessard, and Chagnon Marie-Christine. 2017. 'Genotoxic 1882 effects of food contact recycled paperboard extracts on two human hepatic cell 1883 lines', Food Additives & Contaminants: Part A: 1-12. 1884 Stratakis, N., V. Conti D, R. Jin, K. Margetaki, D. Valvi, A. P. Siskos, L. Maitre, E. 1885 Garcia, N. Varo, Y. Zhao, T. Roumeliotaki, M. Vafeiadi, J. Urguiza, S. Fernández-Barrés, B. Heude, X. Basagana, M. Casas, S. Fossati, R. 1886 1887 Gražulevičienė, S. Andrušaitytė, K. Uppal, R. R. C. McEachan, E. 1888 Papadopoulou, O. Robinson, L. S. Haug, J. Wright, M. B. Vos, H. C. Keun, M. 1889 Vrijheid, K. T. Berhane, R. McConnell, and L. Chatzi. 2020. 'Prenatal Exposure 1890 to Perfluoroalkyl Substances Associated With Increased Susceptibility to Liver 1891 Injury in Children', Hepatology, 72: 1758-70. 1892 Street, Maria E., Karine Audouze, Juliette Legler, Hideko Sone, and Paola Palanza. 1893 2021. 'Endocrine Disrupting Chemicals: Current Understanding, New Testing 1894 Strategies and Future Research Needs', International Journal of Molecular 1895 Sciences, 22: 933. 1896 Stucki, A. O., T. S. Barton-Maclaren, Y. Bhuller, J. E. Henriquez, T. R. Henry, C. Hirn, 1897 J. Miller-Holt, E. G. Nagy, M. M. Perron, D. E. Ratzlaff, T. J. Stedeford, and A. J. Clippinger. 2022. 'Use of new approach methodologies (NAMs) to meet 1898 1899 regulatory requirements for the assessment of industrial chemicals and pesticides 1900 for effects on human health', Front Toxicol, 4: 964553. 1901 Susmann, H. P., L. A. Schaider, K. M. Rodgers, and R. Rudel. 2019. 'Dietary Habits 1902 Related to Food Packaging and Population Exposure to PFASs', Environ Health 1903 Perspect, 127: 10. 1904 Svensson, Katherine, Eva Tanner, Chris Gennings, Christian Lindh, Hannu Kiviranta, 1905 Sverre Wikström, and Carl-Gustaf Bornehag. 2021. 'Prenatal exposures to 1906 mixtures of endocrine disrupting chemicals and children's weight trajectory up 1907 to age 5.5 in the SELMA study', Scientific Reports, 11: 11036. 1908 Symeonides, Christos, Manuel Brunner, Yannick Mulders, Priyanka Toshniwal, 1909 Matthew Cantrell, Louise Mofflin, and Sarah Dunlop. 2021. 'Buy-now-pay-later: 1910 Hazards to human and planetary health from plastics production, use and waste', 1911 Journal of Paediatrics and Child Health, 57: 1795-804.

1912 Tang, Q. Q., T. C. Otto, and M. D. Lane. 2004. 'Commitment of C3H10T1/2 pluripotent 1913 stem cells to the adipocyte lineage', Proc Natl Acad Sci USA, 101: 9607-11. 1914 Tanner, Eva M., Maria Unenge Hallerbäck, Sverre Wikström, Christian Lindh, Hannu 1915 Kiviranta, Chris Gennings, and Carl-Gustaf Bornehag. 2020. 'Early prenatal 1916 exposure to suspected endocrine disruptor mixtures is associated with lower IQ 1917 at age seven', Environ Int, 134: 105185. 1918 Taylor, Raegyn B., and Yelena Sapozhnikova. 2022. 'Assessing Chemical Migration 1919 from Plastic Food Packaging into Food Simulant by Gas and Liquid 1920 Chromatography with High-Resolution Mass Spectrometry', Journal of 1921 Agricultural and Food Chemistry, 70: 4805-16. 1922 Temkin, Alexis M., Barbara A. Hocevar, David Q. Andrews, Olga V. Naidenko, and 1923 Lisa M. Kamendulis. 2020. 'Application of the Key Characteristics of 1924 Carcinogens to Per and Polyfluoroalkyl Substances', International Journal of 1925 Environmental Research and Public Health, 17: 1668. 1926 Thurston, S. W., J. Mendiola, A. R. Bellamy, H. Levine, C. Wang, A. Sparks, J. B. 1927 Redmon, E. Z. Drobnis, and S. H. Swan. 2016. 'Phthalate exposure and semen 1928 quality in fertile US men', Andrology, 4: 632-8. 1929 Tice, R. R., C. P. Austin, R. J. Kavlock, and J. R. Bucher. 2013. 'Improving the human 1930 hazard characterization of chemicals: a Tox21 update', Environ Health Perspect, 1931 121: 756-65. 1932 Tingaud-Sequeira, Angèle, Nafia Ouadah, and Patrick J. Babin. 2011. 'Zebrafish 1933 obesogenic test: a tool for screening molecules that target adiposity', Journal of 1934 *Lipid Research*, 52: 1765-72. 1935 Tisler, Selina, and Jan H. Christensen. 2022. 'Non-target screening for the identification 1936 of migrating compounds from reusable plastic bottles into drinking water', 1937 Journal of Hazardous Materials, 429: 128331. 1938 Tolosa, Laia, Nuria Jiménez, Gabriela Pérez, José V. Castell, M. José Gómez-Lechón, 1939 and M. Teresa Donato. 2018. 'Customised in vitro model to detect human 1940 metabolism-dependent idiosyncratic drug-induced liver injury', Archives of 1941 Toxicology, 92: 383-99. 1942 Trasande, L., R. T. Zoeller, U. Hass, A. Kortenkamp, P. Grandjean, J. P. Myers, J. 1943 DiGangi, M. Bellanger, R. Hauser, J. Legler, N. E. Skakkebaek, and J. J. 1944 Heindel. 2015. 'Estimating burden and disease costs of exposure to endocrine-

1945 disrupting chemicals in the European union', J Clin Endocrinol Metab, 100: 1946 1245-55. 1947 Trasande, L., R. T. Zoeller, U. Hass, A. Kortenkamp, P. Grandjean, J. P. Myers, J. 1948 DiGangi, P. M. Hunt, R. Rudel, S. Sathyanarayana, M. Bellanger, R. Hauser, J. 1949 Legler, N. E. Skakkebaek, and J. J. Heindel. 2016. 'Burden of disease and costs 1950 of exposure to endocrine disrupting chemicals in the European Union: an updated analysis', Andrology, 4: 565-72. 1951 1952 Trier, Xenia, Kit Granby, and Jan Christensen. 2011. 'Polyfluorinated surfactants (PFS) 1953 in paper and board coatings for food packaging', Environmental Science and 1954 Pollution Research: 1-13. 1955 Tsochatzis, Emmanouil D., Joao Alberto Lopes, Helen Gika, Trine Kastrup Dalsgaard, 1956 and Georgios Theodoridis. 2021. 'A fast SALLE GC-MS/MS multi-analyte 1957 method for the determination of 75 food packaging substances in food simulants', Food Chemistry, 361: 129998. 1958 1959 Turner, P. A., B. Gurumurthy, J. L. Bailey, C. M. Elks, and A. V. Janorkar. 2017. 1960 'Adipogenic Differentiation of Human Adipose-Derived Stem Cells Grown as 1961 Spheroids', Process Biochem, 59: 312-20. 1962 Van Bossuyt, M., E. Van Hoeck, T. Vanhaecke, V. Rogiers, and B. Mertens. 2016. 1963 'Printed paper and board food contact materials as a potential source of food 1964 contamination', Regulatory Toxicology and Pharmacology, 81: 10-19. -. 2017. 'Safeguarding human health using in silico tools?', Archives of 1965 1966 Toxicology, 91: 2705-06. 1967 -. 2019. 'Prioritizing Substances of Genotoxic Concern for In-Depth Safety 1968 Evaluation Using Non-Animal Approaches: The Example of Food Contact 1969 Materials', Altex-Alternatives to Animal Experimentation, 36: 215-30. 1970 van den Dries, M. A., M. Guxens, S. Spaan, K. K. Ferguson, E. Philips, S. Santos, V. 1971 W. V. Jaddoe, A. Ghassabian, L. Trasande, H. Tiemeier, and A. Pronk. 2020. 1972 'Phthalate and Bisphenol Exposure during Pregnancy and Offspring Nonverbal 1973 IQ', Environ Health Perspect, 128: 77009. 1974 Vessa, B., B. Perlman, P. G. McGovern, and S. S. Morelli. 2022a. 'Endocrine disruptors 1975 and female fertility: a review of pesticide and plasticizer effects', F S Rep, 3: 86-1976 90.

1977 Vessa, Blake, Barry Perlman, Peter G. McGovern, and Sara S. Morelli. 2022b. 1978 'Endocrine disruptors and female fertility: a review of pesticide and plasticizer 1979 effects', F&S Reports, 3: 86-90. 1980 Villar-Pazos, S., J. Martinez-Pinna, M. Castellano-Muñoz, P. Alonso-Magdalena, L. 1981 Marroqui, I. Quesada, J. A. Gustafsson, and A. Nadal. 2017. 'Molecular 1982 mechanisms involved in the non-monotonic effect of bisphenol-a on ca2+ entry in mouse pancreatic β-cells', *Sci Rep*, 7: 11770. 1983 Völker, Johannes, Felicity Ashcroft, Åsa Vedøy, Lisa Zimmermann, and Martin 1984 1985 Wagner. 2022. 'Adipogenic Activity of Chemicals Used in Plastic Consumer 1986 Products', Environmental Science & Technology, 56: 2487-96. 1987 Walker, Vickie R., Abee L. Boyles, Katherine E. Pelch, Stephanie D. Holmgren, 1988 Andrew J. Shapiro, Chad R. Blystone, Michael J. Devito, Retha R. Newbold, 1989 Robyn Blain, Pamela Hartman, Kristina A. Thayer, and Andrew A. Rooney. 1990 2018. 'Human and animal evidence of potential transgenerational inheritance of 1991 health effects: An evidence map and state-of-the-science evaluation', Environ 1992 Int, 115: 48-69. 1993 Wan, M. L. Y., V. A. Co, and H. El-Nezami. 2022. 'Endocrine disrupting chemicals and 1994 breast cancer: a systematic review of epidemiological studies', Crit Rev Food Sci 1995 Nutr, 62: 6549-76. Wang, B., M. Li, Z. Zhao, J. Lu, Y. Chen, Y. Xu, M. Xu, W. Wang, T. Wang, Y. Bi, 1996 1997 and G. Ning. 2019. 'Urinary bisphenol A concentration and glucose homeostasis 1998 in non-diabetic adults: a repeated-measures, longitudinal study', Diabetologia, 1999 62: 1591-600. 2000 Wang, Dongqi, Haoduo Zhao, Xunchang Fei, Shane Allen Synder, Mingliang Fang, and 2001 Min Liu. 2021. 'A comprehensive review on the analytical method, occurrence, 2002 transformation and toxicity of a reactive pollutant: BADGE', Environ Int, 155: 106701. 2003 Wang, I. Jen, Chia-Yang Chen, and Carl-Gustaf Bornehag. 2016. 'Bisphenol A 2004 2005 exposure may increase the risk of development of atopic disorders in children', 2006 International Journal of Hygiene and Environmental Health, 219: 311-16. 2007 Wang, W., K. S. Hafner, and J. A. Flaws. 2014. 'In utero bisphenol A exposure disrupts 2008 germ cell nest breakdown and reduces fertility with age in the mouse', Toxicol 2009 Appl Pharmacol, 276: 157-64.

- Wang, Z., M. H. Alderman, C. Asgari, and H. S. Taylor. 2020. 'Fetal Bisphenol-A
 Induced Changes in Murine Behavior and Brain Gene Expression Persisted in
 Adult-aged Offspring', *Endocrinology*, 161.
- Wassenaar, P. N. H., L. Trasande, and J. Legler. 2017. 'Systematic Review and MetaAnalysis of Early-Life Exposure to Bisphenol A and Obesity-Related Outcomes
 in Rodents', *Environ Health Perspect*, 125: 106001.
- Wehbe, Zena, Suzanne A. Nasser, Ahmed El-Yazbi, Salam Nasreddine, and Ali H. Eid.
 2017 2020. 'Estrogen and Bisphenol A in Hypertension', *Current Hypertension*2018 *Reports*, 22: 23.
- Wen, Zeng-Jin, Zhong-Yu Wang, and Yin-Feng Zhang. 2022. 'Adverse cardiovascular
 effects and potential molecular mechanisms of DEHP and its metabolites—A
 review', *Science of The Total Environment*, 847: 157443.
- Westerhoff, P., P. Prapaipong, E. Shock, and A. Hillaireau. 2008. 'Antimony leaching
 from polyethylene terephthalate (PET) plastic used for bottled drinking water', *Water Res*, 42: 551-6.
- 2025 WHO. 2018. 'Noncommunicable diseases. Fact sheet':

2026 http://www.who.int/mediacentre/factsheets/fs355/en/.

- 2027 . 2020. 'Infertility', WHO, Accessed 23 Dec 2022. https://www.who.int/news 2028 room/fact-sheets/detail/infertility.
- 2030 https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-2031 (cvds).
- 2032 Williams, David E., Gayle Orner, Kristin D. Willard, Susan Tilton, Jerry D. Hendricks,
 2033 Clifford Pereira, Abby D. Benninghoff, and George S. Bailey. 2009. 'Rainbow
- 2034 Trout (Oncorhynchus mykiss) and Ultra-Low Dose Cancer Studies',

2035 *Comparative Biochemistry and Physiology*, 149: 175-81.

- 2036 Willis, RA. 1948. Pathology of tumors (Butterworth & Co Ltd: London, England).
- Wu, W., M. Li, A. Liu, C. Wu, D. Li, Q. Deng, B. Zhang, J. Du, X. Gao, and Y. Hong.
 2038 2020. 'Bisphenol A and the Risk of Obesity a Systematic Review With Meta-
- 2039 Analysis of the Epidemiological Evidence', *Dose Response*, 18:
- 2040 1559325820916949.

Xie, Ming-Yu, Hong Ni, De-Sheng Zhao, Li-Ying Wen, Ke-Sheng Li, Hui-Hui Yang, Shu-Si Wang, Heng Zhang, and Hong Su. 2016. 'Exposure to bisphenol A and
2043 the development of asthma: A systematic review of cohort studies', 2044 Reproductive Toxicology, 65: 224-29. 2045 Yan, Sujuan, Yamei Chen, Min Dong, Weizhong Song, Scott M. Belcher, and Hong-2046 Sheng Wang. 2011. 'Bisphenol A and 17β-Estradiol Promote Arrhythmia in the 2047 Female Heart via Alteration of Calcium Handling', PLoS One, 6: e25455. 2048 Yang, Shu, Masato Ooka, Ryan Jared Margolis, and Menghang Xia. 2023. 'Liver threedimensional cellular models for high-throughput chemical testing', Cell Reports 2049 2050 Methods, 3: 100432. 2051 Ye, Wenqing, Ernesto H. Ramos, Brian C. Wong, and Denise D. Belsham. 2016. 2052 'Beneficial Effects of Metformin and/or Salicylate on Palmitate- or TNFα-2053 Induced Neuroinflammatory Marker and Neuropeptide Gene Regulation in 2054 Immortalized NPY/AgRP Neurons', PLoS One, 11: e0166973. 2055 Zare Jeddi, Maryam, Nancy B. Hopf, Susana Viegas, Anna Bal Price, Alicia Paini, 2056 Christoph van Thriel, Emilio Benfenati, Sophie Ndaw, Jos Bessems, Peter A. 2057 Behnisch, Gabriele Leng, Radu-Corneliu Duca, Hans Verhagen, Francesco 2058 Cubadda, Lorraine Brennan, Imran Ali, Arthur David, Vicente Mustieles, 2059 Mariana F. Fernandez, Henriqueta Louro, and Robert Pasanen-Kase. 2021. 2060 'Towards a systematic use of effect biomarkers in population and occupational 2061 biomonitoring', Environ Int, 146: 106257. 2062 Zhang, Qianqian, Xiaona Li, Xin Liu, Moran Dong, Jianpeng Xiao, Jing Wang, Mengya 2063 Zhou, Yiding Wang, Dan Ning, Wenjun Ma, Wei Zhu, Tao Liu, and Bo Zhang. 2064 2020. 'Association between maternal antimony exposure and risk of gestational diabetes mellitus: A birth cohort study', Chemosphere, 246: 125732. 2065 2066 Zhang, Yin-Feng, Chan Shan, Yu Wang, Li-Li Qian, Dong-Dong Jia, Yi-Fei Zhang, 2067 Xiao-Dan Hao, and Hai-Ming Xu. 2020. 'Cardiovascular toxicity and 2068 mechanism of bisphenol A and emerging risk of bisphenol S', Science of The 2069 Total Environment, 723: 137952. 2070 Zimmermann, Lisa, Georg Dierkes, Thomas A. Ternes, Carolin Völker, and Martin 2071 Wagner. 2019. 'Benchmarking the in vitro toxicity and chemical composition of 2072 plastic consumer products', Environmental Science & Technology. 2073 Zimmermann, Lisa, Martin Scheringer, Birgit Geueke, Justin M. Boucher, Lindsey V. 2074 Parkinson, Ksenia J. Groh, and Jane Muncke. 2022. 'Implementing the EU

- 2075 Chemicals Strategy for Sustainability: The case of Food Contact Chemicals of
 2076 Concern', *Journal of Hazardous Materials*: 129167.
- 2077 Znaor, Ariana, Niels Erik Skakkebaek, Ewa Rajpert-De Meyts, Tomislav Kuliš,
- 2078 Mathieu Laversanne, Jason Gurney, Diana Sarfati, Katherine A. McGlynn, and
- 2079 Freddie Bray. 2022. 'Global patterns in testicular cancer incidence and mortality
- 2080 in 2020', International Journal of Cancer, 151: 692-98.

- 2081 Table 1. Food contact chemicals (FCCs) associated with non-communicable diseases
- 2082 (NCDs) from each of the Six Clusters of Disease (SCOD) (non-exhaustive and non-
- 2083 systematic overview of epidemiological studies). Identification of FCCs was based on
- 2084 the Food Contact Chemicals database (FCCdb) (Groh et al. 2021) and the database on
- 2085 migrating and extractable food contact chemicals (FCCmigex) (Geueke et al. 2022).
- 2086 This overview is not a complete list of FCCs that are associated with adverse health
- 2087 outcomes. Cancer agents are classified by cancer site (IARC 2022).

Disease Cluster	Example disease	Associated	References
		FCC exposure	
Cancers	Testicular cancer	PFOA	(IARC 2016;
			ATSDR 2021)
	Kidney cancer	PFOA	(IARC 2016;
			Melnick 2001)
	Breast cancer	PFOA	(Wan, Co, and El-
			Nezami 2022)
		Ortha	(Wan, Co, and El-
		Ortno-	Nezami 2022)
		phthalates	
Cardiovascular	Cardiovascular diseases:	BPA	(Moon et al. 2021;
diseases	including myocardial		Zhang, Shan, et al.
	infarction, arrhythmias,		2020; Wehbe et al.
	dilated cardiomyopathy,		2020; Ramadan,
	atherosclerosis, and		Cooper, and Posnack
	hypertension		2020)
		Ortho-	(Fu et al. 2020)
		phthalates	
Brain-related	Hypothyroid	BPA	(Rebolledo-Solleiro,
disorders			Flores, and Solleiro-
			Villavicencio 2021)
		Ortho-	(Radke et al. 2020)
		phthalates	

		Perchlorate	(Radke et al. 2020)
		PFAS	(Piekarski, Diaz, and McNerney 2020)
	Abnormal neurodevelopment	Ortho- phthalates:	(Eales et al. 2022)
		DEHP, DBP, BBP and DEP	
	Attention Deficit	Lead, BPA,	(Moore et al. 2022;
	Hyperactivity	ortho-phthalates	Li et al. 2020; Park
	Disorder/behavior		et al. 2015)
	Lower Intelligence Quotient	Endocrine	(Tanner et al. 2020;
		disrupting	van den Dries et al.
		chemical (EDC)	2020)
		mixture (Ortho-	
		phthalates)	
	Language delay	EDC mixture	(Caporale et al. 2022)
Metabolic and	Type-1 diabetes	BPA, Ortho-	(Predieri et al. 2020)
endocrine		phthalates,	
diseases		PFAS	
	Type-2 diabetes	BPA	(Wang et al. 2019;
			Rancière et al. 2015;
			Akash, Sabir, and
			Rehman 2020)
		PFOA	(He et al. 2018)
	Pre-diabetes and diabetes	Ortho-	(Eales et al. 2022;
		phthalates	Radke et al. 2018;
			Dales, Kauri, and
			Cakmak 2018)
		BPA	(Fu et al. 2020;
	Obesity (BMI, waist circumference)		Pérez-Bermejo, Mas-

			Pérez, and Murillo-
			Llorente 2021; Wu
			et al. 2020)
			(Liu et al. 2018;
		PFAS	Geiger et al. 2021)
	Childhood Obesity	BPA	(Ribeiro et al. 2020)
		Ortha	(Buckley et al.
		ortno-	2016)
	Gestational diabetes	Antimony	(Zhang Li et al
		, mennony	2020)
			(Shaffer et al. 2019)
		Ortho-	(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		phthalates	
	Non-alcoholic fatty liver	EDC mixture	(Midya et al. 2022)
	disease		(Stratakis et al.
		PFAS	2020)
Immunological	Immunosuppression	PFAS: PFOS	(DeWitt, Blossom,
disorders		and PFOA	and Schaider 2019)
	Childhood asthma	Ortho-	(Eales et al. 2022)
		phthalates:	
		DEHP and	
		BBzP	
	Kidney damage	Melamine	(Hsieh et al. 2012)
Reproductive	Male infertility	BPA	(Sharma et al. 2020)
disorders		Dibutyl	(Estill et al. 2019)
		phthalate	
	Semen quality	Ortho-	(Radke et al. 2018;
		phthalates:	Eales et al. 2022;
		DBP, BBP,	Thurston et al. 2016)
		DEHP, and	
		DINP	

Female infertility (reduced	DEHP	(Messerlian et al.
follicular count)		2016)

- 2089 Table 2. Examples of food contact chemicals (FCCs) that are associated with diseases
- 2090 from the Six Clusters of Disease (SCOD) by mechanisms from *in-vitro* and/or *in-vivo*
- 2091 studies (not including epidemiological studies). Not a complete list: Select references
- 2092 only.

Disease Cluster	Food Contact Chemical	Reference
Cancers	Melamine (CAS 108-78-1)	(IARC 2019)
	Formaldehyde (CAS 50-00-0)	(IARC 2012a)
	Benzidine (CAS 92-87-5)	(IARC 2010)
	4,4'-Diamino-3,3' -	(IARC 2012a)
	Dichlorodiphenylmethane	
	(MOCA) (CAS 101-14-4)	
	Antimony trioxide (CAS 1309-	(NTP 2018)
	64-4)	
	Perfluorooctanoic acid	(Temkin et al. 2020;
	(PFOA) (CAS 335-67-1)	Pierozan, Jerneren, and
		Karlsson 2018; Charazac et al.
		2022)
	Di (2-ethylhexyl) phthalate	(Hager, Chen, and Zhao
	(DEHP) (CAS 117-81-7)	2022; IARC 2012b)
	Bisphenol A (BPA) (CAS 80-	(Sang et al. 2021; Jun et al.
	05-7)	2021; Dhimolea et al. 2014;
		Prins et al. 2014)
Cardiovascular	Bisphenol A (BPA) (CAS 80-	(Pant, Ranjan, and Deshpande
diseases	05-7)	2011; Gao and Wang 2014;

		Kofron et al. 2021; Hyun et al.
		2021; Krishna, Berridge, and
		Kleinstreuer 2021; Cooper and
		Posnack 2022)
	Triclosan (CAS 3380-34-5)	(Krishna, Berridge, and
		Kleinstreuer 2021)
	Tributyltin chloride (CAS	(Krishna, Berridge, and
	1461-22-9)	Kleinstreuer 2021)
	Diethanolamine (CAS 111-42-	(Jokinen et al. 2005)
	2)	
	DEHP	(Mariana et al. 2016)
Brain-related	Perchlorate (CAS 14797-73-0)	(Kirk 2006)
disorders	Ortho-phthalates	(Hlisníková et al. 2021)
	BPA	(McDonough, Xu, and Guo
		2021; Wang et al. 2020)
	Bisphenol S (BPS) (CAS 80-09-	(Naderi and Kwong 2020;
	1)	McDonough, Xu, and Guo
		2021)
Metabolic	BPA	(Villar-Pazos et al. 2017;
diseases		Martinez-Pinna et al. 2019;
		Wassenaar, Trasande, and
		Legler 2017; Desai et al.
		2018a; Manikkam et al. 2013)

	Bisphenol A diglycidyl ether	(Wang et al. 2021)
	(BADGE) (CAS 1675-54-3)	
	Organotins	(Rotenberg Iu, Mazaev, an
		Shlepnina 1978)
	Perchlorate	(Larsson-Nyrén et al. 2001
	Perfluorooctanesulfonic acid	(Qin et al. 2020; Sant et al.
	(PFOS) (CAS 1763-23-1)	2017)
	Bisphenol F (BPF) (CAS 620-	(Marroqui et al. 2021)
	92-8)	
	BPS	(Marroqui et al. 2021)
	2,4,7,9-tetramethyl-5-decyne-	(Garcia-Calvo et al. 2020b
	4,7-diol (TMDD; Surfynol)	Nerin et al. 2018; Nerin et a
	(CAS 126-86-3)	2014)
	DEHP	(Li et al. 2019; Manikkam
		al. 2013)
Immunological	Melamine	(IARC 2019)
disorders	BPA	(McDonough, Xu, and Gue
		2021)
	BPF	(McDonough, Xu, and Gue
		2021)
	BPS	(McDonough, Xu, and Gue
		2021; Nowak, Jabłońska, a
		Ratajczak-Wrona 2019)

	2,4-di-tert-butylphenol (CAS	(Liu et al. 2022)
	96-76-4)	
	DEHP	(Nowak, Jabłońska, and
		Ratajczak-Wrona 2019;
		Hessel et al. 2015)
Reproductive	BPA	(Liu 2021; Vessa et al. 2022b;
disorders		Wang, Hafner, and Flaws
		2014; Mahalingam et al. 2017)
	BADGE	(Wang et al. 2021; Nerin et
		al. 2014)
	BPS	(Desmarchais et al. 2020)
	DEHP	(Vessa et al. 2022b; Mariana
		et al. 2016)

2095	Figure 1: Illustration of the terms food contact article (FCA), food contact
2096	material (FCM), and food contact chemical (FCC). The terms FCA and FCM are often
2097	used interchangeably, but only FCAs can be considered "finished" while FCMs
2098	oftentimes will be used in combination with other FCMs to make a finished FCA. The
2099	term FCC describes any chemical that is present in an FCM or FCA, regardless of
2100	whether it was intentionally used, or if it is a non-intentionally added substance (NIAS),
2101	such as an impurity, a reaction by-product, a degradation product, or of other origin
2102	(e.g., a contaminant from recycling).
2103	

2105 Figure 2. Chemical risk assessment for food contact chemicals (FCCs): current 2106 practice. The current approach for assessing the safety of FCCs focuses on testing single 2107 substances that are intentionally used to make FCMs. Only genotoxic carcinogenicity is 2108 currently determined as a human health relevant endpoint. However, many more 2109 chemicals can migrate simultaneously from the finished FCM, including unidentified 2110 compounds that are non-intentionally added substances (NIAS). The migrating mixture 2111 is known as the overall migrate, and it can exert adverse effects (mixture toxicity). 2112 Currently, the assessment of the overall migrate's mixture toxicity is not legally 2113 required.

2116	Figure 3. The Six Clusters of Disease (SCOD) concept comprises non-
2117	communicable diseases (NCDs) that are highly prevalent in the global human
2118	population, of increasing concern and associated with hazardous chemical exposures
2119	that can be clustered by disease type. The SCOD are of major concern for public health
2120	and require novel approaches for prevention, namely the identification of chemical
2121	contributors.
2122	

- 2123
- Figure 4. Overview of the current vs. proposed approach to food contact
- 2125 chemical (FCC) testing. The proposed new approach focuses on testing the overall
- 2126 migrate (i.e., the human exposure-relevant mixture of all migrating FCCs) for its
- 2127 potential to contribute to the Six Clusters of Disease (SCOD).
- 2128

2130	Figure 5. The vision for a novel approach to safety assessment of FCMs and
2131	food contact articles. Finished food contact articles are tested for their real-life mixture
2132	of all migrating chemicals (the overall migrate, i.e. the mixture of all migrating
2133	chemicals), using in-vitro screening assays. The screening assays are mechanism-based
2134	and identify the key characteristics, key initiating events, or other mechanisms of action
2135	of the overall migrate. Screening assays are selected around the Six Clusters of Disease
2136	(SCOD) concept. For overall migrate displaying positive findings in the in-vitro assays,
2137	non-targeted chemical analyses are carried out to identify the substances driving the
2138	overall migrate's toxicity.