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A vision for safer food contact materials: public health concerns as 48 

drivers for improved testing 49 

Food contact materials (FCMs) and food contact articles are ubiquitous in today’s 50 

globalized food system. Chemicals migrate from FCMs into foodstuffs, so called 51 

food contact chemicals (FCCs), but current regulatory requirements do not 52 

sufficiently protect public health from hazardous FCCs because only individual 53 

substances used to make FCMs are tested and mostly only for genotoxicity while 54 

endocrine disruption and other hazard properties are disregarded. Indeed, FCMs 55 

are a known source of a wide range of hazardous chemicals, and they likely 56 

contribute to highly prevalent non-communicable diseases. FCMs can also 57 

include non-intentionally added substances (NIAS), which often are unknown 58 

and therefore not subject to risk assessment. To address these important 59 

shortcomings, we outline how the safety of FCMs may be improved by (1) 60 

testing the overall migrate, including (unknown) NIAS, of finished food contact 61 

articles, and (2) expanding toxicological testing beyond genotoxicity to multiple 62 

endpoints associated with non-communicable diseases relevant to human health. 63 

To identify mechanistic endpoints for testing, we group chronic health outcomes 64 

associated with chemical exposure into Six Clusters of Disease (SCOD) and we 65 

propose that finished food contact articles should be tested for their impacts on 66 

these SCOD. Research should focus on developing robust, relevant, and sensitive 67 

in-vitro assays based on mechanistic information linked to the SCOD, e.g., 68 

through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. 69 

Implementing this vision will improve prevention of chronic diseases that are 70 

associated with hazardous chemical exposures, including from FCMs. 71 

Keywords: food packaging; hazard assessment; chronic disease; chemical safety  72 
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1. Introduction 73 

In today’s globalized food system, food contact materials (FCMs) and food 74 

contact articles (Fig. 1) such as food packaging, tableware, and food processing 75 

equipment are ubiquitous, especially those made of plastic (Chakori et al. 2021; Poças 76 

et al. 2009). This increases exposures to food contact chemicals (FCCs) migrating from 77 

FCMs (Biryol et al. 2017; Koch and Calafat 2009; Qian et al. 2018). This widespread, 78 

continuous exposure to a wide range of synthetic chemicals requires a more stringent 79 

safety assessment of FCMs than the current approaches used in low-, middle- and high-80 

income countries (Neltner et al. 2013a; Maffini et al. 2013; Alger et al. 2013; Grob et al. 81 

2006; Muncke et al. 2017). 82 

[Figure 1 near here] 83 

FCMs have been studied for over 50 years and are a known source of chemicals 84 

that migrate into foodstuffs (Castle et al. 1989; Bradley et al. 2008; Dionisi and Oldring 85 

2002; Jickells et al. 1993; Sanchis, Yusà, and Coscollà 2017; Nerin and Asensio 2007; 86 

Geueke et al. 2022; Tsochatzis et al. 2021; Oldring et al. 2014). Numerous FCCs, either 87 

intentionally used in the manufacture of FCMs or non-intentionally added substances 88 

(NIAS) that are present in the finished food contact article and that migrate into 89 

foodstuffs (Nerin et al. 2013; Qian et al. 2018; Tisler and Christensen 2022), are known 90 

to be hazardous and implicated with adverse human health impacts (Zimmermann et al. 91 

2022; Groh et al. 2021; Van Bossuyt et al. 2019, 2016; Souton et al. 2017; Bengtstrom 92 

et al. 2016; Symeonides et al. 2021).  93 

However, the current approach to chemical risk assessment for FCMs is largely 94 

focused on assessing genotoxicity of single substances used to manufacture FCMs and 95 

therefore fails to account for other highly relevant mechanisms of toxicity that are of 96 

equal concern as genotoxicity (Muncke et al. 2017) and, what is more, the current 97 
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approach does not assess NIAS that also migrate from  FCMs (Fig. 2) (Muncke et al. 98 

2020; Geueke et al. 2022). Addressing both issues, the limited scope of toxicity testing 99 

as well as the lack of testing for all migrating FCCs, is necessary to protect public 100 

health, and it can be done in a cost-efficient way. 101 

[Figure 2 near here] 102 

Indeed, non-cancer non-communicable diseases (NCDs) of increasing 103 

prevalence in the global human population have been associated with several widely 104 

used FCCs, such as bisphenol A (BPA), bisphenol F (BPF), perchlorate, and di(2-ethyl 105 

hexyl) phthalate (DEHP), to name a few. Given that humans are in daily contact with 106 

FCMs, those materials are likely a relevant exposure source of hazardous chemicals that 107 

contribute to various NCDs.  108 

In this article, we outline an improved assessment scheme for hazard 109 

identification of FCCs that captures all exposure-relevant chemicals (known as the 110 

overall migrate, i.e., all chemicals migrating as a mixture from finished food contact 111 

articles into foodstuffs) including (unknown) NIAS, and we present a vision for 112 

assessing the safety of FCMs that addresses biological effects linked to the most 113 

prevalent NCDs (Muncke 2021; Zare Jeddi et al. 2021). These include heart disease, 114 

stroke, cancer, diabetes, reproductive disorders, immunological disorders, and several 115 

neurological conditions. We provide guidance on research and policy actions that 116 

should be developed to protect the public from avoidable chronic chemical exposures 117 

originating from FCMs and finished food contact articles.  118 
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2. Problem set-up: Shortcomings of the current approach 119 

2.1 Non-communicable diseases are increasingly prevalent and associated with 120 

chemical exposures  121 

NCDs are a significant contributor to global mortality (WHO 2018). However, 122 

the impact of NCDs is far greater than mortality alone, especially in low- and middle-123 

income countries where health care is often limited compared to high-income countries. 124 

Both mortality and morbidity of selected NCDs have increased substantially over the 125 

last 30 years. Premature deaths (<70 years) are primarily associated with cardiovascular 126 

disease (17.7 million deaths per year, accounting for 45% of all NCD deaths), cancer 127 

(8.8 million deaths per year, 22% of all NCD deaths), chronic respiratory disease (3.9 128 

million deaths per year, 10% of all NCD deaths) and diabetes (1.6 million deaths per 129 

year, 4% of all NCD deaths) (WHO 2018). Expressed in Disability-Adjusted Life 130 

Years, cardiovascular diseases have increased by a factor of 1.4 from 1990 to 2017, 131 

neoplasms by a factor of 1.5, and diabetes, urogenital, blood and endocrine diseases by 132 

a factor of 1.6 (from 1990 to 2016) (Roser, Ritchie, and Spooner 2021) (Fig. S1). 133 

Furthermore, among reproductive-age women and men, infertility is now the most 134 

prevalent chronic disease (WHO 2020). Importantly, NCDs incur significant human 135 

suffering in addition to their estimated economic costs (Kassotis et al. 2020; Attina et al. 136 

2016; Trasande et al. 2015; Trasande et al. 2016; Obsekov, Kahn, and Trasande 2022), 137 

which further stresses the need for urgent action towards prevention of morbidities 138 

associated with NCDs.  139 

Chemical exposures are an important contributor to NCDs, especially when they 140 

occur during sensitive stages such as early life, or persist over extended periods of time. 141 

Several well-studied types of chemicals such as toxic metals, halogenated aromatics, 142 
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and some pesticides (Bergman et al. 2013; Rojas-Rueda et al. 2021), as well as some 143 

members of the endocrine disrupting compounds (Gore et al. 2015; Goralczyk 2021; 144 

Demeneix and Slama 2019; Tanner et al. 2020; Chamorro-Garcia et al. 2017) are 145 

associated with NCDs such as brain-related disorders, cancers, metabolic disorders, 146 

reproductive disorders and cardiovascular disease. Specific FCCs such as BPA and 147 

several members of the ortho-phthalates group are associated with NCDs such as heart 148 

disease, diabetes, and some forms of cancer (Martínez-Ibarra et al. 2021; Svensson et al. 149 

2021) (Table 1). Further, the effects of chemical exposures on risk of NCDs are 150 

complex and multifaceted, with some outcomes occurring across generations through 151 

transgenerational inheritance (Walker et al. 2018; Feil and Fraga 2012; Chamorro-152 

Garcia et al. 2017). It is also clear that these effects are not limited to laboratory 153 

animals, as mixtures of chemicals including FCCs have been associated with adverse 154 

health outcomes in prenatally exposed humans (Svensson et al. 2021; Tanner et al. 155 

2020; Kortenkamp and Faust 2018; Bornehag et al. 2021; Bornehag et al. 2019; 156 

Caporale et al. 2022).  157 

[Table 1 near here] 158 

NCDs that are increasingly prevalent in the human population and that are 159 

associated with hazardous chemical exposures can be grouped into disease clusters. On 160 

this basis, we developed the novel concept of Six Clusters of Disease (SCOD) (Fig. 3). 161 

The six clusters are cancers, cardiovascular diseases, reproductive disorders, brain-162 

related disorders, immunological disorders, and metabolic diseases. The SCOD concept 163 

provides a framework for systematically assessing the safety of chemicals in FCMs, 164 

with a focus on the prevention of chemical-associated, highly prevalent, and severe 165 
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NCDs. As such, the SCOD concept expands current efforts for chemical risk assessment 166 

of FCCs. 167 

[Figure 3 near here] 168 

2.2 Current risk assessment of food contact chemicals is not sufficiently 169 

protective of human health 170 

The universe of known FCCs comprises at least 14,153 substances, and for at 171 

least 1,822 FCCs empirical evidence for migration from food contact articles and 172 

materials is publicly available (Geueke et al. 2022). Evidence of human exposure exists 173 

for hundreds of these chemicals (Barr et al. 2003; Calafat et al. 2005; Silva et al. 2004; 174 

Caporale et al. 2022; Correia-Sá et al. 2017; Cortéjade et al. 2017; Koch and Calafat 175 

2009; Pouech et al. 2015; Rudel et al. 2011; Susmann et al. 2019; Isaacs et al. 2022; 176 

Domínguez-Romero et al. 2022; Bil et al. 2023; Jung et al. 2022; Ruan et al. 2019). At 177 

least 388 FCCs in use today are known to be carcinogenic, mutagenic or toxic to 178 

reproduction, possess endocrine disrupting properties, or have other properties of 179 

concern such as persistence, and for at least 127 of these FCCs of concern there is 180 

evidence for migration from FCMs into food or food simulant (Zimmermann et al. 181 

2022).  182 

Currently, in the United States (US), Canada, the European Union (EU), China 183 

and other countries, chemical risk assessment is required for all migrating substances 184 

(Fig. 2). In practice, however, it is predominantly the intentionally used substances that 185 

are assessed for their risk to human health (Muncke et al. 2017). Humans are exposed to 186 

many more FCCs that are non-intentionally added to the finished food contact material 187 

or foodstuff. These NIAS include impurities of the starting substances, reaction by-188 

products, or degradation products of starting substances (like additives) (Horodytska, 189 
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Cabanes, and Fullana 2020; Qian et al. 2018; Bradley and Coulier 2007; Bauer et al. 190 

2019), and also contaminants that accumulate in reused or recycled FCMs (Geueke et 191 

al. 2023; Geueke, Groh, and Muncke 2018; Biedermann et al. 2013; Oldring et al. 192 

2023). NIAS most often are unidentified, they are common in FCMs with high chemical 193 

complexity, and they are likely to be biologically active (Geueke 2018).  Under the 194 

current chemicals risk assessment paradigm for FCMs, where a chemical’s identity 195 

must be known, unidentified FCCs cannot be assessed, although, for example, the EU 196 

plastic food contact regulation requires the risk assessment of NIAS (EU 2011), and 197 

also US FDA’s Food Contact Notification has information requirements on impurities 198 

and reaction by-products (FDA 2007).   199 

A second problem is the lack of testing of substances present in the finished 200 

food contact material. Several approaches have been developed to approximate the 201 

health risks of unknown NIAS (Koster et al. 2015; Koster et al. 2013; Pieke et al. 2017; 202 

Taylor and Sapozhnikova 2022; Leeman and Krul 2015; Omer et al. 2019; 203 

Sapozhnikova, Nuñez, and Johnston 2021), but these approaches contain substantial 204 

uncertainties related to hazard estimation, chemical identification, and quantification 205 

(Bschir accepted; Van Bossuyt et al. 2017) because they are based on assumptions that 206 

cannot be entirely supported by empirical evidence. For example, generic thresholds for 207 

chronic exposures to nongenotoxic carcinogens were derived from testing chemicals at 208 

maximum tolerable doses (MTD) and at 1/2 MTD, but it depends on the exact 209 

mechanism by which a chemical exerts its toxicity whether a low-dose extrapolation 210 

from MTD dosing is appropriate or not (Bailey et al. 2009; Williams et al. 2009). 211 

Finally, because some laws prohibit the use of chemicals that cause cancer in 212 

humans or animals, testing methods currently focus on genotoxicity as a proxy for 213 
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predicting cancer risk (Muncke et al. 2017; Neltner et al. 2013b). But other hazards that 214 

are not related to genotoxic effects are currently not systematically assessed, , including 215 

outcomes relevant to other chronic NCDs. Thus, there is a need for novel and more 216 

robust approaches to more fully evaluate all the relevant hazards to human health 217 

associated with FCCs. 218 

3. Our vision: to make safer food contact materials  219 

3.1 Assessing toxicological effects relevant to the Six Clusters of Disease  220 

Chronic exposure to hazardous chemicals is a known modifiable risk factor for 221 

cancer and reducing exposure to hazardous or untested chemicals from consumer 222 

products, including FCMs, is a recommended preventive measure (Madia et al. 2019). It 223 

is reasonable to assume that the same holds true for other NCDs that are associated with 224 

chemical exposures, especially for endocrine disrupting chemicals (Table 1). Indeed, 225 

exposure reductions can lower the incidence of disease (Scholz et al. 2022), for example 226 

for neurodevelopmental disorders (Bennett et al. 2016), obesity (Mohanto et al. 2021) or 227 

male reproductive disorders (Foresta, Tescari, and Di Nisio 2018). 228 

NCDs that are increasingly prevalent in the human population and that are 229 

associated with hazardous chemical exposures can be grouped into disease clusters. On 230 

this basis, we have developed the novel concept of SCOD (Fig. 3). The SCOD concept 231 

emerged from discussions with the Food Packaging Forum’s Scientific Advisory Board 232 

(SAB) during several meetings between 2016 and 2022. The SCOD concept provides 233 

for the first time a framework for systematically assessing the safety of chemicals in 234 

FCMs, with a focus on the prevention of chemical-associated, highly prevalent and 235 

severe NCDs. As such, the SCOD concept expands current efforts for chemical risk 236 

assessment of FCCs beyond cancers induced via a genotoxic mechanism (Beneventi, 237 
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Tietz, and Merkel 2020; Muncke et al. 2017). For each disease cluster within the 238 

SCOD, many widely used FCCs have been associated with relevant diseases in both 239 

epidemiology and animal studies (Tables 1 and 2). For some, mechanistic evidence 240 

strengthens these associations (Table 2). It is also this mechanistic evidence that 241 

provides opportunities to use in-silico and in-vitro assays to better map toxicity profiles 242 

of individual FCCs in finished FCMs, before they are placed on the market, as well as 243 

mixtures, extracts and migrates from FCMs and food contact articles. The SCOD 244 

provides organizing principles for such an approach. 245 

3.2 Assessing real-life chemical exposures: testing overall migrate from food 246 

contact materials 247 

All FCCs that are relevant for human exposure should be tested, in other words, 248 

FCCs used in the manufacturing of FCMs should be tested as single substances, and the 249 

real-life mixture of all migrating FCCs, the overall migrate, should also be tested. If the 250 

overall migrate displays positive findings in the in-vitro assays, it should be subjected to 251 

non-targeted chemical analyses in order to elucidate its chemical composition, including 252 

NIAS, and to identify the substances driving the overall migrate’s toxicity (Nerín et al. 253 

2022). This combined testing and chemical identification approach could inform the 254 

development of safer FCMs by selecting less hazardous ingredients and developing 255 

manufacturing processes that generate fewer and less biologically active NIAS. Such an 256 

approach would be aligned with the proposed Safe and Sustainable by Design 257 

framework included in the EU’s Chemicals Strategy for Sustainability (EU 2020a).  258 

The already available as well as emerging in-vitro assays provide an opportunity 259 

to identify hazardous properties of single substances and of the overall migrate. In-vitro 260 

test systems are small-scale, often single-cell or small organism systems, for example 261 
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human cancer cell lines, bacteria, and fungi (e.g. yeast). Other high-throughput 262 

screening assays utilize embryos and larvae from vertebrates such as zebrafish (Danio 263 

rerio) or African clawed frog (Xenopus laevis). These assays can be performed 264 

efficiently both in terms of time and cost and are usually based on mechanistic 265 

pathways (Groh and Muncke 2017; Severin et al. 2017; Akoueson et al. 2023). 266 

Test batteries, where several relevant assays are combined simultaneously, can 267 

also be operated as high-throughput screening methods such as those developed in 268 

Tox21 and ToxCast (Richard et al. 2016; Tice et al. 2013; Filer et al. 2022), which 269 

demonstrate the feasibility of this approach. In this way, diverse information about the 270 

interaction properties of a single chemical with different biological systems can be 271 

generated efficiently, and with lower cost, compared to whole-animal testing used in 272 

traditional toxicology. Further, overall migrate, that is, mixtures of chemicals migrating 273 

from FCMs, can be tested in such assays, too (Akoueson et al. 2023; Zimmermann et al. 274 

2019; Bengtstrom et al. 2016). 275 

These assessments should be guided by the SCOD concept. However, gaps exist 276 

in the current understanding of molecular pathways related to the SCOD, and these in-277 

vitro assays remain insufficient to identify the full panoply of potential hazards, 278 

especially those mediated by endocrine mechanisms. In-vitro assays included in high-279 

throughput test batteries need to be appropriate for predicting relevant human health 280 

outcomes; should be demonstrated to be reproducible, sufficiently specific and 281 

sensitive; and must be executed transparently (Janesick et al. 2016; Schug et al. 2013). 282 

Because of the limited in-vitro assays for known pathways and mechanisms of action 283 

associated with endocrine disruption and other complex biological cascades, animal 284 

testing needs to continue, but actual in-vivo tests will be fewer than in the past. For 285 
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example, no current in-vitro approaches would have revealed what is now known to be 286 

a feature of some chemical exposures, e.g., transgenerational epigenetic inheritance 287 

(Fitz-James and Cavalli 2022). Acknowledging these and other gaps, the European 288 

Commission is funding EURION, a program to develop new testing and screening 289 

methods (including many in-vitro approaches) for identifying endocrine disrupting 290 

chemicals (Street et al. 2021). 291 

3.3 Shifting from the status quo to a more comprehensive approach to testing  292 

Within the SCOD, increasingly available mechanistic information enables an 293 

understanding of how chemicals contribute to highly prevalent NCDs. Two emerging 294 

frameworks are being implemented to describe how chemicals affect complex diseases 295 

and to provide a more uniform approach to evaluating mechanistic evidence: the key 296 

characteristics concept, and adverse outcome pathways (AOPs). Both offer 297 

opportunities to shift from the status quo, modernize hazard assessments, and develop 298 

suitable in-vitro assays. 299 

3.3.1 The Key Characteristics concept: modernizing chemical hazard assessments  300 

The key characteristics concept makes use of information about the properties of 301 

hazardous chemicals that have empirical evidence linking them causally to relevant 302 

apical (disease) endpoints (Smith et al. 2016). The underlying premise is that chemicals 303 

that cause the same disease outcomes in whole organisms share molecular properties 304 

(i.e., key characteristics) that are relevant for their hazardous properties. The key 305 

characteristics for different disease outcomes are hence defined using empirical 306 

evidence for well-characterized chemicals, combined from epidemiological, in-vivo and 307 

mechanistic studies. These disease-specific key characteristics can then be used to 308 

develop mechanistic in-vitro assays to screen chemicals for their propensity to 309 
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contribute to different disease clusters and thereby reduce the need for in-vivo 310 

experiments while still decreasing scientific uncertainty normally associated with in-311 

vitro data. 312 

The key characteristics were first developed for carcinogens, drawing from 313 

existing mechanistic information from thoroughly assessed chemicals that are known to 314 

be carcinogenic in humans (Smith et al. 2016; Guyton et al. 2018; Krewski et al. 2019; 315 

Al-Zoughool et al. 2019; Guyton and Schubauer-Berigan 2021). Additional key 316 

characteristics of other disease-causing chemicals have also been described, such as for 317 

hepatotoxicants (Rusyn et al. 2021), endocrine disrupting chemicals (La Merrill et al. 318 

2020), female reproductive toxicants (Luderer et al. 2019), male reproductive toxicants 319 

(Arzuaga et al. 2019), cardiovascular toxicants (Lind et al. 2021), and immunotoxicants 320 

(Germolec et al. 2022). For metabolic toxicants and neurotoxicants, work to describe 321 

key characteristics is ongoing. Taken together, the key characteristics approach provides 322 

an excellent starting point for the mechanistic understanding of how certain chemicals 323 

are associated with NCDs, such as those covered in the SCOD.  324 

3.3.2 Using other mechanistic information to develop suitable in-vitro assays 325 

In addition to the key characteristics, further important mechanistic 326 

understanding is becoming available and can be useful to inform development of 327 

dedicated in-vitro screening assays for hazard assessments of FCCs. Chemicals exert 328 

toxic effects by combinations of many different molecular-level events. These 329 

mechanistic events leading to apical endpoints of toxicity can be organized in an AOP 330 

(Ankley et al. 2010). Several AOPs relevant to NCDs in the SCOD have been proposed, 331 

such as estrogen receptor activation leading to breast cancer (Coumoul et al. 2022)  and 332 

the upregulation of thyroid hormone catabolism (via activation of hepatic nuclear 333 
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receptors) leading to subsequent adverse neurodevelopmental outcomes in mammals, 334 

specifically the loss of cochlear function (Friedman, Crofton, and Gilbert 2022).Thus, 335 

AOPs are an emerging approach to organize mechanistic information so that molecular 336 

or cellular-level targets can be identified for developing in-vitro assays that are relevant 337 

to the SCOD.  338 

3.3.3 The novel approach: A vision for safer food contact materials 339 

Based on the presumption that mechanistic in-vitro testing of chemicals supports 340 

the prevention of NCDs within the SCOD, we propose a novel approach for testing 341 

FCCs that 342 

(1) covers individual FCCs as well as real-life mixtures, migrating (or extractable) 343 

from finished FCMs, including all known and unknown NIAS,  344 

(2) assesses the health impacts of FCCs and real-life mixtures with respect to the 345 

most prevalent NCDs in the human population, and  346 

(3) evaluates effects that are upstream from the disease, relying on mechanistic 347 

information and in-vitro screening approaches (wherever possible) to accurately 348 

predict health effects induced by FCCs and migrates. 349 

This shift from current practice to the proposed approach is summarized in Fig. 4, 350 

and a detailed overview is provided in Fig. 5. Our approach overcomes the most 351 

challenging shortcomings of the current testing paradigm of chemical hazard 352 

assessment of FCMs, fully recognizing that to assess all adverse effects of chemicals on 353 

biological systems, adequate in-vivo testing is required, where additional aspects would 354 

be addressed such as metabolic activation, unknown modes of action leading to apical 355 

endpoints, and transgenerational effects. However, we also realize that such extensive, 356 
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multigeneration in-vivo testing may not always be feasible for various reasons, 357 

including ethical and practical ones. Therefore, we propose this vision to improve FCC 358 

testing from the currently too limited scope towards a much more comprehensive yet 359 

feasible approach that holds promise for better protection of public health. 360 

[Figure 4 near here] 361 

[Figure 5 near here] 362 

4. Implementing the vision: assessing impacts of FCCs and relevant mixtures 363 

on human health outcomes in the SCOD using mechanistic approaches 364 

Here we review the mechanistic basis for each of the disease clusters included in 365 

the SCOD, and selectively highlight available in-vitro testing methods. Importantly, 366 

some available assays cover key characteristics that are relevant for several disease 367 

clusters. 368 

This vision for expanded hazard assessment of FCMs is based on the finding 369 

that for each of the disease clusters included in the SCOD, some mechanistic 370 

understanding is available for the way that chemicals cause disease (Table 2). 371 

[Table 2 near here] 372 

4.1 Cancer  373 

As defined by Willis,  374 

A neoplasm is an abnormal mass of tissue, the growth of which exceeds and is 375 

uncoordinated with that of the normal tissues and persists in the same excessive 376 

manner after cessation of the stimulus which evoked the change (Willis 1948).  377 

Regarding cancer causation, the somatic mutation theory posits that cancer is a 378 
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cellular disease caused by mutations of genes that disrupt the control of cell 379 

proliferation. Yet, substantive contradictions exist between this theory and empirical 380 

evidence (Naxerova 2021), which inspired competing theories consider cancer as a 381 

problem of tissue organization akin to organogenesis (Sonnenschein and Soto 2020; 382 

Maffini et al. 2004; Rønnov-Jessen and Bissell 2009). Importantly, not all carcinogens 383 

are mutagens (Keri et al. 2007) and, thus, carcinogenicity cannot be equated with 384 

genotoxicity. Yet, because legal requirements restrict the use of cancer-causing agents 385 

in FCMs, testing of FCCs has focused on genotoxicity as a proxy to identify 386 

carcinogenic substances. 387 

Both carcinogens and mutagens are found in FCMs including 1) formaldehyde, 388 

a known human carcinogen (IARC Group 1) (IARC 2012a), which migrates from 389 

various plastics including melamine-formaldehyde plastics used as tableware for 390 

children, and polyethylene terephthalate plastic (PET) (Kim et al. 2021; Bach et al. 391 

2013); 2) antimony trioxide, which “is reasonably anticipated to be a human 392 

carcinogen” (NTP 2021) and “probably carcinogenic to humans” (IARC Group 2A) 393 

(IARC 2022), and it is used in the manufacture of PET, where antimony is found to 394 

migrate into soft drinks (Westerhoff et al. 2008; Bach et al. 2013); and 3) per- and 395 

polyfluoroalkyl substances (PFAS) are widely used in the manufacture of FCMs as 396 

processing aids in plastic and paper food contact material production (Trier, Granby, 397 

and Christensen 2011; Minet et al. 2022), and perfluorooctanoic acid has limited 398 

evidence for testicular and kidney cancers in humans and is “possibly carcinogenic to 399 

humans” (IARC Group 2B) (Benbrahim-Tallaa et al. 2014). 400 

The key characteristics for carcinogens reveal that these chemicals can be 401 

mutagens, but that there are numerous other common features for these agents as well, 402 
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such as inducing oxidative stress, modulating receptor-mediated effects and inducing 403 

chronic inflammation (Smith et al. 2016; Guyton et al. 2018; Krewski et al. 2019; Al-404 

Zoughool et al. 2019; Guyton and Schubauer-Berigan 2021). Guyton and Schubauer-405 

Berigan (2021) recommended the use of in-vitro assays based on the key characteristics 406 

to identify carcinogens in high-throughput screening (Guyton and Schubauer-Berigan 407 

2021). Further, Rider et al. (2021) proposed methods to use the key characteristics to 408 

test chemical mixtures and their propensity to affect cancer development including in 409 

mixtures of chemicals with different key characteristics of carcinogens (Rider et al. 410 

2021). Approaches such as these will provide important information for testing mixtures 411 

such as the overall migrate from finished FCMs. Methods for evaluating genotoxicity 412 

are readily available, validated, and trusted. Chemicals are considered genotoxic if they 413 

damage the structure, information content, or segregation of DNA, with mutagenicity 414 

(i.e. changes to the nucleotide sequence) being a sub-type of genotoxicity (OECD 415 

2015).  416 

These methods include (Muncke 2009): 417 

• Mutagenicity: The Ames test, based on bacterial reverse mutagenicity, is the 418 

most employed test for mutagenicity (Organisation for Economic Co-operation 419 

and Development (OECD) test guideline (TG) 471). A mammalian cell (mouse 420 

lymphoma) gene mutation test (OECD TG 490) is also available (OECD 2022) 421 

• Chromosomal aberration: Cultured mammalian cells are assessed for the 422 

presence of chromatid-type and chromosome-type aberrations during metaphase 423 

(OECD TG 473)  424 

• Micronucleus: Micronuclei represent chromosomal damage (chromosome 425 

fragments or whole chromosomes) that have been transmitted to daughter cells. 426 
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Micronuclei can be assessed in-vitro by using mammalian cells (OECD TG 487) 427 

or in-vivo with erythrocytes collected from bone marrow or peripheral blood 428 

(OECD TG 874) 429 

These methods are recommended or required for assessing intentionally used 430 

FCCs (EFSA 2008; FDA 2007). Several other in-vitro assays for assessing the 431 

genotoxic potential of FCCs are also available (Pinter et al. 2020). However, these 432 

strategies have not kept pace with discoveries in cancer biology (Chiara, Indraccolo, 433 

and Trevisan 2020). Currently, no in-vitro assays are available that capture features of 434 

carcinogenicity beyond genotoxicity, but research is underway to address this technical 435 

gap (Hwang et al. 2020). On the other hand, the causal role of the microenvironment in 436 

carcinogenicity, as put forward by tissue-based theories on carcinogenicity (Maffini et 437 

al. 2004), is not captured by such in-vitro assays, because the reciprocal interactions 438 

between stroma and parenchyma during development, regeneration, and remodeling are 439 

not being considered (Soto et al. 2013). Although in-vivo assays involving mammals are 440 

available, traditional 2-year rodent carcinogenicity studies (OECD TG 451), either 441 

alone or in combination with chronic toxicity studies, are rarely performed for FCCs. 442 

4.2 Cardiovascular diseases 443 

Cardiovascular diseases (CVDs) are a group of disorders arising due to 444 

disfunction of the heart and blood vessels. The most recognized forms of CVD, 445 

coronary heart disease and cerebrovascular disease, result in damage to tissues caused 446 

by limited or complete loss of blood supply (WHO 2021).  447 

FCCs including several phthalates and bisphenols contribute to the causation of 448 

CVDs, independent of obesity and diabetes (Lind et al. 2021). Bisphenols can disrupt 449 

calcium signalling in myocardium and vasculature; and phthalates and bisphenols are 450 
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oxidant stressors that accelerate coronary and other arterial inflammation (Lind et al. 451 

2021). In the US alone, 100,000 premature deaths from CVD among 55–64-year-olds 452 

each year are attributed to exposure to one phthalate, DEHP (Wen, Wang, and Zhang 453 

2022). Other FCCs, such as antimony, may also impair cardiovascular function and 454 

accelerate CVDs (El-Kersh et al. 2022).  455 

Lind et al. (2021) compiled the key characteristics of cardiovascular toxicants 456 

and provided a comprehensive overview of robust and sensitive in-vitro, ex vivo and in-457 

vivo assays that are available for measuring dysregulation of Ca2+ ion homeostasis and 458 

resulting arrhythmogenic activities of chemicals. For example, the increased risk for 459 

CVDs associated with higher exposures to BPA is mechanistically associated with Ca2+ 460 

release and reuptake resulting in proarrhythmic delays after depolarizations in isolated 461 

cardiomyocytes. BPA promotes Ca2+-mediated arrhythmias ex vivo in the whole heart 462 

of rats and mice (Yan et al. 2011). However, this is only one of many possible 463 

mechanisms for inducing CVDs, and further assay development is required. 464 

Although several FCCs have been associated with CVDs, cardiovascular 465 

toxicity is generally not evaluated for FCCs, whether they are intentionally used to 466 

make FCMs or NIAS present in finished FCMs. This is in part due to a reliance on in-467 

vivo guideline testing of general toxicity for chemicals migrating at very high levels and 468 

limited to assessment of neoplastic and non-neoplastic cardiac lesions in rodent models, 469 

which can be confounded by a high incidence of background pathology in many of the 470 

rodent strains used for toxicity testing (Gear, Kendziorski, and Belcher 2017). However, 471 

these are insensitive apical endpoints that only identify highly cardiotoxic chemicals 472 

that result in robust pathology but miss subtle molecular effects (Gao and Wang 2014; 473 

Jokinen et al. 2011). 474 
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We recommend that comprehensive testing for all new chemicals include in-475 

vitro and in-silico testing harmonized with the Comprehensive in-vitro Proarrhythmia 476 

Assay approach (CiPA) (FDA 2022; CIPA 2019). The CiPA initiative was launched to 477 

address limitations in the current cardiac safety testing methods used to assess the risk 478 

for adverse cardiac events of new drugs. The CiPA aims to develop a new approach for 479 

evaluating the potential of drugs to cause cardiac arrhythmias, particularly a specific 480 

type known as Torsades de Pointes (TdP). It is a multi-step approach that combines in-481 

vitro assays and computational modeling to assess proarrhythmic risk and predict the 482 

risk of TdP by considering the complex interactions of multiple ion channels and 483 

cellular components involved in cardiac electrophysiology. The CiPA could be used as 484 

an important approach for identifying cardiotoxic hazards of FCCs. 485 

4.3 Brain-based disorders 486 

Disrupted neurodevelopment can have numerous consequences including a 487 

lower intelligence quotient, delayed language acquisition, attention deficit hyperactivity 488 

disorder (ADHD), and autism (Caporale et al. 2022; Bornehag et al. 2021; Kim et al. 489 

2022). Because the role of thyroid hormone in brain development is well established, 490 

hypothyroidism, especially during early development, is also a condition of concern 491 

upstream of neurodevelopmental disorders. Neurotoxicity can also result from impaired 492 

neuronal function due to a variety of factors, such as neuronal misplacement during 493 

development, altered synapses, hypomyelin, or degeneration. Other neurodegenerative 494 

conditions that typically arise later in life include Parkinson’s disease, Alzheimer’s 495 

disease, and other forms of dementia. 496 

The role of FCCs in the causation of many brain-based disorders is well 497 

established, with substantial contribution to the burden of disease for both 498 
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neurodevelopmental and neurodegenerative disorders (Attina et al. 2016). For example, 499 

FCCs that interfere with thyroid hormone systems or sex steroids (e.g., phthalates and 500 

perchlorate) can affect brain development as well as cognitive function in adults 501 

(Bennett et al. 2016; Grandjean and Landrigan 2006). The vulnerability of the 502 

developing brain and the lack of systematic assessment of neurodevelopmental toxicity 503 

for FCCs raises serious concerns (Maffini, Trasande, and Neltner 2016; Mustieles and 504 

Fernández 2020). At present, the key characteristics of neurotoxicants remain 505 

undescribed, but relevant work is ongoing.  506 

In addition to assays covering interference with the thyroid and sex steroid axes, 507 

in-vitro testing of neurotoxicants requires sophisticated and reliable models due to the 508 

complexity of the brain (Marty et al. 2021). Neuronal cell lines, primary central nervous 509 

system cells, transformed neuronal precursors and stem cell derived progenitor cells are 510 

used in neurotoxicity assays (Arshajyothirmayi and Gulia 2022) to evaluate endpoints 511 

including migration, synapsis formation, network activity and differentiation. Although 512 

single-cell cultures are informative, multi-cell type and three-dimensional models 513 

utilizing microfluidics more adequately represent the diversity and spatial properties of 514 

the brain (Caffrey, Button, and Robert 2021; Kilic et al. 2016; Maoz 2021; Park et al. 515 

2021), but high throughput versions of these methods are not yet available, and thus 516 

their use in evaluating FCCs has been limited. Additional in-vitro assays for chemical 517 

screening of neurotoxicants are under development in EU-funded research programs 518 

(Cediel-Ulloa et al. 2022) and research is ongoing to develop further in-vitro assays 519 

targeting the thyroid system (Kortenkamp et al. 2020). Recently, the establishment of a 520 

human cell-based in-vitro battery has been reported; it combines 10 assays selected to 521 

cover major key events in the relevant AOPs (Sachana et al. 2021) and was shown to 522 

provide 82% sensitivity in that it was able to identify 24 out of 28 known neurotoxicants 523 
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(Blum et al. 2022). 524 

New low- and medium-throughput screening assays have been developed. For 525 

example, the nematode is a promising model for evaluating known neurodevelopmental 526 

toxicants and could be expanded to profiling chemicals with unknown neurotoxicity 527 

(Ruszkiewicz et al. 2018; Hunt et al. 2018). Spontaneous movements (Parng et al. 528 

2007), number and location of neurons (Rericha et al. 2022), and behavioral effects 529 

(Fitzgerald et al. 2021) are some of the neurological endpoints measured in zebrafish. 530 

Validated high-throughput screening assays using African clawed frog tadpoles are also 531 

available (OECD TG 248).  532 

In-vivo testing in rodents can be used to assess different functional aspects of 533 

neurotoxicity including impacts on cognition, learning and memory; and anxiety-like, 534 

depressive-like and reproductive behaviors. OECD developmental neurotoxicity 535 

(OECD TG 426) and extended one-generation reproductive toxicity assays (OECD TG 536 

443) include optional measurements of learning and memory, motor and sensory 537 

function, motor activity, and auditory startle. Neurodegeneration is not covered because 538 

this endpoint can only be studied in animals which age, and animals used in assays are 539 

typically not kept until the end of their natural lifetime where neurodegeneration would 540 

manifest itself (Huff, Jacobson, and Davis 2008).      541 

4.4 Obesity and Metabolic diseases 542 

Metabolic diseases, including obesity, involve the many tissues that comprise 543 

the metabolic system (Mohajer et al. 2021). These include adipose tissue, skeletal 544 

muscle, pancreas, liver, gastrointestinal tract, bone, and brain. Type-2 diabetes, an 545 

important metabolic disease with increasing prevalence in human populations, occurs 546 

due to systemic insulin resistance, often with an increasing production of insulin by the 547 
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pancreas. Type-1 diabetes occurs due to a progressive loss of β-cell insulin secretion. 548 

Non-alcoholic fatty liver disease is another metabolic disease with increasing 549 

prevalence in human populations. 550 

While poor diet and insufficient physical activity are considered the chief drivers 551 

of the obesity and diabetes twin pandemics, chemical exposures (for example, to 552 

phthalates, bisphenols, parabens, PFAS, etc.) can disrupt the balance between energy 553 

expenditure and energy intake (Heindel et al. 2022). A large comprehensive review of 554 

metabolic disrupting chemicals, including those that can induce obesity (obesogens), 555 

provides strong evidence that numerous FCCs are associated with type-2 diabetes, 556 

obesity, and fatty liver disease (Heindel 2019). The key characteristics of metabolic 557 

disruptors and obesogens are being compiled. Rusyn et al. (2021) have described the 558 

key characteristics of acute and chronic human hepatotoxicants and note that only one 559 

of 12 key characteristics are specific to liver tissue (KC9: causing cholestasis) (Rusyn et 560 

al. 2021), indicating that there are overlaps with the key characteristics of other 561 

toxicants, i.e. carcinogens, cardiovascular toxicants, endocrine disrupting chemicals, 562 

and male and female reproductive toxicants. 563 

The simplest assays to identify an obesity hazard are those that measure the 564 

effect of chemical exposures on the development of adipocytes (Kassotis et al. 2022; 565 

Kassotis and Stapleton 2019; Seo, Shin, and Kim 2019). Primary preadipocyte cultures, 566 

or mesenchymal stem cell assays, use animal or human cells to assess proliferation and 567 

differentiation into adipocytes (Desai et al. 2018b; Shoucri et al. 2018; Kassotis and 568 

Stapleton 2019; Chamorro-Garcia and Blumberg 2019; Lane et al. 2014; Tang, Otto, 569 

and Lane 2004; Pillai et al. 2014). Using this in-vitro assay, a recent study found that 570 

around one third of tested plastic food contact articles contained metabolic disrupting 571 
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chemicals (Völker et al. 2022). Recently, spheroid adipocyte models have been 572 

developed that improve the efficiency and speed of differentiation (Turner et al. 2017) 573 

and can be used for a more comprehensive understanding of adipocyte physiology than 574 

monolayer cultures. The zebrafish obesogenic test offers an in-vivo approach to 575 

screening chemicals that target adiposity; it measures adipocyte lipid droplet size and 576 

normalized triacylglycerol content as an assessment of adiposity in a whole-organism 577 

assay of larvae to test for obesogenic and anti-obesogenic chemicals and mixtures 578 

(Tingaud-Sequeira, Ouadah, and Babin 2011). 579 

Other non-adipocyte cell lines, when well characterized such as the mouse bone 580 

marrow-derived mesenchymal stem cells (mBMSCs), are also useful for mechanistic 581 

studies (Auerbach et al. 2016; Janesick et al. 2016). In addition to adipocyte 582 

differentiation, several other mechanisms are implicated with metabolic disease 583 

causations, for example the disruption of energy homeostasis at the level of the 584 

hypothalamus and brain. Therefore, in-vitro assays that examine effects on 585 

hypothalamic neurons are useful (Ye et al. 2016; Loganathan et al. 2018).  586 

No assays have been developed to identify metabolic disruptors acting as 587 

diabetogens. Ongoing projects are developing assays to measure β-cell function and 588 

survival (Audouze et al. 2020; Legler et al. 2020; Küblbeck et al. 2020) using rodent β-589 

cell lines (INS-1E and MIN-6) and a human β-cell line (ENDOC-βH1). Assays of 590 

insulin function on the human liver cell line HepaRG, the skeletal muscle cell line 591 

C2C12, and adipocytes are also under investigation (Legler et al. 2020). One well 592 

established system of assays employing both in-vitro and in-vivo methods has been used 593 

to explore the relationship between BPA and type-2 diabetes (Dos Santos et al. 2022). 594 

The most used assays to screen chemicals for effects on the liver use the 595 
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HepaRG and HepG2 cell lines. The HepG2 cell line can be customized with different 596 

expression levels of various drug metabolizing enzymes (Tolosa et al. 2018). Other 2D 597 

and 3D in-vitro approaches use primary hepatocytes, immortalized liver cell lines, and 598 

hepatocytes derived from stem cells that are grown in monolayers, as spheroids or 599 

organoids, or used in emerging technologies (like organ-on-a-chip) to identify liver 600 

toxicants (Yang et al. 2023). Each of the approaches available has strengths and 601 

weaknesses; for example, the use of human primary hepatocytes in 2D culture can 602 

produce patient-specific evaluations that account for differences in metabolism and 603 

sensitivity, but these assessments come at high cost. Several of these methods are 604 

currently being used to evaluate liver toxicity in the screening of pharmaceuticals 605 

(Serras et al. 2021), making them similarly well suited to evaluate FCCs for potential 606 

effects on liver outcomes.  607 

4.5 Immunological disorders 608 

The immune system is an intricate network of many different, highly specialized 609 

cells interacting with each other and with the nervous and endocrine systems (Nicholson 610 

2016). Disorders of the immune system include autoimmune disorders such as multiple 611 

sclerosis, Graves’ and Hashimoto’s diseases, lupus, Celiac’s, Addison’s, and 612 

rheumatoid arthritis, among others. Other diseases including type-1 diabetes and asthma 613 

have an important immune component. Therefore, assays for immunotoxicity need to 614 

capture a multitude of potential effects, including immunosuppression, 615 

immunostimulation, hypersensitivity reactions, mechanisms of autoimmunity, and 616 

developmental immunotoxicity, e.g., delayed immunotoxic responses to toxic 617 

influences (Germolec et al. 2017).  618 

The human immune system is highly effective, but also sensitive to synthetic 619 
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chemical insults during development and adult life. Effects of chemicals on the immune 620 

system are less well understood in humans than other disease endpoints, but emerging 621 

evidence implicates PFAS exposure in reducing immune response to vaccines and 622 

increasing susceptibility to infections in early life (Grandjean et al. 2017). Other FCCs 623 

including bisphenols and phthalates increase the risk of atopy and asthma (Xie et al. 624 

2016; Wang, Chen, and Bornehag 2016; Kim et al. 2017), and infections in early life 625 

(Gascon et al. 2015).   626 

The key characteristics of immunotoxicants have been described (Germolec et 627 

al. 2022). This offers a starting point for development of suitable in-vitro assays for 628 

testing FCCs for immunotoxicity. Due to the complexity of the immune system 629 

components and responses, a comprehensive battery of in-vitro assays covering all 630 

relevant aspects of immunotoxicity has not been established. However, several in-vitro 631 

assays, dealing for example with direct immunosuppression, allergic hypersensitivity, or 632 

autoimmunity, are being developed to detect a range of immunotoxicants (Corsini and 633 

Roggen 2017; Luebke 2012; Deprouw et al. 2022; Naidenko et al. 2021) and these 634 

assays could be used to screen FCCs (Ogungbesan, Neal-Kluever, and Rice 2019). 635 

4.6 Reproductive disorders 636 

In industrialized countries, male reproductive health has declined over the past 637 

decades, including a 50-60% decrease in sperm counts since 1973 (Levine et al. 2017; 638 

Skakkebæk et al. 2022; Levine et al. 2022) and an increase in testicular cancer (Znaor et 639 

al. 2022). Female fertility is also affected, as are maternal health and pregnancy 640 

outcomes, and conditions such as polycystic ovary syndrome (PCOS), endometriosis, 641 

and premature ovarian failure (Boomsma et al. 2006).  642 
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The sperm count decrease is associated with chemical exposures (to, e.g. 643 

phthalates), especially during fetal development (Skakkebæk, Rajpert-De Meyts, and 644 

Main 2001). Strong evidence from animal experiments support this interpretation (Gore 645 

et al. 2015; Skakkebaek et al. 2016; Jorgensen et al. 2021; Kortenkamp 2020). FCC 646 

exposures are also associated with PCOS (Soave et al. 2020), and other aspects of 647 

reproductive toxicity (Nerín et al. 2020; Garcia-Calvo et al. 2020a). These adverse 648 

outcomes have even been found for FCCs promoted as safer alternatives to hazardous 649 

chemicals such as the plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester 650 

(tradename Hexamoll DINCH) (Boisvert et al. 2016), which is used as a replacement 651 

for DEHP and other phthalates. Several FCCs such as BPA have been studied for 652 

mechanistic-level impacts on female fertility, including oogenesis, folliculogenesis, and 653 

altered expression of gonadotropin and gonadotropin hormone-releasing hormone 654 

receptors (Vessa et al. 2022a). The key characteristics of male (Arzuaga et al. 2019) and 655 

female reproductive toxicants (Luderer et al. 2019) have been described. Development 656 

and function of the reproductive system is fundamentally dependent on sex hormone 657 

action. Thus, the key characteristics of endocrine disrupting chemicals (La Merrill et al. 658 

2020)are also relevant to the study of chemicals that affect reproductive outcomes.  659 

However, a systematic overview of available in-vitro assays for hazard identification of 660 

endocrine disrupting chemicals that affect male and female fertility is unavailable.  661 

In-vitro assays that identify chemical interference with sex hormone production 662 

and signalling have been validated (OECD TG 493, 455, 458, 456). These include 663 

assays based on nuclear receptor activation and steroid hormone synthesis. The bovine 664 

oocyte maturation assay (ECVAM TM 2010-05) is also a reproduction-relevant in-vitro 665 

assay. A good correlation between in-vitro results and in-vivo observations has been 666 

established for female fertility endpoints (Corton et al. 2022; Pinto et al. 2018). 667 
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Validated in-vivo assays exist to evaluate reproductive toxicity for impacts on both male 668 

and female fertility (OECD TG 443), but these may not be sufficiently sensitive or 669 

comprehensive, as they fail to evaluate numerous key characteristics of male and female 670 

reproductive toxicants (Luderer et al. 2019; Arzuaga et al. 2019). 671 

5. What is needed to implement the vision for safer food contact materials? 672 

To achieve our vision, we propose a multi-pronged approach that is grounded in 673 

the SCOD concept, which includes many of the most prevalent NCDs of high relevance 674 

to human health. We identified three components needed to realize this vision: 675 

analytical methods and testing strategies, data integration and interpretation, and science 676 

to inform decision making. 677 

5.1 Analytical methods and testing strategies 678 

In Section 4 we list several available and emerging assays used in the 679 

identification of hazard for each of the SCOD. However much more is needed, 680 

especially high-throughput non-animal and low-medium throughput assays with non-681 

mammalian models that are specific, sensitive, reliable and robust, and adequate for 682 

predicting effects relevant to humans. These assays would overcome challenges with 683 

cost, time, and scientific relevance as the selection of suitable in-vitro assays would be 684 

based on robust mechanistic evidence from key characteristics and AOPs. Identification 685 

of the key characteristics for brain disorders and metabolic diseases will form the basis 686 

for identification and/or development of relevant in-vitro assays to identify hazardous 687 

chemicals related to these clusters. For in-vitro testing based on mechanistic pathways 688 

to succeed, additional dedicated expertise and financial support are needed to identify 689 

assays that would address relevant key characteristics. This work is ongoing and the 690 

website keycharacteristics.org collates all available information and publications in this 691 
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area (Key Characteristics 2022). It also remains to be shown if in-vitro assays based on 692 

the key characteristics of hazardous chemicals will be sufficiently predictive of 693 

chemical hazards when used in pre-market assessments, rather than in ex-ante 694 

evaluations (where the key characteristics are currently used). 695 

Another important aspect of testing is the development and validation of 696 

methods that reflect real-world chemical exposures from FCMs, including the effects of 697 

metabolites formed from FCCs in the human body. Migration testing protocols exist but 698 

ongoing research efforts need to be expanded and validated to ensure minimal loss of 699 

potentially hazardous chemicals during sample preparation (e.g. by using polar and 700 

apolar food simulants and by capturing not only non-volatile compounds, but also those 701 

that are semi-volatile and volatile) (Nerín et al. 2022; Oldring et al. 2023). 702 

Lastly, a battery of screening assays addressing the SCOD needs to be defined 703 

and validated. This step will need the contribution of experts in each field to ensure that 704 

the selected endpoints are reliable and result in high confidence.  705 

Implementation of this vision will depend on the successful progress in all of 706 

these areas. 707 

5.2 Data interpretation and integration 708 

Methods must be developed to interpret and corroborate in-vitro test results. 709 

Individual assays should be integrated into an overall high-level / aggregated scheme 710 

(e.g. using visualization approaches such as ToxPi (Rajkumar et al. 2022; Marvel et al. 711 

2018)). Also, non-targeted chemical analyses are challenging, as confirmation of 712 

identified compounds is very time- and labour intensive, and at times not possible at all. 713 

Also, reliable quantification of chemicals that lack analytical standards is not possible. 714 

Therefore, non-targeted approaches need to be advanced to allow for better 715 
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identification of currently unknown compounds, especially when present at low 716 

concentrations. One way to improve the latter is to create comprehensive and open mass 717 

spectrometry libraries of FCCs, including NIAS. Ideally, an open-access repository of 718 

information about food contact material manufacturing processes and the major FCCs 719 

associated with specific materials should be generated. Confidential business 720 

information poses a critical obstacle, as the full disclosure of the chemical composition 721 

of FCMs is commonly not available. Accordingly, a mechanism needs to be developed 722 

that enables such an FCC library without infringing on intellectual property rights. 723 

5.3 Science for decision making 724 

The results of testing single chemicals or overall migrate (or, for a worst-case 725 

assessment, the extract) from a finished FCM (i.e., an FCA) using a battery of assays for 726 

each of the SCOD would need to be interpreted and integrated with available evidence 727 

to reach a conclusion within a regulatory context. A framework, similar to that available 728 

for read-across (Lizarraga et al. 2023; European Chemicals Agency 2017), should be 729 

developed to effectively utilize results and support conclusions that are actionable for 730 

policy makers and regulatory enforcement. The experience gained from development of 731 

effect-based trigger values for water quality assessment in Europe could be highly 732 

informative (Escher et al. 2018; Neale et al. 2023). Here, effect-based trigger values 733 

have been developed as a means to interpret the results of in-vitro assays through 734 

linking the existing water quality guideline values to observed levels of bioactivity 735 

elicited by a reference chemical. Then, if a test chemical or mixture causes an activity 736 

above the trigger value set for a specific assay, it is highlighted for a follow-up 737 

assessment, such as calculation of concentration factors and in-vitro to in-vivo 738 

extrapolation (Escher and Neale 2021; Robitaille et al. 2022; Escher, Neale, and Leusch 739 

2015). In theory, effect-based trigger values for FCMs could be developed following the 740 
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same principle, e.g. by matching effect concentrations in relevant bioassays with 741 

existing specific migration limits for FCCs of concern, and possibly factoring in 742 

additional exposure-related parameters. This approach appears highly promising, since 743 

it has been demonstrated that derivation of effect-based trigger values greatly facilitates 744 

regulatory and practical uptake of in-vitro methods into specific assessment pipelines 745 

(Neale et al. 2023), but it is evident that further dedicated efforts are required for an 746 

effective implementation of such an approach to the safety assessment of FCMs. 747 

6. Conclusion 748 

The novel approach we present here is in line with the goals laid out in the EU’s 749 

Chemicals Strategy for Sustainability (EU 2020a), the EU Farm to Fork Strategy (EU 750 

2020b), and the European Parliament’s report on FCMs (European Parliament 2016), 751 

which emphasize the need for revising the food contact material regulation in Europe to 752 

adequately reflect recent scientific understanding and improve compliance. Further, this 753 

work adds to previous publications on policies and methods related to the risk 754 

assessment of food contact chemicals and materials (Zimmermann et al. 2022; Muncke 755 

et al. 2020; Muncke et al. 2017), and to the use of new approach methodologies for 756 

assessing the health impacts of industrial chemicals (Stucki et al. 2022).  757 

We think that our vision to create safer FCMs by linking hazard identification 758 

more directly to human health has the potential to spur innovation in assay development 759 

and testing, and ultimately, for safer materials as such. Additionally, new findings on 760 

the key characteristics for the NCDs included in the SCOD, as well as mechanistic 761 

understanding derived from AOP research, will support the development of new assays.  762 

Awareness of adverse health effects of synthetic chemicals is increasing globally, 763 

and the need is obvious for significant and urgent improvements in the ways that risks 764 
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are assessed and managed for FCCs (Fenner and Scheringer 2021).  765 
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75 

 

Table 1. Food contact chemicals (FCCs) associated with non-communicable diseases 2081 

(NCDs) from each of the Six Clusters of Disease (SCOD) (non-exhaustive and non-2082 

systematic overview of epidemiological studies). Identification of FCCs was based on 2083 

the Food Contact Chemicals database (FCCdb) (Groh et al. 2021) and the database on 2084 

migrating and extractable food contact chemicals (FCCmigex) (Geueke et al. 2022). 2085 

This overview is not a complete list of FCCs that are associated with adverse health 2086 

outcomes.  Cancer agents are classified by cancer site (IARC 2022). 2087 

Disease Cluster Example disease Associated 

FCC exposure 

References 

Cancers Testicular cancer PFOA  (IARC 2016; 

ATSDR 2021) 

Kidney cancer PFOA  (IARC 2016; 

Melnick 2001)  

Breast cancer PFOA  (Wan, Co, and El-

Nezami 2022) 

Ortho-

phthalates 

 (Wan, Co, and El-

Nezami 2022) 

Cardiovascular 

diseases 

Cardiovascular diseases: 

including myocardial 

infarction, arrhythmias, 

dilated cardiomyopathy, 

atherosclerosis, and 

hypertension 

BPA    (Moon et al. 2021; 

Zhang, Shan, et al. 

2020; Wehbe et al. 

2020; Ramadan, 

Cooper, and Posnack 

2020) 

Ortho-

phthalates  

 (Fu et al. 2020) 

Brain-related 

disorders 

Hypothyroid BPA  (Rebolledo-Solleiro, 

Flores, and Solleiro-

Villavicencio 2021) 

Ortho-

phthalates 

 (Radke et al. 2020) 
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Perchlorate   (Radke et al. 2020) 

PFAS   (Piekarski, Diaz, 

and McNerney 2020) 

Abnormal neurodevelopment Ortho-

phthalates: 

DEHP, DBP, 

BBP and DEP 

  (Eales et al. 2022) 

Attention Deficit 

Hyperactivity 

Disorder/behavior 

Lead, BPA, 

ortho-phthalates 

 (Moore et al. 2022; 

Li et al. 2020; Park 

et al. 2015) 

Lower Intelligence Quotient Endocrine 

disrupting 

chemical (EDC) 

mixture (Ortho-

phthalates) 

 (Tanner et al. 2020; 

van den Dries et al. 

2020) 

Language delay EDC mixture  (Caporale et al. 

2022) 

Metabolic and 

endocrine 

diseases 

Type-1 diabetes BPA, Ortho-

phthalates, 

PFAS 

 (Predieri et al. 2020) 

Type-2 diabetes BPA  (Wang et al. 2019; 

Rancière et al. 2015; 

Akash, Sabir, and 

Rehman 2020) 

PFOA  (He et al. 2018) 

Pre-diabetes and diabetes  Ortho-

phthalates 

 (Eales et al. 2022; 

Radke et al. 2018; 

Dales, Kauri, and 

Cakmak 2018) 

 

Obesity (BMI, waist 

circumference) 

BPA  (Fu et al. 2020; 

Pérez-Bermejo, Mas-
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Pérez, and Murillo-

Llorente 2021; Wu 

et al. 2020) 

 
PFAS 

 (Liu et al. 2018; 

Geiger et al. 2021) 

 

Childhood Obesity BPA  (Ribeiro et al. 2020)  

Ortho-

phthalates 

 (Buckley et al. 

2016) 

 

Gestational diabetes Antimony  (Zhang, Li, et al. 

2020) 

 

Ortho-

phthalates 

 (Shaffer et al. 2019)  

Non-alcoholic fatty liver 

disease 

EDC mixture  (Midya et al. 2022) 
 

PFAS 
 (Stratakis et al. 

2020) 

 

Immunological 

disorders 

Immunosuppression PFAS: PFOS 

and PFOA  

 (DeWitt, Blossom, 

and Schaider 2019) 

 

Childhood asthma Ortho-

phthalates: 

DEHP and 

BBzP  

 (Eales et al. 2022) 
 

Kidney damage Melamine  (Hsieh et al. 2012) 
 

Reproductive 

disorders 

Male infertility BPA  (Sharma et al. 2020) 
 

Dibutyl 

phthalate 

 (Estill et al. 2019) 
 

Semen quality  Ortho-

phthalates: 

DBP, BBP, 

DEHP, and 

DINP 

 (Radke et al. 2018; 

Eales et al. 2022; 

Thurston et al. 2016) 
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Female infertility (reduced 

follicular count) 

DEHP  (Messerlian et al. 

2016) 

 

  2088 
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Table 2. Examples of food contact chemicals (FCCs) that are associated with diseases 2089 

from the Six Clusters of Disease (SCOD) by mechanisms from in-vitro and/or in-vivo 2090 

studies (not including epidemiological studies). Not a complete list: Select references 2091 

only.  2092 

Disease Cluster Food Contact Chemical Reference 

Cancers 

 

Melamine (CAS 108-78-1) 

 

 (IARC 2019) 

Formaldehyde (CAS 50-00-0)  (IARC 2012a) 

Benzidine (CAS 92-87-5) 

 

 

 (IARC 2010) 

4,4′-Diamino-3,3′ - 

Dichlorodiphenylmethane 

(MOCA) (CAS 101-14-4) 

 (IARC 2012a) 

Antimony trioxide (CAS 1309-

64-4) 

 (NTP 2018) 

Perfluorooctanoic acid 

(PFOA) (CAS 335-67-1) 

 (Temkin et al. 2020; 

Pierozan, Jerneren, and 

Karlsson 2018; Charazac et al. 

2022) 

Di (2-ethylhexyl) phthalate 

(DEHP) (CAS 117-81-7) 

 (Hager, Chen, and Zhao 

2022; IARC 2012b) 

Bisphenol A (BPA) (CAS 80-

05-7) 

 (Sang et al. 2021; Jun et al. 

2021; Dhimolea et al. 2014; 

Prins et al. 2014) 

Cardiovascular 

diseases 

 

Bisphenol A (BPA) (CAS 80-

05-7) 

 (Pant, Ranjan, and Deshpande 

2011; Gao and Wang 2014; 
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Kofron et al. 2021; Hyun et al. 

2021; Krishna, Berridge, and 

Kleinstreuer 2021; Cooper and 

Posnack 2022) 

Triclosan (CAS 3380-34-5)  (Krishna, Berridge, and 

Kleinstreuer 2021) 

Tributyltin chloride (CAS 

1461-22-9) 

 (Krishna, Berridge, and 

Kleinstreuer 2021) 

Diethanolamine (CAS 111-42-

2) 

 (Jokinen et al. 2005) 

DEHP  (Mariana et al. 2016) 

Brain-related 

disorders 

 

Perchlorate (CAS 14797-73-0)  (Kirk 2006) 

Ortho-phthalates 
 (Hlisníková et al. 2021) 

BPA  (McDonough, Xu, and Guo 

2021; Wang et al. 2020) 

Bisphenol S (BPS) (CAS 80-09-

1) 

 (Naderi and Kwong 2020; 

McDonough, Xu, and Guo 

2021) 

Metabolic 

diseases 

BPA  (Villar-Pazos et al. 2017; 

Martinez-Pinna et al. 2019; 

Wassenaar, Trasande, and 

Legler 2017; Desai et al. 

2018a; Manikkam et al. 2013) 
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Bisphenol A diglycidyl ether 

(BADGE) (CAS 1675-54-3) 

 (Wang et al. 2021) 

Organotins  (Rotenberg Iu, Mazaev, and 

Shlepnina 1978) 

Perchlorate  (Larsson-Nyrén et al. 2001) 

Perfluorooctanesulfonic acid 

(PFOS) (CAS 1763-23-1) 

 (Qin et al. 2020; Sant et al. 

2017) 

Bisphenol F (BPF) (CAS 620-

92-8) 

 (Marroqui et al. 2021) 

BPS  (Marroqui et al. 2021) 

2,4,7,9-tetramethyl-5-decyne-

4,7-diol (TMDD; Surfynol) 

(CAS 126-86-3) 

 (Garcia-Calvo et al. 2020b; 

Nerin et al. 2018; Nerin et al. 

2014) 

DEHP  (Li et al. 2019; Manikkam et 

al. 2013) 

Immunological 

disorders 

 

Melamine  (IARC 2019) 

BPA  (McDonough, Xu, and Guo 

2021) 

BPF  (McDonough, Xu, and Guo 

2021) 

BPS  (McDonough, Xu, and Guo 

2021; Nowak, Jabłońska, and 

Ratajczak-Wrona 2019) 
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2,4-di-tert-butylphenol (CAS 

96-76-4) 

 (Liu et al. 2022) 

DEHP  (Nowak, Jabłońska, and 

Ratajczak-Wrona 2019; 

Hessel et al. 2015) 

Reproductive 

disorders 

BPA  (Liu 2021; Vessa et al. 2022b; 

Wang, Hafner, and Flaws 

2014; Mahalingam et al. 2017) 

BADGE  (Wang et al. 2021; Nerin et 

al. 2014) 

BPS  (Desmarchais et al. 2020) 

DEHP  (Vessa et al. 2022b; Mariana 

et al. 2016) 

  2093 
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 2094 

Figure 1: Illustration of the terms food contact article (FCA), food contact 2095 

material (FCM), and food contact chemical (FCC). The terms FCA and FCM are often 2096 

used interchangeably, but only FCAs can be considered “finished” while FCMs 2097 

oftentimes will be used in combination with other FCMs to make a finished FCA. The 2098 

term FCC describes any chemical that is present in an FCM or FCA, regardless of 2099 

whether it was intentionally used, or if it is a non-intentionally added substance (NIAS), 2100 

such as an impurity, a reaction by-product, a degradation product, or of other origin 2101 

(e.g., a contaminant from recycling). 2102 

  2103 
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 2104 

Figure 2. Chemical risk assessment for food contact chemicals (FCCs): current 2105 

practice. The current approach for assessing the safety of FCCs focuses on testing single 2106 

substances that are intentionally used to make FCMs. Only genotoxic carcinogenicity is 2107 

currently determined as a human health relevant endpoint. However, many more 2108 

chemicals can migrate simultaneously from the finished FCM, including unidentified 2109 

compounds that are non-intentionally added substances (NIAS). The migrating mixture 2110 

is known as the overall migrate, and it can exert adverse effects (mixture toxicity). 2111 

Currently, the assessment of the overall migrate’s mixture toxicity is not legally 2112 

required.  2113 
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 2115 

Figure 3. The Six Clusters of Disease (SCOD) concept comprises non-2116 

communicable diseases (NCDs) that are highly prevalent in the global human 2117 

population, of increasing concern and associated with hazardous chemical exposures 2118 

that can be clustered by disease type. The SCOD are of major concern for public health 2119 

and require novel approaches for prevention, namely the identification of chemical 2120 

contributors.  2121 
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 2123 

Figure 4. Overview of the current vs. proposed approach to food contact 2124 

chemical (FCC) testing. The proposed new approach focuses on testing the overall 2125 

migrate (i.e., the human exposure-relevant mixture of all migrating FCCs) for its 2126 

potential to contribute to the Six Clusters of Disease (SCOD).  2127 
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 2129 

Figure 5. The vision for a novel approach to safety assessment of FCMs and 2130 

food contact articles. Finished food contact articles are tested for their real-life mixture 2131 

of all migrating chemicals (the overall migrate, i.e. the mixture of all migrating 2132 

chemicals), using in-vitro screening assays. The screening assays are mechanism-based 2133 

and identify the key characteristics, key initiating events, or other mechanisms of action 2134 

of the overall migrate. Screening assays are selected around the Six Clusters of Disease 2135 

(SCOD) concept. For overall migrate displaying positive findings in the in-vitro assays, 2136 

non-targeted chemical analyses are carried out to identify the substances driving the 2137 

overall migrate’s toxicity.  2138 


